US2673232A - Feed device for electrolytic cells - Google Patents

Feed device for electrolytic cells Download PDF

Info

Publication number
US2673232A
US2673232A US140327A US14032750A US2673232A US 2673232 A US2673232 A US 2673232A US 140327 A US140327 A US 140327A US 14032750 A US14032750 A US 14032750A US 2673232 A US2673232 A US 2673232A
Authority
US
United States
Prior art keywords
cell
jets
stream
solution
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US140327A
Inventor
Jr Christopher C Silsby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Shamrock Corp
Original Assignee
Diamond Alkali Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Alkali Co filed Critical Diamond Alkali Co
Priority to US140327A priority Critical patent/US2673232A/en
Application granted granted Critical
Publication of US2673232A publication Critical patent/US2673232A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • B05B5/1608Arrangements for supplying liquids or other fluent material the liquid or other fluent material being electrically conductive
    • B05B5/1616Arrangements for supplying liquids or other fluent material the liquid or other fluent material being electrically conductive and the arrangement comprising means for insulating a grounded material source from high voltage applied to the material
    • B05B5/165Arrangements for supplying liquids or other fluent material the liquid or other fluent material being electrically conductive and the arrangement comprising means for insulating a grounded material source from high voltage applied to the material by dividing the material into discrete quantities, e.g. droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to a stream-breaking feed device for delivering a solution of electrolyte to an electrolytic cell, and more particularly relates to a means for disintegratin said stream into discrete droplets to prevent unwanted flow of electricity from a cell and for regulating the rate of delivery of the electrolyte stream to the cell.
  • Stream-breaking means heretofore proposed for disintegrating a feed stream of electrolyte solution have included devices in which the stream is projected at high pressure from an orifice longitudinally against the inside surface of a tubular member opening into a cell, whereby the stream impinging upon the inside surface of the tube spreads around the inner periphery thereof and is said to leave the end of the tube in the form of a conical sheet which ultimately disintegrates into a mass of discrete particles.
  • a more simple device for the same purpose includes an orifice inserted in the feed line, the orifice directing the feed stream vertically into the cell through a distance sufficient to permit the stream to disintegrate by disrupting intermolecular cohesive forces of the solution during its fall.
  • the range of solution feed rates which will prevent electrical grounding of the cell through the feed stream is relatively narrow in the spray-type disintegrator because low feed rates preclude the feed stream moving with sufi'icient speed to maintain the formation of a thin liquid sheet and the subsequent disintegration ofthis sheet into discrete droplets, and in the electric current between single orifice type because high feed rates preclude allowance for sufficient practicable vertical distances through which the stream must fall before its disintegration is effected.
  • An object of the invention is to provide a metering feed device for feeding electrolyte to an electrolytic cell which shall insulate the feed supply from the cell at all times.
  • Another object of the present invention is to provide an electrolyte solution stream disintegrator for electrolytic cells, which disintegrator may be operated over a relatively wide range of feed rates within which the disintegration of the feed stream, and of the cell electrically, is assured.
  • Another object of the-invention is to provide an electrolyte solution disintegrator for an electrolytic cell feed device, the capacity of which may be varied as the capacity of the cell changes from time to time.
  • a further object of the invention is to provide a feed device for feeding a solution of electrolyte to an electrolytic cell, which device precludes due to arcing of an droplets of the electroexplosions Within the cell lyte solution fed thereto.
  • 2 is a take-off from a manifold electrolyte solution header line, in which a metering orifice 4 is inserted and is supported by tube or reservoir 8 formed by supand stopper Ill; a plurality of 6 entering chamber porting member l2 jets iii are seated in the floor of supporting member l2 which forms the sides and floor of reservoir 8; jets I6 discharge from chamber 8 into the interior of cage 30, which is fabricated from an electrical insulating material, preferably a transparent material, such as glass or transparent synthetic plastics, and is vented to the atmosphere as at 38; cage 30 is supported by base 24, in which stopper 26 and line 28, emptying cage 30, are inserted; base 24, in conjunction with stopper 26, line 28, and the cage 30, forms a liquid-tight catch basin for droplets 20; base 24 and jet support l2 may be of electrical insulating material, similar to that of cage 30, and are held in rigid assembly by means of top and bottom rings 3 6 secured by buck-stays 32, which may consequently
  • the object is to isolate the top and bottom zones of the apparatus electrically by whatever arrangement of non-conducting parts may be feasible in a given application of the invention.
  • a solution of electrolyte is fed from takeoil tube 2 through metering orifice 4 under suitable hydrostatic head of pressure into chamber 8; the rate of flow of the electrolyte solution into this chamber, and consequently the rate at which the solution is fed to the cell, is governed by the size of the opening in orifice 4 and the hydrostatic pressure upon the solution above the orifice; the stream of electrolyte solution is discharged from chamber 8 through jets l6 initially as a solid stream l8, which ultimately disintegrates into droplets 20, which are collected at the base of cage 30 as a continuous body of solution, which then flows to the cell through line 28.
  • Opening 38 shown above the normal liquid level of cage 39 but suitably below the lower limit of unbroken electrolyte stream from jets It, serves a two-fold purpose, in that it is open to the atmosphere and therefore permits the stream issuing from orifice 4 and jets 16 to be discharged against a substantially constant head of pressure, whereby the flow of brine or the like through the apparatus may readily be maintained at any desired constant rate, and in that the opening 38 serves as an overflow in the event of blocking along line 28 from cage 30 to a cell suitably to prevent the flow of current through the disintegrator.
  • cage 30 If cage 30 is not vented to the atmosphere, pressure variations within the cage, due to the hydrostatic head of pressure above orifice 4 and the pressure within the electrolytic cell exerted through line 28, may cause erratic operation of the metering orifice, for example, by increasing the pressure within the cage and thereby diminishing the flow to an amount substantially v less than the capacity of the cell to electrolyze the solution, and thereby allow the level of electrolyte in the cell to fall below the top of the electrodes, which in turn permits intermixing of cathodic and anodic gases, for example, hydrogen and chlorine Or hydrogen and oxygen, and increases the danger of explosion within the cell.
  • cathodic and anodic gases for example, hydrogen and chlorine Or hydrogen and oxygen
  • the rate of flow of electrolyte solution through orifice 4 at any given time is necessarily determined by and is proportional to the working capacity of the cell, i. e., the amperage, at that time, and is controlled directly by the hydrostatic head of liquid in line 2 above orifice 4.
  • the effectiveness of the apparatus to disintegrate the feed stream is not impaired as the flow of liquid through the jets it approaches zero, and therefore flow rates less than that required to satisfy the maximum capacity of the cell need not be taken into account in designing the apparatus.
  • the size of the orilice 4 and the number and sizes of jets IE to be used in the stream disintegrating mechanism it is important first to determine the available hydrostatic head above orifice 4 and to co-ordinate the size of the opening in the orifice with the hydrostatic head, so as to obtain a flow somewhat greater than the maximum capacity of the cell to electrolyze the solution fed thereto. Thereafter, the number and size of the openings of the jets It to be employed are suitably adjusted to the maximum allowable length of cage 30 in order that the streams of liquid issuing from the jets disintegrate into discrete droplets before reaching the body of solution at the base of cage 30.
  • the diameter of the orifice 4 is suitably less than the sum of the diameters of the openings in the total of jets l6, whereby the disintegration of the streams issuing from the jets is effected within a distance less than that required theoretically to disintegrate a stream issuing from orifice 4; suitably orifice 4 is within the range 0.1 to 0.8 the sum of the diameters of the total of jets IE, but preferred value of operations lies in the range from 0.6 to 0.8.
  • a suitable allowable length for cage 30 has been found to be of the order of 12 to 20 inches.
  • cage 30 for a cell having a maxlmum capacity within the range of flow rates given in thetable above, it is preferred practice to have the length of the cage at least 3-4 inches more than the corresponding distance of stream fall which may occur within cage 30 is ineffective in initiating an explosion since intermixing of .anodic and cathodic gases cannot occur in this region in the apparatus and therefore, a much saferopelifl tion of an electrolytic .cell is assured.
  • An electrolyte solution feed device for an electrolytic cell including an electrolyte solution feed line, a fixed metering orifice in said line controlling flow of solution to an enclosed reservoir having a plurality of jets in the floor thereof, the diameter of said orifice being less than the sum of the diameters of said jets, said jets opening directly into a vessel wherein the distance of the free fall of streams issuing from said jets is sufficient to allow for the disintegration of said streams into discrete droplets, said vessel having a vent to the atmosphere and having a zone electrically insulated from said reservoir, in which zone droplets of said solution from said streams are collected to form a body of said solution.
  • An electrolyte solution feed device for an electrolytic cell including an electrolyte solution feed line, a fixed metering orifice in said line opening directly into an enclosed reservoir having a plurality of jets in the fioor thereof,
  • the diameter of said orifice being within the range of 0.1 to 0.8 the sum 01' the diameters of said jets, the floor of said reservoir forming the roof of an electrically nonconductive vessel wherein the distance of the free fall of streams issuing from said jets is greater than that required for said streams to disintegrate into discrete droplets, said vessel having a vent to the atmosphere at a level lower than that at which said streams disintegrate into discrete droplets, and having below said vent a catch basin wherein said droplets are collected to form a continuous body of said solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

March 1954 c. c. SILSBY, JR
FEED DEVICE FOR ELECTROLYTIC CELLS Filed Jan. 24, 1950 INVENTOR. I CHRISTOPHER c. SILSBY, JRQ
IDIOD'I'BU 0 o Patented Mar. 23, 1954 J 2 FEED DEVICE FOR ELECTROLYTIC CELLS Christopher C. Silsby,
to Diamond Alkali Company,
Jr., Euclid, Ohio, assignor Cleveland, Ohio,
a corporation of Delaware Application January 24, 1950, Serial No. 140,327
2 Claims.
This invention relates to a stream-breaking feed device for delivering a solution of electrolyte to an electrolytic cell, and more particularly relates to a means for disintegratin said stream into discrete droplets to prevent unwanted flow of electricity from a cell and for regulating the rate of delivery of the electrolyte stream to the cell.
It is of paramount importance in commercial electrolysis plants for the electrolysis of aqueous solutions of electrolytes that the electrolytic cells be isolated electrically from the source of the feed stream of electrolyte solution fed thereto in order that there be no dissipation of electric current to the stream outside the cell. Likewise, it is of importance that there be no means by which arcing of the electric current may take place between electrical conductors within the cell, since such arcing may touch ofi a chemical reaction of the evolved gases, i. e., hydrogen and chlorine or hydrogen and oxygen, which reaction may then proceed with explosive violence. An explosion may be touched off by arcing of the electric current between droplets of the electrolyte solution where the droplets of the feed solution are projected directly into the body of electrolyte within the cell. H
Stream-breaking means heretofore proposed for disintegrating a feed stream of electrolyte solution have included devices in which the stream is projected at high pressure from an orifice longitudinally against the inside surface of a tubular member opening into a cell, whereby the stream impinging upon the inside surface of the tube spreads around the inner periphery thereof and is said to leave the end of the tube in the form of a conical sheet which ultimately disintegrates into a mass of discrete particles. A more simple device for the same purpose includes an orifice inserted in the feed line, the orifice directing the feed stream vertically into the cell through a distance sufficient to permit the stream to disintegrate by disrupting intermolecular cohesive forces of the solution during its fall.
In addition to the dangers of the phenomenon o1 arcing between droplets noted hereinabove with such prior art stream disintegrating feed devices, the range of solution feed rates which will prevent electrical grounding of the cell through the feed stream is relatively narrow in the spray-type disintegrator because low feed rates preclude the feed stream moving with sufi'icient speed to maintain the formation of a thin liquid sheet and the subsequent disintegration ofthis sheet into discrete droplets, and in the electric current between single orifice type because high feed rates preclude allowance for sufficient practicable vertical distances through which the stream must fall before its disintegration is effected.
An object of the invention is to provide a metering feed device for feeding electrolyte to an electrolytic cell which shall insulate the feed supply from the cell at all times.
Another object of the present invention is to provide an electrolyte solution stream disintegrator for electrolytic cells, which disintegrator may be operated over a relatively wide range of feed rates within which the disintegration of the feed stream, and of the cell electrically, is assured.
Another object of the-invention is to provide an electrolyte solution disintegrator for an electrolytic cell feed device, the capacity of which may be varied as the capacity of the cell changes from time to time.
A further object of the invention is to provide a feed device for feeding a solution of electrolyte to an electrolytic cell, which device precludes due to arcing of an droplets of the electroexplosions Within the cell lyte solution fed thereto.
These and other objects of the invention will be apparent from the detailed description of the invention set forth hereinafter.
The drawing attached hereto and forming a part hereof is a vertical sectional elevation. through an apparatus representing one form of the invention.
In the drawing, 2 is a take-off from a manifold electrolyte solution header line, in which a metering orifice 4 is inserted and is supported by tube or reservoir 8 formed by supand stopper Ill; a plurality of 6 entering chamber porting member l2 jets iii are seated in the floor of supporting member l2 which forms the sides and floor of reservoir 8; jets I6 discharge from chamber 8 into the interior of cage 30, which is fabricated from an electrical insulating material, preferably a transparent material, such as glass or transparent synthetic plastics, and is vented to the atmosphere as at 38; cage 30 is supported by base 24, in which stopper 26 and line 28, emptying cage 30, are inserted; base 24, in conjunction with stopper 26, line 28, and the cage 30, forms a liquid-tight catch basin for droplets 20; base 24 and jet support l2 may be of electrical insulating material, similar to that of cage 30, and are held in rigid assembly by means of top and bottom rings 3 6 secured by buck-stays 32, which may consequently the isolation lower portion of also, if desired, be of.
electrical insulating material, which are held in place by nuts 36. The object, of course, is to isolate the top and bottom zones of the apparatus electrically by whatever arrangement of non-conducting parts may be feasible in a given application of the invention.
In operating the feed device of the present invention, a solution of electrolyte is fed from takeoil tube 2 through metering orifice 4 under suitable hydrostatic head of pressure into chamber 8; the rate of flow of the electrolyte solution into this chamber, and consequently the rate at which the solution is fed to the cell, is governed by the size of the opening in orifice 4 and the hydrostatic pressure upon the solution above the orifice; the stream of electrolyte solution is discharged from chamber 8 through jets l6 initially as a solid stream l8, which ultimately disintegrates into droplets 20, which are collected at the base of cage 30 as a continuous body of solution, which then flows to the cell through line 28.
Opening 38, shown above the normal liquid level of cage 39 but suitably below the lower limit of unbroken electrolyte stream from jets It, serves a two-fold purpose, in that it is open to the atmosphere and therefore permits the stream issuing from orifice 4 and jets 16 to be discharged against a substantially constant head of pressure, whereby the flow of brine or the like through the apparatus may readily be maintained at any desired constant rate, and in that the opening 38 serves as an overflow in the event of blocking along line 28 from cage 30 to a cell suitably to prevent the flow of current through the disintegrator. If cage 30 is not vented to the atmosphere, pressure variations within the cage, due to the hydrostatic head of pressure above orifice 4 and the pressure within the electrolytic cell exerted through line 28, may cause erratic operation of the metering orifice, for example, by increasing the pressure within the cage and thereby diminishing the flow to an amount substantially v less than the capacity of the cell to electrolyze the solution, and thereby allow the level of electrolyte in the cell to fall below the top of the electrodes, which in turn permits intermixing of cathodic and anodic gases, for example, hydrogen and chlorine Or hydrogen and oxygen, and increases the danger of explosion within the cell.
The rate of flow of electrolyte solution through orifice 4 at any given time is necessarily determined by and is proportional to the working capacity of the cell, i. e., the amperage, at that time, and is controlled directly by the hydrostatic head of liquid in line 2 above orifice 4. The effectiveness of the apparatus to disintegrate the feed stream is not impaired as the flow of liquid through the jets it approaches zero, and therefore flow rates less than that required to satisfy the maximum capacity of the cell need not be taken into account in designing the apparatus. This follows from the fact that at a given solution flow rate, for example, a fiow rate equal to the maximum capacity of the cell to which it is fed, the streams issuing from the jets will disintegrate within a determinable distance proportional to the size of the openings in the jets and the speed with which the issuing stream moves. Any lesser rate of flow will cause these streams to disintegrate within a lesser distance. The length of cage .30 and the size of the openings in jets [6,, as well as the number of jets, may thus be in tegrated to the maximum working capacity of a cell toelectrolyze the solution and to the requisite rate or flow of solution through orifice l-to satisfy that capacity. In determining the size of the orilice 4 and the number and sizes of jets IE to be used in the stream disintegrating mechanism, it is important first to determine the available hydrostatic head above orifice 4 and to co-ordinate the size of the opening in the orifice with the hydrostatic head, so as to obtain a flow somewhat greater than the maximum capacity of the cell to electrolyze the solution fed thereto. Thereafter, the number and size of the openings of the jets It to be employed are suitably adjusted to the maximum allowable length of cage 30 in order that the streams of liquid issuing from the jets disintegrate into discrete droplets before reaching the body of solution at the base of cage 30.
In gauging the size of the openings in jets Hi, the diameter of the orifice 4 is suitably less than the sum of the diameters of the openings in the total of jets l6, whereby the disintegration of the streams issuing from the jets is effected within a distance less than that required theoretically to disintegrate a stream issuing from orifice 4; suitably orifice 4 is within the range 0.1 to 0.8 the sum of the diameters of the total of jets IE, but preferred value of operations lies in the range from 0.6 to 0.8. In ordinary commercial practice, a suitable allowable length for cage 30 has been found to be of the order of 12 to 20 inches.
Data relative to these features of the invention are tabulated below to show the relationship of the size of the openings in the jets to the flow rates obtainable therethrough and the distance through which the stream issuing from the jets must fall in order to effect the disintegration thereof into discrete particles.
grate, Inches In designing cage 30 for a cell having a maxlmum capacity within the range of flow rates given in thetable above, it is preferred practice to have the length of the cage at least 3-4 inches more than the corresponding distance of stream fall which may occur within cage 30 is ineffective in initiating an explosion since intermixing of .anodic and cathodic gases cannot occur in this region in the apparatus and therefore, a much saferopelifl tion of an electrolytic .cell is assured.
While there has been illustrated and describ in detail an embodiment of the invention, the described structure is not intended to be understood as limiting the scope of the invention asit is realized that changes therewithin are possible i and it is further intended that each element or instrumentality recited in any of the followmg claims is to be understood as referring .to
equivalent elements or. instrumentalities for accomplishing substantially the same results-yin. substantially the same or equivalent manner. it
5 being intended to cover the invention broadly in whatever form its principle may be utilized.
What is claimed is:
1. An electrolyte solution feed device for an electrolytic cell including an electrolyte solution feed line, a fixed metering orifice in said line controlling flow of solution to an enclosed reservoir having a plurality of jets in the floor thereof, the diameter of said orifice being less than the sum of the diameters of said jets, said jets opening directly into a vessel wherein the distance of the free fall of streams issuing from said jets is sufficient to allow for the disintegration of said streams into discrete droplets, said vessel having a vent to the atmosphere and having a zone electrically insulated from said reservoir, in which zone droplets of said solution from said streams are collected to form a body of said solution.
2. An electrolyte solution feed device for an electrolytic cell including an electrolyte solution feed line, a fixed metering orifice in said line opening directly into an enclosed reservoir having a plurality of jets in the fioor thereof,
the diameter of said orifice being within the range of 0.1 to 0.8 the sum 01' the diameters of said jets, the floor of said reservoir forming the roof of an electrically nonconductive vessel wherein the distance of the free fall of streams issuing from said jets is greater than that required for said streams to disintegrate into discrete droplets, said vessel having a vent to the atmosphere at a level lower than that at which said streams disintegrate into discrete droplets, and having below said vent a catch basin wherein said droplets are collected to form a continuous body of said solution.
CHRISTOPHER C. SILSBY, JR.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 636,234 Baker Nov. 7, 1899 679,050 Girouard July 23, 1901 1,106,719 Lake Aug. 11, 1914 2,414,741 Hubbard Jan. 21, 1947
US140327A 1950-01-24 1950-01-24 Feed device for electrolytic cells Expired - Lifetime US2673232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US140327A US2673232A (en) 1950-01-24 1950-01-24 Feed device for electrolytic cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US140327A US2673232A (en) 1950-01-24 1950-01-24 Feed device for electrolytic cells

Publications (1)

Publication Number Publication Date
US2673232A true US2673232A (en) 1954-03-23

Family

ID=22490741

Family Applications (1)

Application Number Title Priority Date Filing Date
US140327A Expired - Lifetime US2673232A (en) 1950-01-24 1950-01-24 Feed device for electrolytic cells

Country Status (1)

Country Link
US (1) US2673232A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3098890A (en) * 1960-11-15 1963-07-23 Floyd V Peterson Liquid transmissive and electric current non-transmissive apparatus
US3356810A (en) * 1965-03-31 1967-12-05 Siemens Ag Centering device for conducting liquefied arc-extinguishing gas to a highpressure reservoir
US3546089A (en) * 1969-06-04 1970-12-08 Young Albert Apparatus for the continuous electrolytic production of chlorine for the sterilization of water
US3622479A (en) * 1969-06-04 1971-11-23 Frank L Schneider Method for the continuous electrolytic production of chlorine for the sterilization of water
US3847783A (en) * 1972-03-20 1974-11-12 U Giacopelli Electrolytic cell and method of assembling same
US4032424A (en) * 1975-12-22 1977-06-28 Diamond Shamrock Corporation Electrical current breaker for fluid stream
US4046662A (en) * 1974-11-06 1977-09-06 Rolls-Royce (1971) Limited Electro-chemical machine tools
US4149955A (en) * 1976-10-26 1979-04-17 Basf Wyandotte Corporation Feeding of brine to chlor-alkali cells
US4476001A (en) * 1983-03-30 1984-10-09 Nova Rubber Co. Device for collecting alkaline cell liquor from an electrolytic cell
US4544570A (en) * 1984-01-26 1985-10-01 Nordson Corporation Electrostatic high voltage isolation system with internal charge generation
FR2565412A1 (en) * 1984-06-05 1985-12-06 Furukawa Electric Co Ltd BATTERY OF POWER GENERATORS OF ELECTROLYTE SOLUTION POWER TYPE
EP0175288A2 (en) * 1984-09-19 1986-03-26 Hoechst Aktiengesellschaft Process for the galvanic separation of electrolyte carrying collectors from the electrolyte chambers of an electrochemical cell parcel
US4629119A (en) * 1984-01-26 1986-12-16 Nordson Corporation Electrostatic isolation apparatus and method
US4878622A (en) * 1988-06-17 1989-11-07 Ransburg Corporation Peristaltic voltage block
US4982903A (en) * 1988-06-17 1991-01-08 Ransburg Corporation Peristaltic voltage block
US5058812A (en) * 1988-06-17 1991-10-22 Ransburg Corporation System for dispensing of both water base and organic solvent base coatings
US5154357A (en) * 1991-03-22 1992-10-13 Ransburg Corporation Peristaltic voltage blocks
US5193750A (en) * 1991-03-22 1993-03-16 Ransburg Corporation Peristaltic voltage block roller actuator
US5411210A (en) * 1990-11-26 1995-05-02 Ransburg Corporation Automatic coating using conductive coating materials
US5631802A (en) * 1995-01-13 1997-05-20 Clark Equipment Company Control ring for input spray in electrostatic spray system
US5632816A (en) * 1994-07-12 1997-05-27 Ransburg Corporation Voltage block
US5843536A (en) * 1992-12-03 1998-12-01 Ransburg Corporation Coating material dispensing and charging system
EP1209256A1 (en) * 2000-11-21 2002-05-29 Outokumpu Oyj Method for preventing stray currents in peripheral system parts during an electrolysis process
US6423143B1 (en) 1999-11-02 2002-07-23 Illinois Tool Works Inc. Voltage block monitoring system
EP1344568A2 (en) 2002-03-14 2003-09-17 Illinois Tool Works Inc. Method and apparatus for dispensing coating materials
US20050011975A1 (en) * 2003-07-17 2005-01-20 Baltz James P. Dual purge manifold
US7455249B2 (en) 2006-03-28 2008-11-25 Illinois Tool Works Inc. Combined direct and indirect charging system for electrostatically-aided coating system
WO2016128038A1 (en) 2015-02-11 2016-08-18 Outotec (Finland) Oy Bipolar electrochemical system
WO2018091070A1 (en) 2016-11-15 2018-05-24 Outotec (Finland) Oy Bipolar electrochemical system
WO2023193055A1 (en) * 2022-04-07 2023-10-12 Hysata Pty Ltd Electro-synthetic or electro-energy cells with liquid features

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US636234A (en) * 1897-05-17 1899-11-07 Nashoba Company Process of and apparatus for electrolytic decomposition of saline solutions.
US679050A (en) * 1899-05-11 1901-07-23 S D Warren & Company Liquid-feed device for electrolytic apparatus.
US1106719A (en) * 1912-08-06 1914-08-11 Simon Lake Battery.
US2414741A (en) * 1942-03-16 1947-01-21 Hooker Electrochemical Co Means for breaking up liquid streams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US636234A (en) * 1897-05-17 1899-11-07 Nashoba Company Process of and apparatus for electrolytic decomposition of saline solutions.
US679050A (en) * 1899-05-11 1901-07-23 S D Warren & Company Liquid-feed device for electrolytic apparatus.
US1106719A (en) * 1912-08-06 1914-08-11 Simon Lake Battery.
US2414741A (en) * 1942-03-16 1947-01-21 Hooker Electrochemical Co Means for breaking up liquid streams

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3098890A (en) * 1960-11-15 1963-07-23 Floyd V Peterson Liquid transmissive and electric current non-transmissive apparatus
US3356810A (en) * 1965-03-31 1967-12-05 Siemens Ag Centering device for conducting liquefied arc-extinguishing gas to a highpressure reservoir
US3546089A (en) * 1969-06-04 1970-12-08 Young Albert Apparatus for the continuous electrolytic production of chlorine for the sterilization of water
US3622479A (en) * 1969-06-04 1971-11-23 Frank L Schneider Method for the continuous electrolytic production of chlorine for the sterilization of water
US3847783A (en) * 1972-03-20 1974-11-12 U Giacopelli Electrolytic cell and method of assembling same
US4046662A (en) * 1974-11-06 1977-09-06 Rolls-Royce (1971) Limited Electro-chemical machine tools
US4032424A (en) * 1975-12-22 1977-06-28 Diamond Shamrock Corporation Electrical current breaker for fluid stream
US4149955A (en) * 1976-10-26 1979-04-17 Basf Wyandotte Corporation Feeding of brine to chlor-alkali cells
US4476001A (en) * 1983-03-30 1984-10-09 Nova Rubber Co. Device for collecting alkaline cell liquor from an electrolytic cell
US4544570A (en) * 1984-01-26 1985-10-01 Nordson Corporation Electrostatic high voltage isolation system with internal charge generation
US4629119A (en) * 1984-01-26 1986-12-16 Nordson Corporation Electrostatic isolation apparatus and method
FR2565412A1 (en) * 1984-06-05 1985-12-06 Furukawa Electric Co Ltd BATTERY OF POWER GENERATORS OF ELECTROLYTE SOLUTION POWER TYPE
US4894294A (en) * 1984-06-05 1990-01-16 The Furukawa Electric Co., Ltd. Electrolytic solution supply type battery
EP0175288A2 (en) * 1984-09-19 1986-03-26 Hoechst Aktiengesellschaft Process for the galvanic separation of electrolyte carrying collectors from the electrolyte chambers of an electrochemical cell parcel
EP0175288A3 (en) * 1984-09-19 1987-10-21 Hoechst Aktiengesellschaft Process for the galvanic separation of electrolyte carrying collectors from the electrolyte chambers of an electrochemical cell parcel
US4824534A (en) * 1984-09-19 1989-04-25 Hoechst Aktiengesellschaft Process for electrically separating the electrolyte-bearing mains from the electrolyte spaces of an electrochemical cell pile
US5058812A (en) * 1988-06-17 1991-10-22 Ransburg Corporation System for dispensing of both water base and organic solvent base coatings
US4878622A (en) * 1988-06-17 1989-11-07 Ransburg Corporation Peristaltic voltage block
US4982903A (en) * 1988-06-17 1991-01-08 Ransburg Corporation Peristaltic voltage block
US5411210A (en) * 1990-11-26 1995-05-02 Ransburg Corporation Automatic coating using conductive coating materials
US5154357A (en) * 1991-03-22 1992-10-13 Ransburg Corporation Peristaltic voltage blocks
US5193750A (en) * 1991-03-22 1993-03-16 Ransburg Corporation Peristaltic voltage block roller actuator
US5843536A (en) * 1992-12-03 1998-12-01 Ransburg Corporation Coating material dispensing and charging system
US5944045A (en) * 1994-07-12 1999-08-31 Ransburg Corporation Solvent circuit
US5632816A (en) * 1994-07-12 1997-05-27 Ransburg Corporation Voltage block
US5746831A (en) * 1994-07-12 1998-05-05 Ransburg Corporation Voltage block
US5787928A (en) * 1994-07-12 1998-08-04 Ransburg Corporation Valve structure
US5631802A (en) * 1995-01-13 1997-05-20 Clark Equipment Company Control ring for input spray in electrostatic spray system
US6423143B1 (en) 1999-11-02 2002-07-23 Illinois Tool Works Inc. Voltage block monitoring system
EP1209256A1 (en) * 2000-11-21 2002-05-29 Outokumpu Oyj Method for preventing stray currents in peripheral system parts during an electrolysis process
US6607649B2 (en) 2000-11-21 2003-08-19 Mg Technologies Ag Process of preventing stray currents in peripheral parts of a plant in an electrolysis
EP1344568A2 (en) 2002-03-14 2003-09-17 Illinois Tool Works Inc. Method and apparatus for dispensing coating materials
US20060124781A1 (en) * 2002-03-14 2006-06-15 Ghaffar Kazkaz Method and apparatus for dispensing coating materials
US20050011975A1 (en) * 2003-07-17 2005-01-20 Baltz James P. Dual purge manifold
US6918551B2 (en) 2003-07-17 2005-07-19 Illinois Tool Works Inc. Dual purge manifold
US7455249B2 (en) 2006-03-28 2008-11-25 Illinois Tool Works Inc. Combined direct and indirect charging system for electrostatically-aided coating system
WO2016128038A1 (en) 2015-02-11 2016-08-18 Outotec (Finland) Oy Bipolar electrochemical system
WO2018091070A1 (en) 2016-11-15 2018-05-24 Outotec (Finland) Oy Bipolar electrochemical system
WO2023193055A1 (en) * 2022-04-07 2023-10-12 Hysata Pty Ltd Electro-synthetic or electro-energy cells with liquid features

Similar Documents

Publication Publication Date Title
US2673232A (en) Feed device for electrolytic cells
EP0174158B1 (en) Charge injection device
US3281348A (en) Reference cell for monitoring a liquid stream
US3291889A (en) Dielectric interrupter
NO134348B (en)
GB1249323A (en) Electrolysis apparatus
US3099813A (en) Electrolytic-ignition underwater sound source
US3135672A (en) Method for feeding alumina to electrolytic cell
US2681884A (en) Brine electrolysis
US3409533A (en) Mercury-method cell for alkali chloride electrolysis
US2414741A (en) Means for breaking up liquid streams
US4744876A (en) Electrolyzer for extracting a substance from an electrolytic bath
US2719117A (en) Mercury-cathode electrolytic cell
US2183299A (en) Means for supplying electrolyte to electrolytic cells
US4788617A (en) Liquid transfer apparatus
US3203882A (en) Method of operating an alkali chlorate cell
US2018886A (en) Glass furnace
US2598228A (en) Electrolytic apparatus
GB976493A (en) Improvements in electrode holder for replaceable electrodes for use in electrical machining
EP0501113A1 (en) Membraneless chlorine gas generating apparatus
GB1159764A (en) Fuel Cells and Electrodes therefor.
US3661763A (en) Tubular ozonizer
GB1174264A (en) Operation of chlor-alkali cells and anolyte liquid level control.
US2728121A (en) Apparatus for sterilizing and deodorizing air
US1269666A (en) Electrolyte-feeding device.