US2721172A - Consumable metal anodes - Google Patents

Consumable metal anodes Download PDF

Info

Publication number
US2721172A
US2721172A US235214A US23521451A US2721172A US 2721172 A US2721172 A US 2721172A US 235214 A US235214 A US 235214A US 23521451 A US23521451 A US 23521451A US 2721172 A US2721172 A US 2721172A
Authority
US
United States
Prior art keywords
anode
metal
block
current
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US235214A
Inventor
William F Higgins
Waite William Godfrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F A A Hughes & Co Ltd
Original Assignee
F A A Hughes & Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F A A Hughes & Co Ltd filed Critical F A A Hughes & Co Ltd
Application granted granted Critical
Publication of US2721172A publication Critical patent/US2721172A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/10Electrodes characterised by the structure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/31Immersed structures, e.g. submarine structures

Description

Oct. 18, 1955 w. F. HIGGINS ET AL.
CONSUMABLE METAL ANODES Filed July 5, 1951 Inventor William Frederick Higgins & William Godfrey Waite Aitornev United States Patent 0 CONSUMABLE METAL ANODES William F. Higgins, Salford, and William Godfrey Waite, Piccadilly, London, England, assignors to F. A. A. Hughes & Co. Limited, London, England, a British company Application July 5, 1951, Serial No. 235,214
Claims priority, application Great Britain July 12, 1950 2 Claims. (Cl. 204197) This invention relates to an improved construction for consumable metal anodes used in the galvanic protection of corrodible metal structures.
In the galvanic protection of buried metallic structures or structures immersed in an aqueous solution, consumable electrodes of a metal anodic to the metal of the structure are buried in the earth or immersed in the water near the structure and are connected thereto by electrical conductors. The resulting flow of current maintains the structure cathodic with respect to the soil or water and greatly arrests the corrosion. The consumable anodes hitherto used have consisted of blocks of strongly basic metal such as zinc or magnesium or base alloys of these metals with a plain surface which is intended to be consumed at a fairly even rate. Such anodes whilst effective, maintain a fairly constant current output throughout most of their lives.
It is common experience that the current generated is in certain cases greater than that required for adequate protection, and the rate of usage of the anode is consequently higher than is desirable. This is especially the case in sea water where the electrolytic resistance may be very low. In such circumstances the anode has a shorter life than might otherwise be the case.
It is possible to limit the current actually applied to the structure to be protected by means of suitable electric resistances inserted in the metallic circuit, but this is not an ideal method since it tends to reduce the useful current without materially affecting the rate of chemical reaction on the anode surface which gives rise to the current. Thus the use of resistances is a wasteful process.
The current generated by the anode is a function, among other factors, of the surface area of the anode exposed to the electrolyte and taking part in the chemical process resulting from contact of the anode with the electrolyte.
One obvious way of limiting the current, is to use anodes of small superficial area, but this method largely defeats its object since such small anodes would necessarily have a short life and would require to be replaced at unduly short intervals.
According to the present invention the current is controlled at the place of origin, that is, the interface between anode and electrolyte, by providing a coating on its surface which partly shields the anode surface from the electrolyte thereby reducing the rate of reaction of the anode with the electrolyte, said coating being made of a material which is substantially unattacked by the electrolyte.
The shielding means may be such that only a portion of the anode surface is exposed to reaction with the electrolyte at any time; or, alternatively such that all the surface, or substantially all the surface, is exposed, but in such a way that the access of electrolyte is restricted and the rate of current generation consequently reduced; or by a combination of both these methods.
It is possible by this arrangement to use a large anode containing a volume of material suflicient for long conice tinued protection and to ensure long continued protection by exposing the material of the anode regularly and progressively to the electrolyte. It will be shown later that it is possible also by a slight variation in technique. at the time of installing the anode, to secure an initial high rate followed, after a due period, by a smaller regular rate, a method which is often of considerable value in the art of galvanic protection.
In carrying the invention into effect the anode, (which may be of any convenient metal or alloy known to be suitable for the purpose of supplying galvanic current) according to one example, may be cast or wrought as a solid cylinder or bar, having a galvanised steel or other metal connection provided at one end. This connection is for the purpose of coupling the anode to the structure to be protected. This connection however is preferably not located deeply within the length of the anode but is confined to one end. The anode body itself, including the end bearing the connection, is sheathed in impervious and electrically insulating material with the exception of one area, conveniently, but not necessarily, the end remote from the connector. Thus the extreme end only of the anode is, in this case, presented to the electrolyte, and as the area of this end can be made much smaller than the total area of the anode, and in any desired proportion thereto, the current generated will be smaller in like proportion. Thus the operation of the anode is restricted so that it is consumed from the end only, and as the surface is used up in the reaction fresh metal is exposed progressively throughout the length of the anode until it is entirely consumed.
In experiments we have made, a cylindrical anode was constructed on the above described principle, of such dimensions that the area of the exposed end was onetenth of the total area. On immersion in sea water the current generated was found to be approximately onetenth of that generated by an identical anode in which the whole of the body was exposed. Consumption of the totally exposed anode was uniform over the whole surface, while that of the shrouded anode took place only on the exposed end and progressed steadily up the containing tube formed by the shroud. Since the two identical steel sheets to which the two anodes were severally coupled remained quite bright and free from corrosion it is obvious that the smaller current delivered by the shrouded anode was sufficient for galvanic protection of the steel and that the ten times larger current delivered by the unshrouded anode was abnormally wasteful.
If desired the shrouding of the anodes may be carried out in such a Way that the impervious wrapping can be readily stripped back from the surface to any degree desired, thus enabling the user to commence protection with a greater surface (and therefore a proportionately higher current) than would be obtained from the exposed end surface alone; later, when the uncovered length has been consumed, the end surface only will remain exposed, generating current at a rate proportional to its area. Thus the advantage will be secured of high initial current where desired, coupled with long life at a lower subsequent rate.
In the form of the invention described above the sheathing material is designed to remain in situ as the anode is consumed, so that access of the electrolyte to the end surface becomes gradually more restricted as the surface retreats down the tube. This is of no practical consequence because the diameter of the anode is so chosen that the restriction of circulation of fresh electrolyte down the gradually increasing length of sheathing tube is negligible.
In another form of the invention the sheathing takes the .form .of .an impervious .but somewhat .friable .material, sufiiciently strong to withstand handling when containing the anode, but capable of being gradually broken away byithe'iincreasing volume of the corrosion product of tthel'anode and "theaaction -of .sea water, as ;the anode iszdissolved away. In this form 'of the-device the reacti-vezendzofithe anode is alwayssp'resented to the :elec trolyte-zcompletelyunrestricted. A suitable material for the ipurpose :intended can 'be produced from l'bitumen or bitumen-like :compounds incorporating :'a :proportion of fillers such as powdered slate-orstone.
'0-In2another2form :ofithe invention, instead of a more or less fcompletely impervious sheath, an elastic -membranenis used, designed ;to be of a semipermeable or microporousmature. In this case vitzmay .be appliediover .thCftWhQlC iSuIfa-Cel.Of?fl16 anode (and limits the access of electrolyte byavirtue .of, and sin :proportion to, its permeability- The elastic :nature ;of the sheath :provides tfor-the timzased volume .due to :the corrosion .product of :the anode iits. r.eaction with .the electrolyte. :For this gummh fathsofzmicroporous rubber may be used, .or the same. (effect may {be achieved by ithe 1 application if certaiulpaint According to;a;s till further form ;of the invention the anode igproyidedwith a sheathofa metal-or alloy more noble-thandhe metahoralloy of which the anodeis made. For example :the sheath ;may' be made of aluminium nor aluminiumqbasealloy which ;may be of foil =thiCkness-. or maymavea thickness up to say one quarter of'an inch. If desired an :aluminium tube may have a molten magnesiumfalloy poured into it to formithe sheathedanode. We have .found that .a magnesium anode sheathed with aluminium or aluminium alloy with a metal 'to metal contact between'the magnesium alloy and the aluminium or aluminium alloy gives satisfactory ,results. If desired however anelectn'cally insulating coating e. g. of bitumen may be disposedbetween the two metals.
"The invention isillustrated by wayof example in the accompanying diagrammatic drawings wherein: I
Figure 1 is a perspective view of an anode made in accordance .with the invention;
Figure .2,is an underneath plan view thereof;
consists .of .a .cylindrical .hLock .10 .of magnesium .base
alloy having a steel rod 11 cast into its top end, and having a tubular coating 12 of' aluminium having a top wall 13 which encloses the upper surface of the block 10, this wall 13 having a centralihdle through which the rod 11 passes. Ihistubecanbe invertedand the said central hole closed'by a 'sand mould whilethe molten magnesium -.is pouredlinto it. The finished anode thus ;has the lower circular I'CIId surface .of the magnesium :alloy uncovered and this is the only area subject to the :electrolytic action. As shown in Figure 3 the magnesium alloy mayextendbelowihe lower end ,of the aluminium coating so that a larger area is initially exposed to elec- I trolytic attack'which is sometimes desirable in orderto provide a larger .current during an initial period until polarisation is effected whereafter a smaller current is desired. After the lower projecting endof the magnesium alloy has been consumed, only the I circular lower surface is subject to attack.
We claim:
'1. A consumable metal anode 'for the galvanic protection of metal structures comprising an anode block made essentially 'of magnesium-ormagnesium base alloys,
' left' free of 'the s heath,'saidsheath'being made essentially" .Figure 3 is ,a perspective view-of a modified formzof A a ferrous-metal' rod having one end embedded in-one end-0f said block-and extending outwardly therefrom, a protective sheath surrounding and contacting the outer surface of said block and covering the end face from which' 'the rodextendg the other end'of the block'being of-more=-noble aluminum or aluminum base alloys to reduce-the rate of-reaction of theanode-with the electroylte. 2. A-consumablemetal anode for galvanic protection of metal -structures =as defined-in claim 1 and said anode being free of the sheath 'for a small part of the outer surface adjacent to' and immediately abovethe end face which is-already free of the sheath.
:References-Citedin theafile of-this patent UNITED STATES PATENTS 685,176 Ross Oct. 22, L901 .1,50,6,3.06 Kirkaldy Aug. 26, 1924 .,2,157.,1.8O Little, May 9 1939 2,459,123 Bateset al. Jan. 11, 1949 7 1,489,739 Bialosky Nov. 29, 1949 2,54l;062
.Hoxeng Feb. 13, 1951

Claims (1)

1. A CONSUMABLE METAL ANODE FOR THE GALVANIC PROTECTION OF METAL STRUCTURES COMPRISING AN ANODE BLOCK MAKE ESSENTIALLY OF MAGNESIUM OR MAGNESIUM BASE ALLOYS, A FERROUS METAL ROD HAVING ONE END EMBEDDED IN ONE END OF SAID BLOCK AND EXTENDING OUTWARDLY THEREFROM, A PROTECTIVE SHEATH SURROUNDING AND CONTACTING THE OUTER SURFACE OF SAID BLOCK AND COVERING THE END FACE FROM WHICH THE ROD EXTENDS, THE OTHER END OF THE BLOCK BEING LEFT FREE OF THE SHEATH, SAID SHEATH BEING MADE ESSENTIALLY OF MORE NOBLE ALUMINUM OR ALUMINUM BASE ALLOYS TO REDUCE THE RATE OF REACTION OF THE ANODE WITH THE ELECTROYLTE.
US235214A 1950-07-12 1951-07-05 Consumable metal anodes Expired - Lifetime US2721172A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB17457/50A GB699239A (en) 1950-07-12 1950-07-12 Improvements in or relating to consumable metal anodes

Publications (1)

Publication Number Publication Date
US2721172A true US2721172A (en) 1955-10-18

Family

ID=10095512

Family Applications (1)

Application Number Title Priority Date Filing Date
US235214A Expired - Lifetime US2721172A (en) 1950-07-12 1951-07-05 Consumable metal anodes

Country Status (5)

Country Link
US (1) US2721172A (en)
BE (1) BE504585A (en)
FR (1) FR1039532A (en)
GB (1) GB699239A (en)
NL (1) NL74768C (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2910420A (en) * 1957-07-31 1959-10-27 Herman S Preiser Cathodic protection system and electrode holder
US2934484A (en) * 1958-04-15 1960-04-26 Engelhard Ind Inc Mounting device for reference cells in cathodic protection systems
US2976226A (en) * 1956-07-05 1961-03-21 Risberg Eilif Method of cathodic protection of tanks filled with sea-water using an applied voltage and means for execution of the method
US3012958A (en) * 1958-04-17 1961-12-12 Patrol Valve Co Vitreous lined water tanks with sacrificial anodes
US3048535A (en) * 1960-03-22 1962-08-07 Rolland C Sabins Electrolytic system
US3067122A (en) * 1959-03-19 1962-12-04 Rolland C Sabins Anode mounting with concentric bells
US3179504A (en) * 1964-03-27 1965-04-20 Dow Chemical Co Composite body of magnesium and aluminum and method of making same
US3421990A (en) * 1966-04-28 1969-01-14 Nancy Ann Penix Sacrificial anode
US4420382A (en) * 1980-01-18 1983-12-13 Alcan International Limited Method for controlling end effect on anodes used for cathodic protection and other applications
CN102441627A (en) * 2010-10-12 2012-05-09 通用汽车环球科技运作有限责任公司 Bimetallic forging forming method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855358A (en) * 1955-02-01 1958-10-07 Dow Chemical Co Galvanic anode
US2882213A (en) * 1955-02-01 1959-04-14 Dow Chemical Co Galvanic anode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US685176A (en) * 1901-01-16 1901-10-22 Henry Schuyler Ross Tube-protector.
US1506306A (en) * 1923-10-16 1924-08-26 Kirkaldy Engineering Corp Anode
US2157180A (en) * 1937-10-28 1939-05-09 Anaconda Wire & Cable Co Zinc ground rod
US2459123A (en) * 1946-03-21 1949-01-11 Cleveland Heater Co Water heating device with corrosion protective anode
US2489739A (en) * 1946-05-31 1949-11-29 Edgar M Butler Electrolytic water correction device
US2541062A (en) * 1946-12-26 1951-02-13 Aluminum Co Of America Utilization of aluminous metal electrodes in cathodic protection installations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US685176A (en) * 1901-01-16 1901-10-22 Henry Schuyler Ross Tube-protector.
US1506306A (en) * 1923-10-16 1924-08-26 Kirkaldy Engineering Corp Anode
US2157180A (en) * 1937-10-28 1939-05-09 Anaconda Wire & Cable Co Zinc ground rod
US2459123A (en) * 1946-03-21 1949-01-11 Cleveland Heater Co Water heating device with corrosion protective anode
US2489739A (en) * 1946-05-31 1949-11-29 Edgar M Butler Electrolytic water correction device
US2541062A (en) * 1946-12-26 1951-02-13 Aluminum Co Of America Utilization of aluminous metal electrodes in cathodic protection installations

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976226A (en) * 1956-07-05 1961-03-21 Risberg Eilif Method of cathodic protection of tanks filled with sea-water using an applied voltage and means for execution of the method
US2910420A (en) * 1957-07-31 1959-10-27 Herman S Preiser Cathodic protection system and electrode holder
US2934484A (en) * 1958-04-15 1960-04-26 Engelhard Ind Inc Mounting device for reference cells in cathodic protection systems
US3012958A (en) * 1958-04-17 1961-12-12 Patrol Valve Co Vitreous lined water tanks with sacrificial anodes
US3067122A (en) * 1959-03-19 1962-12-04 Rolland C Sabins Anode mounting with concentric bells
US3048535A (en) * 1960-03-22 1962-08-07 Rolland C Sabins Electrolytic system
US3179504A (en) * 1964-03-27 1965-04-20 Dow Chemical Co Composite body of magnesium and aluminum and method of making same
US3421990A (en) * 1966-04-28 1969-01-14 Nancy Ann Penix Sacrificial anode
US4420382A (en) * 1980-01-18 1983-12-13 Alcan International Limited Method for controlling end effect on anodes used for cathodic protection and other applications
CN102441627A (en) * 2010-10-12 2012-05-09 通用汽车环球科技运作有限责任公司 Bimetallic forging forming method
CN102441627B (en) * 2010-10-12 2015-05-13 通用汽车环球科技运作有限责任公司 Bimetallic forging forming method

Also Published As

Publication number Publication date
GB699239A (en) 1953-11-04
BE504585A (en)
NL74768C (en)
FR1039532A (en) 1953-10-07

Similar Documents

Publication Publication Date Title
US2721172A (en) Consumable metal anodes
EP1749119B1 (en) Sacrificial anode assembly
US2863819A (en) Insoluble trailing anode for cathodic protection of ships
US8211289B2 (en) Sacrificial anode and treatment of concrete
US4420382A (en) Method for controlling end effect on anodes used for cathodic protection and other applications
US3313721A (en) Dish-shaped anode
JP2008533304A5 (en)
ES425465A1 (en) Method of corrosion protection
US20120261270A1 (en) Sacrificial anode and treatment of concrete
GB860968A (en) Method of improving the corrosion resistance of titanium and titanium base alloys
US4235688A (en) Salt bridge reference electrode
GB803864A (en) Improvements in sacrificial anodes for use in cathode protection systems
US3278410A (en) Electrolytic anode
US2641622A (en) Electric primary cell
US4401540A (en) Apparatus for reducing end effect in anodes
US3001924A (en) Sacrificial magnesium anodes
US3726779A (en) Marine anticorrosion anode structure
US3817852A (en) Zinc-steel sacrificial anode ground rod
US2847375A (en) Apparatus for corrosion prevention
US3674662A (en) Cathodic protection of closely spaced oil well casings
US2848411A (en) Electrode
JPS6473094A (en) Method for preventing corrosion of steel structure in seawater
GB683629A (en) Improvements in or relating to anodes for the protection of metal structures against corrosion
US2772231A (en) Anodes for the protection of metal structures against corrosion
JP3386898B2 (en) Corrosion protection structure of the material to be protected