US2743374A - Circuit stabilizer - Google Patents

Circuit stabilizer Download PDF

Info

Publication number
US2743374A
US2743374A US351821A US35182153A US2743374A US 2743374 A US2743374 A US 2743374A US 351821 A US351821 A US 351821A US 35182153 A US35182153 A US 35182153A US 2743374 A US2743374 A US 2743374A
Authority
US
United States
Prior art keywords
resistor
contact
capacitor
circuit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US351821A
Inventor
Jr Henry S Mccreary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US351821A priority Critical patent/US2743374A/en
Application granted granted Critical
Publication of US2743374A publication Critical patent/US2743374A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/40Stabilisation of spectrometers

Definitions

  • Fig. 2 is a schematic illustration showing the various positions of the switch of Fig. l;
  • Fig. 3 is a diagrammatic presentation of the output voltages of the circuit of Fig. l.
  • a voltage divider formed by resistors 19 provides the voltage gradient for the operation of the tube 14.
  • One end of the resistor 29 is connected to the contact 31 and the voltage across the resistor 29 is applied to an amplifier and peak detector circuit 35 by the vibrating contact 33 through a coupling capacitor 36.
  • the amplifier and peak detector circuit 35 is connected to a ground 38 through a resistor 37.
  • a low value resistor 39 is connected between the contact 32 and ground for periodic connection across the high value resistors 29 and 37.
  • a radiation detector comprising an electrometer amplifier having an anode and a cathode, a switch having a first flexible contact, a second flexible contact and a moving contact, a capacitor coupling said anode to said first flexible contact, a' high value resistor connecting said first flexible contact to said cathode, a low value resistor connecting said second flexible contact to said.

Description

April 24, 1956 H. s MCCREARY, JR 2,743,374
CIRCUIT STABILIZER Filed April 29, 1953 l 5 40:34: INVE N TOR HENRY 5. Mc CREAM, JR.
. 'ATTOR NE Y5 United States Patent CIRCUIT STABILIZER Henry S. McCreary, Jr., Pittsburgh, Pa., assignor, by mesne assignments, to the United States of America as represented by the Secretary of the Navy Application April 29, 1953, Serial No. 351,821 4 Claims. (Cl. 250214) This invention relates to means for quickly stabilizing electrical circuits which are subject to long persistence transients and more particularly to a means for overcoming long time constants of circuits which contain high value resistors.
In circuits which contain capacitors or inductors in series with high value resistors, a change in a voltage applied to the circuits frequently gives rise to transients which require an objectionably long time to decay. This has been found to be particularly true in those circuits which include electrometer amplifiers, photo-tubes and other electronic equipment which operate on minute currents.
The current output of electrometer tubes and phototubes is very small and in order to obtain a perceptible voltage signal output, output resistors of high value must be used. When coupling capacitors or inductors are used in series with the high value output resistors, a change in the supply voltage to the tube results in a transient which, due to the large time constant of the circuit parameters, requires an objectionably long time to decay.
An object of this invention is to provide means for reducing the decay time of transients in circuits which have long time constants.
Another object of this invention is to provide a low value resistor and switching means for quickly stabilzing '7 such circuits.
Other objects and advantages of the invention will hereinafter become more fully apparent from the following description of the annexed drawings, which illustrate a preferred embodiment, and wherein:
Fig. 1 is a schematic illustration of incorporating the invention;
Fig. 2 is a schematic illustration showing the various positions of the switch of Fig. l;
Fig. 3 is a diagrammatic presentation of the output voltages of the circuit of Fig. l; and
Fig. 4 is an enlarged view of the switch of Fig. 1.
Referring now in detail to Fig. l, a phosphor type transducer 11 converts incident radiation into light which is directed to fall upon a photo-emissive cathode 12 of a photo-multiplier tube 13. Interposed between the transducer 11 and the photo-emissive cathode 12 is an opaque member 14 having a transparent crescent-shaped portion 15. The member 14 is mounted for rotation about an axis 16 and is rotated at a speed of about 60 revolutions per minute by means not shown. Light striking the photo-emissive cathode 12 causes the emission of electrons from the cathode 12 which electrons are accelerated toward an anode 17 by a voltage 50 applied thereto. Between the cathode 12 and the anode 17 are secondary emission electrodes or dynodes 18 which increase and multiply the current flow through the photo-multiplier tube 13 in a manner well known in the art. A voltage divider formed by resistors 19 provides the voltage gradient for the operation of the tube 14.
A control grid 21 of an electrometer tube 20 is directly a radiation detector 2,743,374 Patented Apr. 24, 1956 connected to the anode 17 across a grid return resistor 26 and a capacitor 25. The electrometer tube 20 comprises also an anode 22 and a filamentary cathode 23. Current is supplied to the filament 23 by an A battery 70 through a current limiting resistor 24, and the anode 22 is supplied by a B battery 60 through an anode load resistor 27. The anode 22 is coupled through a blocking capacitor 23 to a high value output resistor 29 and to a vibrating switch 30. The switch 30 comprises resilient contacts 31 and 32 and a vibrating contact 33 which is actuated by an electromagnet 34 supplied from a source (not shown) of 60 cycle current. One end of the resistor 29 is connected to the contact 31 and the voltage across the resistor 29 is applied to an amplifier and peak detector circuit 35 by the vibrating contact 33 through a coupling capacitor 36. The amplifier and peak detector circuit 35 is connected to a ground 38 through a resistor 37. A low value resistor 39 is connected between the contact 32 and ground for periodic connection across the high value resistors 29 and 37.
In many types of instruments of which the described radiation detector is an example, the range of the instrument is changed by varying a supply voltage. In the radiation detector described, the range of the instrument is changed by varying, through any conventional means, the voltage supplied to the photo-multiplier 13 by the source 50. When the supply voltage to the photo-multiplier 13 is varied, there is a sudden change in the dark current of the tube which produces a pulse on the control grid 21 of the electrometer tube 20. Because of the small current flow in the circuit and the high output impedance of the tube 20, the resistor 29 must be of a high value. The time constant of the capacitor 28- resistor 29 combination is very large and because of this, a transient pulse appearing on the anode 22 would take an objectionably long time to decay. Such a pulse, appearing in the detector, would produce an erroneous indication until its energy was dissipated. To reduce the period of time required for a transient pulse to decay, provision is made, in the form of the vibrating switch 30, to periodically connect the low value resistor 39 across the resistor 29.
Any conventional vibrating switch, for example such as shown in Fig. 4, may be used. Two flexible contact arms 40 and 41 each have anend aifixed to a support 42. The other ends of the flexible arms 40 and 41 carry contacts 31 and 32 respectively. Stop members 43 and 44 limit the inward movement of the arms 40 and 41. The vibrating contact 33 is mounted on an arm 45 which is pivotable about an axis 46. A periodically energized electromagnet 34 attracts the arm 45 against the action of a tension spring 47 causing the contact 33 to touch the contact 44 and to bend the flexible arm 41 away from the arm 40. Ipon deenergization of the electromagnet 34, the tension spring 47 pulls the arms 45 back, bending the flexible arm 49 and causing the contact 33 to move away from the contact 32 and to touch the contact 31. For a brief interval in each half of the swing of the arm 45, all three contacts are connected together.
The operation of the switch 39 is best described with reference to Fig. 2 which depicts its four operating positions. Fig. 3 is a curve of the voltage across the resistor 37 upon the occurrence of a transient pulse. When the vibrating contact 33 is connected with the contact 31 as shown in sketch A of Fig. 2, the voltage across the resistor 29 is applied to the capacitor 36 charging it by causing current to flow through the resistor 37. In Fig. 3, the voltage across the resistor 37 in this position of the switch 30 is shown as the top of a square wave designated as A. In the position shown in sketch B, the vibrating contact 33 is swinging toward the contact 32 time, the low value resistor capacitor 28 discharges and all three contacts are connected together. At this 39 is connected in parallel with both the resistors 29 and 37 and the capacitors 28 and 36 discharge through the resistor 39. This is shown as :a-slight decrease in voltage at B of Fig. 3. As the vibrating arm 45 continues its movement, it urges the vibrating contact 33 against the contact 32 and away from the contact 3.1, causing the .fiexible arm 41 to land. This is shown in sketch C of Fig. 2. in this position of the switch, the capacitor 36 continues to'discharge through the resistor 39 and the current flow through the resistor 37 is reversed from that of position A of the switch. in Fig. 3, this appears as the negative fiat peak C of the square wave. In the fourth position of sketch D of Fig. 2, the vibrating arm 45 has reversed its direction of travel and the three contacts are together again. The through the resistor 39 and the capacitor 36, having been completely discharged in position C of the switch, begins charging, the current through the resistor 37 again reversing. In Fig. 3, the voltage across the resistor'37 is shown as the peak D. This voltage decays slightly in this position of the switch, but assumes a steady value when position A is again reached. Fig. 3 also illustrates the decay of the pulse over a period of 'two successive cycles. The dashed curve represents the general pattern of the decay.
:Since the value of the resistor 39 is low, the time constant of the capacitor 28-resistor 39 combination is low and Whenever the vibrating switch 30 is in the position shown by sketches B or D of Fig. 2, the energy stored in the capacitor 28 is quickly dissipated. In the positions shown by sketches B, C, and D of Fig. 2, the energy stored in the capacitor 36 is quickly dissipated. Any transient pulse appearing at the anode 22 of the electrometer 20 quickly decays through the low value resistor 39 and the circuit is rapidly stabilized.
Obviously, many modifications and variations .of this invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise thanas specifically described.
What is claimed is:
l. A radiation detector comprising an electrometer amplifier having an anode and a cathode, a switch having a first flexible contact, a second flexible contact and a moving contact, a capacitor coupling said anode to said first flexible contact, a' high value resistor connecting said first flexible contact to said cathode, a low value resistor connecting said second flexible contact to said.
cathode, an output circuit coupled to said moving contact, a second high value resistor connecting said output circuit with said cathode, and means for periodically connecting said three contacts together whereby said two high value resistors are paralleled by said low value resistor.
2. A radiation detector comprising a photo-multiplier transducer having an output, an electrometer amplifier having an anode, a cathode and a control grid, said output being directly coupled to said control grid, a switch having a first contact, a second contact and a vibrating contact, a capacitor coupling said anode to said first contact, a high value resistor connecting said first contact with said cathode, a low value resistor connecting said second contact to said cathode, an amplifier and peak detector circuit having its input connected to said vibrating contact, a second high resistor coupling said vibrating contact with said cathode, and means for periodically connecting said three contacts together whereby said two high value resistors are paralleled by said low value resistor. V
3. Apparatus for coupling a signal from a first circuit having a large time constant to a second circuit also having a large time constant, said first circuit comprising a first reactor, a high value first resistor, and a source of electrical signals connected in series with said first reactor and said first resistor; said second circuit comprising a second reactor, and a high value second resistor connected in series with said second reactor; said apparatus comprising a low value third resistor, and means for repetitiously connecting the junction of said first reactor and said first resistor to the junction of said second reactor and said second resistor to transfer electrical signals from said first circuit to said second circuit and for thereafter connecting said third resistor in parallel with said first and second resistors to quickly dissipate energy stored in said first and second reactors.
4. A circuit for coupling an electrical signal from a' source to a detector, said circuit comprising a first capacitor, a high value first resistor, 21 source of electrical signals containing unwanted transients connected in series with said first .capacitor and said first resistor, a second capacitor, a high value second resistor, a detector connected in series with said second capacitor and said second resistor, a low value third resistor, and means for repetitiously connecting the junction of said first capacitor and said first resistor to the junction of said second capacitor and said second resistor to transfer signals from said first to said second capacitor and for subsequently connecting said third resistor in parallel with said first and said second resistors to temporarily decrease the time constants of said series connections.
References Cited in the file of .this patent UNITED STATES PATENTS 2,035,875 Garstang Mar. 31, 1936 2,389,458 Preston Nov. 20,1945 2,401,396 Wolfner June 4, 1946 2,452,213 Sontheimer u. Oct. 26,1948
US351821A 1953-04-29 1953-04-29 Circuit stabilizer Expired - Lifetime US2743374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US351821A US2743374A (en) 1953-04-29 1953-04-29 Circuit stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US351821A US2743374A (en) 1953-04-29 1953-04-29 Circuit stabilizer

Publications (1)

Publication Number Publication Date
US2743374A true US2743374A (en) 1956-04-24

Family

ID=23382550

Family Applications (1)

Application Number Title Priority Date Filing Date
US351821A Expired - Lifetime US2743374A (en) 1953-04-29 1953-04-29 Circuit stabilizer

Country Status (1)

Country Link
US (1) US2743374A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2807723A (en) * 1955-09-21 1957-09-24 Singer Sidney High power pulsed oscillator
US3209153A (en) * 1960-07-15 1965-09-28 Leitz Ernst Gmbh Arrangement for compensating dark current in photoelectric devices
US3358145A (en) * 1964-12-29 1967-12-12 Kenneth D Cashion Radiation detector readout system
US3359489A (en) * 1967-12-19 Photomultiplier apparatus for deter- mining the transient response of logarithmic electrometers
US3510226A (en) * 1969-02-17 1970-05-05 Cary Instruments Polarimeter with regulated photomultiplier tube
US4025934A (en) * 1975-05-13 1977-05-24 Frieseke & Hopfner Gmbh Erlangen-Bruck Method and device for determining a value corresponding to the number of revolutions or the angle of rotation of an axle
US20070120368A1 (en) * 2003-10-09 2007-05-31 Access Business Group International, Llc Self-powered miniature liquid treatment system with configurable hydropower generator
US20080136191A1 (en) * 2003-10-09 2008-06-12 Baarman David W Miniature hydro-power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2035875A (en) * 1934-12-22 1936-03-31 Electronic Lab Inc Vibrator and circuit
US2389458A (en) * 1942-03-27 1945-11-20 American Laundry Mach Co Controlling relay
US2401396A (en) * 1942-01-17 1946-06-04 Photoswitch Inc Photoelectric control
US2452213A (en) * 1945-05-30 1948-10-26 Rca Corp Wave generating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2035875A (en) * 1934-12-22 1936-03-31 Electronic Lab Inc Vibrator and circuit
US2401396A (en) * 1942-01-17 1946-06-04 Photoswitch Inc Photoelectric control
US2389458A (en) * 1942-03-27 1945-11-20 American Laundry Mach Co Controlling relay
US2452213A (en) * 1945-05-30 1948-10-26 Rca Corp Wave generating system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3359489A (en) * 1967-12-19 Photomultiplier apparatus for deter- mining the transient response of logarithmic electrometers
US2807723A (en) * 1955-09-21 1957-09-24 Singer Sidney High power pulsed oscillator
US3209153A (en) * 1960-07-15 1965-09-28 Leitz Ernst Gmbh Arrangement for compensating dark current in photoelectric devices
US3358145A (en) * 1964-12-29 1967-12-12 Kenneth D Cashion Radiation detector readout system
US3510226A (en) * 1969-02-17 1970-05-05 Cary Instruments Polarimeter with regulated photomultiplier tube
US4025934A (en) * 1975-05-13 1977-05-24 Frieseke & Hopfner Gmbh Erlangen-Bruck Method and device for determining a value corresponding to the number of revolutions or the angle of rotation of an axle
US20090278355A1 (en) * 2003-10-09 2009-11-12 Access Business Group International, Llc Miniature hydro-power generation system
US7663259B2 (en) 2003-10-09 2010-02-16 Access Business Group International, Llc Self-powered miniature liquid treatment system
US20080061557A1 (en) * 2003-10-09 2008-03-13 Access Business Group International, Llc Miniature hydro-power generation system
US20080061558A1 (en) * 2003-10-09 2008-03-13 Access Business Group International, Llc. Hydro-power generation system
US20080067813A1 (en) * 2003-10-09 2008-03-20 Access Business Group International, Llc: Self-powered miniature liquid tratment system
US20080116147A1 (en) * 2003-10-09 2008-05-22 Access Business Group International, Llc: Self-powered miniature liquid treatment system
US20080136191A1 (en) * 2003-10-09 2008-06-12 Baarman David W Miniature hydro-power generation system
US7462945B2 (en) * 2003-10-09 2008-12-09 Access Business Group International, Llc. Self-powered miniature liquid treatment system
US20070120368A1 (en) * 2003-10-09 2007-05-31 Access Business Group International, Llc Self-powered miniature liquid treatment system with configurable hydropower generator
US7663258B2 (en) 2003-10-09 2010-02-16 Access Business Group International, Llc Miniature hydro-power genteration system power management
US7663257B2 (en) 2003-10-09 2010-02-16 Access Business Group International, Llc Self-powered miniature liquid treatment system with configurable hydropower generator
US20080060184A1 (en) * 2003-10-09 2008-03-13 Access Business Group International, Llc Miniature hydro-power generation system
US7675188B2 (en) 2003-10-09 2010-03-09 Access Business Group International, Llc Miniature hydro-power generation system
US7701076B2 (en) * 2003-10-09 2010-04-20 Access Business Group International, Llc Hydro-power generation system
US7768147B2 (en) 2003-10-09 2010-08-03 Access Business Group International, Llc Miniature hydro-power generation system
US7812470B2 (en) 2003-10-09 2010-10-12 Access Business Group International Llc Method for making miniature hydro-power generation system
US20100295311A1 (en) * 2003-10-09 2010-11-25 Access Business Group International Llc Miniature hydro-power generation system
US7932618B2 (en) 2003-10-09 2011-04-26 Access Business Group International Llc Miniature hydro-power generation system power management
US7956481B2 (en) 2003-10-09 2011-06-07 Access Business Group International Llc Miniature hydro-power generation system
US20110175351A1 (en) * 2003-10-09 2011-07-21 Access Business Group International, Llc: Miniature hydro-power generation system power management
US20110233935A1 (en) * 2003-10-09 2011-09-29 Access Business Group International Llc Miniature hydro-power generation system
US8188609B2 (en) 2003-10-09 2012-05-29 Access Business Group International Llc Miniature hydro-power generation system power management
US8426992B2 (en) 2003-10-09 2013-04-23 Access Business Group International Llc Self-powered miniature liquid treatment system with configurable hydropower generator

Similar Documents

Publication Publication Date Title
US2743374A (en) Circuit stabilizer
US4000471A (en) TWT grid circuit utilizing feedback
US2443864A (en) Voltage gain control device
US2536617A (en) Direct current negative feedback amplifier
US2436890A (en) Modulated saw-tooth sweep generator
US2065758A (en) Light responsive device
US2651726A (en) Ionization chamber circuit
US3805111A (en) Microwave electron tube
US2638541A (en) Impulse counting tube
US2695955A (en) Sweep circuit
US3210669A (en) Charged particle flow control apparatus
US2453532A (en) Electrostatic microwave energy measuring apparatus
US2797357A (en) Feedback arrangements for beam switching tubes
US2817035A (en) Brillouin flow electron gun
US3283241A (en) Apparatus for field strength measurement of a space vehicle
US2196845A (en) Oscillograph circuit
US2948812A (en) Circuit for geiger counters
US2577499A (en) Pulse measuring device
US3177390A (en) Image converter tube, including focussing electrode decoupling capacitance
US3281623A (en) Cathode ray tube blanking circuit for recurrent and triggered sweeps
US2881349A (en) Control device
US2058738A (en) Electrical circuit for cold cathode tubes
US2748271A (en) Sweep circuit
US2704336A (en) Pulse counting tube
US3369191A (en) High power microwave noise generator employing traveling-wave tube type device with reflected electron beam