US2749723A - Oil separator for refrigeration system - Google Patents

Oil separator for refrigeration system Download PDF

Info

Publication number
US2749723A
US2749723A US386307A US38630753A US2749723A US 2749723 A US2749723 A US 2749723A US 386307 A US386307 A US 386307A US 38630753 A US38630753 A US 38630753A US 2749723 A US2749723 A US 2749723A
Authority
US
United States
Prior art keywords
oil
compressor
separator
refrigerant
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US386307A
Inventor
Robert C Webber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US386307A priority Critical patent/US2749723A/en
Application granted granted Critical
Publication of US2749723A publication Critical patent/US2749723A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/265Apparatus for washing and purifying steam

Definitions

  • the present invention relates to refrigeration systems of the type utilizing a compressor for circulating the refrigerant and is particularly concerned with means for separating the oil from the refrigerant after it leaves the compressor and for returning such oil to the compressor crank case.
  • the primary object of the invention is to provide an oil separator, for use in such a system, completely devoid of moving parts and from which the separated oil is continuously returned to the compressor crank case by bringing about an approximation between the rate at which the oil is separated from the refrigerant and the rate at which it is permitted to flow from the separator to the compressol.
  • a further object is to provide means for removing a portion of the heat from the compressed refrigerant prior to its passage through the separator to facilitate the removal of the oil therefrom.
  • Another object is to provide means for cooling the separated oil prior to its return to the compressor crank case.
  • a compressor connected through a conduit 11 to the oil separator 12, constituting a part of my invention.
  • a conduit 13 connects to a receiver 14, preferably through a condenser 15, and from the receiver 14 a conduit 16 connects to the evaporator 17 through an expansion valve 18.
  • a conduit 19 provides a return path for the refrigerant from the evaporator to the compressor.
  • Oil separators in general use heretofore have included a reservoir for the accumulation of the separated oil, and the return line for the oil to the compressor crank case has been dominated by some sort of a float-valve arrangement which permits intermittent return of the oil to the crank case.
  • a float-valve arrangement which permits intermittent return of the oil to the crank case.
  • My separator as illustrated, comprises a body 20 having 2,749,723 Patented June 12, 1956 a chamber 21 formed therein. Intermediate the upper and lower ends of this chamber I provide a pair of perforated plates or screens 22 and 23, and between these plates I place a pad 24 of metallic wool. Such an arrangement divides the chamber 21 into upper and lower compartments 25 and 26, respectively.
  • Conduit 11 is connected to conduct the oil-laden refrigerant to the lower compartment 26 through an inlet port 27, and conduit 13 is connected to conduct the separated refrigerant from the upper compartment 25, through outlet port 28, after passing through the filter pad 24.
  • the separated oil flows from the filter pad to the bottom of compartment 26.
  • a tube or conduit 29 connects said compartment to the crankcase of the compressor.
  • I employ the resistance to liquid flow present in a tube of relatively small diameter.
  • the diameter of tube 29 is such as to offer very little resistance to oil flow as compared to that of the portion 30.
  • the diameter and length of tube portion 30 is such that the flow of oil therethrough is restricted to a degree sufiicient to maintain the rate of flow from the separator to the compressor substantially equal to the rate at which the oil is deposited in the separator.
  • the tube portion 30 must be comparatively long to obtain the desired resistance. I have found that I can effectively increase the restrictive effect of a given tube length by arranging it in a coil of relatively small diameter, as illustrated. For a given resistance, the required tube length can, thereby, be reduced substantially.
  • cooler means 33 tube 29 being connected to conduct the returning oil through such cooler means.
  • My invention has a further advantage as a result of the fact that the return line for the oil to the crank case is never closed by a valve, or the like.
  • the pressure of the refrigerant in the separator 12 will force any remaining oil through tube 29 and the restricted portion 30 thereof into the compressor crank case. Thereafter, when the tube portion 30 is free of oil, refrigerant itself will bleed into the crank case, or low-pressure side of the system, thereby equalizing the pressure in the system. Any refrigerant which may have liquefied in separator 12 will be vaporized when passing through tube portion 30, thereby insuring against liquid refrigerant ever becoming mixed with the oil in the compressor crank case.
  • My invention presents an extremely simple yet eflicient device for performing a function heretofore performed only by more elaborate and complicated mechanism.
  • the fact that it contains no moving parts renders its use in any installation more trouble free and economical especially so where it is used in refrigeration systems located in moving conveyances.
  • a refrigeration system comprising a compressor having a crankcase, an inlet and a discharge, a condenser, conduit means for conducting compressed refrigerant from said compressor discharge to said condenser, an evaporator, conduit means for conducting condensed refrigerant from said condenser to said evaporator, and conduit means for conducting evaporated refrigerant from said evaporator to said compressor inlet
  • the invention of means for separating lubricant from the compressed refrigerant and for returning it to the compressor crankcase, such means comprising a body having a chamber therein, said first-named conduit means including a pipe communicating with said compressor discharge and entering said chamber and terminating in an open end within said chamber, and another pipe communicating with said condenser and entering said chamber and termimating in an open end within said chamber, filter means disposed in said chamber and interposed between the open ends of said pipes, and a continuously-open tube having one end disposed in said chamber below both said open pipe ends, extending upwardly through said chamber, and having its

Description

June
EVA PO RATOR 1956 R. c. WEBBER 2,749,723
OIL SEPARATOR FOR REFRIGERATION SYSTEM Filed Oct. 15, 1953 l2 RECEIVER I4 H547'EXCHANGE"? 52 COM PRES so R I N V EN TOR.
ROBE??? c. W356i)? 7 van.
United States Patent "ice OIL SEPARATOR FOR REFRIGERATION SYSTEM Robert C. Webber, Indianapolis, Ind.
Application October 15, 1953, Serial No. 386,307
2 Claims. (Cl. 62-117.75)
The present invention relates to refrigeration systems of the type utilizing a compressor for circulating the refrigerant and is particularly concerned with means for separating the oil from the refrigerant after it leaves the compressor and for returning such oil to the compressor crank case.
The primary object of the invention, is to provide an oil separator, for use in such a system, completely devoid of moving parts and from which the separated oil is continuously returned to the compressor crank case by bringing about an approximation between the rate at which the oil is separated from the refrigerant and the rate at which it is permitted to flow from the separator to the compressol.
,A further object is to provide means for removing a portion of the heat from the compressed refrigerant prior to its passage through the separator to facilitate the removal of the oil therefrom.
Another object is to provide means for cooling the separated oil prior to its return to the compressor crank case.
Further objects will become apparent as the description proceeds.
To the accomplishment of the above and related objects, my invention may be embodied in the form illustrated in the accompanying drawings, attention being called to the fact, however, that the drawings are illustrative only, and that change may be made in the specific construction illustrated and described, so long as the scope of the appended claims is not violated.
The single figure of the drawings is a more or less diagrammatic illustration of a conventional type of refrigeration system showing my invention incorporated therewith.
In the drawing, I have shown a compressor connected through a conduit 11 to the oil separator 12, constituting a part of my invention. From the separator 12, a conduit 13 connects to a receiver 14, preferably through a condenser 15, and from the receiver 14 a conduit 16 connects to the evaporator 17 through an expansion valve 18. A conduit 19 provides a return path for the refrigerant from the evaporator to the compressor.
Oil separators in general use heretofore have included a reservoir for the accumulation of the separated oil, and the return line for the oil to the compressor crank case has been dominated by some sort of a float-valve arrangement which permits intermittent return of the oil to the crank case. Such an arrangement is inherently subject to break downs and the need for repair, and, where the refrigeration system is located in a moving conveyance, the resultant vibrations render such a system highly unsatisfactory and ineflicient.
I have eliminated these difficulties by my invention, devoid of moving parts, in which I bring about an approximation between the rate at which the oil enters the separator and the rate at which it is permitted to leave the separator and return to the compressor crank case. My separator, as illustrated, comprises a body 20 having 2,749,723 Patented June 12, 1956 a chamber 21 formed therein. Intermediate the upper and lower ends of this chamber I provide a pair of perforated plates or screens 22 and 23, and between these plates I place a pad 24 of metallic wool. Such an arrangement divides the chamber 21 into upper and lower compartments 25 and 26, respectively. Conduit 11 is connected to conduct the oil-laden refrigerant to the lower compartment 26 through an inlet port 27, and conduit 13 is connected to conduct the separated refrigerant from the upper compartment 25, through outlet port 28, after passing through the filter pad 24. The separated oil flows from the filter pad to the bottom of compartment 26. A tube or conduit 29 connects said compartment to the crankcase of the compressor.
To bring about the desired approximation between the rate at which the oil enters and leaves the separator, I employ the resistance to liquid flow present in a tube of relatively small diameter. To this end I prefer to form the conduit 29 from tubing of relatively large diameter (for a purpose later to become apparent) and to insert intermediate the ends of this conduit, a further tube portion 30 of relatively small diameter. The diameter of tube 29 is such as to offer very little resistance to oil flow as compared to that of the portion 30. The diameter and length of tube portion 30 is such that the flow of oil therethrough is restricted to a degree sufiicient to maintain the rate of flow from the separator to the compressor substantially equal to the rate at which the oil is deposited in the separator.
The tube portion 30 must be comparatively long to obtain the desired resistance. I have found that I can effectively increase the restrictive effect of a given tube length by arranging it in a coil of relatively small diameter, as illustrated. For a given resistance, the required tube length can, thereby, be reduced substantially.
I have found from experimentation that for a given horsepower compressor the following internal diameters and lengths of the tube portion 30 are optimum in maintaining the desired rate of fiow:
I. D. Length A H. P. to l H. P .031 in. 84 in. 1 /2 H. P. to 3 H. P .031 in. 40 in. 5 H. P. to 10 H. P .050 in. 42 in. 15 H. P. to 30 H. P .127 in. 126 in. 40 H. P. to 50 H. P .127 in. 72 in. 60 H. P. to 75 H. P .127 in. 54 in. H. P .127 in. 40 in.
Where the internal diameter of the tube portion 30 is so small, it becomes necessary to maintain the oil relatively free from small bits of impurities and, for this reason, I prefer to provide, in most instances, an oil filter 31 connected in tube 29 between the separator 12 and the resistive tube portion 30, whereby such impurities will be removed before the oil reaches the small-diameter portion 39.
Where compressors of relatively high horse-power are used, I have found that the temperature of the compressed refrigerant is so high that etficient separation of the oil therefrom is impossible without reducing the temperature of the refrigerant somewhat before it enters the separator. To this end I prefer to provide, in some installations, a heat exchanger, referred to generally by the reference numeral 32, the conduit 11 being connected to conduct the refrigerant through this exchanger prior to its entrance into separator 12.
In such installations, I have found, too, that the temperature of the oil leaving the separator is still so high that its lubrication properties are greatly reduced, and that, in order to protect the compressor moving parts against improper lubrication, it is desirable to cool the oil prior to its return to the compressor crank case. I
therefore prefer to provide, in certain installations, cooler means 33, tube 29 being connected to conduct the returning oil through such cooler means.
My invention has a further advantage as a result of the fact that the return line for the oil to the crank case is never closed by a valve, or the like. When the compressor stops running, the pressure of the refrigerant in the separator 12 will force any remaining oil through tube 29 and the restricted portion 30 thereof into the compressor crank case. Thereafter, when the tube portion 30 is free of oil, refrigerant itself will bleed into the crank case, or low-pressure side of the system, thereby equalizing the pressure in the system. Any refrigerant which may have liquefied in separator 12 will be vaporized when passing through tube portion 30, thereby insuring against liquid refrigerant ever becoming mixed with the oil in the compressor crank case. Thus, when the compressor is again energized, there will be no load on the compressor as it comes up to speed. This is espe cially desirable in high-pressure systems where the ab sence .of some means for removing the load from the compressor during shutdown time would result in an overload on the compressor motor during starting periods.
My invention presents an extremely simple yet eflicient device for performing a function heretofore performed only by more elaborate and complicated mechanism. The fact that it contains no moving parts renders its use in any installation more trouble free and economical especially so where it is used in refrigeration systems located in moving conveyances.
I claim as my invention:
1. In a refrigeration system comprising a compressor having a crankcase, an inlet and a discharge, a condenser, conduit means for conducting compressed refrigerant from said compressor discharge to said condenser, an evaporator, conduit means for conducting condensed refrigerant from said condenser to said evaporator, and conduit means for conducting evaporated refrigerant from said evaporator to said compressor inlet, the invention of means for separating lubricant from the compressed refrigerant and for returning it to the compressor crankcase, such means comprising a body having a chamber therein, said first-named conduit means including a pipe communicating with said compressor discharge and entering said chamber and terminating in an open end within said chamber, and another pipe communicating with said condenser and entering said chamber and termimating in an open end within said chamber, filter means disposed in said chamber and interposed between the open ends of said pipes, and a continuously-open tube having one end disposed in said chamber below both said open pipe ends, extending upwardly through said chamber, and having its other end opening into said compressor crankcase.
2. The system of claim 1 in which at least a portion of said tube is of a restricted diameter such as to maintain the rate of flow of lubricant from said chamber to said crankcase substantially equal to the rate at which lubricant is deposited in said chamber.
References Cited in the file of this patent UNITED STATES PATENTS 346,038 Goldschmidt July 20, 1886 1,758,074 Davenport May 13, 1930 2,223,882 Beline Dec. 3, 1940 2,466,863 Phillips Apr. 12, 1949 2,512,758 Winkler June 27, 1950 2,606,430 Pownall Aug. 12, 1952 2,608,269 Briggs Aug. 26, 1952 2,614,402 Swart Oct. 21, 1952
US386307A 1953-10-15 1953-10-15 Oil separator for refrigeration system Expired - Lifetime US2749723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US386307A US2749723A (en) 1953-10-15 1953-10-15 Oil separator for refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US386307A US2749723A (en) 1953-10-15 1953-10-15 Oil separator for refrigeration system

Publications (1)

Publication Number Publication Date
US2749723A true US2749723A (en) 1956-06-12

Family

ID=23525044

Family Applications (1)

Application Number Title Priority Date Filing Date
US386307A Expired - Lifetime US2749723A (en) 1953-10-15 1953-10-15 Oil separator for refrigeration system

Country Status (1)

Country Link
US (1) US2749723A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921448A (en) * 1957-12-27 1960-01-19 Thomas W Carraway Lubricant separator for fluid compressing and condensing apparatus
US2959934A (en) * 1959-03-09 1960-11-15 Wayland Phillips Oil separator and return apparatus
US3070977A (en) * 1961-03-31 1963-01-01 Heat X Inc Refrigeration system, including oil separator and muffler unit and oil return arrangement
US3097509A (en) * 1960-10-24 1963-07-16 Gen Motors Corp Referigerating apparatus
US3360958A (en) * 1966-01-21 1968-01-02 Trane Co Multiple compressor lubrication apparatus
US3462951A (en) * 1966-05-13 1969-08-26 William Arthur Moore Vapor engine system
US3520149A (en) * 1968-05-09 1970-07-14 Eiichi Uratani Apparatus for separating and removing oil contained in circulating refrigerant
US3633377A (en) * 1969-04-11 1972-01-11 Lester K Quick Refrigeration system oil separator
US3974659A (en) * 1975-04-16 1976-08-17 Edwards Murel C Oil sampling and charging method and apparatus for refrigeration systems
US4178765A (en) * 1978-06-28 1979-12-18 General Electric Company Means for causing the accumulation of refrigerant in a closed system
US4282717A (en) * 1979-11-19 1981-08-11 Bonar Ii Henry B Oil separator and heat exchanger for vapor compression refrigeration system
US4506519A (en) * 1983-08-24 1985-03-26 Tecumseh Products Company Hermetic compressor discharge line thermal block
US4800736A (en) * 1988-01-27 1989-01-31 Weber Russell L Heat pump
WO1991019140A1 (en) * 1990-05-25 1991-12-12 Environmental Products Amalgamated Pty. Ltd. Apparatus for conditioning gas, particularly refrigerant
AU661272B2 (en) * 1990-05-25 1995-07-20 Environmental Products Amalgamated Pty Ltd Apparatus for conditioning gas, particularly refrigerant
US5444988A (en) * 1993-07-21 1995-08-29 Eden; Herbert R. Closed loop oil charging for ac or refrigerant compressor units
US5461883A (en) * 1993-01-26 1995-10-31 Hitachi, Ltd. Compression refrigerating machine
EP0948723A1 (en) * 1996-09-18 1999-10-13 MMR Technologies, Inc. Self-cleaning cryogenic refrigeration system
US20080282727A1 (en) * 2005-03-01 2008-11-20 Eaton Fluid Power Gmbh Coolant Collection Comprising a Filterdryer Unit
US20100300139A1 (en) * 2009-05-28 2010-12-02 Aisin Seiki Kabushiki Kaisha Oil separator for air conditioner
US20190041108A1 (en) * 2016-02-03 2019-02-07 Carrier Corporation Liquid accumulator for heat exchange system, refrigeration system having the same, cascade refrigeration system and control method thereof
US20200362862A1 (en) * 2017-12-28 2020-11-19 Emerson Climate Technologies (Suzhou) Co., Ltd. Intake pipe used for compressor system and compressor system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US346038A (en) * 1886-07-20 Trap for ammonia refrigerating apparatus
US1758074A (en) * 1927-03-10 1930-05-13 Chicago Pneumatic Tool Co Heat-transforming apparatus
US2223882A (en) * 1939-05-10 1940-12-03 York Ice Machinery Corp Refrigeration
US2466863A (en) * 1947-07-03 1949-04-12 Harry A Phillips Refrigerant injector and surge drum arrangement
US2512758A (en) * 1946-10-03 1950-06-27 Winkler Morgenthaler Inc Combined refrigerant purifier and control apparatus
US2606430A (en) * 1951-08-24 1952-08-12 Freezing Equipment Sales Inc Automatic lubrication means for plural stage compressors
US2608269A (en) * 1948-04-06 1952-08-26 Southwick W Briggs Oil separator
US2614402A (en) * 1948-12-15 1952-10-21 Carrier Corp Oil return mechanism for refrigeration systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US346038A (en) * 1886-07-20 Trap for ammonia refrigerating apparatus
US1758074A (en) * 1927-03-10 1930-05-13 Chicago Pneumatic Tool Co Heat-transforming apparatus
US2223882A (en) * 1939-05-10 1940-12-03 York Ice Machinery Corp Refrigeration
US2512758A (en) * 1946-10-03 1950-06-27 Winkler Morgenthaler Inc Combined refrigerant purifier and control apparatus
US2466863A (en) * 1947-07-03 1949-04-12 Harry A Phillips Refrigerant injector and surge drum arrangement
US2608269A (en) * 1948-04-06 1952-08-26 Southwick W Briggs Oil separator
US2614402A (en) * 1948-12-15 1952-10-21 Carrier Corp Oil return mechanism for refrigeration systems
US2606430A (en) * 1951-08-24 1952-08-12 Freezing Equipment Sales Inc Automatic lubrication means for plural stage compressors

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921448A (en) * 1957-12-27 1960-01-19 Thomas W Carraway Lubricant separator for fluid compressing and condensing apparatus
US2959934A (en) * 1959-03-09 1960-11-15 Wayland Phillips Oil separator and return apparatus
US3097509A (en) * 1960-10-24 1963-07-16 Gen Motors Corp Referigerating apparatus
US3070977A (en) * 1961-03-31 1963-01-01 Heat X Inc Refrigeration system, including oil separator and muffler unit and oil return arrangement
US3360958A (en) * 1966-01-21 1968-01-02 Trane Co Multiple compressor lubrication apparatus
US3462951A (en) * 1966-05-13 1969-08-26 William Arthur Moore Vapor engine system
US3520149A (en) * 1968-05-09 1970-07-14 Eiichi Uratani Apparatus for separating and removing oil contained in circulating refrigerant
US3633377A (en) * 1969-04-11 1972-01-11 Lester K Quick Refrigeration system oil separator
US3974659A (en) * 1975-04-16 1976-08-17 Edwards Murel C Oil sampling and charging method and apparatus for refrigeration systems
US4178765A (en) * 1978-06-28 1979-12-18 General Electric Company Means for causing the accumulation of refrigerant in a closed system
US4282717A (en) * 1979-11-19 1981-08-11 Bonar Ii Henry B Oil separator and heat exchanger for vapor compression refrigeration system
US4506519A (en) * 1983-08-24 1985-03-26 Tecumseh Products Company Hermetic compressor discharge line thermal block
US4800736A (en) * 1988-01-27 1989-01-31 Weber Russell L Heat pump
WO1991019140A1 (en) * 1990-05-25 1991-12-12 Environmental Products Amalgamated Pty. Ltd. Apparatus for conditioning gas, particularly refrigerant
US5377501A (en) * 1990-05-25 1995-01-03 Environmental Products Amalgamated Pty Ltd Oil separator for conditioning recovered refrigerant
AU661272B2 (en) * 1990-05-25 1995-07-20 Environmental Products Amalgamated Pty Ltd Apparatus for conditioning gas, particularly refrigerant
US5461883A (en) * 1993-01-26 1995-10-31 Hitachi, Ltd. Compression refrigerating machine
US5444988A (en) * 1993-07-21 1995-08-29 Eden; Herbert R. Closed loop oil charging for ac or refrigerant compressor units
EP0948723A4 (en) * 1996-09-18 2001-10-17 Mmr Technologies Inc Self-cleaning cryogenic refrigeration system
EP0948723A1 (en) * 1996-09-18 1999-10-13 MMR Technologies, Inc. Self-cleaning cryogenic refrigeration system
US20080282727A1 (en) * 2005-03-01 2008-11-20 Eaton Fluid Power Gmbh Coolant Collection Comprising a Filterdryer Unit
US20100300139A1 (en) * 2009-05-28 2010-12-02 Aisin Seiki Kabushiki Kaisha Oil separator for air conditioner
US8596088B2 (en) * 2009-05-28 2013-12-03 Aisin Seiki Kabushiki Kaisha Oil separator for air conditioner
US20190041108A1 (en) * 2016-02-03 2019-02-07 Carrier Corporation Liquid accumulator for heat exchange system, refrigeration system having the same, cascade refrigeration system and control method thereof
US10823470B2 (en) * 2016-02-03 2020-11-03 Carrier Corporation Liquid accumulator for heat exchange system, refrigeration system having the same, cascade refrigeration system and control method thereof
US20200362862A1 (en) * 2017-12-28 2020-11-19 Emerson Climate Technologies (Suzhou) Co., Ltd. Intake pipe used for compressor system and compressor system
US11713760B2 (en) * 2017-12-28 2023-08-01 Emerson Climate Technologies (Suzhou) Co., Ltd. Intake pipe used for compressor system and compressor system

Similar Documents

Publication Publication Date Title
US2749723A (en) Oil separator for refrigeration system
US4589263A (en) Multiple compressor oil system
US5522233A (en) Makeup oil system for first stage oil separation in booster system
US3633377A (en) Refrigeration system oil separator
US2178662A (en) Fluid compressor
US3138007A (en) Hot gas defrosting system
US3710590A (en) Refrigerant cooled oil system for a rotary screw compressor
JPH0240947B2 (en)
US2577598A (en) Water remover and air concentrator for refrigerating systems
JPS6219593B2 (en)
US2819592A (en) Accumulator heat exchanger
US2900801A (en) Method and apparatus for oil separation in refrigeration system
US2665557A (en) Lubricant separating system for refrigerating machines
US1106244A (en) Ammonia force-feed refrigerating system.
US2975613A (en) Refrigerating apparatus with aspirator in a by-pass
US2220726A (en) Refrigerating apparatus
KR840000974B1 (en) Oil return device
US2230892A (en) Purification of volatile refrigerants
US2188893A (en) Refrigerating apparatus
US2921448A (en) Lubricant separator for fluid compressing and condensing apparatus
JP6758963B2 (en) Freezer
US2661605A (en) Separator for intermingled fluids
US1948572A (en) Refrigerating apparatus
JPH04203764A (en) Freezer device
US2787136A (en) Oil separation in refrigerating apparatus