US3017304A - Absorbent fibrous structure and method of production - Google Patents

Absorbent fibrous structure and method of production Download PDF

Info

Publication number
US3017304A
US3017304A US587015A US58701556A US3017304A US 3017304 A US3017304 A US 3017304A US 587015 A US587015 A US 587015A US 58701556 A US58701556 A US 58701556A US 3017304 A US3017304 A US 3017304A
Authority
US
United States
Prior art keywords
absorbent
fibrous
relatively
compacted
bat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US587015A
Inventor
Alfred A Burgeni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Personal Products Co
Original Assignee
Personal Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Personal Products Co filed Critical Personal Products Co
Priority to US587015A priority Critical patent/US3017304A/en
Priority to DEB44692A priority patent/DE1259014B/en
Priority to FR774877A priority patent/FR1220831A/en
Application granted granted Critical
Publication of US3017304A publication Critical patent/US3017304A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/01008
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F13/15699Forming webs by bringing together several webs, e.g. by laminating or folding several webs, with or without additional treatment of the webs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/535Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad, e.g. core absorbent layers being of different sizes
    • A61F13/536Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad, e.g. core absorbent layers being of different sizes having discontinuous areas of compression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/48Devices for preventing wetting or pollution of the bed
    • A61F5/485Absorbent protective pads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • A61F13/01042
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/537Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/539Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterised by the connection of the absorbent layers with each other or with the outer layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • A61F13/8405Additives, e.g. for odour, disinfectant or pH control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00727Plasters means for wound humidity control
    • A61F2013/00731Plasters means for wound humidity control with absorbing pads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F2013/15821Apparatus or processes for manufacturing characterized by the apparatus for manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530131Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530131Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp
    • A61F2013/530182Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp characterized by the connection between the fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F2013/53445Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad from several sheets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/537Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer
    • A61F13/53708Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer the layer having a promotional function on liquid propagation in at least one direction
    • A61F2013/53721Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer the layer having a promotional function on liquid propagation in at least one direction with capillary means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/539Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterised by the connection of the absorbent layers with each other or with the outer layers
    • A61F2013/53908Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterised by the connection of the absorbent layers with each other or with the outer layers with adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves

Definitions

  • This invention relates to absorbent fibrous bodies and to methods of making them and, more particularly, is concerned with absorbent fibrous bodies which are especially suited for use as absorbent components in sanitary napkins, surgical dressings, compresses, disposable diapers, hospital underpads and other products designed to absorb body fluids.
  • Products designed to absorb body fluids generally contain as a principal component thereof an absorbent pad or core to absorb the fluids.
  • These pads or cores are normally made of layers of loosely compacted, absorbent fibers, such as carded cotton webs, air-laid cellulosic fibrous Webs, comminuted wood pulp bats, or like materials which are highly absorbent, fluffy and porous.
  • these loosely compacted, fibrous absorbent bodies possess numerous disadvantages, notably low cohesive strength, poor shape and volume stability, W forces of capillary attraction, low fluid retentivity and low absorptive capacities under conditions of use.
  • comrninuted wood pulp bats which are particularly suitable as absorbent components because of their highly absorbent properties, low cost and commercial availability, are very Weak structurally and possess low cohesive stability, whereby they tend to fall apart too readily under stress. With such a component, therefore, it has been common practice to provide strengthening or reinforcing layers of gauze, paper or similar materials. This, of course, increases the cost of the product and greatly reduces the economic desirability of using wood pulp bats as the basic absorbent component.
  • Further objects of the presen invention are to increase the fluid storage capacity of the absorbent fibrous body; to prevent the spreading of the fluids to the sides and edges thereof; to prevent the fluids from draining through to the side opposite that of deposition of the fluid (strikethrough); to minimize lateral spreading of the fluid on the deposition side of the absorbent fibrous body; and, in general, to control and direct the flow of fluids into and within the abs rbent fibrous body in the most desirable and eflicient manner.
  • PEG. 1 is an isometric view of a substantially homogeneous, loosely-compacted, absorbent fibrous body
  • FIG. 2 is a cross-section of an improved absorbent fibrous structure of the present invention
  • FIG. 3 is a cross-section of another improved absorbent fibrous structure of the present invention.
  • FIGS. 4 through are cross-sections of other im proved absorbent fibrous structures of the present invention.
  • FIG. 11 is a cross-section of an improved absorbent fibrous structure such as illustrated in FIG. 2 wherein the relatively dense surface skin has been formed in a series of lengthwise grooves;
  • FIG.- 12 is a bottom plan view of the absorbent improved fibrous structure of FIG. 11 to illustrate the spacing and positioning of the lengthwise grooves;
  • FIG. 13 is a plan view of another improved absorbent fibrous structure to illustrate the use of crosswise grooves
  • FIG. 14 is a plan view of another improved absorbent fibrous structure to illustrate the use of crosswise and lengthwise grooves; I
  • P16. 15 is a cross-section of a sanitary napkin containing an improved absorbent fibrous structure of the present invention.
  • FIG. 16 is a side elevational view, partly schematic, of apparatus which may be employed in making the improved absorbent fibrous structures of the present invention.
  • FIG; 17 is an elevation of one form of an embossing roller employed in making the improved absorbent fibrous structures of FIGS. 11 and 12;
  • FIG. 18 is an elevation of another form of a compressing roller employed in making the improved absorbent fibrous structures of FIGS. 2 through 10;
  • FIG. 19 is an end view of a gear-like embossing roller employed in making the improved absorbent fibrous structure of FIG. 13;
  • FIG. 20 is a cross-section of another embodiment of the present invention.
  • PEG. 21 is a cross-section of still another embodiment of the present invention.
  • the absorbent fibrous bodies of this invention contain fibers, such as comminuted wood pulp fibers, cotton linters, or the like, which, in the presence of moisture and pressure, are capable of forming a relatively dense, more or less coherent, relatively stable structure formed as a result of interfiber bonds between the moistened and compressed fibers similar to the bonds between fibers in paper.
  • Cellulosic fibers such as wood pulp fibers and cotton linters, are preferred in making the fibrous bodies of this invention because they readily form such interfiber bonds, when moistened and compressed.
  • Such fibers are additionally commercially desirable as they are inexpensive, readily available and highly absorbent.
  • Other fibers capable of developing interfiber bonds, similar to the bonds between fibers in paper in the presence of mois ture and pressure may also be used.
  • blends of natural or synthetic fibers such as silk, wool, linen, nylon and cellulose acetate fibers, may be used in combination with the fibers capable of forming interfiber bonds in the presence of moisture and pressure.
  • the fibrous structures of the present invention may be formed by applying controlled slight amounts of water as a fine spray or mist to the surface of a fibrous web or bat and then compressing the bat to form a surface skin on the moistened surface, or placing a second similar web against or on top of the moistened surface of the first web and compressing the superposed webs to form a compacted coherent integral layer of fibers at the adjacent surfaces of the superposed webs.
  • an absorbent fibrous body 10 comprising a substantially homogeneous, looselycompacted, absorbent fibrous body 11, as orginally obtained by disintegrating a wood pulp board and air-laying the resulting fibers as a bat.
  • a body possesses numerous disadvantages notably relatively low cohesive strength, relatively poor shape and volume stability, relatively low fluid retcntivity and relatively low capillarity and is not ideal or completely satisfactory for use as an absorbent component in many absorbent products.
  • the ability of such bodies to store and to retain fluids under conditions of use is low inasmuch as fluids deposited on one surface thereof tend to drain relatively quickly into its body and strike through to the opposite surface.
  • the body can be torn apart very easily and can be distorted and deformed readily by the application of even low stresses. Due to its dispersed and loosely compacted nature, the capillary forces are low and local oversaturation and local dryness is obtained in the same fibrous body.
  • FIG. 2 is a cross-section of an improved absorbent fibrous structure 12 comprising a loosely compacted, absorbent fibrous body 13 and a relatively dense, compacted, coherent surface skin 14 integrally formed on the lower surface thereof.
  • Such a structure is formed by spraying or otherwise depositing a controlled amount of moisture on the surface of absorbent fibrous body 10 and then passing the same through compression means to be described more fully hereinafter.
  • Such a fibrous structure resists tearing apart considerably more than the body of FIG. 1 and is distorted and deformed only by the application of greater stresses.
  • the dense, relatively compact skin 14 has high capillary forces which facilitate the dispersion and spreading of fluid to avoid local oversaturation and dry areas.
  • the formation of the densified skin is due to the formation of bonds between contacting moistened fibers, which bonds are similar to the bonds between the fibers in paper.
  • the properties of the densified skin may be varied, as desired or required.
  • the thickness, density, strength and other characteristics of the densified skin also depend upon the uniformity by which the moisture is applied,v the depth to which it penetrates and the degree to which the fibers are compressed. For example, by finely spraying about 0.0015 cc.
  • FIG. 2 Such a structure is illustrated in FIG. 2.
  • the amount of moisture used may vary from about 00005 to about 0.03 cc. of Water per square centimeter of web surface depending upon the thickness of the web, the thickness of the paper-like, densified skin desired, with the lesser amounts of moisture being used for thinner webs and yielding extremely thin papery skin and the greater amounts of moisture being used for thicker webs and yielding skins of a greater thickness.
  • the amounts of pressure to be applied to the moistened surfaces may be varied from about 5 to about or more pounds per square inch, with the commercially preferable range extending from about 10 to about 50 pounds per square inch.
  • FIG. 3 illustrates an absorbent fibrous structure 15 having an absorbent fibrous body 16 and relatively dense, compacted, coherent skins 17, 18 integrally formed on each of the lower and upper surfaces thereof.
  • a absorbent fibrous body 56 see FIG. 12
  • a waterrepellent tissue 70 is provided in order to act as a barrier against the strike-through of fluid.
  • Another absorbent fibrous body 62 having an embossed skin such as shown in FIG. 14 contacts the under surface of water-repellent tissue 70.
  • a paper envelope 71 is provided to enclose the absorbent components and the water-repellent tissue 70.
  • a textile cover 72 provides an external wrapping for the complete article and has the customary ends (not shown) extending beyond the absorbent bodies to provide attachment for use. It is to be appreciated that this particular embodiment is used for illustrative purposes and that either absorbent pad may be replaced by any one of the other embodiments set forth in other figures of the drawings. It is also to be observed that, although a sanitary napkin has been employed to illustrate the present invention, such has been the case merely for descriptive purposes and is not to be construed as limitative of the present invention, inasmuch as the fibrous structures herein set forth could be used in surgical dressings, compresses, disposable diapers, hospital underpads and the like.
  • FIG. 16 sets forth one method of preparing absorbent fibrous bodies of the present invention.
  • Two superposed fibrous webs 73 and '74 such as low bulk density, coherent webs of loosely compacted, comminuted wood pulp fibers, so-called fluff, are delivered separately on conveyor belts from a disintegrating mill (not shown) which finely divides the wood pulp board or sheeting into individualized fibers. These webs may be compressed lightly in order to facilitate handling.
  • the upper surface of the lower fibrous web 74 is lightly moistened with water W in the form of a fine spray or mist from a suitable spray device 75 controlled by a valve 76.
  • the upper web 73 is then laid down upon the lower web 74 with the wetted surface of the lower web in direct con tact with the adjacent undersurface of the upper web.
  • the two superposed webs are carried on a series of conveyors 77, 78 to a compression device 79 consisting of a lower idler roller 80 and an upper driven compression roller 81 whereby the web is compressed.
  • the fibers which have been moistened are in a relatively swollen condition whereas the remaining fibers are still substantially dry.
  • the moistened fibers bond together under the compression exerted by the rollers to form the fibrous body having a densified inner layer similar to the structure set forth in FIG. 4 of the drawings. These is little or no tendency for the water to penetrate or permeate too deeply into the interior of the web unless an excess has been applied.
  • the bonded webs are then conducted by the conveyor 78, 82 in the direction indicated by the arrow for cutting, shaping or other processing.
  • the integral densified inner layer which is formed is a coherent structure possessing greater tensile strength, good form and shape stability, high fluid retentivity and high capillarity.
  • F116. 17 sets forth an embossing roller 84 which is used to form the lengthwise grooves 57 as illustrated in the absorbent fibrous body 56 shown in FIG. 12. These grooves may be made narrow or wide and the intervals between them may be varied depending upon the particular requirements of the situation involved.
  • the embossing roller 84 may be used with another similar embossing roller and the contacting relationship between the two may be so arranged that the projecting annular rings 85 of each of the embossing rollers may come into direct contact or they may be so staggered that the teeth of one fit within the intervals of the other, whereby varying designs may be obtained.
  • FIG. 18 discloses a compression roller 83 which can be used to compress the fibrous webs in a plane in accordance with the method disclosed in FIG. 16. These compression rollers are normally carried in vertical & stands and the pressure exerted thereby can be adjusted manually in the usual manner.
  • FIG. 19 sets forth a different embossing roller 86 having teeth 87 which may be used to form grooves in absorbent fibrous bodies extending crosswise thereof such as illustrated in FIG. 13 of the drawings.
  • the axial length of the teeth 87 is equal to the crosswise length of the grooves and the spacing between the teeth 87 controls the intervals between the grooves in a longitudinal direction.
  • An embossing roller 86 may be used in combination with a pair of annular rings at each end thereof in order to obtain the grooved absorbent fibrous body illustrated in FIG. 14.
  • FIG. 20 illustrates an absorbent fibrous structure 88 comprising a centrally located, loosely-compacted fibrous body 89 and relatively densified, compacted grooves 90 formed on the upper and lower surfaces thereof as by means of embossing rollers 84. It is to be observed that the grooves 90 on each surface are positioned directly opposite each other.
  • FIG. 21 illustrates an absorbent fibrous structure 91 comprising a centrally located, loosely-compacted fibrous body 2 and relatively densified, compacted grooves 93 formed on the upper and lower surfaces thereof as by means of embossing rollers 34. It is to be observed that the grooves 93 on each surface are staggered widthwise with relation to each other.
  • the present inventive concept was applied to two fibrous comminuted wood-pulp air-laid webs, each about 1 centimeter thick and having a bulk density of about 0.03 gram per cubic centimeter.
  • FIG. 4 shows an absorbent fibrous structure 19 comprising an upper, loosely compacted fibrous body 26, a lower, loosely compacted fibrous body 21 and an intermediate relatively densified, compacted, coherent layer 22 formed integrally with the upper and lower fibrous bodies 20, 21.
  • Such a structure is obtained by moistening the face of one loosely compacted fibrous body, laying a second loosely compacted fibrous body atop the first and applying pressure thereto. If desired, the faces of both loosely compacted fibrous bodies may be moistened prior to being placed together for the application of pressure.
  • FIG. 5 sets forth an absorbent fibrous structure 23 comprising an upper, loosely compacted fibrous body 24, a lower, loosely compacted fibrous body 25, an intermediate relatively densified, compacted, coherent paperlike layer 26 formed integrally with the upper and lower fibrous bodies 24, 25 and a lower, relatively densified, compacted, papery skin 27 formed on the lower surface of fibrous body 25.
  • Such a structure is obtained, for example, by wetting both sides of a fibrous structure as body it ⁇ and laying it on a dry fibrous structure, the upper surface of which may be moistened, and then applying the required pressure.
  • FIG. 6 sets forth an absorbent fibrous structure 28 comprising an upper, loosely compacted absorbent fibrous body 29, a lower, loosely compacted absorbent fibrous body 30, an intermediate relatively densified, compacted, coherent paper-like layer 31 and relatively densified, compacted papery skins 32, 33 on the upper and lower sur faces of the absorbent fibrous structure 28.
  • Such a structure is obtained such as by wetting both sides of two fibrous structures, placing them together and then applying the required pressure,
  • FIG. 7 illustrates an absorbent fibrous structure 34 comprising an upper, loosely compacted fibrous body 35, a lower, loosely compacted fibrous body 36, an intermediate, relatively densified, compacted, narrower, coherent paper-like layer 37 formed integrally with the upper and lower fibrous bodies 35, 36 and relatively densified, compacted, coherent, paper-like skins 38, 39 of different widths formed on the upper and lower surfaces respectively of the fibrous structure 34.
  • Such a structure is obtained, for example, by wetting both sides of two fibrous bodies only in the area in which it is desired to form the relatively densified, compacted structures and then applying the required pressure.
  • FIG. 8 sets forth an absorbent fibrous structure 4-0 comprising an upper, loosely compacted fibrous absorbent body 41, a lower, loosely compacted, absorbent fibrous body 42 having a width narrower than body 41, an intermediate, relatively densified, compacted, coherent, narrower, paper-like layer 43 formed integrally with the upper and lower fibrous bodies 41, 42, and relatively densified, compacted, papery skins 44, 45 formed integrally on the upper and lower surfaces of the absorbent fibrous bodies 41, 42.
  • Such a structure is obtained by using fibrous bodies of different widths and wetting them only in the areas wherein it is desired to effect the formation of paper-like members and then applying the required pressure.
  • FIG. 9 sets forth an absorbent, fibrous structure 46 comprising an upper, loosely compacted, absorbent fibrous body 47, a lower, loosely compacted, absorbent, narrower fibrous body 48, an intermediate, relatively densified, compacted, coherent, narrower paper-like layer 49 formed integrally with the upper and lower absorbent fibrous bodies 47, 48 and a lower, relatively densified, compacted, papery, narrower skin 50 formed integrally on the lower surface of the lower, absorbent fibrous body 48.
  • Such a structure is obtained by initially using two absorbent fibrous structures of different widths and moistening only the areas in which it is desired to create the paper-like members and then applying suflicient force not only to form the densified members but to force the narrower absorbent body partially into the upper absorbent body 47.
  • FIG. 10 discloses an absorbent fibrous structure 51 comprising an upper, loosely compacted absorbent fibrous body 52, a lower, loosely compacted fibrous body 53, an intermediate, relatively densified, compacted, coherent, narrower paper-like layer 54 formed integrally with the upper and lower absorbent fibrous bodies 52, 53 and a lower, relatively densified, compacted, paper-like, narrower surface skin 55 formed integrally 011 the lower surface of lower absorbent fibrous body 53.
  • Such a structure is obtained in very much the same fashion as the structure set forth in PEG. 9 with the exception that the applied moisture and pressure is sufficient to force the lower absorbent fibrous body substantially wholly within the upper absorbent fibrous body so as to create a smooth, flush lower surface.
  • the distance the lower absorbent fibrous body penetrates the upper absorbent fibrous body depends upon the amount of moisture and pressure applied and, if desired or required, the narrower absorbent fibrous body could be forced wholly within the upper fibrous body so that its skin is within the wider absorbent fibrous body.
  • FIG. 11 is a cross-sectional view of an absorbent fibrous body and shows parallel grooves 57 and high regions 58 which extend between the grooves 57.
  • FIG. 12 discloses an absorbent fibrous structure 56 formed with a plurality of longitudinally extending, compressed grooves 57 whereby any fluid deposited on the absorbent fibrous body and encountering the grooves tends to spread lengthwise along the fibrous body so that its absorbent effectiveness will be utilized more fully.
  • absorbent fibrous structure there are regions of high and low capillarity within the densified layer itself. These differences in capillarity are due to the compressed grooves formed by an embossing roller to be described more fully hereinafter.
  • FIG. 13 there is disclosed an absorbent fibrous body 59 wherein grooves 60 are positioned crosswise to the length of the body. These particular grooves provide strength and springiness to the body and add to its structural rigidity and form and shape stability. These grooves are impressed upon the absorbent fibrous bodies by means of embossing rollers to be described more fully hereinafter. It is to be noted that the crosswise grooves are separated by intervening high regions 61 and that they end before they reach the edges of the absorbent fibrous body. In this way fluids deposited upon the absorbent fibrous body tend to follow the grooves 6% but will not go beyond the ends thereof thereby confining the fluid to within the absorbent fibrous body itself.
  • FIG. 14 sets forth an absorbent fibrous body as possessing spaced, longitudinally extending grooves 63 and spaced, laterally extending grooves 64 having intervening high regions 55 which have not been compressed to the extent that the grooves 64 have been. It is to be appreciated that any fluid deposited on the absorbent fibrous body will initially tend to follow the grooves 64 laterally until the lengthwise grooves 63 are encountered, at which time the fluid will then tend to move longitudinally and contact other crosswise grooves 64.
  • This type of absorbent fibrous body possesses increased strength and springiness due to the transverse grooves 64, superior fluid control by means of grooves 63 and 64 whereby a very complete and eifective utilization of the absorbent properties of the fibrous body is realized.
  • the grooves in the absorbent fibrous body 62 may be obtained by a combination of embossing rollers to be described hereinafter.
  • FIG. 15 is a cross-section of a sanitary napkin 66 embodying an absorbent fibrous structure of the present invention.
  • An absorbent fibrous structure 67 comprising a relatively loosely compacted, porous, fluify body 68 and previously and the thickness of the completed integral Web was reduced correspondingly.
  • a method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises moistening a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity with from about 0.0005 to about 0.03 cubic centimeter of water per square centimeter of surface of said bat, applying a pressure of from about to about 100 pounds per square inch to said bat While the surface thereof is moistened with said water, said pressure being sufficient to form a paper-like, densified, compacted cellulosic fibrous layer it situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
  • a method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises moistening a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume sta bility, and relatively low fluid retentivity with from about 0.0005 to about 0.03 cubic centimeter of Water per square centimeter of surface of said bat, applying pressure to said bat while the surface thereof is moistened with said water, said pressure being sufficient to form a paper-like, densified, compacted cellulosic fibrous layer in situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
  • a method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises applying water to a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity in an amount sufficient to moisten the surface portion thereof, placing a second highly porous, loosely compacted, cellulosic fibrous bat in contacting relationship with said moistened surface, applying pressure to said bats while the surface of said moistened bat is moistened with said water, said pressure being sufficient to form a paper-like, densified, compacted cellulosic fibrous layer intermediate said bats and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
  • a method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises applying water to a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity in an amount suflicient to moisten fibers in said bat adjacent said moistened surface portion but not to moisten all the fibers in said bat, applying pressure to said bat While the surface thereof is moistened with said water, said pressure being sufficient to form a paper-like densified, compacted cellulosic fibrous layer in situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
  • a method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises applying water to a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity in an amount suffioient to moisten the surface portion, applying pressure to said bat while the surface thereof is moistened with said water, said pressure being suflicient to form a paper-like, densified, compacted cellulosic wood pulp fibrous hydrate-bonded layer in situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
  • a method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises applying water to a surface of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity in an amount sufficient to moisten the surface thereof, applying pressure to said bat While the surface thereof is moistened with said water, said pressure being sufficient to form a paperlike, densified, compacted cellulosic fibrous layer in situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
  • An absorbent fibrous structure suitable for use as an absorbent component in absorbent products comprising a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability and relatively low fluid retentivity, and integrally united therewith by bonds comprising interfiber bonds, a paper-like, densified, compacted cellulosic fibrous layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability and relatively high fluid retentivity, said paper-like, densified, fibrous layer being formed in situ from said highly porous bat.

Description

Jan. 16, 1962 A. A. BURGENI ABSORBENT FIBROUS STRUCTURE AND METHOD OF PRODUCTION Filed May 24, 1956 5 Sheets-Sheet 1 402450 A. 50.4 am
ATTORNEY Jan. 16, 1962 A. A. BURGENI 3,017,304
ABSORBENT FIBROUS STRUCTURE AND METHOD OF PRODUCTION 3 Sheets-Sheet 2 Filed May 24, 1956 TIE-.17- g4 INVENTOR 14;?50 ,4 flufqs/w dZ'mTM,
ATTORNEYS Jan. 16, 1962 A. A. BURGENI 3,017,304
ABSORBENT FIBROUS STRUCTURE AND METHOD OF PRODUCTION Filed May 24, 1956 3 Sheets-Sheet 5 ATTORNEY 3,017,304 ABSORBENT FitBROU'i STRUCTURE AND METHOD OF PRODIETHON Alfred A. Burgeni, Short Hills, N.J., assignor to Persona! Products Corporation, a corporation of New Jersey Fitted May 24, 1956, Ser. No. 587,015 16 Claims. (Cl. 154-54) This invention relates to absorbent fibrous bodies and to methods of making them and, more particularly, is concerned with absorbent fibrous bodies which are especially suited for use as absorbent components in sanitary napkins, surgical dressings, compresses, disposable diapers, hospital underpads and other products designed to absorb body fluids.
Products designed to absorb body fluids generally contain as a principal component thereof an absorbent pad or core to absorb the fluids. These pads or cores are normally made of layers of loosely compacted, absorbent fibers, such as carded cotton webs, air-laid cellulosic fibrous Webs, comminuted wood pulp bats, or like materials which are highly absorbent, fluffy and porous. Unfortunately, these loosely compacted, fibrous absorbent bodies possess numerous disadvantages, notably low cohesive strength, poor shape and volume stability, W forces of capillary attraction, low fluid retentivity and low absorptive capacities under conditions of use.
For eXample, comrninuted wood pulp bats which are particularly suitable as absorbent components because of their highly absorbent properties, low cost and commercial availability, are very Weak structurally and possess low cohesive stability, whereby they tend to fall apart too readily under stress. With such a component, therefore, it has been common practice to provide strengthening or reinforcing layers of gauze, paper or similar materials. This, of course, increases the cost of the product and greatly reduces the economic desirability of using wood pulp bats as the basic absorbent component.
Additionally, these comminuted wood pulp bats, as well as cotton fibrous webs, do not possess shape and volume stability to any marked degree and have quickly become deformed and distorted upon the application of slight forces or stresses. As a result, plies of creped tissue paper, absorbent paper and like supporting materials have had to be incorporated therein to give body and firmness to the article. Such additional plies of materials had increased the cost of the final product and are naturally not desirable economically.
Furthermore, the fluid retentivity of such highly porous, fibrous absorbent bodies is not sufi iciently great and, consequently, fluids which should be retained therein have been squeezed out relatively easily by the application of pressure arising from normal usage of the article. To avoid this undesirable occurrence, multiple plies of highly absorbent paper have been used in laminar combination with the highly porous, fibrous absorbent bodies to increase the fluid retentivity of the article.
Moreover, these fluffy, porous, absorbent fibrous components possess low capillary forces because of their loosely compacted structure and, when a fluid is deposited on its surface, saturation conditions are reached very quickly at the site of immediate application. At the same time, however, the adjacent portions remain relatively unsaturated and in some instances dry due to the loW capillary forces of the fibrous body and consequently a highly localized fluid condition is obtained. Efforts to avoid such local over-concentrations have led to the use of special fluid-directing and spreading elements such as multiple layers of paper or combinations of paper with fiber Webs formed With longitudinally extending embossed lines or grooves along which the fluids are directed and spread in that particular layer. Such devices are effec- 3,0173% Patented Jan. 16, 19%2 tive only to a minor degree. This is due to the fact that the spread of fluid obtained in the spreading device is not effectively transferred to adjacent layers in which the major portion of the absorbed fluid is to be stored. This is particularly true When such adjacent layers consist of loosely organized fiber Webs such as bats of disintegrated wood pulp or carded cotton. In such instances, the spreading of fluids from layer to layer is deterred by the weak capillary forces in the Webs adjacent to the spreading device, and this situation is still further aggravated by gaps, voids and air spaces between layers which prevent the diffusion of the fluid and, as a consequence, local oversaturation has occurred in the main storage elements in spite of the presence of such spreading devices.
It is therefore seen that, although absorbent fibrous bodies have been manufactured in the past and have met with some commercial success, there still remains considerable field for improvement toward a superior product.
It is an object of the present invention to provide an improved absorbent fibrous body Which possesses relatively high cohesive stability, good shape and volume stability, high forces of capillary attraction, good fluid retentivity and high absorptive capacity under conditions of use.
It is another object of this invention to provide improved absorbent fibrous bodies especially suited for use as absorbent components in sanitary napkins, surgical dressings, compresses, disposable diapers, hospital underpads and other products designed to absorb body fluids.
It is still another object of the present invention to provide absorbent fibrous bodies possessing a highly porous, fluffy surface through which the fluids will drain relatively quickly to be received and retained in a pad or core within the absorbent fibrous body whereby the surfaces thereof will remain relatively dry.
Further objects of the presen invention are to increase the fluid storage capacity of the absorbent fibrous body; to prevent the spreading of the fluids to the sides and edges thereof; to prevent the fluids from draining through to the side opposite that of deposition of the fluid (strikethrough); to minimize lateral spreading of the fluid on the deposition side of the absorbent fibrous body; and, in general, to control and direct the flow of fluids into and within the abs rbent fibrous body in the most desirable and eflicient manner.
These objecs and others which will become clear from the following description of the invention are obained by treating an absorbent fibrous body or a plurality of the same in such a Way as to form a relatively dense. compacted, more or less ccherent skin or layer integrally on or within the absorbent fibrous body, which skin or layer increases the cohesive s rength of the absorbent fibrous body, enhances its sh pe and volume stabi ity. increases its fluid retentivity and augments its capillary forces.
More specifically these objects are attained by applying controlled amounts of moisture to the surface or surfaces of a loosely compacted, fibrous absorbent body having relatively low cohesive strength, relatively poor shape and volume stability, relatively low fluid retentivity and relatively low capillary forces and applying pressure thereto within con rolled limits whereby there is formed, in situ, a paper-like, densified, highly compacted cellulosic fibrous layer integral with the loosely compacted, fibrous absorbent body and possessing relatively high cohesive strength, relatively good shape and volume stability, relatively high fluid retentivity and relatively high capillary forces.
In the accompan ing drawings and t e following specification, there are illustrated and described preferred designs of absorbent fibrous bodies but it is to be understood that the invention is not to be construed as limited thereto except as defined by the spirit of the invention and determined by the scope of the appended claims. Referring to the drawings:
PEG. 1 is an isometric view of a substantially homogeneous, loosely-compacted, absorbent fibrous body;
FIG. 2 is a cross-section of an improved absorbent fibrous structure of the present invention;
FIG. 3 is a cross-section of another improved absorbent fibrous structure of the present invention;
FIGS. 4 through are cross-sections of other im proved absorbent fibrous structures of the present invention;
FIG. 11 is a cross-section of an improved absorbent fibrous structure such as illustrated in FIG. 2 wherein the relatively dense surface skin has been formed in a series of lengthwise grooves;
FIG.- 12 is a bottom plan view of the absorbent improved fibrous structure of FIG. 11 to illustrate the spacing and positioning of the lengthwise grooves;
FIG. 13 is a plan view of another improved absorbent fibrous structure to illustrate the use of crosswise grooves;
FIG. 14 is a plan view of another improved absorbent fibrous structure to illustrate the use of crosswise and lengthwise grooves; I
P16. 15 is a cross-section of a sanitary napkin containing an improved absorbent fibrous structure of the present invention;
FIG. 16 is a side elevational view, partly schematic, of apparatus which may be employed in making the improved absorbent fibrous structures of the present invention;
FIG; 17 is an elevation of one form of an embossing roller employed in making the improved absorbent fibrous structures of FIGS. 11 and 12;
FIG. 18 is an elevation of another form of a compressing roller employed in making the improved absorbent fibrous structures of FIGS. 2 through 10;
FIG. 19 is an end view of a gear-like embossing roller employed in making the improved absorbent fibrous structure of FIG. 13;
FIG. 20 is a cross-section of another embodiment of the present invention; and
PEG. 21 is a cross-section of still another embodiment of the present invention.
The absorbent fibrous bodies of this invention contain fibers, such as comminuted wood pulp fibers, cotton linters, or the like, which, in the presence of moisture and pressure, are capable of forming a relatively dense, more or less coherent, relatively stable structure formed as a result of interfiber bonds between the moistened and compressed fibers similar to the bonds between fibers in paper. Cellulosic fibers, such as wood pulp fibers and cotton linters, are preferred in making the fibrous bodies of this invention because they readily form such interfiber bonds, when moistened and compressed. Such fibers are additionally commercially desirable as they are inexpensive, readily available and highly absorbent. Other fibers capable of developing interfiber bonds, similar to the bonds between fibers in paper in the presence of mois ture and pressure may also be used. In addition, blends of natural or synthetic fibers, such as silk, wool, linen, nylon and cellulose acetate fibers, may be used in combination with the fibers capable of forming interfiber bonds in the presence of moisture and pressure.
The fibrous structures of the present invention may be formed by applying controlled slight amounts of water as a fine spray or mist to the surface of a fibrous web or bat and then compressing the bat to form a surface skin on the moistened surface, or placing a second similar web against or on top of the moistened surface of the first web and compressing the superposed webs to form a compacted coherent integral layer of fibers at the adjacent surfaces of the superposed webs.
In FIG. 1, there is shown generally an absorbent fibrous body 10 comprising a substantially homogeneous, looselycompacted, absorbent fibrous body 11, as orginally obtained by disintegrating a wood pulp board and air-laying the resulting fibers as a bat. Such a body possesses numerous disadvantages notably relatively low cohesive strength, relatively poor shape and volume stability, relatively low fluid retcntivity and relatively low capillarity and is not ideal or completely satisfactory for use as an absorbent component in many absorbent products. The ability of such bodies to store and to retain fluids under conditions of use is low inasmuch as fluids deposited on one surface thereof tend to drain relatively quickly into its body and strike through to the opposite surface. The body can be torn apart very easily and can be distorted and deformed readily by the application of even low stresses. Due to its dispersed and loosely compacted nature, the capillary forces are low and local oversaturation and local dryness is obtained in the same fibrous body.
FIG. 2 is a cross-section of an improved absorbent fibrous structure 12 comprising a loosely compacted, absorbent fibrous body 13 and a relatively dense, compacted, coherent surface skin 14 integrally formed on the lower surface thereof. Such a structure is formed by spraying or otherwise depositing a controlled amount of moisture on the surface of absorbent fibrous body 10 and then passing the same through compression means to be described more fully hereinafter.
Such a fibrous structure resists tearing apart considerably more than the body of FIG. 1 and is distorted and deformed only by the application of greater stresses. The dense, relatively compact skin 14 has high capillary forces which facilitate the dispersion and spreading of fluid to avoid local oversaturation and dry areas.
It is believed that the formation of the densified skin is due to the formation of bonds between contacting moistened fibers, which bonds are similar to the bonds between the fibers in paper. By the proper selection of the amount of moisture applied to the fibers and by the proper selection of the degree of compression imposed, the properties of the densified skin may be varied, as desired or required. The thickness, density, strength and other characteristics of the densified skin also depend upon the uniformity by which the moisture is applied,v the depth to which it penetrates and the degree to which the fibers are compressed. For example, by finely spraying about 0.0015 cc. of water per square centimeter of web surface and then exposing the web to a pressure of about 40 pounds per square inch, a densified, coherent, papery skin is obtained on the surface of the web which had been moistened. Such a structure is illustrated in FIG. 2.
The amount of moisture used may vary from about 00005 to about 0.03 cc. of Water per square centimeter of web surface depending upon the thickness of the web, the thickness of the paper-like, densified skin desired, with the lesser amounts of moisture being used for thinner webs and yielding extremely thin papery skin and the greater amounts of moisture being used for thicker webs and yielding skins of a greater thickness.
Within the more commercial aspects of the present invention, however, it has been found that a range of from about 0.001 to about 0.004 cc. of water per square centimeter of web surface has been found economically desirable. Such values have been found particularly suitable for bats having a thickness of from about /2 to about 1 centimeter.
The amounts of pressure to be applied to the moistened surfaces may be varied from about 5 to about or more pounds per square inch, with the commercially preferable range extending from about 10 to about 50 pounds per square inch.
FIG. 3 illustrates an absorbent fibrous structure 15 having an absorbent fibrous body 16 and relatively dense, compacted, coherent skins 17, 18 integrally formed on each of the lower and upper surfaces thereof. Such a an absorbent fibrous body 56 (see FIG. 12) containing a relatively dense, compacted embossed skin 69. A waterrepellent tissue 70 is provided in order to act as a barrier against the strike-through of fluid. Another absorbent fibrous body 62 having an embossed skin such as shown in FIG. 14 contacts the under surface of water-repellent tissue 70. A paper envelope 71 is provided to enclose the absorbent components and the water-repellent tissue 70. A textile cover 72 provides an external wrapping for the complete article and has the customary ends (not shown) extending beyond the absorbent bodies to provide attachment for use. It is to be appreciated that this particular embodiment is used for illustrative purposes and that either absorbent pad may be replaced by any one of the other embodiments set forth in other figures of the drawings. It is also to be observed that, although a sanitary napkin has been employed to illustrate the present invention, such has been the case merely for descriptive purposes and is not to be construed as limitative of the present invention, inasmuch as the fibrous structures herein set forth could be used in surgical dressings, compresses, disposable diapers, hospital underpads and the like.
FIG. 16 sets forth one method of preparing absorbent fibrous bodies of the present invention. Two superposed fibrous webs 73 and '74, such as low bulk density, coherent webs of loosely compacted, comminuted wood pulp fibers, so-called fluff, are delivered separately on conveyor belts from a disintegrating mill (not shown) which finely divides the wood pulp board or sheeting into individualized fibers. These webs may be compressed lightly in order to facilitate handling. The upper surface of the lower fibrous web 74 is lightly moistened with water W in the form of a fine spray or mist from a suitable spray device 75 controlled by a valve 76. The upper web 73 is then laid down upon the lower web 74 with the wetted surface of the lower web in direct con tact with the adjacent undersurface of the upper web. The two superposed webs are carried on a series of conveyors 77, 78 to a compression device 79 consisting of a lower idler roller 80 and an upper driven compression roller 81 whereby the web is compressed.
When the superposed webs reach the compression device, the fibers which have been moistened are in a relatively swollen condition whereas the remaining fibers are still substantially dry. The moistened fibers bond together under the compression exerted by the rollers to form the fibrous body having a densified inner layer similar to the structure set forth in FIG. 4 of the drawings. These is little or no tendency for the water to penetrate or permeate too deeply into the interior of the web unless an excess has been applied. The bonded webs are then conducted by the conveyor 78, 82 in the direction indicated by the arrow for cutting, shaping or other processing. The integral densified inner layer which is formed is a coherent structure possessing greater tensile strength, good form and shape stability, high fluid retentivity and high capillarity.
F116. 17 sets forth an embossing roller 84 which is used to form the lengthwise grooves 57 as illustrated in the absorbent fibrous body 56 shown in FIG. 12. These grooves may be made narrow or wide and the intervals between them may be varied depending upon the particular requirements of the situation involved. The embossing roller 84 may be used with another similar embossing roller and the contacting relationship between the two may be so arranged that the projecting annular rings 85 of each of the embossing rollers may come into direct contact or they may be so staggered that the teeth of one fit within the intervals of the other, whereby varying designs may be obtained.
FIG. 18 discloses a compression roller 83 which can be used to compress the fibrous webs in a plane in accordance with the method disclosed in FIG. 16. These compression rollers are normally carried in vertical & stands and the pressure exerted thereby can be adjusted manually in the usual manner.
FIG. 19 sets forth a different embossing roller 86 having teeth 87 which may be used to form grooves in absorbent fibrous bodies extending crosswise thereof such as illustrated in FIG. 13 of the drawings. The axial length of the teeth 87 is equal to the crosswise length of the grooves and the spacing between the teeth 87 controls the intervals between the grooves in a longitudinal direction.
It is to be appreciated that other forms of compressing and embossing rollers could be used and that various planar, curved grooved or undulated surfaces may be obtained by the use of correspondingly shaped rollers.
An embossing roller 86 may be used in combination with a pair of annular rings at each end thereof in order to obtain the grooved absorbent fibrous body illustrated in FIG. 14.
FIG. 20 illustrates an absorbent fibrous structure 88 comprising a centrally located, loosely-compacted fibrous body 89 and relatively densified, compacted grooves 90 formed on the upper and lower surfaces thereof as by means of embossing rollers 84. It is to be observed that the grooves 90 on each surface are positioned directly opposite each other.
FIG. 21 illustrates an absorbent fibrous structure 91 comprising a centrally located, loosely-compacted fibrous body 2 and relatively densified, compacted grooves 93 formed on the upper and lower surfaces thereof as by means of embossing rollers 34. It is to be observed that the grooves 93 on each surface are staggered widthwise with relation to each other.
It is to be appreciated that the spacing of the opposed gear-like embossing rollers must be carefully controlled in the manufacture of fibrous bodies as illustrated in FIGS. 20 and 21 and that the opposed gear-like surfaces must be close enough to provide the necessary pressure but not too close as to shear through the fibrous structure.
The present inventive concept was applied to two fibrous comminuted wood-pulp air-laid webs, each about 1 centimeter thick and having a bulk density of about 0.03 gram per cubic centimeter. By finely spraying about 0.00 15 cc. of water per square centimeter of web surface on each web, then superposing the webs and applying a pressure of about 15 pounds per square inch, an integral, absorbent fibrous body having a thickness of about 1.5-1.6 centimeters was obtained having a densified, coherent inner layer about 0.04-0.05 centimeter thick.
The use of different pressures of about 10 pounds and about 60 pounds per square inch in the presence of 0.0015 cc. water per square centimeter resulted in the conversion of lesser and greater proportions of the original web into the dense paper-like layers.
The use of moistures of 0.001 and 0.003 cc. per square centimeter was evaluated with a pressure of 40 pounds per square inch. The lesser amount of moisture (0.001) yielded an extremely thin, papery layer whereas the greater amount of moisture (0.003) yielded a heavier bonded layer usable where such density and strength was desirable.
These tests were repeated with two similar webs using 10, 15, and 60 pounds per square inch pressure but without the application of any moisture to determine the effect thereof on the dense inner layer. When the pressure was removed, there was no paper-like inner layer and there was no adhesion between the two layers beyond the amount normally obtained by interfiber frictional engagement. Likewise, when embossing rollers were used, the embossed effects were deficient in stability and were lost upon subsequent wetting.
Another trial was made under similar conditions but increasing the moisture to 0.004 cc. of water vapor per square centimeter of web surface. This time the dense inner layer was considerably thicker than that obtained structure is obtained by moistening both the lower and upper surface of an absorbent pad such as body and applying pressure to the surfaces.
FIG. 4 shows an absorbent fibrous structure 19 comprising an upper, loosely compacted fibrous body 26, a lower, loosely compacted fibrous body 21 and an intermediate relatively densified, compacted, coherent layer 22 formed integrally with the upper and lower fibrous bodies 20, 21. Such a structure is obtained by moistening the face of one loosely compacted fibrous body, laying a second loosely compacted fibrous body atop the first and applying pressure thereto. If desired, the faces of both loosely compacted fibrous bodies may be moistened prior to being placed together for the application of pressure.
FIG. 5 sets forth an absorbent fibrous structure 23 comprising an upper, loosely compacted fibrous body 24, a lower, loosely compacted fibrous body 25, an intermediate relatively densified, compacted, coherent paperlike layer 26 formed integrally with the upper and lower fibrous bodies 24, 25 and a lower, relatively densified, compacted, papery skin 27 formed on the lower surface of fibrous body 25. Such a structure is obtained, for example, by wetting both sides of a fibrous structure as body it} and laying it on a dry fibrous structure, the upper surface of which may be moistened, and then applying the required pressure.
FIG. 6 sets forth an absorbent fibrous structure 28 comprising an upper, loosely compacted absorbent fibrous body 29, a lower, loosely compacted absorbent fibrous body 30, an intermediate relatively densified, compacted, coherent paper-like layer 31 and relatively densified, compacted papery skins 32, 33 on the upper and lower sur faces of the absorbent fibrous structure 28. Such a structure is obtained such as by wetting both sides of two fibrous structures, placing them together and then applying the required pressure,
FIG. 7 illustrates an absorbent fibrous structure 34 comprising an upper, loosely compacted fibrous body 35, a lower, loosely compacted fibrous body 36, an intermediate, relatively densified, compacted, narrower, coherent paper-like layer 37 formed integrally with the upper and lower fibrous bodies 35, 36 and relatively densified, compacted, coherent, paper- like skins 38, 39 of different widths formed on the upper and lower surfaces respectively of the fibrous structure 34. Such a structure is obtained, for example, by wetting both sides of two fibrous bodies only in the area in which it is desired to form the relatively densified, compacted structures and then applying the required pressure.
FIG. 8 sets forth an absorbent fibrous structure 4-0 comprising an upper, loosely compacted fibrous absorbent body 41, a lower, loosely compacted, absorbent fibrous body 42 having a width narrower than body 41, an intermediate, relatively densified, compacted, coherent, narrower, paper-like layer 43 formed integrally with the upper and lower fibrous bodies 41, 42, and relatively densified, compacted, papery skins 44, 45 formed integrally on the upper and lower surfaces of the absorbent fibrous bodies 41, 42. Such a structure is obtained by using fibrous bodies of different widths and wetting them only in the areas wherein it is desired to effect the formation of paper-like members and then applying the required pressure.
FIG. 9 sets forth an absorbent, fibrous structure 46 comprising an upper, loosely compacted, absorbent fibrous body 47, a lower, loosely compacted, absorbent, narrower fibrous body 48, an intermediate, relatively densified, compacted, coherent, narrower paper-like layer 49 formed integrally with the upper and lower absorbent fibrous bodies 47, 48 and a lower, relatively densified, compacted, papery, narrower skin 50 formed integrally on the lower surface of the lower, absorbent fibrous body 48. Such a structure is obtained by initially using two absorbent fibrous structures of different widths and moistening only the areas in which it is desired to create the paper-like members and then applying suflicient force not only to form the densified members but to force the narrower absorbent body partially into the upper absorbent body 47.
FIG. 10 discloses an absorbent fibrous structure 51 comprising an upper, loosely compacted absorbent fibrous body 52, a lower, loosely compacted fibrous body 53, an intermediate, relatively densified, compacted, coherent, narrower paper-like layer 54 formed integrally with the upper and lower absorbent fibrous bodies 52, 53 and a lower, relatively densified, compacted, paper-like, narrower surface skin 55 formed integrally 011 the lower surface of lower absorbent fibrous body 53. Such a structure is obtained in very much the same fashion as the structure set forth in PEG. 9 with the exception that the applied moisture and pressure is sufficient to force the lower absorbent fibrous body substantially wholly within the upper absorbent fibrous body so as to create a smooth, flush lower surface.
It is to be appreciated that the distance the lower absorbent fibrous body penetrates the upper absorbent fibrous body depends upon the amount of moisture and pressure applied and, if desired or required, the narrower absorbent fibrous body could be forced wholly within the upper fibrous body so that its skin is within the wider absorbent fibrous body.
FIG. 11 is a cross-sectional view of an absorbent fibrous body and shows parallel grooves 57 and high regions 58 which extend between the grooves 57.
FIG. 12 discloses an absorbent fibrous structure 56 formed with a plurality of longitudinally extending, compressed grooves 57 whereby any fluid deposited on the absorbent fibrous body and encountering the grooves tends to spread lengthwise along the fibrous body so that its absorbent effectiveness will be utilized more fully. In this form of absorbent fibrous structure there are regions of high and low capillarity within the densified layer itself. These differences in capillarity are due to the compressed grooves formed by an embossing roller to be described more fully hereinafter.
In FIG. 13, there is disclosed an absorbent fibrous body 59 wherein grooves 60 are positioned crosswise to the length of the body. These particular grooves provide strength and springiness to the body and add to its structural rigidity and form and shape stability. These grooves are impressed upon the absorbent fibrous bodies by means of embossing rollers to be described more fully hereinafter. It is to be noted that the crosswise grooves are separated by intervening high regions 61 and that they end before they reach the edges of the absorbent fibrous body. In this way fluids deposited upon the absorbent fibrous body tend to follow the grooves 6% but will not go beyond the ends thereof thereby confining the fluid to within the absorbent fibrous body itself.
FIG. 14 sets forth an absorbent fibrous body as possessing spaced, longitudinally extending grooves 63 and spaced, laterally extending grooves 64 having intervening high regions 55 which have not been compressed to the extent that the grooves 64 have been. It is to be appreciated that any fluid deposited on the absorbent fibrous body will initially tend to follow the grooves 64 laterally until the lengthwise grooves 63 are encountered, at which time the fluid will then tend to move longitudinally and contact other crosswise grooves 64. This type of absorbent fibrous body possesses increased strength and springiness due to the transverse grooves 64, superior fluid control by means of grooves 63 and 64 whereby a very complete and eifective utilization of the absorbent properties of the fibrous body is realized. The grooves in the absorbent fibrous body 62 may be obtained by a combination of embossing rollers to be described hereinafter.
FIG. 15 is a cross-section of a sanitary napkin 66 embodying an absorbent fibrous structure of the present invention. An absorbent fibrous structure 67 comprising a relatively loosely compacted, porous, fluify body 68 and previously and the thickness of the completed integral Web was reduced correspondingly.
From the above, it is seen that loosely compacted absorbent fibrous bodies, which possess relatively loW cohesive strength, relatively poor shape and volume stability, relatively low fluid retentivity, and relatively lows capillarity, are converted to bodies possessing a relatively dense, compacted, coherent skin or interlayer which creates suflicient strength, shape and volume stability, fluid retentivity, and capillarity as to render the resulting structure especially suited and highly desirable for use as absorbent components in surgical dressings, sanitary napkins, compresses, disposable diapers, hospital underpads, and other products designed to absorb body fluids.
It is, of course, realized that various modifications and changes may be made within the spirit of the invention. For example, various materials such as highly absorbent wadding paper, gauze, non-woven fabrics, and the like, may be placed on the Wetted Web surface so that, after the pressure has been applied, the materials become integral with the thin paper-like skin which is formed. It is also contemplated that various materials such as bactericides, fungicides, dyestuffs, softening agents, sizing materials, adhesives, and the like, may be included in the Water used for moistening the surfaces of the webs. These processes reflect the well-known possibilities of mechanically modifying paper to obtain desired results or effects.
While I have shown and described What I believe to be preferred embodiments of my invention in the matter of simplicity and durability of construction, it will be appreciated that the details of such construction may be more or less modified within the scope of the claims without departure from the principles of construction or material sacrifice of the advantages of the preferred designs.
I claim:
1. A method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises moistening a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity with from about 0.0005 to about 0.03 cubic centimeter of water per square centimeter of surface of said bat, applying a pressure of from about to about 100 pounds per square inch to said bat While the surface thereof is moistened with said water, said pressure being sufficient to form a paper-like, densified, compacted cellulosic fibrous layer it situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
2. A method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises moistening a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume sta bility, and relatively low fluid retentivity with from about 0.0005 to about 0.03 cubic centimeter of Water per square centimeter of surface of said bat, applying pressure to said bat while the surface thereof is moistened with said water, said pressure being sufficient to form a paper-like, densified, compacted cellulosic fibrous layer in situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
3. A method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises applying water to a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity in an amount sufficient to moisten the surface portion thereof, placing a second highly porous, loosely compacted, cellulosic fibrous bat in contacting relationship with said moistened surface, applying pressure to said bats while the surface of said moistened bat is moistened with said water, said pressure being sufficient to form a paper-like, densified, compacted cellulosic fibrous layer intermediate said bats and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
4. A method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises applying water to a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity in an amount suflicient to moisten fibers in said bat adjacent said moistened surface portion but not to moisten all the fibers in said bat, applying pressure to said bat While the surface thereof is moistened with said water, said pressure being sufficient to form a paper-like densified, compacted cellulosic fibrous layer in situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
5. A method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises applying water to a surface portion of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity in an amount suffioient to moisten the surface portion, applying pressure to said bat while the surface thereof is moistened with said water, said pressure being suflicient to form a paper-like, densified, compacted cellulosic wood pulp fibrous hydrate-bonded layer in situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
6. A method of producing an absorbent fibrous body suitable for use as an absorbent component in absorbent products which comprises applying water to a surface of a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability, and relatively low fluid retentivity in an amount sufficient to moisten the surface thereof, applying pressure to said bat While the surface thereof is moistened with said water, said pressure being sufficient to form a paperlike, densified, compacted cellulosic fibrous layer in situ in said bat and integral therewith, said layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability, and relatively high fluid retentivity.
7. An absorbent fibrous structure suitable for use as an absorbent component in absorbent products comprising a highly porous, loosely compacted, cellulosic fibrous bat having relatively low cohesive strength, relatively low capillary forces, relatively poor shape and volume stability and relatively low fluid retentivity, and integrally united therewith by bonds comprising interfiber bonds, a paper-like, densified, compacted cellulosic fibrous layer having relatively high cohesive strength, relatively good capillary forces, relatively good shape and volume stability and relatively high fluid retentivity, said paper-like, densified, fibrous layer being formed in situ from said highly porous bat.
8. An absorbent fibrous structure as defined in claim 7 wherein the fibrous layer is narrower than the fibrous bat.
9. An absorbent fibrous structure as defined in claim 7 wherein the fibrous layer is intermediate the surfaces of the fibrous bat.
10. An absorbent fibrous structure as defined in claim 9 wherein the fibrous-layer is narrower than the fibrous bat.
11. An absorbent fibrous structure as defined in claim 7 wherein the fibrous layer is provided with grooves.
12. An absorbent fibrous structure as defined in claim 11 wherein the grooves run lengthwise of the structure.
13. An absorbent fibrous structure as defined in claim 11 wherein the grooves run widthwise of the structure.
14. An absorbent fibrous structure as defined in claim 11 wherein the fibrous layer is provided with grooves running lengthwise and widthwise of the structure.
15. An absorbent fibrous structure as defined in claim 7 wherein the cellulosic fibrous bat comprises wood pulp fibers.
16. An absorbent fibrous structure as defined in claim 7 wherein the fibrous bat comprises cotton linters.
References Cited in the file of this patent UNITED STATES PATENTS Parks Jan. 14, 1919 Brown Jan. 23, 1923 Brown et al June 19 ,1923 Mason Mar. 20, 1928 Robinson Mar. 22, 1932 Fourness Dec. 26, 1933 Grapp Jan. 9, 1934 Madge et al Aug. 13, 1935 Hamersley Apr. 20, 1937 Gates Aug. 18, 1942 Briggs June 15, 1943 Francis Jan. 25, 1949 Dreyfus Feb. 14, 1950 Porritt May 23, 1950 Lang Sept. 12, 1950 Kellett et a1 Oct. 2, 1951 Schramm Feb. 9, 1954 Fortess Nov. 2, 1954

Claims (1)

  1. 2. A METHOD OF PRODUCING AN ABSORBENT FIBROUS BODY SUITABLE FOR USE AS AN ABSORBENT COMPONENT IN ABSORBENT PRODUCTS WHICH COMPRISES MOISTENINGA SURFACE PORTION OF A HIGHLY POROUS, LOOSELY COMPACTED, CELLULOSIC FIBROUS BAT HAVING RELATIVELY LOW COHESIVE STRENGTH, RELATIVELY LOW CAPILLARY FORCES, RELATIVELY POOR SHAPE AND VOLUME STABILITY, AND RELATIVELY LOW FLUID RETENTIVITY WITH FROM ABOUT 0.0005 TO ABOUT 0.03 CUBIC CENTIMETER OF WATER PER SQUARE CENTIMETER OFSURFCE OF SAID BAT, APPLYING PRESSURE TO SAID BAT WHILE THE SURFACE THEREOF IS MOISTURED WITH SAID WATER, SAID PRESSURE BEING SUFFICIENT TO FORM A PAPER-LIKE DENSIFIED, COMPACTED CELLULOSIC FIBROUS LAYER IN SITU IN SAID BAT AND INTEGRAL THEREWITH, SAID LAYER HAVING RELATIVELY HIGH COHESIVE STRENGTH, RELATIVELY GOOD CAPILLARY FORCES, RELATIVELY GOOOD SHAPE AND VOLUME STABILITY, AND RELATIVELY HIGH FLUID RETENTIVITY.
US587015A 1956-05-24 1956-05-24 Absorbent fibrous structure and method of production Expired - Lifetime US3017304A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US587015A US3017304A (en) 1956-05-24 1956-05-24 Absorbent fibrous structure and method of production
DEB44692A DE1259014B (en) 1956-05-24 1957-05-20 Method of manufacturing an absorbent body for use in hygienic articles
FR774877A FR1220831A (en) 1956-05-24 1958-09-19 Absorbent fibrous structure for dressings and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US587015A US3017304A (en) 1956-05-24 1956-05-24 Absorbent fibrous structure and method of production

Publications (1)

Publication Number Publication Date
US3017304A true US3017304A (en) 1962-01-16

Family

ID=24347985

Family Applications (1)

Application Number Title Priority Date Filing Date
US587015A Expired - Lifetime US3017304A (en) 1956-05-24 1956-05-24 Absorbent fibrous structure and method of production

Country Status (2)

Country Link
US (1) US3017304A (en)
DE (1) DE1259014B (en)

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312224A (en) * 1965-03-15 1967-04-04 Kem Wove Ind Inc Non-woven textile products and the method of fabricating the same
US3339550A (en) * 1964-04-07 1967-09-05 Kimberly Clark Co Sanitary napkin with cross-linked cellulosic layer
US3375827A (en) * 1965-03-30 1968-04-02 Kimberly Clark Co Sanitary napkin with flow control element
US3395201A (en) * 1964-07-14 1968-07-30 Johnson & Johnson Method and apparatus for producing an absorbent product
US3430630A (en) * 1966-04-27 1969-03-04 Procter & Gamble Sanitary napkin
US3444859A (en) * 1967-11-30 1969-05-20 Johnson & Johnson Absorbent fibrous batt with longitudinal barrier areas
US3490103A (en) * 1963-02-23 1970-01-20 Anne Co Ltd The Apparatus for forming absorbent material
US3494362A (en) * 1967-05-01 1970-02-10 Johnson & Johnson Absorbent pad
US3612055A (en) * 1969-09-29 1971-10-12 Johnson & Johnson Disposable diaper or the like and method of manufacture
US3696187A (en) * 1970-11-23 1972-10-03 Jacob A Glassman Method of forming catamenial napkins
US3730184A (en) * 1971-10-07 1973-05-01 Johnson & Johnson Disposable diaper
US3763863A (en) * 1971-10-07 1973-10-09 Johnson & Johnson Disposable diaper
US3765997A (en) * 1968-12-16 1973-10-16 Kimberly Clark Co Laminate
US3779246A (en) * 1971-10-07 1973-12-18 Johnson & Johnson Disposable diaper
US3790433A (en) * 1969-10-25 1974-02-05 H Baron Multilaminar sheet structure
US3837343A (en) * 1971-10-07 1974-09-24 Johnson & Johnson Disposable diaper, fabric useful therein, and method of manufacture
US3844288A (en) * 1972-03-30 1974-10-29 Joa C Inc Sanitary pad and method of manufacture
US3867940A (en) * 1973-08-06 1975-02-25 Johnson & Johnson Scrim reinforced disposable diaper
US3879257A (en) * 1973-04-30 1975-04-22 Scott Paper Co Absorbent unitary laminate-like fibrous webs and method for producing them
US3903890A (en) * 1974-08-20 1975-09-09 Johnson & Johnson Disposable diaper of simple construction
US3938522A (en) * 1972-06-26 1976-02-17 Johnson & Johnson Disposable diaper
US3952124A (en) * 1973-07-09 1976-04-20 Johnson & Johnson Back-to-back transition web and method of making said
US3955577A (en) * 1974-03-18 1976-05-11 The Procter & Gamble Company Resin treated absorbent pad or web for body fluids
JPS5172197A (en) * 1975-08-18 1976-06-22 Enzeru Kk
US3993820A (en) * 1973-07-02 1976-11-23 Johnson & Johnson Non-woven product
US4061785A (en) * 1969-04-26 1977-12-06 Tetsuya Nishino Method and device for preserving vegetables
US4103062A (en) * 1976-06-14 1978-07-25 Johnson & Johnson Absorbent panel having densified portion with hydrocolloid material fixed therein
FR2391660A1 (en) * 1977-02-07 1978-12-22 Glassman Jacob Double use nappy - including pad which can be removed while nappy stays on wearer, and moisture absorbing main section
FR2437826A1 (en) * 1978-10-06 1980-04-30 Personal Products Co ABSORBENT ADHESIVE FIXING AND CRUSHING RESISTANT
US4207367A (en) * 1970-03-30 1980-06-10 Scott Paper Company Nonwoven fabric
US4233345A (en) * 1979-04-23 1980-11-11 Johnson & Johnson Baby Products Company Thin-skin stabilization of pads of fluffed pulp
US4259958A (en) * 1979-06-06 1981-04-07 Riegel Textile Corporation Multi-layer absorbent pad for disposable absorbent articles and process for producing same
US4276338A (en) * 1979-05-01 1981-06-30 The Procter & Gamble Company Absorbent article
US4282874A (en) * 1979-05-11 1981-08-11 Johnson & Johnson Baby Products Company Disposable absorbent article of manufacture
US4333462A (en) * 1980-11-17 1982-06-08 Johnson & Johnson Baby Products Company Absorbent structure containing superabsorbent
US4333463A (en) * 1980-11-17 1982-06-08 Johnson & Johnson Baby Products Company Absorbent structure containing superabsorbent
EP0077005A1 (en) * 1981-10-05 1983-04-20 James River-Dixie/Northern Inc. Patterned dry laid fibrous web products of enhanced absorbency
US4492238A (en) * 1981-09-30 1985-01-08 Philip Morris Incorporated Method and apparatus for production of smoke filter components
US4500315A (en) * 1982-11-08 1985-02-19 Personal Products Company Superthin absorbent product
EP0137725A1 (en) * 1983-09-08 1985-04-17 Personal Products Company Absorbent body with fluid transport means
US4537590A (en) * 1982-11-08 1985-08-27 Personal Products Company Superthin absorbent product
US4540454A (en) * 1982-11-08 1985-09-10 Personal Products Company Method of forming a superthin absorbent product
US4551142A (en) * 1979-10-05 1985-11-05 Personal Products Company Flexible absorbent boards
US4612231A (en) * 1981-10-05 1986-09-16 James River-Dixie Northern, Inc. Patterned dry laid fibrous web products of enhanced absorbency
US4670011A (en) * 1983-12-01 1987-06-02 Personal Products Company Disposable diaper with folded absorbent batt
US4676786A (en) * 1985-02-14 1987-06-30 Tetsuya Nishino Paper diaper
AU576802B2 (en) * 1983-12-01 1988-09-08 Personal Products Company Folded over densified diaper layers
US4834735A (en) * 1986-07-18 1989-05-30 The Proctor & Gamble Company High density absorbent members having lower density and lower basis weight acquisition zones
USRE32957E (en) * 1978-10-24 1989-06-20 Johnson & Johnson Absorbent article
US4960477A (en) * 1983-12-01 1990-10-02 Mcneil-Ppc, Inc. Disposable diaper with folded absorbent batt
EP0395592A2 (en) * 1989-04-27 1990-10-31 Flawa Schweizer Verbandstoff- und Wattefabriken AG Compress for the treatment of wounds
US4971852A (en) * 1986-05-19 1990-11-20 Kimberly-Clark Corporation Contoured batt produced by a scarfing method using a contouring roll
US4994037A (en) * 1990-07-09 1991-02-19 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US5009650A (en) * 1984-04-13 1991-04-23 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US5021050A (en) * 1989-12-11 1991-06-04 Weyerhaeuser Company Absorbent panel structure
US5024672A (en) * 1982-10-25 1991-06-18 Widlund Leif U R Disposable diaper
US5047023A (en) * 1986-07-18 1991-09-10 The Procter & Gamble Company Absorbent members having low density and basis weight acquisition zones
US5100397A (en) * 1989-06-14 1992-03-31 Mcneil-Ppc, Inc. Absorbent mixture
US5128193A (en) * 1990-01-16 1992-07-07 Chicopee Absorbent fibrous structure
US5149335A (en) * 1990-02-23 1992-09-22 Kimberly-Clark Corporation Absorbent structure
US5171237A (en) * 1989-06-14 1992-12-15 Weyerhaeuser Company Method of making absorbent particles
US5176668A (en) * 1984-04-13 1993-01-05 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US5252129A (en) * 1992-04-28 1993-10-12 Cheng Peter S C Method of making a paper decoration
US5370639A (en) * 1982-10-25 1994-12-06 Molnlyke Ab Arrangement in a disposable diaper
US5378528A (en) * 1990-04-20 1995-01-03 Makoui; Kambiz B. Absorbent structure containing superabsorbent particles and having a latex binder coating on at least one surface of the absorbent structure
US5451442A (en) * 1991-12-17 1995-09-19 Paragon Trade Brands, Inc. Absorbent panel structure for a disposable garment
US5601542A (en) * 1993-02-24 1997-02-11 Kimberly-Clark Corporation Absorbent composite
US5611879A (en) * 1987-12-18 1997-03-18 Kimberly-Clark Corporation Absorbent article having an absorbent with a variable density in the Z direction and a method of forming said article
GB2315221A (en) * 1996-07-12 1998-01-28 Camelot Superabsorbents Ltd Absorbent Articles
US5849002A (en) * 1994-06-30 1998-12-15 Productos Internacionales Mabe, S.A Disposable diaper with reception, distribution-storage and anti-leakage zones within the absorbent core
US5865822A (en) * 1993-12-28 1999-02-02 Kao Corporation Crosslinked cellulose fibers, absorbent papers and absorbent members using the same, topsheets using the same, and absorbent articles using the same
US5916507A (en) * 1991-06-11 1999-06-29 Mcneil-Ppc, Inc. Method of forming a unitized absorbent product with a density gradient
US5919178A (en) * 1994-05-04 1999-07-06 Sca Molnlycke Ab Method for producing an absorbent structure which includes a layer of superabsorbent material
WO2000020675A1 (en) * 1998-10-01 2000-04-13 Kimberly-Clark Worldwide, Inc. Differential basis weight nonwoven webs
US20020082574A1 (en) * 2000-12-25 2002-06-27 Masashi Nakashita Body fluid absorbent wearing article
US6485667B1 (en) 1997-01-17 2002-11-26 Rayonier Products And Financial Services Company Process for making a soft, strong, absorbent material for use in absorbent articles
US20030125703A1 (en) * 2001-12-31 2003-07-03 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US20030194930A1 (en) * 2000-11-28 2003-10-16 Joyce Michael J. Flow control within a press fabric using batt fiber fusion methods
US20030234468A1 (en) * 1997-01-17 2003-12-25 Krishnakumar Rangachari Soft, absorbent material for use in absorbent articles and process for making the material
US20040016178A1 (en) * 2002-07-29 2004-01-29 Ravi Rajagopalan Planter having an integral water tray
US20040054343A1 (en) * 2002-09-18 2004-03-18 Barnett Larry N. Horizontal density gradient absorbent system for personal care products
US20040188993A1 (en) * 2003-03-25 2004-09-30 Wayne Campbell Birdcage bearing assembly and suspension connection for a high performance vehicle
US6835192B1 (en) 1999-05-27 2004-12-28 Sca Hygiene Products Ab Absorbent article with improved liquid dispersion
US20050011120A1 (en) * 2002-07-29 2005-01-20 Ravi Rajagopalan Planter liner having an integral water tray
US20050045296A1 (en) * 2003-08-29 2005-03-03 Adam Gabriel Hammam Stabilized absorbent composite material and method for making
US20070073253A1 (en) * 2005-09-26 2007-03-29 Uni-Charm Corporation Absorbent article
US20070131368A1 (en) * 2005-12-14 2007-06-14 Sonoco Development, Inc. Paperboard with discrete densified regions, process for making same, and laminate incorporating same
US20080187705A1 (en) * 2007-02-02 2008-08-07 Mark Shapton Method of non-abrasive mechanical relief of a cellulose sheet and apparatus
WO2007112285A3 (en) * 2006-03-24 2008-10-02 Auxilium Pharmaceuticals Inc Process for the preparation of a hot-melt extruded laminate
US7431715B2 (en) 2002-09-27 2008-10-07 Sca Hygiene Products Ab Absorbent article
US20090264385A1 (en) * 2006-03-24 2009-10-22 Crowley Michael M Stabilized compositions containing alkaline labile drugs
US20100137773A1 (en) * 2000-06-12 2010-06-03 Buckeye Technologies, Inc. Absorbent products with improved vertical wicking and rewet capability
WO2012148974A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making absorbent members having density profile
WO2012148973A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making absorbent members having skewed density profile
WO2012148978A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Absorbent members having skewed density profile
WO2012149073A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making bulked absorbent members
WO2012148944A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Absorbent members having density profile
US8657596B2 (en) 2011-04-26 2014-02-25 The Procter & Gamble Company Method and apparatus for deforming a web
US9028652B2 (en) 2011-04-26 2015-05-12 The Procter & Gamble Company Methods of making bulked absorbent members
US9067357B2 (en) 2010-09-10 2015-06-30 The Procter & Gamble Company Method for deforming a web
US9220638B2 (en) 2010-09-10 2015-12-29 The Procter & Gamble Company Deformed web materials
US20160114311A1 (en) * 2014-10-24 2016-04-28 City University Of Hong Kong Sorbent material and a method for enhancing sorption performance thereof
US9439815B2 (en) 2011-04-26 2016-09-13 The Procter & Gamble Company Absorbent members having skewed density profile
US9440394B2 (en) 2011-04-26 2016-09-13 The Procter & Gamble Company Methods of mechanically deforming materials
US9452094B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Absorbent members having density profile
US9452089B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Methods of making absorbent members having density profile
US20170065466A1 (en) * 2015-09-08 2017-03-09 Principle Business Enterprises, Inc. Absorbent Core For An Absorbent Article
US10011953B2 (en) 2011-04-26 2018-07-03 The Procter & Gamble Company Bulked absorbent members
US11278457B2 (en) * 2017-02-09 2022-03-22 Hill-Rom Services, Inc. Incontinence detection optimization using directional wicking
US11925539B2 (en) 2018-08-22 2024-03-12 The Procter & Gamble Company Disposable absorbent article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3943404C1 (en) * 1989-12-30 1990-11-29 Vp-Schickedanz Ag, 8500 Nuernberg, De

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1291626A (en) * 1914-03-09 1919-01-14 Int Paper Co Surfacing paper.
US1442793A (en) * 1921-08-11 1923-01-23 Stearns & Foster Company Batting
US1459499A (en) * 1921-12-02 1923-06-19 Multi Fabric Corp Waterproof sheet material and process of making the same
US1663506A (en) * 1926-03-01 1928-03-20 Mason Fibre Company Integral insulating board with hard welded surfaces
US1850895A (en) * 1930-02-28 1932-03-22 Robinson & Sons Ltd Paper-like material
US1941255A (en) * 1932-03-11 1933-12-26 Int Cellucotton Products Felted fabric
US1942693A (en) * 1928-09-28 1934-01-09 William L Grapp Mattress and the like and process of manufacturing the same
US2010871A (en) * 1933-01-25 1935-08-13 Dunlop Rubber Co Fibrous composition and method of producing the same
US2077475A (en) * 1934-10-22 1937-04-20 Carl S Hamersley Method and means for making paper
US2293278A (en) * 1937-06-25 1942-08-18 Warren S D Co Process for finishing paper and product
US2321985A (en) * 1938-10-28 1943-06-15 Briggs Clarifier Company Method and apparatus for separating solids from fluids
US2459803A (en) * 1939-10-23 1949-01-25 American Viscose Corp Feltlike products
US2497117A (en) * 1946-01-23 1950-02-14 Dreyfus Camille Method of surface-bonding fibrous batts
US2508968A (en) * 1945-10-26 1950-05-23 R R Whitehead & Brothers Ltd Manufacture of felted material
US2521984A (en) * 1947-05-19 1950-09-12 American Felt Co Fibrous unit
US2569765A (en) * 1946-04-04 1951-10-02 Int Cellucotton Products Method and apparatus for making an absorption control element
US2668787A (en) * 1951-01-09 1954-02-09 Jr August F Schramm Method of making a bonded permeable article
US2693432A (en) * 1951-01-25 1954-11-02 Celanese Corp Glazing batting materials

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE227260C (en) * 1910-06-03
DE405055C (en) * 1921-04-16 1924-10-25 Otto Begerow Process for the production of a filter sheet
DE534056C (en) * 1928-04-17 1931-09-23 Ernst Olof Munktell Process for the production of linen substitutes
US1863333A (en) * 1929-12-10 1932-06-14 Int Cellucotton Products Absorbent pad
DE596223C (en) * 1931-09-30 1934-05-02 Cellufoam Corp Process for the manufacture of cellulose wadding or a cellulose wadding-like product
AT136881B (en) * 1932-12-05 1934-03-26 Watte Wattelin Und Verbandstof Process for the manufacture of die-cut cotton wool web products.
CH251019A (en) * 1945-05-12 1947-09-30 A Mueller Paul Material at least partially made of paper for hygienic purposes.
NL71367C (en) * 1946-04-04

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1291626A (en) * 1914-03-09 1919-01-14 Int Paper Co Surfacing paper.
US1442793A (en) * 1921-08-11 1923-01-23 Stearns & Foster Company Batting
US1459499A (en) * 1921-12-02 1923-06-19 Multi Fabric Corp Waterproof sheet material and process of making the same
US1663506A (en) * 1926-03-01 1928-03-20 Mason Fibre Company Integral insulating board with hard welded surfaces
US1942693A (en) * 1928-09-28 1934-01-09 William L Grapp Mattress and the like and process of manufacturing the same
US1850895A (en) * 1930-02-28 1932-03-22 Robinson & Sons Ltd Paper-like material
US1941255A (en) * 1932-03-11 1933-12-26 Int Cellucotton Products Felted fabric
US2010871A (en) * 1933-01-25 1935-08-13 Dunlop Rubber Co Fibrous composition and method of producing the same
US2077475A (en) * 1934-10-22 1937-04-20 Carl S Hamersley Method and means for making paper
US2293278A (en) * 1937-06-25 1942-08-18 Warren S D Co Process for finishing paper and product
US2321985A (en) * 1938-10-28 1943-06-15 Briggs Clarifier Company Method and apparatus for separating solids from fluids
US2459803A (en) * 1939-10-23 1949-01-25 American Viscose Corp Feltlike products
US2508968A (en) * 1945-10-26 1950-05-23 R R Whitehead & Brothers Ltd Manufacture of felted material
US2497117A (en) * 1946-01-23 1950-02-14 Dreyfus Camille Method of surface-bonding fibrous batts
US2569765A (en) * 1946-04-04 1951-10-02 Int Cellucotton Products Method and apparatus for making an absorption control element
US2521984A (en) * 1947-05-19 1950-09-12 American Felt Co Fibrous unit
US2668787A (en) * 1951-01-09 1954-02-09 Jr August F Schramm Method of making a bonded permeable article
US2693432A (en) * 1951-01-25 1954-11-02 Celanese Corp Glazing batting materials

Cited By (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490103A (en) * 1963-02-23 1970-01-20 Anne Co Ltd The Apparatus for forming absorbent material
US3339550A (en) * 1964-04-07 1967-09-05 Kimberly Clark Co Sanitary napkin with cross-linked cellulosic layer
US3395201A (en) * 1964-07-14 1968-07-30 Johnson & Johnson Method and apparatus for producing an absorbent product
US3312224A (en) * 1965-03-15 1967-04-04 Kem Wove Ind Inc Non-woven textile products and the method of fabricating the same
US3375827A (en) * 1965-03-30 1968-04-02 Kimberly Clark Co Sanitary napkin with flow control element
US3430630A (en) * 1966-04-27 1969-03-04 Procter & Gamble Sanitary napkin
US3494362A (en) * 1967-05-01 1970-02-10 Johnson & Johnson Absorbent pad
US3444859A (en) * 1967-11-30 1969-05-20 Johnson & Johnson Absorbent fibrous batt with longitudinal barrier areas
US3765997A (en) * 1968-12-16 1973-10-16 Kimberly Clark Co Laminate
US4061785A (en) * 1969-04-26 1977-12-06 Tetsuya Nishino Method and device for preserving vegetables
US3612055A (en) * 1969-09-29 1971-10-12 Johnson & Johnson Disposable diaper or the like and method of manufacture
US3790433A (en) * 1969-10-25 1974-02-05 H Baron Multilaminar sheet structure
US4207367A (en) * 1970-03-30 1980-06-10 Scott Paper Company Nonwoven fabric
US3696187A (en) * 1970-11-23 1972-10-03 Jacob A Glassman Method of forming catamenial napkins
US3730184A (en) * 1971-10-07 1973-05-01 Johnson & Johnson Disposable diaper
US3763863A (en) * 1971-10-07 1973-10-09 Johnson & Johnson Disposable diaper
US3779246A (en) * 1971-10-07 1973-12-18 Johnson & Johnson Disposable diaper
US3837343A (en) * 1971-10-07 1974-09-24 Johnson & Johnson Disposable diaper, fabric useful therein, and method of manufacture
US3844288A (en) * 1972-03-30 1974-10-29 Joa C Inc Sanitary pad and method of manufacture
US3938522A (en) * 1972-06-26 1976-02-17 Johnson & Johnson Disposable diaper
US3879257A (en) * 1973-04-30 1975-04-22 Scott Paper Co Absorbent unitary laminate-like fibrous webs and method for producing them
US3993820A (en) * 1973-07-02 1976-11-23 Johnson & Johnson Non-woven product
US3952124A (en) * 1973-07-09 1976-04-20 Johnson & Johnson Back-to-back transition web and method of making said
US3867940A (en) * 1973-08-06 1975-02-25 Johnson & Johnson Scrim reinforced disposable diaper
US3955577A (en) * 1974-03-18 1976-05-11 The Procter & Gamble Company Resin treated absorbent pad or web for body fluids
US3903890A (en) * 1974-08-20 1975-09-09 Johnson & Johnson Disposable diaper of simple construction
JPS5172197A (en) * 1975-08-18 1976-06-22 Enzeru Kk
JPS5436793B2 (en) * 1975-08-18 1979-11-10
US4103062A (en) * 1976-06-14 1978-07-25 Johnson & Johnson Absorbent panel having densified portion with hydrocolloid material fixed therein
FR2391660A1 (en) * 1977-02-07 1978-12-22 Glassman Jacob Double use nappy - including pad which can be removed while nappy stays on wearer, and moisture absorbing main section
FR2437826A1 (en) * 1978-10-06 1980-04-30 Personal Products Co ABSORBENT ADHESIVE FIXING AND CRUSHING RESISTANT
US4217901A (en) * 1978-10-06 1980-08-19 Personal Products Company Crush-resistant adhesively-attached absorbent product
USRE32957E (en) * 1978-10-24 1989-06-20 Johnson & Johnson Absorbent article
US4233345A (en) * 1979-04-23 1980-11-11 Johnson & Johnson Baby Products Company Thin-skin stabilization of pads of fluffed pulp
US4276338A (en) * 1979-05-01 1981-06-30 The Procter & Gamble Company Absorbent article
US4282874A (en) * 1979-05-11 1981-08-11 Johnson & Johnson Baby Products Company Disposable absorbent article of manufacture
US4259958A (en) * 1979-06-06 1981-04-07 Riegel Textile Corporation Multi-layer absorbent pad for disposable absorbent articles and process for producing same
US4551142A (en) * 1979-10-05 1985-11-05 Personal Products Company Flexible absorbent boards
US4333463A (en) * 1980-11-17 1982-06-08 Johnson & Johnson Baby Products Company Absorbent structure containing superabsorbent
US4333462A (en) * 1980-11-17 1982-06-08 Johnson & Johnson Baby Products Company Absorbent structure containing superabsorbent
US4492238A (en) * 1981-09-30 1985-01-08 Philip Morris Incorporated Method and apparatus for production of smoke filter components
US4612231A (en) * 1981-10-05 1986-09-16 James River-Dixie Northern, Inc. Patterned dry laid fibrous web products of enhanced absorbency
EP0077005A1 (en) * 1981-10-05 1983-04-20 James River-Dixie/Northern Inc. Patterned dry laid fibrous web products of enhanced absorbency
US5370639A (en) * 1982-10-25 1994-12-06 Molnlyke Ab Arrangement in a disposable diaper
US5024672A (en) * 1982-10-25 1991-06-18 Widlund Leif U R Disposable diaper
US4537590A (en) * 1982-11-08 1985-08-27 Personal Products Company Superthin absorbent product
US4540454A (en) * 1982-11-08 1985-09-10 Personal Products Company Method of forming a superthin absorbent product
US4500315A (en) * 1982-11-08 1985-02-19 Personal Products Company Superthin absorbent product
EP0137725A1 (en) * 1983-09-08 1985-04-17 Personal Products Company Absorbent body with fluid transport means
AU571573B2 (en) * 1983-09-08 1988-04-21 Personal Products Co. Absorbent body with rapid fluid transport means
US4960477A (en) * 1983-12-01 1990-10-02 Mcneil-Ppc, Inc. Disposable diaper with folded absorbent batt
AU576802B2 (en) * 1983-12-01 1988-09-08 Personal Products Company Folded over densified diaper layers
US4670011A (en) * 1983-12-01 1987-06-02 Personal Products Company Disposable diaper with folded absorbent batt
US5176668A (en) * 1984-04-13 1993-01-05 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US5009650A (en) * 1984-04-13 1991-04-23 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US4676786A (en) * 1985-02-14 1987-06-30 Tetsuya Nishino Paper diaper
US4971852A (en) * 1986-05-19 1990-11-20 Kimberly-Clark Corporation Contoured batt produced by a scarfing method using a contouring roll
US4834735A (en) * 1986-07-18 1989-05-30 The Proctor & Gamble Company High density absorbent members having lower density and lower basis weight acquisition zones
US5047023A (en) * 1986-07-18 1991-09-10 The Procter & Gamble Company Absorbent members having low density and basis weight acquisition zones
US5611879A (en) * 1987-12-18 1997-03-18 Kimberly-Clark Corporation Absorbent article having an absorbent with a variable density in the Z direction and a method of forming said article
EP0395592A3 (en) * 1989-04-27 1991-11-06 Flawa Schweizer Verbandstoff- und Wattefabriken AG Compress for the treatment of wounds
EP0395592A2 (en) * 1989-04-27 1990-10-31 Flawa Schweizer Verbandstoff- und Wattefabriken AG Compress for the treatment of wounds
US5100397A (en) * 1989-06-14 1992-03-31 Mcneil-Ppc, Inc. Absorbent mixture
US5171237A (en) * 1989-06-14 1992-12-15 Weyerhaeuser Company Method of making absorbent particles
US5021050A (en) * 1989-12-11 1991-06-04 Weyerhaeuser Company Absorbent panel structure
US5128193A (en) * 1990-01-16 1992-07-07 Chicopee Absorbent fibrous structure
EP0765649A2 (en) 1990-02-23 1997-04-02 Kimberly-Clark Corporation Absorbent structure
US5149335A (en) * 1990-02-23 1992-09-22 Kimberly-Clark Corporation Absorbent structure
US5378528A (en) * 1990-04-20 1995-01-03 Makoui; Kambiz B. Absorbent structure containing superabsorbent particles and having a latex binder coating on at least one surface of the absorbent structure
US4994037A (en) * 1990-07-09 1991-02-19 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US5916507A (en) * 1991-06-11 1999-06-29 Mcneil-Ppc, Inc. Method of forming a unitized absorbent product with a density gradient
US5451442A (en) * 1991-12-17 1995-09-19 Paragon Trade Brands, Inc. Absorbent panel structure for a disposable garment
US5252129A (en) * 1992-04-28 1993-10-12 Cheng Peter S C Method of making a paper decoration
US5601542A (en) * 1993-02-24 1997-02-11 Kimberly-Clark Corporation Absorbent composite
US6646179B1 (en) 1993-02-24 2003-11-11 Kimberly-Clark Worldwide, Inc. Absorbent composite
US6068619A (en) * 1993-12-28 2000-05-30 Kao Corporation Crosslinked cellulose fibers, absorbent papers and absorbent members using the same, topsheets using the same, and absorbent articles using the same
US5865822A (en) * 1993-12-28 1999-02-02 Kao Corporation Crosslinked cellulose fibers, absorbent papers and absorbent members using the same, topsheets using the same, and absorbent articles using the same
US5919178A (en) * 1994-05-04 1999-07-06 Sca Molnlycke Ab Method for producing an absorbent structure which includes a layer of superabsorbent material
US5849002A (en) * 1994-06-30 1998-12-15 Productos Internacionales Mabe, S.A Disposable diaper with reception, distribution-storage and anti-leakage zones within the absorbent core
GB2315221B (en) * 1996-07-12 2001-01-17 Camelot Superabsorbents Ltd Absorbent articles
GB2315221A (en) * 1996-07-12 1998-01-28 Camelot Superabsorbents Ltd Absorbent Articles
US6485667B1 (en) 1997-01-17 2002-11-26 Rayonier Products And Financial Services Company Process for making a soft, strong, absorbent material for use in absorbent articles
US20030234468A1 (en) * 1997-01-17 2003-12-25 Krishnakumar Rangachari Soft, absorbent material for use in absorbent articles and process for making the material
WO2000020675A1 (en) * 1998-10-01 2000-04-13 Kimberly-Clark Worldwide, Inc. Differential basis weight nonwoven webs
US6835192B1 (en) 1999-05-27 2004-12-28 Sca Hygiene Products Ab Absorbent article with improved liquid dispersion
US20100137773A1 (en) * 2000-06-12 2010-06-03 Buckeye Technologies, Inc. Absorbent products with improved vertical wicking and rewet capability
US20030194930A1 (en) * 2000-11-28 2003-10-16 Joyce Michael J. Flow control within a press fabric using batt fiber fusion methods
US20020082574A1 (en) * 2000-12-25 2002-06-27 Masashi Nakashita Body fluid absorbent wearing article
US20060293633A1 (en) * 2000-12-25 2006-12-28 Uni-Charm Corporation Body Fluid Absorbent Wearing Article
US7154020B2 (en) * 2000-12-25 2006-12-26 Uni-Charm Corporation Body fluid absorbent wearing article
US20030125703A1 (en) * 2001-12-31 2003-07-03 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US7621075B2 (en) 2002-07-29 2009-11-24 The Pride Group, Inc. Planter liner having an integral water tray
US6789355B2 (en) * 2002-07-29 2004-09-14 The Pride Group, Inc. Planter having an integral water tray
US20050011120A1 (en) * 2002-07-29 2005-01-20 Ravi Rajagopalan Planter liner having an integral water tray
US20040016178A1 (en) * 2002-07-29 2004-01-29 Ravi Rajagopalan Planter having an integral water tray
US20040054343A1 (en) * 2002-09-18 2004-03-18 Barnett Larry N. Horizontal density gradient absorbent system for personal care products
US7431715B2 (en) 2002-09-27 2008-10-07 Sca Hygiene Products Ab Absorbent article
US20040188993A1 (en) * 2003-03-25 2004-09-30 Wayne Campbell Birdcage bearing assembly and suspension connection for a high performance vehicle
US20050045296A1 (en) * 2003-08-29 2005-03-03 Adam Gabriel Hammam Stabilized absorbent composite material and method for making
US20070073253A1 (en) * 2005-09-26 2007-03-29 Uni-Charm Corporation Absorbent article
US8237012B2 (en) * 2005-09-26 2012-08-07 Uni-Charm Corporation Absorbent article
US20070131368A1 (en) * 2005-12-14 2007-06-14 Sonoco Development, Inc. Paperboard with discrete densified regions, process for making same, and laminate incorporating same
US8465759B2 (en) 2006-03-24 2013-06-18 Auxilium Us Holdings, Llc Process for the preparation of a hot-melt extruded laminate
US9364445B2 (en) 2006-03-24 2016-06-14 Auxilium Us Holdings, Llc Stabilized compositions containing alkaline labile drugs
US20090136555A1 (en) * 2006-03-24 2009-05-28 Crowley Michael M Process for the preparation of a hot-melt extruded laminate
AU2007230729B2 (en) * 2006-03-24 2011-07-28 Auxilium International Holdings, Inc. Process for the preparation of a hot-melt extruded laminate
US8173152B2 (en) 2006-03-24 2012-05-08 Auxilium Us Holdings, Llc Stabilized compositions containing alkaline labile drugs
WO2007112285A3 (en) * 2006-03-24 2008-10-02 Auxilium Pharmaceuticals Inc Process for the preparation of a hot-melt extruded laminate
US9867786B2 (en) 2006-03-24 2018-01-16 Auxilium Us Holdings, Llc Stabilized compositions containing alkaline labile drugs
US8883187B2 (en) 2006-03-24 2014-11-11 Auxilium Us Holdings, Llc Stabilized compositions containing alkaline labile drugs
US20090264385A1 (en) * 2006-03-24 2009-10-22 Crowley Michael M Stabilized compositions containing alkaline labile drugs
US20080187705A1 (en) * 2007-02-02 2008-08-07 Mark Shapton Method of non-abrasive mechanical relief of a cellulose sheet and apparatus
US9415538B2 (en) 2010-09-10 2016-08-16 The Procter & Gamble Company Method for deforming a web
US9067357B2 (en) 2010-09-10 2015-06-30 The Procter & Gamble Company Method for deforming a web
US10633775B2 (en) 2010-09-10 2020-04-28 The Procter & Gamble Company Deformed web materials
US9220638B2 (en) 2010-09-10 2015-12-29 The Procter & Gamble Company Deformed web materials
US9623602B2 (en) 2010-09-10 2017-04-18 The Procter & Gamble Company Method for deforming a web
US9028652B2 (en) 2011-04-26 2015-05-12 The Procter & Gamble Company Methods of making bulked absorbent members
US9452093B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Absorbent members having density profile
US9120268B2 (en) 2011-04-26 2015-09-01 The Procter & Gamble Company Method and apparatus for deforming a web
US8657596B2 (en) 2011-04-26 2014-02-25 The Procter & Gamble Company Method and apparatus for deforming a web
WO2012148944A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Absorbent members having density profile
WO2012148999A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Bulked absorbent members
WO2012149073A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making bulked absorbent members
US9439815B2 (en) 2011-04-26 2016-09-13 The Procter & Gamble Company Absorbent members having skewed density profile
US9440394B2 (en) 2011-04-26 2016-09-13 The Procter & Gamble Company Methods of mechanically deforming materials
US10011953B2 (en) 2011-04-26 2018-07-03 The Procter & Gamble Company Bulked absorbent members
US9452094B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Absorbent members having density profile
US9452089B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Methods of making absorbent members having density profile
US9534325B2 (en) 2011-04-26 2017-01-03 The Procter & Gamble Company Methods of making absorbent members having skewed density profile
WO2012148978A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Absorbent members having skewed density profile
WO2012148973A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making absorbent members having skewed density profile
WO2012148974A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making absorbent members having density profile
US10279535B2 (en) 2011-04-26 2019-05-07 The Procter & Gamble Company Method and apparatus for deforming a web
US20160114311A1 (en) * 2014-10-24 2016-04-28 City University Of Hong Kong Sorbent material and a method for enhancing sorption performance thereof
US9873105B2 (en) * 2014-10-24 2018-01-23 City University Of Hong Kong Sorbent material and a method for enhancing sorption performance thereof
US20170065466A1 (en) * 2015-09-08 2017-03-09 Principle Business Enterprises, Inc. Absorbent Core For An Absorbent Article
US11278457B2 (en) * 2017-02-09 2022-03-22 Hill-Rom Services, Inc. Incontinence detection optimization using directional wicking
US11925539B2 (en) 2018-08-22 2024-03-12 The Procter & Gamble Company Disposable absorbent article

Also Published As

Publication number Publication date
DE1259014B (en) 1968-01-18

Similar Documents

Publication Publication Date Title
US3017304A (en) Absorbent fibrous structure and method of production
US3993820A (en) Non-woven product
US3494362A (en) Absorbent pad
US3975222A (en) Method of forming a fibrous web
US4186165A (en) Method of producing an absorbent panel having densified portion with hydrocolloid material fixed therein
US2952260A (en) Absorbent product
US4015604A (en) Absorbent product with side leakage control means
US3938522A (en) Disposable diaper
US5387385A (en) Method of making highly absorbent and flexible cellulosic pulp fluff sheet
US4103062A (en) Absorbent panel having densified portion with hydrocolloid material fixed therein
US4211227A (en) Surgical sponge material
US5128193A (en) Absorbent fibrous structure
CA1251902A (en) Perf-embossed absorbent structure
US3395201A (en) Method and apparatus for producing an absorbent product
JPS61252301A (en) Disposable diaper
US4259387A (en) Absorbent fibrous structure
US3444859A (en) Absorbent fibrous batt with longitudinal barrier areas
US4573988A (en) Superthin absorbent product
US5451442A (en) Absorbent panel structure for a disposable garment
JP3315115B2 (en) Flexible absorbent sheet
US3965904A (en) Disposable diaper
US4391869A (en) Nonwoven fibrous product
GB1133104A (en) Pads or napkins for absorbing human body fluids
US3036573A (en) Cellulosic product
SK281520B6 (en) Absorbent article and method of its manufacture