US3032763A - Stretch array for scanning - Google Patents

Stretch array for scanning Download PDF

Info

Publication number
US3032763A
US3032763A US781815A US78181558A US3032763A US 3032763 A US3032763 A US 3032763A US 781815 A US781815 A US 781815A US 78181558 A US78181558 A US 78181558A US 3032763 A US3032763 A US 3032763A
Authority
US
United States
Prior art keywords
elements
radiating elements
antenna
scanning
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US781815A
Inventor
Carlyle J Sletten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US781815A priority Critical patent/US3032763A/en
Application granted granted Critical
Publication of US3032763A publication Critical patent/US3032763A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Definitions

  • This invention relates generally to antennas and more particularly to the production of a scanning action in the type of antenna disclosed in my co-pending application titled Method and Means for Antenna Coupling, application Serial Number 613,011, filed October 1, 1956, now Patent Number 2,963,703.
  • the electromagnetically coupled radiating elements of the array to be scanned are arranged such that opposite phasing is applied to adjacent elements of the array and the electrical phase between the elements is varied by a physical movement of the elements relative to each other.
  • Scanning antennas have utility in radar, communication and direction finding applications.
  • Prior art devices for scanning usually involve a physical rotation of the entire antenna or the use of inherently unreliable electronic circuitry.
  • the device of the instant invention utilizes a simple mechanicalmovement which may be operated at high scanning rates with the movement of small masses.
  • Another object of this invention involves the production of a novel antenna utilizing electromagnetic coupling to a transmission line.
  • Still another object of this invention involves the production of a novel scannable antenna which does not introduce any connections to or alterations in the antenna element feeding means.
  • a further object of this invention involves the scanning of a beam of electromagnetic energy in space wherein the antenna pattern is controlled by electromagnetic coupling of antenna radiating elements.
  • a still further object of this invention involves the scanning of a beam from an antenna whose radiating elements are excited by their proximity to an open transmission line carrying equal and opposite currents.
  • FIGURE 1 is a pictorial view of an antenna array using electromagnetic coupling of radiating elements to an open transmission line carrying equal and opposite currents with means for mechanically varying the electrical phase between elements along the array;
  • FIGURE 2 is a plan view of the dipoles in one position and;
  • FIGURE 3 is a schematic showing of an alternative means for varying the electrical phase.
  • Scanning of the radiated beam is achieved by utilizing slidable supports 14 for dipoles 12. Rectilinear movement of supports 14 is such that the spacing between centers of the dipoles varies from N2 (FIGURE 2) to a maximum distance of A (FIGURE 1) to cause a variation in the electrical phase between the elements along the array. The spacing between successive dipoles are always proportional.
  • the phase shift between elements is due to the plus and minus angles of rotation of dipoles 12.
  • Variation from M2 causes a beam scan in the plane containing the array.

Description

May 1, 1962 c. J- SLETTEN STRETCH ARRAY FOR SCANNING Filed D60. 19. 1958 FIG.|
INVENTOR. CAR LYLE J SLETTEN Y B burnt... Mm /f ATTOR/VE X9 United States Patent 3,032,763 S'I'RETCH ARRAY FOR SCANNING Carlyle J. Sletten, Box 185, Acton Center, Mass. Filed Dec. 19, 1958, Ser. No. 781,815 8 Claims. (Cl. 343-793) (Granted under Title 35, U5. Code (1952), see. 266) The invention described herein may be manufactured and used by or for the United States Government for governmental purposes without payment to me of any royalty thereon.
This invention relates generally to antennas and more particularly to the production of a scanning action in the type of antenna disclosed in my co-pending application titled Method and Means for Antenna Coupling, application Serial Number 613,011, filed October 1, 1956, now Patent Number 2,963,703.
The electromagnetically coupled radiating elements of the array to be scanned are arranged such that opposite phasing is applied to adjacent elements of the array and the electrical phase between the elements is varied by a physical movement of the elements relative to each other.
Scanning antennas have utility in radar, communication and direction finding applications. Prior art devices for scanning usually involve a physical rotation of the entire antenna or the use of inherently unreliable electronic circuitry. The device of the instant invention utilizes a simple mechanicalmovement which may be operated at high scanning rates with the movement of small masses.
Accordingly, it is an object of this invention to produce a novel scannable antenna.
Another object of this invention involves the production of a novel antenna utilizing electromagnetic coupling to a transmission line.
Still another object of this invention involves the production of a novel scannable antenna which does not introduce any connections to or alterations in the antenna element feeding means.
A further object of this invention involves the scanning of a beam of electromagnetic energy in space wherein the antenna pattern is controlled by electromagnetic coupling of antenna radiating elements.
A still further object of this invention involves the scanning of a beam from an antenna whose radiating elements are excited by their proximity to an open transmission line carrying equal and opposite currents.
It is another object of this invention to produce a novel scannable antenna which utilizes conventional, currently available materials which lend themselves to standard mass production manufacturing techniques.
These and other advantages, features and objects of the invention will become more apparent from the following description taken in connection with the illustrative embodiments in the accompanying drawings, wherein:
FIGURE 1 is a pictorial view of an antenna array using electromagnetic coupling of radiating elements to an open transmission line carrying equal and opposite currents with means for mechanically varying the electrical phase between elements along the array;
FIGURE 2 is a plan view of the dipoles in one position and;
FIGURE 3 is a schematic showing of an alternative means for varying the electrical phase.
In accordance with the theory outlined in my aforementioned co-pending application Serial Number 613,001, now Patent No. 2,963,703, the coupling principle upon which this invention is based depends upon the orientation of a radiating element with respect to an open transmission line carrying equal and opposite currents. Although the antenna of this and my co-pending application disclose two-wire line and dipoles, other transmission lines and dipoles, different from that shown in the figures, come within the concept of this invention, for example, a four wire or parallel plate transmission line may be used with curved or other shaped radiating elements.
When a dipole is oriented parallel to the axis of a twowire line, the currents in the line couple equally to the dipole, and there is zero radiation. Rotation of the dipole places alternate segments of the two-wires closer to the dipole such that the currents in the two-wire line electromagnetically couple unequally to the dipole to produce a radiation. When the radiation and coupling characteristics of a single rod on a two-wire line are known, the antenna. performance can be determined by reference to known linear array theory. The coupling of a half-wave rod oriented with respect to a two-wire line depends upon the following parameters:
( 1) The rod length;
(2) The frequency of the electromagnetic waves on the exciting two-wire line;
(3) The spacing of the rod above the two-wire lines;
-(4) The diameter of the two-wire lines;
(5) The spacing between centers of the two-wire lines;
(6) The position of the rods with respect to the twowire line terminations;
(7) The intercoupling between adjacent elements; and
8) The angular rotation of the rod with respect to the axis of the two-wire line.
By utilizing empirically obtained conductance data in conjunction with known linear array theory an antenna may be produced which comprises a balanced two wire line 1011 which feeds approximately A/Z radiating rods or dipoles 12 which are supported on a pair of parallel rails 10-41 constituting a two-wire transmission line as shown in FIGURE 1. No metallic contact or coupling mechanism other than the electromagnetic coupling due to the proximity and orientation of the rod 12 with respect to the two-wire line 10-11 is used. By choosing the angular orientation of the dipoles, almost any total conductance can be obtained in an array. The number of elements that can be fed is limited only by the size of antenna that can be accommodated and the gain requirement. The two-wire lines 1011 may be made heavy enough to support the dipole elements without the need for a plurality of spacer elements along its length. A ground plane 13 beneath the antenna enables the image to improve gain, while light loading and the use of elements 12 in even pairs keeps the amount of unbalance of the two-wire line to a minimum. 0
Scanning of the radiated beam is achieved by utilizing slidable supports 14 for dipoles 12. Rectilinear movement of supports 14 is such that the spacing between centers of the dipoles varies from N2 (FIGURE 2) to a maximum distance of A (FIGURE 1) to cause a variation in the electrical phase between the elements along the array. The spacing between successive dipoles are always proportional.
The particular angular orientation of the radiated beam may be predicted according to SlD. 9g= D x0) where 0 is the angle of the beam from the normal to the array, 1 is the phase velocity factor along the line, D is the center to center spacing between adjacent radiating elements, and A is the Wavelength in free space of the frequency used.
At M2 spacing between the dipoles, the phase shift between elements is due to the plus and minus angles of rotation of dipoles 12. Variation from M2 causes a beam scan in the plane containing the array.
Slidable supports 14 are moved so as to vary the spacing spear ea between array elements 12 such that each dipole is spaced from its adjacent radiating member by the same amount. An elastic material 15 is connected to a fixed support 16 at one end of the array and is clamped to each sliding member 14- at 1'7. The remaining end of elastic member 15 rides on an idler pulley 18 and is driven by a crank operated drum 18a which is operated so as to alternately tension and relax elastic member 15 to cause the variation in distance between dipoles 12. The support means 14, 16, idler pulley 18, and drum 18a are made of dielectric material in order to avoid interference with the radiated beam. To avoid a tendency for support members 14 to overshoot their desired travel distance, an adjustable friction means, such as a non-metallic set screw 19 for example, may be provided to exert a force between line elements -11 and the portions of 14 journalled there- Although one mechanical means has been described for producing the desired variation in electrical phase, it should be understood that any means for tensioning element may be provided or, furthermore, a device such as that shown in FIGURE 3, which will produce the desired motion, may be utilized.
FIGURE 3 schematically shows a lazy tongs type of pantograph 20 which is operated by an eccentric 21 which imparts an oscillatory motion to link '22 which drives piston 23 in guides 24 in a straight line motion. Piston 24 is pivotally attached to one end of the pantograph while the other end is fixed as shown at 28. Since the opening and closing of the pantograph linkage imparts a small vertical motion to the pantograph, pins 25, which are secured in a vertical hole (not shown) in support member 14 for translatory actuation of the dipoles, have slots 26 in which the pins 27 of the pantograph ride. Thus, it can be seen that a variation in electrical phase may be produced between adjacent dipole elements.
Although the invention has been described with reference to particular embodiments, it will be understood to those skilled in the art that the invention is capable of a variety of alternative embodiments within the spirit and scope of the appended claims.
I claim:
1. An antenna suitable for scanning a predetermined pattern of energy in space comprising a transmission line permanently fixed in position and in the form of a pair of parallel rails carrying equal and opposite currents, a plurality of radiating elements journalled to and having limited reciprocability along said parallel rails with predetermined couplings caused by the orientation of said radiating elements with respect to the elements of said transmission line, said radiating elements having opposite phasing applied to adjacent radiating elements, and means for moving said radiating elements relatively of said transmission line, and of each other, to vary the electrical phase between said radiating elements while maintaining the said parallel rails in their pre-fixed physical setting.
2. A device as defined in claim 1 wherein said lastmentioned means comprise a cycling mechanism for physically varying distance between said radiating elements while maintaining proportional spacing between successive elements.
3. A device as defined in claim 2 wherein said mechanism for varying the distance between radiating elements comprises elastic means connected between said elements, and means for alternately tensioning and relaxing said elastic means.
4. A device as defined in claim 1 wherein said means for varying the electrical phase comprises'a mechanism for physically varying the distance between said support means and relative to said fixed transmission line while maintaining proportional spacing between said radiating elements.
5. A device as defined in claim 4 wherein said mechanism for varying the distance between radiating elements comprises elastic means connected between said support means, and means for alternately tensioning and relaxing said elastic means at a predetermined periodicity.
6. A device as defined in claim 4 including a ground plane mounted adjacent said transmission line and on a side opposite to the direction of emission of energy from said radiating elements in a manner increasing the gain of said radiating elements.
7. A device as defined in claim 1 wherein said radiating elements are afiixed to supports slidable along said parallel rails without altering the physical characteristics of the transmission line constituted by said parallel rails and wherein said moving means operates to vary the rectilinear spacing between said radiating elements while maintaining proportional spacing between successive radiating elements.
8. An antenna assembly suitable for scanning a predetermined pattern of electromagnetic energy in space comprising feeding means in the form of permanently positioned structure extending the full length of the antenna assembly and carrying equal and opposite currents, a plurality of radiating elements mounted on slidable supports having rectilinear movement relative to said feeding means without introducing any alterations in said feeding means, said radiating elements having a predetermined electromagnetic coupling with said feeding means caused by the orientation of said elements with respect to said feeding means, and cycling means connected with all of said radiating elements for moving said elements relative to said feeding means rectilinearly while maintaining proportional spacing between successive radiating elements, said rectilinear movement varying the electrical phase between said radiating elements causing a beam scan in the plane containing the array.
References Cited in the file of this patent UNITED STATES PATENTS 1,347,440 Callaghan July 20, 1920 2,211,004 Conklin Aug. 13, 1940 2,413,836 Larson Jan. 7, 1947 2,433,369 Kandoian Dec. 30, 1947 2,535,049 De Rosa Dec. 26, 1950 2,605,413 Alvarez July 29, 1952 2,716,703 Kane Aug. 30, 1955
US781815A 1958-12-19 1958-12-19 Stretch array for scanning Expired - Lifetime US3032763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US781815A US3032763A (en) 1958-12-19 1958-12-19 Stretch array for scanning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US781815A US3032763A (en) 1958-12-19 1958-12-19 Stretch array for scanning

Publications (1)

Publication Number Publication Date
US3032763A true US3032763A (en) 1962-05-01

Family

ID=25124023

Family Applications (1)

Application Number Title Priority Date Filing Date
US781815A Expired - Lifetime US3032763A (en) 1958-12-19 1958-12-19 Stretch array for scanning

Country Status (1)

Country Link
US (1) US3032763A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717918A (en) * 1985-08-23 1988-01-05 Harris Corporation Phased array antenna
US6198458B1 (en) 1994-11-04 2001-03-06 Deltec Telesystems International Limited Antenna control system
US6573875B2 (en) 2001-02-19 2003-06-03 Andrew Corporation Antenna system
US20030109231A1 (en) * 2001-02-01 2003-06-12 Hurler Marcus Control device for adjusting a different slope angle, especially of a mobile radio antenna associated with a base station, and corresponding antenna and corresponding method for modifying the slope angle
US6677896B2 (en) 1999-06-30 2004-01-13 Radio Frequency Systems, Inc. Remote tilt antenna system
US20040232329A1 (en) * 2001-09-15 2004-11-25 Biggs Roger Tredegar Radar imaging apparatus
US20080211600A1 (en) * 2005-03-22 2008-09-04 Radiaciony Microondas S.A. Broad Band Mechanical Phase Shifter
FR2937186A1 (en) * 2008-10-14 2010-04-16 Centre Nat Etd Spatiales DEPLOYABLE STRUCTURE AND MEMBRANE ANTENNA SYSTEM INCLUDING SUCH STRUCTURE.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1347440A (en) * 1920-07-20 Apparatus eob propagating and intensifying electrical oscillations
US2211004A (en) * 1939-03-31 1940-08-13 Rca Corp Neutralizing system
US2413836A (en) * 1944-06-27 1947-01-07 Hazeltine Research Inc High-frequency tuning device
US2433369A (en) * 1942-07-24 1947-12-30 Standard Telephones Cables Ltd Antenna system and method of using same
US2535049A (en) * 1945-11-14 1950-12-26 Standard Telephones Cables Ltd Antenna structure
US2605413A (en) * 1943-11-10 1952-07-29 Luis W Alvarez Antenna system with variable directional characteristic
US2716703A (en) * 1952-05-15 1955-08-30 James M Kane Television antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1347440A (en) * 1920-07-20 Apparatus eob propagating and intensifying electrical oscillations
US2211004A (en) * 1939-03-31 1940-08-13 Rca Corp Neutralizing system
US2433369A (en) * 1942-07-24 1947-12-30 Standard Telephones Cables Ltd Antenna system and method of using same
US2605413A (en) * 1943-11-10 1952-07-29 Luis W Alvarez Antenna system with variable directional characteristic
US2413836A (en) * 1944-06-27 1947-01-07 Hazeltine Research Inc High-frequency tuning device
US2535049A (en) * 1945-11-14 1950-12-26 Standard Telephones Cables Ltd Antenna structure
US2716703A (en) * 1952-05-15 1955-08-30 James M Kane Television antenna

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717918A (en) * 1985-08-23 1988-01-05 Harris Corporation Phased array antenna
US6198458B1 (en) 1994-11-04 2001-03-06 Deltec Telesystems International Limited Antenna control system
US6346924B1 (en) 1994-11-04 2002-02-12 Andrew Corporation Antenna control system
US6538619B2 (en) 1994-11-04 2003-03-25 Andrew Corporation Antenna control system
US6567051B2 (en) 1994-11-04 2003-05-20 Andrew Corporation Antenna control system
US8558739B2 (en) 1994-11-04 2013-10-15 Andrew Llc Antenna control system
US6590546B2 (en) 1994-11-04 2003-07-08 Andrew Corporation Antenna control system
US6600457B2 (en) 1994-11-04 2003-07-29 Andrew Corporation Antenna control system
US6603436B2 (en) 1994-11-04 2003-08-05 Andrew Corporation Antenna control system
US6677896B2 (en) 1999-06-30 2004-01-13 Radio Frequency Systems, Inc. Remote tilt antenna system
US7366545B2 (en) 2001-02-01 2008-04-29 Kathrein Werke Kg Control apparatus for changing a downtilt angle for antennas, in particular for a mobile radio antenna for a base station, as well as an associated mobile radio antenna and a method for changing the downtilt angle
US20050272470A1 (en) * 2001-02-01 2005-12-08 Kathrein Werke Kg Control apparatus for changing a downtilt angle for antennas, in particular for a mobile radio antenna for a base station, as well as an associated mobile radio antenna and a method for changing the downtilt angle
US7031751B2 (en) 2001-02-01 2006-04-18 Kathrein-Werke Kg Control device for adjusting a different slope angle, especially of a mobile radio antenna associated with a base station, and corresponding antenna and corresponding method for modifying the slope angle
US20030109231A1 (en) * 2001-02-01 2003-06-12 Hurler Marcus Control device for adjusting a different slope angle, especially of a mobile radio antenna associated with a base station, and corresponding antenna and corresponding method for modifying the slope angle
US6987487B2 (en) 2001-02-19 2006-01-17 Andrew Corporation Antenna system
US6573875B2 (en) 2001-02-19 2003-06-03 Andrew Corporation Antenna system
US20040232329A1 (en) * 2001-09-15 2004-11-25 Biggs Roger Tredegar Radar imaging apparatus
US20080211600A1 (en) * 2005-03-22 2008-09-04 Radiaciony Microondas S.A. Broad Band Mechanical Phase Shifter
US7557675B2 (en) 2005-03-22 2009-07-07 Radiacion Y Microondas, S.A. Broad band mechanical phase shifter
FR2937186A1 (en) * 2008-10-14 2010-04-16 Centre Nat Etd Spatiales DEPLOYABLE STRUCTURE AND MEMBRANE ANTENNA SYSTEM INCLUDING SUCH STRUCTURE.
WO2010043652A1 (en) * 2008-10-14 2010-04-22 Centre National D'etudes Spatiales Deployable structure and antennal system with membranes comprising such a structure

Similar Documents

Publication Publication Date Title
US3656166A (en) Broadband circularly polarized omnidirectional antenna
US2754513A (en) Antenna
US2624003A (en) Dielectric rod antenna
US3032763A (en) Stretch array for scanning
US2430568A (en) Antenna system
BR9201956A (en) SLIT ANTENNA HAVING TWO NON-PARALLEL ELEMENTS, PROFILING TOOL, AND PROFILING PROCESS
US3604012A (en) Binary phase-scanning antenna with diode controlled slot radiators
US3189907A (en) Zone plate radio transmission system
FR2445036A1 (en) ELECTRONIC SCANNING MICROWAVE DEPHASER AND ANTENNA HAVING SUCH A PHASER
US3045237A (en) Antenna system having beam control members consisting of array of spiral elements
US3858221A (en) Limited scan antenna array
US3877033A (en) Nonuniformly optimally spaced array with uniform amplitudes
US2977594A (en) Spiral doublet antenna
US2648000A (en) Control of wave length in wave guides
US2535049A (en) Antenna structure
US3568208A (en) Varying propagation constant waveguide
US2930039A (en) Antenna system for variable polarization
US3055003A (en) Spiral antenna array with polarization adjustment
US3182330A (en) Variably spaced arrays of wave radiators and receivers
US3029432A (en) Scanning antenna
US2492989A (en) Directive ultra high frequency antenna
CN109301480B (en) Antenna assembly and electronic equipment
US3438043A (en) Short backfire antenna
US2663869A (en) Helical antenna scanning system
US2878471A (en) Conical scanning means for antenna beam