US3045872A - Liquid dispenser - Google Patents

Liquid dispenser Download PDF

Info

Publication number
US3045872A
US3045872A US847712A US84771259A US3045872A US 3045872 A US3045872 A US 3045872A US 847712 A US847712 A US 847712A US 84771259 A US84771259 A US 84771259A US 3045872 A US3045872 A US 3045872A
Authority
US
United States
Prior art keywords
container
reservoir
liquid
tube
liquids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US847712A
Inventor
John J Hronas
Charles T Roland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hagan Chemicals and Controls Inc
Original Assignee
Hagan Chemicals and Controls Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagan Chemicals and Controls Inc filed Critical Hagan Chemicals and Controls Inc
Priority to US847712A priority Critical patent/US3045872A/en
Application granted granted Critical
Publication of US3045872A publication Critical patent/US3045872A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/10Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/10Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation
    • G01F11/26Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus
    • G01F11/262Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus for liquid or semi-liquid

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Closures For Containers (AREA)

Description

July 24, 1962 J, J. HRONAS EI'AL LIQUID DISPENSER Filed Oct. 21. 1959 Fig. 5
INVENTORS JOHN J. HRUNA-S BY amass 7: ecu/v0 J. z W
Ar en/v5) 3,945,872 LIQUID DISPENER John J. Hronas, Grcentree, and Charles T. Roland, Bethel Borough, Pa., assignors to Hagan Chemicals & Controls, Inc, a corporation of Pennsylvania Filed Get. 21, 1959, Ser. No. 847,712 1 Claim. (Cl. 222-446) This invention relates to containers and dispensing devices for liquids, particularly for liquid detergents, rinse aids, soaps, softeners, and the like.
Prior to our invention, doses of liquid detergents or other materials to be used in mechanical dishwashers or clothes washers had to be individually measured and poured. That is, the liquid is poured from its original container into a small cup, cap, vial, or the like, and then poured into the medium in which it will be used. This step is somewhat troublesome and tends to be messy. If the measuring vial overflows, sticky detergent is, of course, deposited on the outside of it and becomes an inconvenience to the operator who must remove it.
Packages have been devised for liquid detergents and the like which have caps adapted to act as measuring devices. Although these are convenient in one respect,
namely the fact that the measuring vial is always present with the container, still, the inconvenience of spillage is compounded because the sticky lid must be handled again and again. In addition, the inside of the cap may tend to retain a relatively large portion of the measured amount even though the cap is completely inverted while pouring out its contents. Various other cans, bottles, and containers with a variety of spouts and vials have been tried but each is subject to wastage, inconvenience, and errors in measuring.
Liquid detergents have not, at the present time, become widely accepted in mechanical dishwashing and clothes washing, partly because of the difficulty of formulating compounds adapted to the peculiarities of this field and also to some extent because of the lack, until the present invention, of a suitable dispensing device.
A particular need has gone unsatisfied in the dishwashing field. That is the need for a rinse-aid dispenser which will delay its action momentarily and then deliver the proper dose gradually while the rinse water is sprayed over the dishes.
We have invented a container which automatically dispenses a measured amount of liquid each time it is desired. It will dispense the amount necessary with no pouring or measuring by an operator. Moreover, the
liquid need not first be poured from the original package into a different container of our design since our invention can be incorporated into an original liquid container. Thus, our invention will enable the housewife to purchase, for example, a container of dishwashing detergent or rinse-aid solution, put it in her dishwasher, and eventually consume its entire contents without ever manually pouring a drop.
The same holds true with other liquids for other uses. Our dispenser may be used in any environment which will produce a relative pressure difference in which the internal pressure of the container is greater than the pressure outside the container.
In the accompanying drawings we have shown certain present preferred embodiments of the invention. FIG- URE l is a cross section view of a container with an integral reservoir and a stopper through which is inserted a tube. FIGURE 2 is a cross section view of a differently constructed container showing a reservoir held in place by the conduit. FIGURE 3 shows a cross section of a bottle containing a vial having a pheripheral lip of a diameter such that it rests on the top of the bottle neck. FIGURE 4 is a bottle cap of the screw-on type having a 3,045,872 Patented July 24, 1962 ree duct passing axially through it. FIGURE 5 is a reservoir adapted to fit the neck of a bottle.
Referring to FIGURE 1, the container 1 is a bottle, can, or other container of suitable volume. It is immaterial whether it be made of metal, glass, plastic, or other material so long as its volume will remain unaitected by slight differences in internal and external pressure. The reservoir 2 in FIGURE 1 is an integral part of the container, built onto its wall. Conduit 3 in FIGURE 1 is inserted to a point near the bottom of the reservoir. Although closure 4 is shown as cork, any material capable of forming an airtight seal is suitable and the shape is immaterial so long as it forms an airtight seal with the container.
FIGURE 2 shows a variation of our invention in which the reservoir 6 is held in place by an arm 7 attached to conduit 8. Reservoir 6 is not, in FIGURE 2, secured to the inside wall of the container.
FIGURE 3 is a cross section of an ordinary bottle 9 having thread It} adapted to receiving a cap of the screwon type. Inserted into the neck of the bottle is reservoir 11, which has an extended member 12 attached to a peripheral lip 13.
The bottle and vial shown in FIGURE 3 are adapted to receive a cap such as that shown in FIGURE 4, in which conduit 14 extends through the cap 15 axially. The cap, vial, and duct may be made separately or as one or two units. FIGURE 5 is a perspective view of a reservoir such as as the one inserted in the neck of the bottle of FIGURE 3.
The action of our invention may be demonstrated with any liquid. The container can be nearly filled with a solution of rinse aiding compound, for example, and then capped. The user then inverts the container momentarily and returns it to a vertical position, thus filling the vial with a premeasured amount of liquid. The container is then placed, for example, in an ordinary household electric dishwasher in a substantially vertical position. When the dishwasher is turned on, the hot water striking the container and the heat of the atmosphere inside the dishwasher cause the temperature to rise inside the container. Internal vapor pressure and expanding air cause the pressure inside the container to exceed that of the atmosphere outside. The excess pressure exerted on the surface of the measured liquid in the reservoir causes the liquid to rise in the tube and eventually to completely empty the reservoir. Since the dose is then exhausted, no solution will be dispensed by further heating unless the bottle is again inverted and the reservoir filled.
Thus, the dispenser can be used with striking ease for dispensing predetermined dosages of liquid cleaning compounds or solutions and the like into mechanical dish or clothes washers.
The dimensions and materials may be varied to accomplish diiferent results and to operate in dififerent environments. For example, liquids of high viscosity may be used if a slow flow rate is desired. Generally speaking, if a delayed feeding is desired, a narrow duct may be used. Where speed is required, the inner dimension of the tube may be increased. Aqueous liquids are dispensed relatively slowly; liquids containing more volatile solvents, such as alcohols, on the other hand, are dispensed more rapidly because of their higher vapor pressure. The heat transfer ability of the container is another factor which will afiect the speed of the reaction.
The type of closure for the container may be varied. Any closure which renders the container airtight is suitable. The material of which it is made may be any material which will not change appreciably in shape in response to opposing slight ditterences in vapor or air pressure.
In order to dispense some liquids, it is desirable that the container not be completely filled. in other words, the dispenser is not satisfactorily operable for some liquids unless there is a small air space in the container. This exception does not apply to compositions containing a substantial portion of liquids whose volatility will exert a vapor pressure sufficient to force some of the liquid out of the container in spite of a lack of air space. Ordinarily, about 5% of the space in a container of liquid packaged for shipment remains unfilled in order to protect the package during shipment from changes in temperature which might cause expansion of the contents. This amount of air is more than sufiicient to empty a reservoir of equal volume when the dispenser is heated to the temperature of a dishwashing machine. The tendency of water and other liquids to evaporate when heated supplies a vapor pressure considerably in excess of the pressure of expanding air alone. As indicated above, liquids which contain compounds of relatively high volatility can be dispensed with little or no air space. Of course, if the container is filled over the top level of the internal reservoir, the first dose dispensed will be larger than the volume of the reservoir.
The duct need not be in a fixed position. indeed, the amount of the dose to be dispensed may be varied at will by the use of a duct adapted to be moved up and down. Thus, if the tube extends to the bottom of the reservoir, a full dose will be delivered; if only half a dose is desired, the tube may be pulled out slightly or otherwise adjusted so that its furthest extremity is at only half the depth of the reservoir. Adjustability may be achieved by using a slideable or telescoping tube, for example.
The duct need not extend upward. It may as weil project downwardly through the bottom of the container. Where this structure is used, the initial equality of pressure inside and outside the container will help to pre vent leaking by capillary action or otherwise. Of course, more than one duct may be used. They may project through a cap, lid, or the like, or through the container wall itself. On the other hand, there is no need for the tube to project beyond the surface of the container. For shipping purposes, the tube or hole at the surface of the container should be capped to prevent leaking. If the tube is made of plastic or other soft material, the end can be closed for shipment and snipped off when ready for use.
The most successful ducts for dispensing rinse-aid compositions have been found to be those of about .020 inch to about .030 inch internal diameter. Liquids of higher viscosity, such as detergents, are dispensed at the desired speed through a duct of larger diameter, while those of lower viscosity may be dispensed at the desired rate through tubes of smaller inner diameter. A tube of about /8 inch inner diameter will ordinarily empty the vial in a few seconds after the bottle is exposed to hot water. The relation between the area of a cross section of the tube and the working surface area of the reservoir is not critical. There is no reason theoretically why that of the tube cannot exceed that of the exposed surface of the reservoir. However, where the tube itself holds a large volume of liquid, the weight of the liquid may impede the ability of the internal vapor pressure to lift the liquid at the desired rate. Moreover, if the internal diameter of the tube is too large, a point may be reached where, depending on the surface tension and other characteristics of the liquid, the tube itself will not be emptied although the reservoir will be emptied. This could come about when the reservoir is empty because of the tendency of the gases inside the container to bubble through the tube rather than force out the liquid remaining in the tube. This condition does not render our invention inoperable, however. Where liquids of low surface tension are to be used with ducts of relatively large inner diameter, the reservoir can be constructed so that the volume of the reservoir less the entire volume of the tube will equal the desired dosage volume. Of course, as in the ordinary case, if the duct does not reach substantially to the bottom of the reservoir, the liquid below the lowest reach of the tube will not be dispensed. When we speak of the volume of the reservoir, we mean that volume above the lowest reach of the duct and below the level of the lowest opening in the reservoir structure. Of course, the volume of the dose dispensed is affected by the position of the reservoir. That is, the reservoir should generally be placed near the top of the container in order to assure that the proper dose will be dispensed with each operation. Otherwise, if the reservoir were resting on the bottom of the container, for example, it could' not perform its function of measuring the dosage. Of course, if the dose desired is very large in comparison to the container volume, the reservoir may be located farther below the top of the container. Thus, if the dose is to be half the container volume, the reservoir may be located at a position in which it will dispense that amount. But even in this case, it is preferred to maintain the lowest opening of the reservoir at a level as high as possible while still permitting the free flow of fluid into the reservoir, in order to maintain consistently uniform dosages, and especially in order to retain control of the amount of the first dose.
Generally speaking, the hot water used in dishwashers and the like in the home is in the range of F. to 160 F. Our invention is not confined to this range of temperature. Our invention is operable in any environment which will cause the internal pressure of the container to exceed the external pressure. In connection with dishwashing machines, it should be pointed out that the atmosphere inside the machine does not reach the temperature of the water immediately upon contact with the water. it may take from one to three minutes for water, constantly entering at, for example, F., to raise the temperature of the atmosphere in a mechanical dishwasher to slightly less than that temperature. This factor may be utilized to advantage where a delay is desired. For example, our invention can delay delivery of a rinse-aid solution until near the end of the wash cycle, then continue dispensing throughout the first rinse cycle and at the beginning of the second rinse cycle. Or, it may be designed and adjusted to deliver a full dose of detergent within a few seconds after hot water enters the machine. That is, by varying the duct dimension, the viscosity of the liquid, the volatility of the solvent ingredients, or the heat transfer ability of the container body, the time required to accumulate the necessary internal pressure can be fixed to suit ones needs.
The container need not be put in a special rack in the machine. Any place is satisfactory; however, care must be taken that streams of water do not knock the container over. On the other hand, a container incorporating our invention may be built into the machine. The reservoir may be filled by means other than inverting the container. In the case of one built into a dishwasher, the main container may be kept separate and a unit com prising a lid, duct, and reservoir may be removed from its place in the machine, the reservoir filled, and returned to a built-in airtight compartment in the machine. Or, the container may be attached or built into the dishwasher in such a way that the act of opening or closing the door of the dishwasher will fill the reservoir.
Other variations and applications of our invention will be apparent to those working in the art.
While we have shown and described certain present preferred embodiments of our invention, it is to be distinctly understood that the invention is not limited thereto but may be otherwise variously embodied within the scope of the following claim.
We claim:
A dispenser for liquid detergents and rinse-aid compositions adapted to be placed in a hot water dishwasher to rave dispense liquids into said dishwasher, comprising (a) an open reservoir having a peripheral lip attached thereto and spaced therefrom; (b) an airtight rigid container body having an opening adapted to receive said reservoir and peripherally contact said peripheral lip; (c) a container closure adapted to seal the opening of said container body in airtight relation to said peripheral lip and said container body; and (d) a tube mounted on and adapted to pass through said closure, said tube having an opening within said reservoir and an opening without said closure, whereby the interior of the tube is subject to no pressure influences other than through said openings, so that, when the container body is heated by hot water and gases in the dishwasher, the expansion of air and heating of the liquid in the dispenser will cause liquid in the reservoir to be forced up the tube and into the dishwasher in a predetermined amount dependent upon the depth to which the tube extends into the reservoir.
References Cited in the file of this patent UNITED STATES PATENTS 1,770,185 Stewart July 8, 1930 2,022,271 Bibb Nov. 26, 1935 2,089,303 Sica Aug. 10, 1937 2,331,117 Goodhue et al Oct. 5, 1943 2,560,523 Eflord July 10, 1951 2,619,088 Saflir Nov. 25, 1952 2,698,022 Fahnoe Dec. 28, 1954 2,728,491 Aneshansley Dec. 27, 1955 2,948,436 Federighi et al. Aug. 9, 1960
US847712A 1959-10-21 1959-10-21 Liquid dispenser Expired - Lifetime US3045872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US847712A US3045872A (en) 1959-10-21 1959-10-21 Liquid dispenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US847712A US3045872A (en) 1959-10-21 1959-10-21 Liquid dispenser

Publications (1)

Publication Number Publication Date
US3045872A true US3045872A (en) 1962-07-24

Family

ID=25301312

Family Applications (1)

Application Number Title Priority Date Filing Date
US847712A Expired - Lifetime US3045872A (en) 1959-10-21 1959-10-21 Liquid dispenser

Country Status (1)

Country Link
US (1) US3045872A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049156A (en) * 1975-09-04 1977-09-20 Chardon Laboratories, Inc. Thermally-responsive liquid dispenser
US5102400A (en) * 1985-11-20 1992-04-07 Saul Leibinsohn Drip chamber for infusion apparatus
US5503801A (en) * 1993-11-29 1996-04-02 Cobe Laboratories, Inc. Top flow bubble trap apparatus
US5591251A (en) * 1993-11-29 1997-01-07 Cobe Laboratories, Inc. Side flow bubble trap apparatus and method
US6270782B1 (en) * 1999-10-22 2001-08-07 Bath & Body Works, Inc. Body spray composition with pearl-like oil phase droplets in container
EP1174690A2 (en) * 2000-07-17 2002-01-23 Klaus Michael Andreas Vollrath Liquid dispenser
US20140001214A1 (en) * 2010-07-26 2014-01-02 Ecolab Usa Inc. Metered dosing bottle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1770185A (en) * 1928-11-14 1930-07-08 Robert A Stewart Dose dispenser
US2022271A (en) * 1935-04-29 1935-11-26 Thomas W Bibb Oil can
US2089303A (en) * 1937-04-07 1937-08-10 Horn And Hardart Baking Compan Hot water urn
US2331117A (en) * 1941-10-03 1943-10-05 Claude R Wickard Dispensing apparatus
US2560523A (en) * 1950-01-31 1951-07-10 Bridgeport Brass Co Thermally actuated sprayer
US2619088A (en) * 1947-11-17 1952-11-25 Jacob A Saffir Hypodermic solution container
US2698022A (en) * 1948-12-30 1954-12-28 Gen Aniline & Film Corp Dispenser for liquid detergents
US2728491A (en) * 1952-03-22 1955-12-27 Ncr Co Liquid dispensers
US2948436A (en) * 1958-07-21 1960-08-09 George J Federighi Automatic drying agent rinse injector for dishwashing machines

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1770185A (en) * 1928-11-14 1930-07-08 Robert A Stewart Dose dispenser
US2022271A (en) * 1935-04-29 1935-11-26 Thomas W Bibb Oil can
US2089303A (en) * 1937-04-07 1937-08-10 Horn And Hardart Baking Compan Hot water urn
US2331117A (en) * 1941-10-03 1943-10-05 Claude R Wickard Dispensing apparatus
US2619088A (en) * 1947-11-17 1952-11-25 Jacob A Saffir Hypodermic solution container
US2698022A (en) * 1948-12-30 1954-12-28 Gen Aniline & Film Corp Dispenser for liquid detergents
US2560523A (en) * 1950-01-31 1951-07-10 Bridgeport Brass Co Thermally actuated sprayer
US2728491A (en) * 1952-03-22 1955-12-27 Ncr Co Liquid dispensers
US2948436A (en) * 1958-07-21 1960-08-09 George J Federighi Automatic drying agent rinse injector for dishwashing machines

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049156A (en) * 1975-09-04 1977-09-20 Chardon Laboratories, Inc. Thermally-responsive liquid dispenser
US5102400A (en) * 1985-11-20 1992-04-07 Saul Leibinsohn Drip chamber for infusion apparatus
US5503801A (en) * 1993-11-29 1996-04-02 Cobe Laboratories, Inc. Top flow bubble trap apparatus
US5591251A (en) * 1993-11-29 1997-01-07 Cobe Laboratories, Inc. Side flow bubble trap apparatus and method
US5674199A (en) * 1993-11-29 1997-10-07 Cobe Laboratories, Inc. Top flow bubble trap method
US6270782B1 (en) * 1999-10-22 2001-08-07 Bath & Body Works, Inc. Body spray composition with pearl-like oil phase droplets in container
EP1174690A2 (en) * 2000-07-17 2002-01-23 Klaus Michael Andreas Vollrath Liquid dispenser
EP1174690A3 (en) * 2000-07-17 2004-05-19 Klaus Michael Andreas Vollrath Liquid dispenser
US20140001214A1 (en) * 2010-07-26 2014-01-02 Ecolab Usa Inc. Metered dosing bottle
US9132440B2 (en) * 2010-07-26 2015-09-15 Ecolab Usa Inc. Metered dosing bottle
US9731307B2 (en) 2010-07-26 2017-08-15 Ecolab Usa Inc. Metered dosing bottle

Similar Documents

Publication Publication Date Title
US5054660A (en) Self-dosing measuring chamber and container
US5127553A (en) Metered liquid squeeze bottle
US4875600A (en) Device for dosing and dispensing a fluid product to be deposited freely in the mobile enclosure of a machine
US4625897A (en) Metering dispensers
US4875603A (en) Metered dispensing cap for tubes
US5358152A (en) Detergent doser
US5165576A (en) Dispenser for measured quantities of liquid
US20100213211A1 (en) Bottle Cap With Dosing and Pretreatment
US3767088A (en) Dosing closure
US3045872A (en) Liquid dispenser
US3029001A (en) Flexible dispensing closure for rigid containers
EP0405683B1 (en) Hollow body
US3402860A (en) Combination closure and liquid metering dispenser for squeeze bottles
US3190505A (en) Liquid dispensing
US3409184A (en) Liquid dispensing device
GB2067517A (en) Metering dispensers
US3094245A (en) Liquid dispenser
US4190180A (en) Liquid dispenser
US5405055A (en) Self-measuring liquid pour dispenser
US4162747A (en) Refill container for pumpable active ingredients of washing agents
US3224652A (en) Metering liquid dispenser
US4003503A (en) Dispensing device for highly viscous liquids supported in inclined position
US2428233A (en) Dispenser with trap chamber operated by tilting the container
US2524125A (en) Measuring trap having an air seal cutoff
US3651995A (en) Squeeze bottle with hydrostatic passage to restrain leakage