US3060515A - Method for conditioning thin sheets of a thermoplastic material to improve windability - Google Patents

Method for conditioning thin sheets of a thermoplastic material to improve windability Download PDF

Info

Publication number
US3060515A
US3060515A US35343A US3534360A US3060515A US 3060515 A US3060515 A US 3060515A US 35343 A US35343 A US 35343A US 3534360 A US3534360 A US 3534360A US 3060515 A US3060515 A US 3060515A
Authority
US
United States
Prior art keywords
roll
film
web
thermoplastic material
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US35343A
Inventor
Herbert O Corbett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Petrochemicals Inc
Original Assignee
National Destillers and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Destillers and Chemical Corp filed Critical National Destillers and Chemical Corp
Priority to US35343A priority Critical patent/US3060515A/en
Priority to GB20982/61A priority patent/GB948805A/en
Priority to LU40245D priority patent/LU40245A1/xx
Application granted granted Critical
Publication of US3060515A publication Critical patent/US3060515A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C29/00Finishing or dressing, of textile fabrics, not provided for in the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/32Coiling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts

Definitions

  • the present invention relates to a method for producing smooth finished rools of thin plastic materials. More particularly this invention relates to a method of overcoming the effects of improper tension control in the winding of thin film webs, and the effects produced by shrinkage and density changes in the film as wound.
  • FIG. 1 is a diagrammatic view in side elevation of a film winding system as contemplated by the present invention.
  • FIG. 2 is an enlarged showing of a pair of nip rolls as employed in FIG. 1.
  • FIG. 1 in this figure is shown an end view of a roll winding shaft 1, adapted to receive a roll center tube 2, on which is wound a web of a thermoplastic material 3.
  • the web 3 is derived from a conventional source (not shown), as by extrusion in either a sheeted, or lay-flat tubular form.
  • the film indicated in the drawing may be a wide sheet previously folded, one or more times, in a longitudinal direction.
  • the film 3 is led under, around, and over a first nip roll 4.
  • a second nip roll 5 is disposed for pressure contact with the roll 4, and the film 3 is passed therebetween,
  • the film passes under an idler, guide roll 6.
  • the roll 6 is a dancer roll. This is one which is resiliently mounted so as to apply a substan tially uniform tension to the web as it is wound upon the center tube 2, by the shaft 1.
  • the shaft 1 and the nip rolls 4 and 5 are driven, by means not shown.
  • the winding shaft 1, and the ni rolls are driven at a uniform or synchronous rate of speed, and by the same drive means.
  • the dancer roll 6 is adjusted so as to compensate for any slight speed variation, while maintaining a substantially uniform tension in the web as wound.
  • the roll 4 is formed by a relatively thick cylinder of a resilient material, such as 70 durometer rubber or equal, mounted or coated on a steel center shaft 4a.
  • the material preferably contemplated is that defined per ASTM standard D 676-55 T-Shore type A.
  • the roll 5 is of steel, having a shaft 5a and is embossed, as by conventional engraving methods, and then chrome plated and polished. In FIG.
  • a typical embossing pattern is illustrated, wherein by engraving the roll surfac to form helical grooves 7 and 8 of opposite rotation, and to form a series of circumferential grooves 9 spaced longitudinally of the roll at points of intersection of the helical grooves, a pattern of equilateral triangular bosses is provided, wherein these bosses extend in alternate base to base, and apex to apex relationship in alternate, and oppositely arranged rows, longitudinally of the roll.
  • a similar result may be obtained by embossing the roll to provide a series of ridges corresponding to the grooves 7, 8 and 9 shown in FIG. 2.
  • FIG. 2 Also shown by FIG. 2, is one means for uniform, driven rotation of the rollers 4 and 5.
  • the shafts 4a and 5a are equipped with meshing spur gears 10 and 11 respectively, and the shaft 4a is additionally provided with a spur gear 12.
  • the spur gear 12 may be connected in a driving gear train to activate the rolls 4 and 5 through the gears 10 and 11. If desired, of course, the gear 12 may be replaced by a sprocket and sprocket chain drive, a pulley and belt drive, or the shaft 4a may be directly driven as from the shaft of an electric motor.
  • shaft support means, as well as means for adjusting and maintaining an interacting pressure between the rolls 4 and 5 is not shown. Such means of support, and means for holding the rolls under pressure are well known in the art, and do not require any distinctive modification to permit their employment in the manner contemplated according to the present invention.
  • a thin film Web being Wound is embossed immedaitely prior to being laid up on the roll. Embossing of the film is accomplished by pressing the film between a smooth resilient surface, and a non-resilient embossed surface. As shown in the drawings, this may be acomplished immediately prior to rolling of the film, by passing the film over and between two nip rolls such as the rolls 4 and 5, wherein the one roll (4) presents a smooth, resilient surface, and the other roll (5) presents a non-resilient, embossed surface.
  • Pressure on and between the rolls 4 and 5 is adjusted and maintained at a level sufficient to press the embossed areas of the non-resilient roll into the surface of the resilient roll to a degree sufiicient to impress the embossed roll pattern into the material of the film web, without exceeding the elastic limit of the web material.
  • the web as wound on the roll is distorted in a regular pattern of raised and depressed areas which tend to reduce the length and width of the web, while retaining a uniformly distributed excess of material in each layer as wound upon the roll.
  • the elastic limit of the web material will permit the material to return to its original smooth sheet condition after a certain period of rest, or by the applied force of internal tension. Such tension force will result from the characteristic shrinkage and material density changes which occur in the material as it ages and sets.
  • the additional material made available in each Web layer on the roll by the embossing step compensates for the effects of characteristic shrinkage and density change therein, preventing the formation of wrinkle ridges, and depressions in the finished, rolled web.
  • the terms elastic limit and elastic memory may be defined in the manner according to A.S.T.M. D638-52T, page 32.
  • the grooves, ridges, and bosses provided on the surface of the embossing roller preferably are limited to a vertical or radial dimension in the range of from about 0.002 to about 0.0005 of an inch, with the ridges or grooves having a lateral dimension of from about & to about Ms of an inch.
  • the spacing of the grooves or ridges on the embossed roll surface is arranged to form not substantially less than about 64 raised or depressed bosses per square inch in the treated web material.
  • a preferred technique is to form between about 1024 and about 64 bosses per square foot. Under such conditions the web material may be embossed at pressures between the rollers in the range of from about 25 to about 150 pounds per square inch. 1
  • a method of preconditioning said materials whereby to improve the finished apearance of said rolls after storage which comprises temporarily embossing said sheets to produce a regular embossed pattern in said sheet immediately prior to laying said sheet upon a roll thereof, and under conditions such as to avoid distortion of the film material in excess of its elastic limit, and to produce a uniformly distributed excess of said thermoplastic material in each layer on said roll, which excess is substantially compensatory for overall longitudinal and lateral dimensional reduction of the material in each layer produced by shrinkage and density change therein.
  • said regular embossed pattern comprises a series of raised bosses separated by intersecting channel-like areas on one side of said sheet, and on the opposite side thereof, a series of intersecting ridges separating depressed areas enclosed thereby.
  • channel-like areas and intersecting ridges are of a vertical dimension substantially in the range of from about .0002 to about .0005 of an inch, and a lateral dimension of from about 6 to about A3 of an inch.

Description

Oct. 30, 1962 H. o. CORBEIT 3,060,515
METHOD FOR CONDITIONING THIN OF A THERMOPLASTIC MATERIAL TO IMPROVE WINDABILITY Filed June 10, 1960 FROM PROCESS FIG.2
HERBERT O. CORBETT INVENTOR.
3,059,515 Patented Oct. 30, 1962 ice 3,060,515 METHOD FOR CONDITIONING THIN SHEETS OF A THERMOPLASTIC MATERIAL TO IMPROVE WINDABILITY Herbert 0. Corbett, Canandaigua, N.Y., assignor to National Distillers and Chemical Corporation, New York, N.Y., a corporation of Virginia Filed June 10, 1960, Ser. No. 35,343 Claims. (CI. 18-48) The present invention relates to a method for producing smooth finished rools of thin plastic materials. More particularly this invention relates to a method of overcoming the effects of improper tension control in the winding of thin film webs, and the effects produced by shrinkage and density changes in the film as wound.
In the winding of thin plastic films into rolls, as usually required for use in automatic dispensing and packaging machinery, it is extremely difficult to adjust the winding tension. Furthermore, even though this initial winding tension is originally and continuously established, to produce a roll of initially good appearance, other factors produce abnormal conditions in the wound film. These conditions result, primarily, from the effects of shrinkage and density change, normal to films of any gauge, but particularly critical in films having a gauge less than .002 inch, and particularly less than .001 inch.
When films of these densities are wound and stored for a period of more than one-half hour, the shrinkage, and density increase, characteristically inherent in the material, produce forces which cause the wound film roll to develop a series of small depressed areas and/ or rings or ridges circumferentially of the roll. Such irregularities in the roll of a thin film detracts from the appearance of the roll and, where the roll is stored for some extended period of time, may result in permanent deformation of the film web. This is especially true if the deformation exceeds the elastic limit of the material.
It is an object of the present invention to compensate for characteristic shrinkage and density change in the film material, whereby to avoid the development of depressions or ridges in the wound film. It is also an object of this invention to produce a film roll wherein the film material will substantially maintain a uniformly smooth and finished surface appearance, even after storage for extended periods. It is a further object of the invention to avoid permanent deformation of a thin thermoplastic film material as a result of excessive tension exerted thereon by shrinkage and density changes occurring subsequent to being wound under the initial tension required for micetive roll winding procedures.
The invention and its objects may be more fully understood from the following description, when it is read with reference to the accompanying drawings, wherein:
FIG. 1 is a diagrammatic view in side elevation of a film winding system as contemplated by the present invention; and
FIG. 2 is an enlarged showing of a pair of nip rolls as employed in FIG. 1.
In the drawings, like parts are designated by the same numerals.
Referring now to FIG. 1, in this figure is shown an end view of a roll winding shaft 1, adapted to receive a roll center tube 2, on which is wound a web of a thermoplastic material 3. The web 3 is derived from a conventional source (not shown), as by extrusion in either a sheeted, or lay-flat tubular form. On occasion, the film indicated in the drawing may be a wide sheet previously folded, one or more times, in a longitudinal direction.
The film 3 is led under, around, and over a first nip roll 4. A second nip roll 5 is disposed for pressure contact with the roll 4, and the film 3 is passed therebetween,
so as to move under, around and over the roll 5. In the path followed by the film, it is in contact with each of the nip rolls 4 and 5 for at least of their respective circumferential surfaces.
Leaving the roll 5, the film passes under an idler, guide roll 6. Preferably, the roll 6 is a dancer roll. This is one which is resiliently mounted so as to apply a substan tially uniform tension to the web as it is wound upon the center tube 2, by the shaft 1.
The shaft 1 and the nip rolls 4 and 5 are driven, by means not shown. Preferably the winding shaft 1, and the ni rolls are driven at a uniform or synchronous rate of speed, and by the same drive means. In any event, the dancer roll 6 is adjusted so as to compensate for any slight speed variation, while maintaining a substantially uniform tension in the web as wound.
In FIG. 2, the nature of the nip rolls 4 and 5 are more clearly shown. The roll 4 is formed by a relatively thick cylinder of a resilient material, such as 70 durometer rubber or equal, mounted or coated on a steel center shaft 4a. The material preferably contemplated is that defined per ASTM standard D 676-55 T-Shore type A. The roll 5 is of steel, having a shaft 5a and is embossed, as by conventional engraving methods, and then chrome plated and polished. In FIG. 2, a typical embossing pattern is illustrated, wherein by engraving the roll surfac to form helical grooves 7 and 8 of opposite rotation, and to form a series of circumferential grooves 9 spaced longitudinally of the roll at points of intersection of the helical grooves, a pattern of equilateral triangular bosses is provided, wherein these bosses extend in alternate base to base, and apex to apex relationship in alternate, and oppositely arranged rows, longitudinally of the roll. A similar result may be obtained by embossing the roll to provide a series of ridges corresponding to the grooves 7, 8 and 9 shown in FIG. 2.
Also shown by FIG. 2, is one means for uniform, driven rotation of the rollers 4 and 5. As shown, the shafts 4a and 5a are equipped with meshing spur gears 10 and 11 respectively, and the shaft 4a is additionally provided with a spur gear 12. The spur gear 12 may be connected in a driving gear train to activate the rolls 4 and 5 through the gears 10 and 11. If desired, of course, the gear 12 may be replaced by a sprocket and sprocket chain drive, a pulley and belt drive, or the shaft 4a may be directly driven as from the shaft of an electric motor. In FIG. 2, shaft support means, as well as means for adjusting and maintaining an interacting pressure between the rolls 4 and 5 is not shown. Such means of support, and means for holding the rolls under pressure are well known in the art, and do not require any distinctive modification to permit their employment in the manner contemplated according to the present invention.
In the method and operation contemplated according to the present invention, a thin film Web being Wound, as on the roll center tube 2, is embossed immedaitely prior to being laid up on the roll. Embossing of the film is accomplished by pressing the film between a smooth resilient surface, and a non-resilient embossed surface. As shown in the drawings, this may be acomplished immediately prior to rolling of the film, by passing the film over and between two nip rolls such as the rolls 4 and 5, wherein the one roll (4) presents a smooth, resilient surface, and the other roll (5) presents a non-resilient, embossed surface.
Pressure on and between the rolls 4 and 5 is adjusted and maintained at a level sufficient to press the embossed areas of the non-resilient roll into the surface of the resilient roll to a degree sufiicient to impress the embossed roll pattern into the material of the film web, without exceeding the elastic limit of the web material. By this procedure, the web as wound on the roll is distorted in a regular pattern of raised and depressed areas which tend to reduce the length and width of the web, while retaining a uniformly distributed excess of material in each layer as wound upon the roll.
If the elastic limit of the web material is not exceeded, the elastic memory of the material will permit the material to return to its original smooth sheet condition after a certain period of rest, or by the applied force of internal tension. Such tension force will result from the characteristic shrinkage and material density changes which occur in the material as it ages and sets. The additional material made available in each Web layer on the roll by the embossing step, compensates for the effects of characteristic shrinkage and density change therein, preventing the formation of wrinkle ridges, and depressions in the finished, rolled web. As employed in this description, the terms elastic limit and elastic memory may be defined in the manner according to A.S.T.M. D638-52T, page 32.
In the rolling of thin web materials, having a gauge less than .002 of an inch, the grooves, ridges, and bosses provided on the surface of the embossing roller preferably are limited to a vertical or radial dimension in the range of from about 0.002 to about 0.0005 of an inch, with the ridges or grooves having a lateral dimension of from about & to about Ms of an inch. In addition, the spacing of the grooves or ridges on the embossed roll surface is arranged to form not substantially less than about 64 raised or depressed bosses per square inch in the treated web material. A preferred technique is to form between about 1024 and about 64 bosses per square foot. Under such conditions the web material may be embossed at pressures between the rollers in the range of from about 25 to about 150 pounds per square inch. 1
What is claimed is:
1. In the forming of rolls from sheets of thin thermoplastic materials, a method of preconditioning said materials whereby to improve the finished apearance of said rolls after storage which comprises temporarily embossing said sheets to produce a regular embossed pattern in said sheet immediately prior to laying said sheet upon a roll thereof, and under conditions such as to avoid distortion of the film material in excess of its elastic limit, and to produce a uniformly distributed excess of said thermoplastic material in each layer on said roll, which excess is substantially compensatory for overall longitudinal and lateral dimensional reduction of the material in each layer produced by shrinkage and density change therein.
2. A method according to claim 1, wherein said regular embossed pattern comprises a series of raised bosses separated by intersecting channel-like areas on one side of said sheet, and on the opposite side thereof, a series of intersecting ridges separating depressed areas enclosed thereby.
3. A method according to claim 2, wherein said channel-like areas and intersecting ridges are of a vertical dimension substantially in the range of from about .0002 to about .0005 of an inch, and a lateral dimension of from about 6 to about A3 of an inch.
4. A method according to claim 2, wherein said raised bosses and depressed areas form a pattern which includes from about 1024 to about 64 such bosses and areas per square foot.
5. A method according to claim 1, wherein said embossed pattern is impressed on said sheet under a pressure in the range of from about 25 to about 150 pounds per square inch.
References Cited in the file of this patent UNITED STATES PATENTS 2,609,568 Getchell Sept. 9, 1952 2,976,567 Jones et al Mar. 28, 1961 FOREIGN PATENTS 550,534 Great Britain Ian. 13, 1943
US35343A 1960-06-10 1960-06-10 Method for conditioning thin sheets of a thermoplastic material to improve windability Expired - Lifetime US3060515A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US35343A US3060515A (en) 1960-06-10 1960-06-10 Method for conditioning thin sheets of a thermoplastic material to improve windability
GB20982/61A GB948805A (en) 1960-06-10 1961-06-09 A method for conditioning thin webs of a thermoplastic material to improve windability
LU40245D LU40245A1 (en) 1960-06-10 1961-06-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US35343A US3060515A (en) 1960-06-10 1960-06-10 Method for conditioning thin sheets of a thermoplastic material to improve windability

Publications (1)

Publication Number Publication Date
US3060515A true US3060515A (en) 1962-10-30

Family

ID=21882080

Family Applications (1)

Application Number Title Priority Date Filing Date
US35343A Expired - Lifetime US3060515A (en) 1960-06-10 1960-06-10 Method for conditioning thin sheets of a thermoplastic material to improve windability

Country Status (3)

Country Link
US (1) US3060515A (en)
GB (1) GB948805A (en)
LU (1) LU40245A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158670A (en) * 1961-05-15 1964-11-24 Ht Res Inst Method and means for producing magnetic record members
US3213172A (en) * 1961-05-25 1965-10-19 Dow Chemical Co Chill-roll casting method for producing film from thermoplastic polymers
US3471604A (en) * 1966-02-16 1969-10-07 Phillips Petroleum Co Preworking film
US3484835A (en) * 1968-06-25 1969-12-16 Clopay Corp Embossed plastic film
US3911187A (en) * 1973-12-26 1975-10-07 Ethyl Corp Embossed plastic film
US3956450A (en) * 1971-07-19 1976-05-11 Dainippon Ink And Chemicals, Incorporated Binding strap, and process for manufacturing same
US4105491A (en) * 1975-02-21 1978-08-08 Mobil Oil Corporation Process and apparatus for the manufacture of embossed film laminations
US4138458A (en) * 1976-08-13 1979-02-06 Imperial Chemical Industries Limited Cooling thermoplastic tubes
US4185068A (en) * 1973-09-05 1980-01-22 Hoechst Aktiengesellschaft Process for preparing a web of film prior to winding it into a wound roll
US4211743A (en) * 1978-05-24 1980-07-08 Nauta Roll Corporation Apparatus and method for embossing web material
US4255381A (en) * 1975-02-28 1981-03-10 General Electric Company Textured surface polypropylene film
US4360552A (en) * 1975-02-28 1982-11-23 General Electric Company Textured surface polypropylene film
US4379774A (en) * 1980-09-26 1983-04-12 Hoechst Aktiengesellschaft Process for the production of biaxially stretched and embossed film composed of vinyl chloride polymers
US4810451A (en) * 1986-07-18 1989-03-07 Wolff Walsrode Aktiengesellschaft Process for the preparation of polyurethane films for blood or infusion bags
US5648107A (en) * 1993-10-15 1997-07-15 Seiji Kagawa Porous film manufacturing apparatus
US20020127369A1 (en) * 2000-10-02 2002-09-12 Ackerman Bryan L. Processing substrate and/or support surface
US20030104092A1 (en) * 2001-12-03 2003-06-05 Kunitsugu Suzuki Plastic sheet processing apparatus
US20040113307A1 (en) * 2002-09-19 2004-06-17 The Nippon Synthetic Chemical Industry Co., Ltd. Process for preparing polyvinyl alcohol film and polarizing film using the same
US6979485B2 (en) 2000-10-02 2005-12-27 S.C. Johnson Home Storage, Inc. Processing substrate and/or support surface
US20060016501A1 (en) * 2002-10-25 2006-01-26 Jacques Benquet Method for making plastic or metalloplastic flexible tubes
US6991844B2 (en) 2000-10-02 2006-01-31 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US7022395B2 (en) 2000-10-02 2006-04-04 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US7026034B2 (en) 2003-02-11 2006-04-11 S.C. Johnson Home Storage, Inc. Processing substrate and method of manufacturing same
US7056569B2 (en) 2000-10-02 2006-06-06 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US7063879B2 (en) 2000-10-02 2006-06-20 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US7063880B2 (en) 2000-10-02 2006-06-20 S.C. Johnson Home Storage, Inc. Sheet material and manufacturing method and apparatus therefor
US7078088B2 (en) 2000-10-02 2006-07-18 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US20080260996A1 (en) * 2002-12-20 2008-10-23 The Procter & Gamble Company Apparatus and process for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto
US20090114347A1 (en) * 2006-03-15 2009-05-07 Fabio Perini S.P. A. Embossing Roller And Method For The Manufacturing Thereof
CN111300805A (en) * 2020-02-24 2020-06-19 杜肯新材料(武汉)集团股份有限公司 Rubber-plastic foaming thermal insulation material and production tool and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB550534A (en) * 1940-07-10 1943-01-13 Du Pont Improved plastic sheeting and its applications
US2609568A (en) * 1950-10-20 1952-09-09 Perkins & Son Inc B F Apparatus and method of embossing thermoplastic sheets
US2976567A (en) * 1957-10-16 1961-03-28 Dow Chemical Co Process and apparatus for upgrading thermoplastic film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB550534A (en) * 1940-07-10 1943-01-13 Du Pont Improved plastic sheeting and its applications
US2609568A (en) * 1950-10-20 1952-09-09 Perkins & Son Inc B F Apparatus and method of embossing thermoplastic sheets
US2976567A (en) * 1957-10-16 1961-03-28 Dow Chemical Co Process and apparatus for upgrading thermoplastic film

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158670A (en) * 1961-05-15 1964-11-24 Ht Res Inst Method and means for producing magnetic record members
US3213172A (en) * 1961-05-25 1965-10-19 Dow Chemical Co Chill-roll casting method for producing film from thermoplastic polymers
US3471604A (en) * 1966-02-16 1969-10-07 Phillips Petroleum Co Preworking film
US3484835A (en) * 1968-06-25 1969-12-16 Clopay Corp Embossed plastic film
US3956450A (en) * 1971-07-19 1976-05-11 Dainippon Ink And Chemicals, Incorporated Binding strap, and process for manufacturing same
US4185068A (en) * 1973-09-05 1980-01-22 Hoechst Aktiengesellschaft Process for preparing a web of film prior to winding it into a wound roll
US3911187A (en) * 1973-12-26 1975-10-07 Ethyl Corp Embossed plastic film
US4105491A (en) * 1975-02-21 1978-08-08 Mobil Oil Corporation Process and apparatus for the manufacture of embossed film laminations
US4255381A (en) * 1975-02-28 1981-03-10 General Electric Company Textured surface polypropylene film
US4360552A (en) * 1975-02-28 1982-11-23 General Electric Company Textured surface polypropylene film
US4138458A (en) * 1976-08-13 1979-02-06 Imperial Chemical Industries Limited Cooling thermoplastic tubes
US4211743A (en) * 1978-05-24 1980-07-08 Nauta Roll Corporation Apparatus and method for embossing web material
US4379774A (en) * 1980-09-26 1983-04-12 Hoechst Aktiengesellschaft Process for the production of biaxially stretched and embossed film composed of vinyl chloride polymers
US4810451A (en) * 1986-07-18 1989-03-07 Wolff Walsrode Aktiengesellschaft Process for the preparation of polyurethane films for blood or infusion bags
US5648107A (en) * 1993-10-15 1997-07-15 Seiji Kagawa Porous film manufacturing apparatus
US6979485B2 (en) 2000-10-02 2005-12-27 S.C. Johnson Home Storage, Inc. Processing substrate and/or support surface
US7063880B2 (en) 2000-10-02 2006-06-20 S.C. Johnson Home Storage, Inc. Sheet material and manufacturing method and apparatus therefor
US7078088B2 (en) 2000-10-02 2006-07-18 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US20020127369A1 (en) * 2000-10-02 2002-09-12 Ackerman Bryan L. Processing substrate and/or support surface
US6986931B2 (en) 2000-10-02 2006-01-17 S.C. Johnson & Son, Inc. Disposable cutting sheet
US7063879B2 (en) 2000-10-02 2006-06-20 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US6991844B2 (en) 2000-10-02 2006-01-31 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US7022395B2 (en) 2000-10-02 2006-04-04 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US7056569B2 (en) 2000-10-02 2006-06-06 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US20030104092A1 (en) * 2001-12-03 2003-06-05 Kunitsugu Suzuki Plastic sheet processing apparatus
US20040113307A1 (en) * 2002-09-19 2004-06-17 The Nippon Synthetic Chemical Industry Co., Ltd. Process for preparing polyvinyl alcohol film and polarizing film using the same
US7517478B2 (en) * 2002-09-19 2009-04-14 The Nippon Synthetic Chemical Industry Co. Ltd. Process for preparing polyvinyl alcohol film and polarizing film using the same
US20060016501A1 (en) * 2002-10-25 2006-01-26 Jacques Benquet Method for making plastic or metalloplastic flexible tubes
US9498794B2 (en) 2002-12-20 2016-11-22 The Procter & Gamble Company Process for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto
US20080260996A1 (en) * 2002-12-20 2008-10-23 The Procter & Gamble Company Apparatus and process for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto
US7938635B2 (en) 2002-12-20 2011-05-10 The Procter & Gamble Company Apparatus for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto
US20110206904A1 (en) * 2002-12-20 2011-08-25 Laura Lynn Heilman Process for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto
US9957361B2 (en) 2002-12-20 2018-05-01 The Procter & Gamble Company Process for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto
US7026034B2 (en) 2003-02-11 2006-04-11 S.C. Johnson Home Storage, Inc. Processing substrate and method of manufacturing same
US20090114347A1 (en) * 2006-03-15 2009-05-07 Fabio Perini S.P. A. Embossing Roller And Method For The Manufacturing Thereof
US8973267B2 (en) * 2006-03-15 2015-03-10 Fabio Perini, S.P.A. Embossing roller and method for the manufacturing thereof
CN111300805A (en) * 2020-02-24 2020-06-19 杜肯新材料(武汉)集团股份有限公司 Rubber-plastic foaming thermal insulation material and production tool and production method thereof

Also Published As

Publication number Publication date
LU40245A1 (en) 1961-08-10
GB948805A (en) 1964-02-05

Similar Documents

Publication Publication Date Title
US3060515A (en) Method for conditioning thin sheets of a thermoplastic material to improve windability
US3857144A (en) Method of embossing limp plastic sheet material
US4211743A (en) Apparatus and method for embossing web material
US3233029A (en) Method of cold-stretching orientable sheet material
US4079114A (en) Method and apparatus for embossing sheets
US3024154A (en) Method and apparatus for embossing and printing thermoplastic film and the product thereof
US3760940A (en) Method of embossing thin, limp plastic film, and disposable and embossed plastic bag product
JP2577784B2 (en) Method and apparatus for manufacturing perforated film
US4368565A (en) Grooved roller assembly for laterally stretching film
IL138118A0 (en) Method and device for producing an embossed web material and product made in this way
US4247273A (en) Method and an apparatus for cambering the edges of webs of thermoplastic materials on one and both sides using the energy of ultrasonic vibration
GB1258720A (en)
JPH0359826B2 (en)
KR960017113A (en) Process for producing embossing rolls for continuously forming irregularities on the surface of the thermoplastic film
DE3007873A1 (en) METHOD FOR PRODUCING EMBOSSED PATHS FROM THERMOPLASTIC FILM
KR960021488A (en) Method and apparatus for producing oriented plastic straps and straps produced thereby
TW206994B (en)
FR2142591A1 (en) Plastics coated press - for surfacing corrugated paper
GB1327181A (en) Method of making an embossing roller
GB1493512A (en) Embossed thermoplastic material
GB1301198A (en) Method of embossing plastics film and manufacturing a bag structure
US3484839A (en) Method of producing crinkly corrugations in a sheet of synthetic plastic material
US2934865A (en) Method of packaging and sheet material for same
US4185068A (en) Process for preparing a web of film prior to winding it into a wound roll
JPS644303A (en) Extrusion forming device