US3193404A - Associated dye salts and method of forming colored indicia therewith - Google Patents

Associated dye salts and method of forming colored indicia therewith Download PDF

Info

Publication number
US3193404A
US3193404A US200052A US20005262A US3193404A US 3193404 A US3193404 A US 3193404A US 200052 A US200052 A US 200052A US 20005262 A US20005262 A US 20005262A US 3193404 A US3193404 A US 3193404A
Authority
US
United States
Prior art keywords
dye
colored
salt
cation
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US200052A
Inventor
Davis Chester
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27507644&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3193404(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US200052A priority Critical patent/US3193404A/en
Priority to US372362A priority patent/US3278327A/en
Application granted granted Critical
Publication of US3193404A publication Critical patent/US3193404A/en
Priority to BE675498A priority patent/BE675498A/xx
Priority to FR50594A priority patent/FR1469809A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • B41M5/132Chemical colour-forming components; Additives or binders therefor
    • B41M5/136Organic colour formers, e.g. leuco dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/025Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet
    • B41M5/0253Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet using a chemical colour-forming ink, e.g. chemical hectography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • B41M5/323Organic colour formers, e.g. leuco dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S101/00Printing
    • Y10S101/29Printing involving a color-forming phenomenon

Definitions

  • the purpose of this invention is to describe a new type of recording system which depends for its action upon the equilibrium between a colored and a colorless dye salt.
  • the sulfinic acid salts and hydrazoic acid salts of intensely colored cations from diarylmethane and triarylmethane dye bases characterized by a logarithmic dissociation constant below 7 may exist in two forms: (1) an intensely colored dissociated form and (2) a substantially colorless associated form depending upon environmental conditions (solvent, temperature, etc.) which prevail.
  • the author of the present invention has now found that the sulfinic acid salts and hydrazoic acid salts of diarylmethane and triaryhnethane color bases characterized by a logarithmic dissociation constant below 7 may exist completely in the colored dissociated form, completely in the substantially colorless associated form, or in equilibrium between the two forms depending upon the ionization power of their environment.
  • Y is chosen from the group consisting of aliphatic radicals having from one to twelve carbon atoms, phenyl, and substituted phenyl.
  • the quanticule (e v) of the sulfinate and azide ions contribute to the screening of the central carbon core only under low energy conditions; but upon exposure to higher energy, ionizing conditions, the central 'core is now adequately screened by only three substituents, and the molecule ionizes.
  • Crystal Violet Cyanide apparently is due to the fact that the electrically unbalanced cyanide ion eflectively distorts the Crystal Violet ion so that maximum screening of the central core is achieved. So strongly screened is the central core in Crystal Violet Cyanide that dissociation occurs only under the highenergy conditions existing in the far ultra-violet region; and Crystal Violet Cyanide cannot be dissociated by heat or chemical action alone (lead peroxide will not oxidize it to Crystal Violet dye). Only in alcohol solutions (and in similar ionizing solvents) exposed to extremely high-energy ionizing radiation will the molecule ionize. This is not remarkable; for in this high-energy spectral region even oxygen dissociates to form ozone.
  • the dye salts of the present invention are chosen so that an essentially unsaturated core is completely screened by other groups only at low-energy (normal) conditions. Upon exposure to a high-energy environment, the core is then adequately screened by fewer groups; and the molecule dissociates into ions, at least one of which is colored.
  • the dye salt to be used for a given application becomes a matter of determining the screening characteristics of the ions used.
  • Previous experience in this area before the work of the author of the present invention is extremely limited. Many chemists assume that all organic azides are dangerously explosive; yet the author of the present invention has found certain organic azides (which are ionic in character but are not ionized) to be quite stable. Michlers hydrol azide, for example, melts at C. and begins to decompose slowly at 160-220 C., resembling sodium azide in this respect. No explosion has ever been obtained under normal working conditions with this compound, which is very soluble in toluene.
  • these 'salts are for the most part the salts, of weak bases and moderately strong acids. It is axiomatic in chemistry that the salts of strong bases-strong acids (sodium chloride, Crystal Violet Chloride, etc.) are always one hundred percent dissociated; but the salts of weak acids-strong bases and of weak bases-strong acids may be more or less associ-' the calcium silicate gives acidic and ion-exchange properties to the clayybut it is the polymerized silica structure which gives a high electric dipolemoment over the surface of the clay. This electric dipole is stable until the clay is calcined at high temperature, at which point the electric dipole moment disappears; and the aforementioned clays lose their ionizing properties.
  • strong bases-strong acids sodium chloride, Crystal Violet Chloride, etc.
  • the compounds of the present invention offer certain advantages over the color bases from which they are derived: (1) As the method of color formation by dissociation is diiierent from the method of color formation by reaction of a dye base with an acid, there is oftentimes This is achieved in can form undissociated dye salts with suitable anions-as 'well as dissociated dye salts'with other anions. Similarly,
  • Dinitro Crystal Violet Base for example, when pure forms a colored salt with acid silicates only very slowly (3-5 minutes or longer); but the dissociation of Dinitro Crystal Violet Azide to the colored ion under the influence of the acid silicates electric dipole moment isimmediate, and the intense colored print appears immediately upon recording'with this azide.
  • the associated salts formed can be-more safely handled without chemical staining than can the more reactive color bases because of lower water-solubility (i.e., they are less-soluble in the skin perspiration).
  • Dinitro Crystal Violet Carbinol, and other compounds of this type are dissolved in glacial acetic acid to form the intensely colored acetate.
  • the desiredsulfinic acid either as the free sulfinic acid or as its sodium salt (the sodium salt form is preferred because the sulfinic acid salts have greater 'markedly lighter color.
  • the sulfinate may deposit at this time or may be retained in solution.
  • the solution is then'poured into. cold water or cold ammonium hydroxide solution to precipitate out the. water-insoluble sulfinate.
  • the precipitate is collected, washed with water, dried, and recrystallized from alcohol to give the colorless sulfinate.
  • V V The reaction may be carried out in dilute aqueous acids or in acidic alcohol. All that is necessary is that the dye base should be convertedto the colored salt before adding the sulfinate ion.
  • the sulfinic acids may be obtained by decomposition of a sulfur-dioxide containing diazonium salt solution (Gattermann reaction), by reduction of the sulfonyl chloride with zinc duct or sodium sulfite, or by the aluminum chloride catalyzed addition of sulfur dioxide to an olefinic or aromatic compound.
  • the yield of 'colorless sulfinate is usually above ninety percent and is often quantitative.
  • Color is developed in the associated dye salts after they have been placed or transferred to a receiving sheet, as imprinted indicia, by exposing said receiving sheet to a. highly ionizing environment.
  • a. highly ionizing environment Three highly ionizing environments are particularly useful for this purpose. These are a polarizing reagent, a high temperature, and a surface carrying a high permanent electric dipole moment.
  • a recording fluid comprising a sulfinate salt and a solvent therefor is used to imprint indicia on an It is necessary therefore in the case of water as a developing reagent to use in addition to water a mutual solvent for it and the sultinate dye salt.
  • Among useful solvents are acetone, ethanol and other alcohols, dimethyl-sulfoxide and the like.
  • this surface comprises a third type of highly ionizing environment.
  • the associated dye salts of this invention dissociate immediately upon contact with a surface of this type, thus giving a highly colored cation directly.
  • a recording fluid or a transfer sheet employing associated dye salts can be used therefore in conjunction with a specially coated paper having a high permanent electric dipole moment to. provide novel recording systems.
  • Exemplary of the recording fluids of this invention is a recording fluid comprising a solution of Michlers hydrol diethylbenzenesulfinate in oleic acid, which solution can be used to saturate a stamp pad.
  • a recording fluid comprising a solution of Michlers hydrol diethylbenzenesulfinate in oleic acid, which solution can be used to saturate a stamp pad.
  • the stamp can be used to transfer the recording fluid to an ordinary sheet of paper in which case the color of the imparted indicia is developed by contacting the paper with a developing fluid comprising, for example, 25 percent water and 75 percent acetone.
  • recording systems of this invention can be prepared employing ethyl hydrol xylenesulfinate or an equivalent colorless dyestuff salt of the type described above.
  • a recording system of this type such as carbon paper
  • the associated dye salt is dispersed in a heavy oil or wax-oil mixture and applied to a master sheet.
  • Typewriter type, or a stylus when pressed against the surface of this master sheet, will cause some of the associated dye salt to be transferred to a receiving sheet. If the receiving sheet has an ionizing surface, an immediate color will develop comprising the colored cation of the dye. If an ordinary sheet is used, the color can be developed by the use of a developing fluid or by heat as previously described.
  • the surfaces whose use is indicated in conjunction with the associated dye salt of this invention are those which, as previously stated, bear a high permanent electric dipole moment. Numerous examples of this type of surface are known to the art. Unfired silicates are particularly useful in this regard. Examples of suitable ionizing surfaces are those prepared from unfired silicates such as kaolin, bentonite, and the like. Papers bearing such a coating can be manufactured by methods well known to the art.
  • the recording fluids and recording systems of this invention will not stain skin or fabrics until the final stage of their use when the color is developed in situ on an ionizing surface or by the use of developing chemicals or by heat.
  • carbon and other copy papers and master sheets prepared from the associated dye salts of this invention are either colorless or very lightly-colored.
  • the recording fluids and recording systems provided by this invention are especially advantageous when compared with those commonly employed.
  • the surfaces of most fabrics are not highly ionizing for the associated salts of the present invention, the recording fluids employed by this invention are nonstaining and therefore are particularly useful for the printing of price tags or quality control tags on bolts of goods, dresses, clothing and the like.
  • An example of a recording solution contains a colorless associted dye salt is a 2% solution of Michlers hydrol azide in parafiin oil. This gives an intense blue coloration with an unfired kaolin-coated receiving sheet.
  • Another example of this invention is a 2.5% solution of dinitro Crystal Violet Azide in toluene. This gives an immediate blue-black coloration with an unfired kaolincoated receiving sheet.
  • Another example of this invention is a 3% solution of ethyl hydrol xylenesulfinate in distilled oleic acid. This 7 gives an intense blue coloration with an unfired diatomaceous earth-coated paper. A blue coloration is also obtained when the colorless prints on ordinary paper are heated to about l50l75 C. i
  • Another example of this invention is a 2.5% solution of Michlers hydrol-Xylenesulfinate in chlorinated diphenyl. This gives an intense blue coloration upon contact with an activated silica-coated paper.
  • Still another example'of this invention is a 3% solu- 7 .tion of p-methoXy-p'-dimethylaminobenzhydryl azide in chlorinated diphenyl. This gives a wine-red color upon contact with an activated silica-coated paper. This has.
  • Still another example of this invention is a three percent solution ofdi'nitro Fuchsin-xylenesulfinate inchlorinated diphenyl. This gives a magenta color upon contact with an activated silica-coated paper.
  • Similar recording fluids can be prepared by substituting other associated salts of diarylmethane and triarylmethane dyes falling within the scope of this invention in the above nonionizing" solvents or their equivalents. These recording fluids will yield colored indicia upon contact with a highly ionizing surface or, if printed upon a plain surface,
  • the color can be developed by contacting the surface with an ionizing reagent such as aqueous alcohol or simply by applying heat to the surface.
  • an ionizing reagent such as aqueous alcohol
  • the associated salts of arylmethane dyes can be dissolved ina hot wax melt and then coated ontothe base web in a standard'hot melt coating machine.
  • the colorless dye salt should be sufficiently soluble in the cold wax mixture so that it does not crystallize out from the hot melt upon cooling.
  • temperatures in excess of 110 C. should be avoided since the compounds will dissociate into ions at temperatures much above 135 C.
  • fluids of this invention is prepared by melting together 35 parts of Gersthofen wax, parts of high-melting (155 F.) paralfin wax, and 50 parts of a nonvolatile parafiin plasticizing lubricating oil with a flash point over 400 F. and a viscosity of 150 Saybolt seconds. To this mixture is added'at 180 F. an amount of ethyl hydrol xylenesulfinate equal to 2.5 percent of the amount of lubricating oil used. The solution is stirred until clear, and
  • vent maybe used for direct printing on appropriately coated paper or the salt may be utilized as a component of associated dye salt of an organic sulfinic acid and an arylmethane dye base characterized by a logarithmic dissociation constant below 7wherein R+ is the dye cation and X is the sulfinic acid anion and an unfired silicate surface S characterized 'by high ionizing power wherein "represents the electric dipole moment'on the silicate surface.
  • FIGURE 2 represents the change which takes place when the colorless. associated molecules contact the electric dipole moment of the ionizing surface whereby dissociationof the colorless salt (E) to the intensely colored cation R+ 'of the dye occurs to form color on the ionizing surface.
  • the method of printing which comprises applying to anunfired silicate surface characterized by high ionizing power a substantially colorless associated salt of an arylthe moltenwax is applied to paper by standard coating procedures to give a coating weight of 5 lbs/ream.
  • Another example of the process of preparation of a transfer sheet utilizing the recording fluids of the present invention comprises melting together 36 parts by weight of refined ouricury wax, 19 parts by weight of a high melting parafiin wax, and 45 parts by weight of oleic acid containing3 percent Michlers hydrol diethylbenzenesulfinate. This melt is coated on paper at a temperature near the solidifying point in order to minimize strikethrough? into the base paper.
  • a transfer sheet prepared in this fashion when used in conjunction with a receiving sheet coated with unflred diatomaceous earth, gives an intense blue transfer pattern on the receiving sheet.
  • the associated dye salts of this invention may be used to make recordings on appropriate surfacesby any desired or conventional method or technique'
  • the method of printing which comprises applying to a surface characterized by high ionizing power a substantially colorless liquid, said liquid comprising a substantially colorless associated salt wherein the anion is an organic sulfinic acid anion and the cation is a colored dye cation of an arylrnethane dye base characterized by a logarithmic dissociation constant below 7, whereby physical contact of the colorless associated compound and the ionizing surface dissociates the compound to the intensely colored cation of the'dye and produces color on the ironizing surface.
  • V 5 The method of printing which comprises applying to a surface having thereon a coating comprising an unfired silicate characterized by highionizing power a substantially colorless liquid which comprises an oil-soluble, water-insoluble" salt wherein the anion is an organic sulfinic acid anion and the cation is-a colored dye cation of an arylmethane dye base characterized by a logarithmic dissociation constant below 7, whereby physicalcontact of the colorless associated salt and the ionizing silicate dissociates the salt to the colored cation of the dye to provide a colored print.
  • a substantially colorless liquid which comprises an oil-soluble, water-insoluble" salt wherein the anion is an organic sulfinic acid anion and the cation is-a colored dye cation of an arylmethane dye base characterized by a logarithmic dissociation constant below 7, whereby physicalcontact of the colorless associated salt and the ionizing silicate dissociates the salt to the colored cation of the dye
  • a recording fluid comprising a solution in a nonaqueous solvent of an associated arylmethane dye salt wherein the anion is an organic sulfinic acid anion and the cation is the intensely colored cation of'an arylmethane dye base characterized by a logarithmic dissociation constant below 7.
  • a recording fluid comprising a solution in a nonaqueous solvent of an associated dye salt wherein the anion is an organic sulfinic acid anion and the cation is an N,N-alkylated-4,4T-diaminobenzhydryl cation.
  • A'recording fluid comprising a solution in a nonaqueous solvent of an associated dye salt wherein the anion is an organic sulfinic acid anion and the cation is the intensely colored cation of Dinitro Crystal Violet Base.
  • a new composition of matter comprising the associated dye salt wherein the anion is an organic sulfinic acid anion and the cation is the intensely colored cation of Dinitro Crystal Violet Base.
  • the method of printing which comprises applying to a surface characterized by high ionizing power a sub stantially colorless associated salt of an arylmethane dye base characterized by a logarithmic dissociation constant below 7 and an organic sulfinic acid whereby physical contact of the associated compound and the ionizing surface dissociates the compound to the intensely colored cation of the dye and produces color on the ionizing surface.
  • a recording fluid comprising a solution in a nonaqueous solvent of a substantially colorless associated dye salt wherein the anion is a xylenesulfinic acid anion and the cation is an N,N'-alkylated-4,4-diarninobenzhydryl cation.
  • a recording fluid comprising a solution in a nonaqueous solvent of a substantially colorless associated dye salt wherein the anion is a diethylbenzenesulfinic acid anion and the cation is an N,N-a1kylated-4,4-diaminobenzhydryl cation.
  • a new composition of matter comprising the substantially colorless associated dye salt wherein the cation 10 is an N,N'-alkylated-4,4'-diaminobenzl1ydryl cation and the anion is a Xylenesulfinic acid anion.
  • a new composition of matter comprising the substantially colorless associated dye salt wherein the cation is an N,N-alkylated-4,4-diaminobenzhydryl cation and the anion is a diethylbenzenesulfinic acid anion.
  • a new composition of matter comprising the substantially colorless associated dye salt of xylenesulfinic acid and 4,4'-bis(dimethylamino)benzhydrol.
  • a new composition of matter comprising the substantiaily colorless associated dye salt of diethylbenzenesulfinic acid and 4,4-bis(dimethylamino)benzhydrol.

Description

July 6, 1965 A 3,193,404
ASSOCIATED DYE SALTS AND METHOD OF FORMING COLORED INDICIA THEREWITH Filed June 5, 1962 ASSOCIATED DYE SALTS AND METHOD OF FORMING COLORED INDICIA THEREWITH WHEREIN Q IS AN ASSOCIATED DYE SALT IS A COATING CONTAINING AN UNFIRED SILICATE IS AN ELECTRIC DIPOLE ON THE SILICATE SURFACE 5 IS A BASE WEB N INTENSELY COLORED DYE CATION WHEREIN R+ IS A x IS AN ORGANIC SULFINIC ACID ANION As IS A COATING CONTAINING AN UNFIRED SILICATE B IS A WEB BASE United States Patent 3,193,404 ASSGCIATED DYE ALTS AND I /IETHQD 9F FORMING CULORED INDICIA THEREWITH Chester Davis, 415 E. 5th St., Newport, Ky. Filed June 5, 1962, Ser. No. 209,052 16 Claims. (Cl. 117-38) This application is a continuation-in-part of my copending application Serial No. 800,377, filed on March 19, 1959, for Colorless Dye Salts and Nonstaining Trans fer Sheet, now abandoned.
The purpose of this invention is to describe a new type of recording system which depends for its action upon the equilibrium between a colored and a colorless dye salt. In particular, it has been found that the sulfinic acid salts and hydrazoic acid salts of intensely colored cations from diarylmethane and triarylmethane dye bases characterized by a logarithmic dissociation constant below 7 may exist in two forms: (1) an intensely colored dissociated form and (2) a substantially colorless associated form depending upon environmental conditions (solvent, temperature, etc.) which prevail.
This equilibrium has been admirably adapted to the preparation of nonstaining nonaqueous recording solu tions for use in marking fluids, spirit duplicating, and as a recording media for nonstainiug copy papers.
Previous Workers in the field of colorless or nonstaining recording systems have always utilized chemical reactions between two active chemical components to obtain colored characters. For example, earlier workers, such as Groak, used metathetical ionic reactions between colorless cations and anions to form colored compounds, such as iron gallate. These reactions required moist conditions, and coatings containing such hygroscopic reagents were subject to premature rupture and discoloration. More recent workers, such as Davis and Thacker, have used nonaqueous systems for their reactions, such as the formation of a colored salt from a colorless base and a strong acid. All of these systems are chemical in nature and possess certain inherent defects in their actual commercial application.
Inasmuch as the major objection to the use of triarylmethane dye solutions in recording systems (marking fluids, typewriter ribbons, copy papers, etc.) is due to the ability of these dyes to stain skin and clothing an intense color, what has long been desired is an intensely colored dye salt which will not stain ordinary surfaces but will give an intense character only on a desired surface.
The author of the present invention has now found that the sulfinic acid salts and hydrazoic acid salts of diarylmethane and triaryhnethane color bases characterized by a logarithmic dissociation constant below 7 may exist completely in the colored dissociated form, completely in the substantially colorless associated form, or in equilibrium between the two forms depending upon the ionization power of their environment.
In particular, it has been found that upon exposure to heat or upon contact with highly ionizing reagents or solids such as unfired kaolin, bentonite, and similar surfaces bearing a high permanent electric dipole moment, the colorless associated form dissociates into ions, one of which is intensely colored, which dissociation can be used for the recording of data and for duplicating purposes.
It appears that equilibrium exists between the forms:
where Y is chosen from the group consisting of aliphatic radicals having from one to twelve carbon atoms, phenyl, and substituted phenyl.
in which the quanticule (e v) of the sulfinate and azide ions contribute to the screening of the central carbon core only under low energy conditions; but upon exposure to higher energy, ionizing conditions, the central 'core is now adequately screened by only three substituents, and the molecule ionizes.
The peculiar stability of Crystal Violet Cyanide apparently is due to the fact that the electrically unbalanced cyanide ion eflectively distorts the Crystal Violet ion so that maximum screening of the central core is achieved. So strongly screened is the central core in Crystal Violet Cyanide that dissociation occurs only under the highenergy conditions existing in the far ultra-violet region; and Crystal Violet Cyanide cannot be dissociated by heat or chemical action alone (lead peroxide will not oxidize it to Crystal Violet dye). Only in alcohol solutions (and in similar ionizing solvents) exposed to extremely high-energy ionizing radiation will the molecule ionize. This is not remarkable; for in this high-energy spectral region even oxygen dissociates to form ozone.
The dye salts of the present invention are chosen so that an essentially unsaturated core is completely screened by other groups only at low-energy (normal) conditions. Upon exposure to a high-energy environment, the core is then adequately screened by fewer groups; and the molecule dissociates into ions, at least one of which is colored. The dye salt to be used for a given application becomes a matter of determining the screening characteristics of the ions used. Previous experience in this area before the work of the author of the present invention is extremely limited. Many chemists assume that all organic azides are dangerously explosive; yet the author of the present invention has found certain organic azides (which are ionic in character but are not ionized) to be quite stable. Michlers hydrol azide, for example, melts at C. and begins to decompose slowly at 160-220 C., resembling sodium azide in this respect. No explosion has ever been obtained under normal working conditions with this compound, which is very soluble in toluene.
The only know member of this type, that from Michlers hydrol and benzenesulfinic acid (called phenyl- (4,4-bis dimethylamino benzhydryl -sulfone) is completely insoluble at room temperature in the usual solvents used in recording systems. It has been found by the author of the present invention, however, that the use of aliphatic sulfinic acids and the use of substituted aromatic sulfinic acids, where the substituent is one of a series of oil-solubility promoting (lipophilic) groups such as alkyl,'halogen, ether, etc.', gives solvent-soluble 'sulfinates which are stable, substantially colorless, and
non-staining to skin, paper, and textile fibers.
From theviewpoint of classic theory, these 'salts are for the most part the salts, of weak bases and moderately strong acids. It is axiomatic in chemistry that the salts of strong bases-strong acids (sodium chloride, Crystal Violet Chloride, etc.) are always one hundred percent dissociated; but the salts of weak acids-strong bases and of weak bases-strong acids may be more or less associ-' the calcium silicate gives acidic and ion-exchange properties to the clayybut it is the polymerized silica structure which gives a high electric dipolemoment over the surface of the clay. This electric dipole is stable until the clay is calcined at high temperature, at which point the electric dipole moment disappears; and the aforementioned clays lose their ionizing properties.
Although other workers in the recording field, notably Bjorksten, Green, and Bour, have utilized certain silicates in recording papers, no worker has yet utilized the clays as other than chemical reagents. It is the purpose ofthis application to describe a practical utilization of the ionizing properties of silicates possessed of a high dipole moment.
The compounds of the present invention offer certain advantages over the color bases from which they are derived: (1) As the method of color formation by dissociation is diiierent from the method of color formation by reaction of a dye base with an acid, there is oftentimes This is achieved in can form undissociated dye salts with suitable anions-as 'well as dissociated dye salts'with other anions. Similarly,
2 nitro 4,'4"- bis(dimethylaniino-triphenylcarbinol is easily prep-aredfor use in the present invention, as are other nitrated triarylmethane dye derivatives. While these nitrated dye bases containing only one nitro group are not always completely nonstaining, their associated salts are nonstaining and one can use associated salts for purposes where the free color bases are unsatisfactory.
Although the associated salts of nitrated triarylmethane dye bases are not completely colorless, being '-a light orange in color, transfer sheets containing these salts .are the'same light yellow color as standard yellow commercial papers and may be'substituted into any form where a pale-colored base web is not objectionable; The nonstaining nature of solutions of these salts renders their use far more attractive, than the violet-colored, r
strongly-staining solutions of Methyl Violet Oleate."
The use of other meta-directing groups than the nitro group to reduce the base strength of triarylmethane dyes,
such as trifluoromethyl and N,N-dialkylsulfonamido,'will Triarylmethanesulfonic Acid Derivatives and Method of Forming Colored Indicia Therewith, Serial No. 200,056, filed June 5, 1962. I The author has found that certain unfired silicates such as diatomaceous earth, kaolin, and bentonite possess high ionizing properties apart from their acid-base and oxidation-reduction properties. A clay molecule may be pictured as a large molecule of polymerized silica containing calcium, iron, and other cations." The iron silicate structure gives oxidizing properties to the clay and marked increase in the rate of reaction. Dinitro Crystal Violet Base, for example, when pure forms a colored salt with acid silicates only very slowly (3-5 minutes or longer); but the dissociation of Dinitro Crystal Violet Azide to the colored ion under the influence of the acid silicates electric dipole moment isimmediate, and the intense colored print appears immediately upon recording'with this azide. (2) The stability and reactivity of certain color bases, such as mononitro Crystal Violet Base, which have logarithmic dissociation constants between 5 and 7, is improved, and this is of value in manifolding sheets which must be stored indefinitely before use. (3) The associated salts formed can be-more safely handled without chemical staining than can the more reactive color bases because of lower water-solubility (i.e., they are less-soluble in the skin perspiration).
While the compounds of the present invention cannot be used'in aqueous soluitons and are more reactive than the water-soluble triarylmethanesulfonates, which are disclosed in my copending application, they do, however, have applications in recording systems where a nonvolatile color-formcr is desired which will record colored indiciaron selected areas from a lipophilic solvent.
Description Michlers hydrol '(4,4' bis-(dimethylamino)-benzhydrol), ethyl hydrol (4,4'bis(diethylamino)benzhydrol),
Dinitro Crystal Violet Carbinol, and other compounds of this type are dissolved in glacial acetic acid to form the intensely colored acetate. To this colored dye solu tion is added the desiredsulfinic acid either as the free sulfinic acid or as its sodium salt (the sodium salt form is preferred because the sulfinic acid salts have greater 'markedly lighter color.
storage stability than the free sulfinic acids which tend .to polymerize upon standing. in the air) until the intense color is discharged or until the solution becomes a The sulfinate may deposit at this time or may be retained in solution. The solution is then'poured into. cold water or cold ammonium hydroxide solution to precipitate out the. water-insoluble sulfinate. The precipitate is collected, washed with water, dried, and recrystallized from alcohol to give the colorless sulfinate. V V The reaction may be carried out in dilute aqueous acids or in acidic alcohol. All that is necessary is that the dye base should be convertedto the colored salt before adding the sulfinate ion. The sulfinic acids may be obtained by decomposition of a sulfur-dioxide containing diazonium salt solution (Gattermann reaction), by reduction of the sulfonyl chloride with zinc duct or sodium sulfite, or by the aluminum chloride catalyzed addition of sulfur dioxide to an olefinic or aromatic compound. The yield of 'colorless sulfinate is usually above ninety percent and is often quantitative.
The melting points'of these colorless dye salts depends on the rate of heating and cannot be'used to characterize pure isomers (ort-ho, meta, para, for example); for comparison purposes, however, the melting points of some of the more simple colorless dye salts are listed below:
Michlers hydrol azide C 79-80 Michlers hydrol p-toluenesulfinate C 183-184 Michlers hydrol xylenesulfinate C 156-157 Michlers hydrol 2,5 dichlorobenzenesulfinate C 177-1785 Michlers hydrol 3,4 dichlorobenzenesulfinate C 191-192 Michlers hydrol p ethoxybenzenesulfinate C 161-162 Ethyl hydrol p-toluenesulfinate C l42.5-l43.5 Ethyl hydrol xylenesulfinate C 130-131 Michlers hydrol ethylsulfinate C 148.5-150 Michlers hydrol n-butylsulfinate C 112-114 p Methoxy p dimethylaminobenzhydryl azide Oil p Methoxy p dimethylaminobenzhydryl p-toluenesulfinate C 84-86 Michlers hydrol dodecylbenzenesulfinate Oil The most light-stable colored indicia are obtained from the salts of substituted triarylmethane color bases such as:
RzN- NR:
EH 1 I I NO: NO:
111R: lam-O @-Nni SOzNR where R is a lower alkyl group or hydrogen.
Color is developed in the associated dye salts after they have been placed or transferred to a receiving sheet, as imprinted indicia, by exposing said receiving sheet to a. highly ionizing environment. Three highly ionizing environments are particularly useful for this purpose. These are a polarizing reagent, a high temperature, and a surface carrying a high permanent electric dipole moment. For example, if a recording fluid comprising a sulfinate salt and a solvent therefor is used to imprint indicia on an It is necessary therefore in the case of water as a developing reagent to use in addition to water a mutual solvent for it and the sultinate dye salt. Among useful solvents are acetone, ethanol and other alcohols, dimethyl-sulfoxide and the like. Alternatively, if the receiving sheet is coated with a film comprising a material having a permanent electric dipole moment, this surface comprises a third type of highly ionizing environment. The associated dye salts of this invention dissociate immediately upon contact with a surface of this type, thus giving a highly colored cation directly. A recording fluid or a transfer sheet employing associated dye salts can be used therefore in conjunction with a specially coated paper having a high permanent electric dipole moment to. provide novel recording systems.
Exemplary of the recording fluids of this invention is a recording fluid comprising a solution of Michlers hydrol diethylbenzenesulfinate in oleic acid, which solution can be used to saturate a stamp pad. When such a recording fluid is transferred by means of a stamp to a fabric coated with a material having a high permanent electric dipole moment, the indicia imparted thereto become colored immediately. Alternatively, the stamp can be used to transfer the recording fluid to an ordinary sheet of paper in which case the color of the imparted indicia is developed by contacting the paper with a developing fluid comprising, for example, 25 percent water and 75 percent acetone.
By way of further illustration, recording systems of this invention can be prepared employing ethyl hydrol xylenesulfinate or an equivalent colorless dyestuff salt of the type described above. In a recording system of this type, such as carbon paper, the associated dye salt is dispersed in a heavy oil or wax-oil mixture and applied to a master sheet. Typewriter type, or a stylus, when pressed against the surface of this master sheet, will cause some of the associated dye salt to be transferred to a receiving sheet. If the receiving sheet has an ionizing surface, an immediate color will develop comprising the colored cation of the dye. If an ordinary sheet is used, the color can be developed by the use of a developing fluid or by heat as previously described.
The surfaces whose use is indicated in conjunction with the associated dye salt of this invention are those which, as previously stated, bear a high permanent electric dipole moment. Numerous examples of this type of surface are known to the art. Unfired silicates are particularly useful in this regard. Examples of suitable ionizing surfaces are those prepared from unfired silicates such as kaolin, bentonite, and the like. Papers bearing such a coating can be manufactured by methods well known to the art.
The recording fluids and recording systems of this invention will not stain skin or fabrics until the final stage of their use when the color is developed in situ on an ionizing surface or by the use of developing chemicals or by heat. In addition, carbon and other copy papers and master sheets prepared from the associated dye salts of this invention are either colorless or very lightly-colored. Thus, the recording fluids and recording systems provided by this invention are especially advantageous when compared with those commonly employed. Furthermore, since the surfaces of most fabrics are not highly ionizing for the associated salts of the present invention, the recording fluids employed by this invention are nonstaining and therefore are particularly useful for the printing of price tags or quality control tags on bolts of goods, dresses, clothing and the like.
An example of a recording solution contains a colorless associted dye salt is a 2% solution of Michlers hydrol azide in parafiin oil. This gives an intense blue coloration with an unfired kaolin-coated receiving sheet.
Another example of this invention is a 2.5% solution of dinitro Crystal Violet Azide in toluene. This gives an immediate blue-black coloration with an unfired kaolincoated receiving sheet.
Another example of this invention is a 3% solution of ethyl hydrol xylenesulfinate in distilled oleic acid. This 7 gives an intense blue coloration with an unfired diatomaceous earth-coated paper. A blue coloration is also obtained when the colorless prints on ordinary paper are heated to about l50l75 C. i
Another example of this invention is a 2.5% solution of Michlers hydrol-Xylenesulfinate in chlorinated diphenyl. This gives an intense blue coloration upon contact with an activated silica-coated paper. I
Still another example'of this invention is a 3% solu- 7 .tion of p-methoXy-p'-dimethylaminobenzhydryl azide in chlorinated diphenyl. This gives a wine-red color upon contact with an activated silica-coated paper. This has.
very poor light-stability. I 7
Still another example of this invention is a three percent solution ofdi'nitro Fuchsin-xylenesulfinate inchlorinated diphenyl. This gives a magenta color upon contact with an activated silica-coated paper.
Similar recording fluids can be prepared by substituting other associated salts of diarylmethane and triarylmethane dyes falling within the scope of this invention in the above nonionizing" solvents or their equivalents. These recording fluids will yield colored indicia upon contact with a highly ionizing surface or, if printed upon a plain surface,
the color can be developed by contacting the surface with an ionizing reagent such as aqueous alcohol or simply by applying heat to the surface.
For thepreparation of transfer sheets, the associated salts of arylmethane dyes can be dissolved ina hot wax melt and then coated ontothe base web in a standard'hot melt coating machine. The colorless dye salt should be sufficiently soluble in the cold wax mixture so that it does not crystallize out from the hot melt upon cooling. In dissolving the associateddye salt, temperatures in excess of 110 C. should be avoided since the compounds will dissociate into ions at temperatures much above 135 C.
fluids of this invention is prepared by melting together 35 parts of Gersthofen wax, parts of high-melting (155 F.) paralfin wax, and 50 parts of a nonvolatile parafiin plasticizing lubricating oil with a flash point over 400 F. and a viscosity of 150 Saybolt seconds. To this mixture is added'at 180 F. an amount of ethyl hydrol xylenesulfinate equal to 2.5 percent of the amount of lubricating oil used. The solution is stirred until clear, and
.vent maybe used for direct printing on appropriately coated paper or the salt may be utilized as a component of associated dye salt of an organic sulfinic acid and an arylmethane dye base characterized by a logarithmic dissociation constant below 7wherein R+ is the dye cation and X is the sulfinic acid anion and an unfired silicate surface S characterized 'by high ionizing power wherein "represents the electric dipole moment'on the silicate surface. FIGURE 2 represents the change which takes place when the colorless. associated molecules contact the electric dipole moment of the ionizing surface whereby dissociationof the colorless salt (E) to the intensely colored cation R+ 'of the dye occurs to form color on the ionizing surface.
Having described my invention, I claim;
- a 1. The method of printing which comprises applying to anunfired silicate surface characterized by high ionizing power a substantially colorless associated salt of an arylthe moltenwax is applied to paper by standard coating procedures to give a coating weight of 5 lbs/ream.
Another example of the process of preparation of a transfer sheet utilizing the recording fluids of the present invention comprises melting together 36 parts by weight of refined ouricury wax, 19 parts by weight of a high melting parafiin wax, and 45 parts by weight of oleic acid containing3 percent Michlers hydrol diethylbenzenesulfinate. This melt is coated on paper at a temperature near the solidifying point in order to minimize strikethrough? into the base paper. A transfer sheet prepared in this fashion, when used in conjunction with a receiving sheet coated with unflred diatomaceous earth, gives an intense blue transfer pattern on the receiving sheet.
It should be clearly understood that the invention is not limited to the examples set forth but 'is generally applicable to any associated dye salt which is water-insoluble and which can be ionized to a colored cation by application of heat or by contact with highly ionizing liquids or solids.
It is also to be understood that the associated dye salts of this invention may be used to make recordings on appropriate surfacesby any desired or conventional method or technique' For instance, the salt dissolved in a solmethane dye base characterized by a logarithmicdissociation constant below 7 'and an organic sulfinic' acid whereby physical contact of the associated compound and the silicate dissociates the compound to the intensely colored cation of the dye and produces color on the silicate surface.
2. The method of printing which comprises applying to a surface characterized by high ionizing power a substantially colorless liquid, said liquid comprising a substantially colorless associated salt wherein the anion is an organic sulfinic acid anion and the cation is a colored dye cation of an arylrnethane dye base characterized by a logarithmic dissociation constant below 7, whereby physical contact of the colorless associated compound and the ionizing surface dissociates the compound to the intensely colored cation of the'dye and produces color on the ironizing surface. I
3. The method of claim 2 wherein the colored dye cation of an arylmethane dye base characterized by a logarithmic dissociation constant below 7 is an N,N-alkylated-4,4'-diarninobenzhydryl cation.
4. The method of claim 2 wherein the colored dye cation of an arylmethane dye base characterized by a logarithmic dissociation constant below 7 is a triarylmethane dye cation.
V 5. The method of printing which comprises applying to a surface having thereon a coating comprising an unfired silicate characterized by highionizing power a substantially colorless liquid which comprises an oil-soluble, water-insoluble" salt wherein the anion is an organic sulfinic acid anion and the cation is-a colored dye cation of an arylmethane dye base characterized by a logarithmic dissociation constant below 7, whereby physicalcontact of the colorless associated salt and the ionizing silicate dissociates the salt to the colored cation of the dye to provide a colored print.
6. A recording fluid comprising a solution in a nonaqueous solvent of an associated arylmethane dye salt wherein the anion is an organic sulfinic acid anion and the cation is the intensely colored cation of'an arylmethane dye base characterized by a logarithmic dissociation constant below 7. i
7. A recording fluid comprising a solution in a nonaqueous solvent of an associated dye salt wherein the anion is an organic sulfinic acid anion and the cation is an N,N-alkylated-4,4T-diaminobenzhydryl cation.
8. A'recording fluid comprising a solution in a nonaqueous solvent of an associated dye salt wherein the anion is an organic sulfinic acid anion and the cation is the intensely colored cation of Dinitro Crystal Violet Base.
9. A new composition of matter comprising the associated dye salt wherein the anion is an organic sulfinic acid anion and the cation is the intensely colored cation of Dinitro Crystal Violet Base.
10. The method of printing which comprises applying to a surface characterized by high ionizing power a sub stantially colorless associated salt of an arylmethane dye base characterized by a logarithmic dissociation constant below 7 and an organic sulfinic acid whereby physical contact of the associated compound and the ionizing surface dissociates the compound to the intensely colored cation of the dye and produces color on the ionizing surface.
11. A recording fluid comprising a solution in a nonaqueous solvent of a substantially colorless associated dye salt wherein the anion is a xylenesulfinic acid anion and the cation is an N,N'-alkylated-4,4-diarninobenzhydryl cation.
12. A recording fluid comprising a solution in a nonaqueous solvent of a substantially colorless associated dye salt wherein the anion is a diethylbenzenesulfinic acid anion and the cation is an N,N-a1kylated-4,4-diaminobenzhydryl cation.
13. A new composition of matter comprising the substantially colorless associated dye salt wherein the cation 10 is an N,N'-alkylated-4,4'-diaminobenzl1ydryl cation and the anion is a Xylenesulfinic acid anion.
14. A new composition of matter comprising the substantially colorless associated dye salt wherein the cation is an N,N-alkylated-4,4-diaminobenzhydryl cation and the anion is a diethylbenzenesulfinic acid anion.
15. A new composition of matter comprising the substantially colorless associated dye salt of xylenesulfinic acid and 4,4'-bis(dimethylamino)benzhydrol.
16. A new composition of matter comprising the substantiaily colorless associated dye salt of diethylbenzenesulfinic acid and 4,4-bis(dimethylamino)benzhydrol.
References Cited by the Examiner UNITED STATES PATENTS 2,900,388 8/59 Tien 11736.2 2,927,040 3/60 Davis 117-36.2 2,927,041 3/60 Davis 11736.2 2,948,753 8/60 Kranz 11736.2 3,096,189 7/63 Kranz et al. 11736.2
OTHER REFERENCES Karrer: Organic Chemistry, 1946, p. 406.
WILLIAM D. MARTIN, Primary Examiner.
MURRAY KATZ, RICHARD D. NEVIUS, Examiners.

Claims (1)

1. THE METHOD OF PRINTING WHICH COMPRISES APPLYING TO AN UNFIRED SILICATE SURFACE CHARACTERIZED BY HIGH IONIZING POWER A SUBSTANTIALLY COLORLESS ASSOCIATED SALT OF AN ARYLMETHANE DYE BASE CHARACTERIZED BY A LOGARITHMIC DISSOCIATION CONSTANT BELOW 7 AND AN ORGANIC SULFINIC ACID WHERE-
US200052A 1959-03-19 1962-06-05 Associated dye salts and method of forming colored indicia therewith Expired - Lifetime US3193404A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US200052A US3193404A (en) 1959-03-19 1962-06-05 Associated dye salts and method of forming colored indicia therewith
US372362A US3278327A (en) 1959-03-19 1964-06-03 Colorless recording paper
BE675498A BE675498A (en) 1959-03-19 1966-01-24
FR50594A FR1469809A (en) 1959-03-19 1966-02-22 Colorless transfer sheets

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US80037759A 1959-03-19 1959-03-19
US200052A US3193404A (en) 1959-03-19 1962-06-05 Associated dye salts and method of forming colored indicia therewith
US372362A US3278327A (en) 1959-03-19 1964-06-03 Colorless recording paper
BE675498A BE675498A (en) 1959-03-19 1966-01-24
FR50594A FR1469809A (en) 1959-03-19 1966-02-22 Colorless transfer sheets

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US80037759A Continuation-In-Part 1959-03-19 1959-03-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US05/850,034 Continuation-In-Part USRE30803E (en) 1977-11-09 1977-11-09 Colorless recording paper
US05/850,027 Reissue USRE30797E (en) 1977-11-09 1977-11-09 Associated dye salts and method of forming colored indicia therewith

Publications (1)

Publication Number Publication Date
US3193404A true US3193404A (en) 1965-07-06

Family

ID=27507644

Family Applications (2)

Application Number Title Priority Date Filing Date
US200052A Expired - Lifetime US3193404A (en) 1959-03-19 1962-06-05 Associated dye salts and method of forming colored indicia therewith
US372362A Expired - Lifetime US3278327A (en) 1959-03-19 1964-06-03 Colorless recording paper

Family Applications After (1)

Application Number Title Priority Date Filing Date
US372362A Expired - Lifetime US3278327A (en) 1959-03-19 1964-06-03 Colorless recording paper

Country Status (3)

Country Link
US (2) US3193404A (en)
BE (1) BE675498A (en)
FR (1) FR1469809A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278327A (en) * 1959-03-19 1966-10-11 Warren S D Co Colorless recording paper
US3489800A (en) * 1966-01-25 1970-01-13 Allied Chem Electron-donor chromogenic bis(p-dialkylaminoaryl)methyl thiol ethers
US3864400A (en) * 1972-02-24 1975-02-04 Walter Seibert Production of aryl-(4,4{40 -bis-(dialkylamino)-benzhydryl)-sulfones
DE2612036A1 (en) * 1975-03-24 1976-10-14 Moore Business Forms Inc CARBON-FREE MULTIPLE COPY SHEET SYSTEM
FR2407079A1 (en) * 1977-10-26 1979-05-25 Feldmuehle Ag PRODUCT FOR COATING AND PRESSURE SENSITIVE COPYING MATERIAL PREPARED WITH THIS PRODUCT, PROCESS FOR MANUFACTURING THE MATERIAL FOR COPYING AND COLLECTION OF COPIES OBTAINED
EP0005251A2 (en) * 1978-05-10 1979-11-14 Bayer Ag Process for the preparation of sulfinates of 4,4'-diaminobenzhydrol and of its substituted products, and copying paper containing these compounds
EP0005475A1 (en) * 1978-05-10 1979-11-28 Bayer Ag Process for the preparation of 4,4'-diaminobenzhydrol and its substitution products
US4210601A (en) * 1979-01-22 1980-07-01 American Cyanamid Company Process for preparing aryl[4,4'-bis(di-loweralkyl-amino)benzhydryl]sulfones
US4257954A (en) * 1978-08-08 1981-03-24 Sterling Drug Inc. Novel compounds, processes and marking systems
FR2478090A1 (en) * 1980-03-14 1981-09-18 Ciba Geigy Ag PROCESS FOR THE PREPARATION OF SULFINATES OF BENZHYDROL COMPOUNDS
USRE30797E (en) * 1977-11-09 1981-11-17 Scott Paper Company Associated dye salts and method of forming colored indicia therewith
USRE30803E (en) * 1977-11-09 1981-11-24 Scott Paper Company Colorless recording paper
US4411452A (en) * 1981-04-16 1983-10-25 Fuji Photo Film Co., Ltd. Pressure-sensitive recording material
US4447075A (en) * 1981-05-11 1984-05-08 Fuji Photo Film Co., Ltd. Pressure-sensitive recording material
US4494989A (en) * 1978-08-08 1985-01-22 The Hilton-Davis Chemical Co. Compounds, processes and marking systems
DE4010641A1 (en) * 1990-04-03 1991-10-10 Bayer Ag COLOR IMAGE MIXTURE FOR PRINTING AND HEAT-SENSITIVE RECORDING SYSTEMS
US5453522A (en) * 1994-09-20 1995-09-26 Indiana University Foundation Colorant for use in business recording
US7413550B2 (en) 2003-10-16 2008-08-19 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath
US7582485B2 (en) * 2003-10-16 2009-09-01 Kimberly-Clark Worldride, Inc. Method and device for detecting ammonia odors and helicobacter pylori urease infection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3349408A (en) * 1965-08-12 1967-10-24 Leeds & Northrup Co Recorder
JPS5014531B1 (en) * 1970-12-30 1975-05-28

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900388A (en) * 1957-08-08 1959-08-18 Jack M Tien Acyl hydrazine derivatives of bis(4-dimethylaminophenyl) methane and process
US2927040A (en) * 1957-08-13 1960-03-01 Davis Chester Non-staining triarylmethane color base and method of printing therewith
US2927041A (en) * 1957-08-13 1960-03-01 Davis Chester Non-staining transfer sheet
US2948753A (en) * 1958-05-12 1960-08-09 Allied Chem N-bis(p-dialkylaminophenyl)methyl sulfonamides
US3096189A (en) * 1958-12-10 1963-07-02 Allied Chemical Comporation Duplicating sheet and colored coating compositions therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2286169A (en) * 1940-05-31 1942-06-09 American Cyanamid Co Aromatic substituted methyl esters of hydrazoic acid as insecticides
US3193404A (en) * 1959-03-19 1965-07-06 Davis Chester Associated dye salts and method of forming colored indicia therewith
US2995465A (en) * 1959-08-07 1961-08-08 Minnesota Mining & Mfg Copy-sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900388A (en) * 1957-08-08 1959-08-18 Jack M Tien Acyl hydrazine derivatives of bis(4-dimethylaminophenyl) methane and process
US2927040A (en) * 1957-08-13 1960-03-01 Davis Chester Non-staining triarylmethane color base and method of printing therewith
US2927041A (en) * 1957-08-13 1960-03-01 Davis Chester Non-staining transfer sheet
US2948753A (en) * 1958-05-12 1960-08-09 Allied Chem N-bis(p-dialkylaminophenyl)methyl sulfonamides
US3096189A (en) * 1958-12-10 1963-07-02 Allied Chemical Comporation Duplicating sheet and colored coating compositions therefor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278327A (en) * 1959-03-19 1966-10-11 Warren S D Co Colorless recording paper
US3489800A (en) * 1966-01-25 1970-01-13 Allied Chem Electron-donor chromogenic bis(p-dialkylaminoaryl)methyl thiol ethers
US3864400A (en) * 1972-02-24 1975-02-04 Walter Seibert Production of aryl-(4,4{40 -bis-(dialkylamino)-benzhydryl)-sulfones
DE2612036A1 (en) * 1975-03-24 1976-10-14 Moore Business Forms Inc CARBON-FREE MULTIPLE COPY SHEET SYSTEM
FR2407079A1 (en) * 1977-10-26 1979-05-25 Feldmuehle Ag PRODUCT FOR COATING AND PRESSURE SENSITIVE COPYING MATERIAL PREPARED WITH THIS PRODUCT, PROCESS FOR MANUFACTURING THE MATERIAL FOR COPYING AND COLLECTION OF COPIES OBTAINED
USRE30803E (en) * 1977-11-09 1981-11-24 Scott Paper Company Colorless recording paper
USRE30797E (en) * 1977-11-09 1981-11-17 Scott Paper Company Associated dye salts and method of forming colored indicia therewith
EP0005475A1 (en) * 1978-05-10 1979-11-28 Bayer Ag Process for the preparation of 4,4'-diaminobenzhydrol and its substitution products
EP0005251A3 (en) * 1978-05-10 1979-12-12 Bayer Aktiengesellschaft Process for the preparation of sulfinates of 4,4'-diaminobenzhydrol and of its substituted products, and copying paper containing these compounds
EP0005251A2 (en) * 1978-05-10 1979-11-14 Bayer Ag Process for the preparation of sulfinates of 4,4'-diaminobenzhydrol and of its substituted products, and copying paper containing these compounds
US4257954A (en) * 1978-08-08 1981-03-24 Sterling Drug Inc. Novel compounds, processes and marking systems
US4494989A (en) * 1978-08-08 1985-01-22 The Hilton-Davis Chemical Co. Compounds, processes and marking systems
US4210601A (en) * 1979-01-22 1980-07-01 American Cyanamid Company Process for preparing aryl[4,4'-bis(di-loweralkyl-amino)benzhydryl]sulfones
FR2478090A1 (en) * 1980-03-14 1981-09-18 Ciba Geigy Ag PROCESS FOR THE PREPARATION OF SULFINATES OF BENZHYDROL COMPOUNDS
US4348330A (en) * 1980-03-14 1982-09-07 Ciba-Geigy Corporation Process for the production of sulphinates of benzhydrol compounds
US4411452A (en) * 1981-04-16 1983-10-25 Fuji Photo Film Co., Ltd. Pressure-sensitive recording material
US4447075A (en) * 1981-05-11 1984-05-08 Fuji Photo Film Co., Ltd. Pressure-sensitive recording material
DE4010641A1 (en) * 1990-04-03 1991-10-10 Bayer Ag COLOR IMAGE MIXTURE FOR PRINTING AND HEAT-SENSITIVE RECORDING SYSTEMS
US5453522A (en) * 1994-09-20 1995-09-26 Indiana University Foundation Colorant for use in business recording
US7413550B2 (en) 2003-10-16 2008-08-19 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath
US7582485B2 (en) * 2003-10-16 2009-09-01 Kimberly-Clark Worldride, Inc. Method and device for detecting ammonia odors and helicobacter pylori urease infection
US8221328B2 (en) 2003-10-16 2012-07-17 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath
US8702618B2 (en) 2003-10-16 2014-04-22 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath

Also Published As

Publication number Publication date
FR1469809A (en) 1967-02-17
US3278327A (en) 1966-10-11
BE675498A (en) 1966-05-16

Similar Documents

Publication Publication Date Title
US3193404A (en) Associated dye salts and method of forming colored indicia therewith
USRE30797E (en) Associated dye salts and method of forming colored indicia therewith
US2798427A (en) Duplicating process
US3846153A (en) Heat sensitive composition and thermal recording sheet containing the same
US4165103A (en) Method of preparing zinc-modified phenol-aldehyde novolak resins and use as a color-developing agent
EP0067793B1 (en) Pressure or heat sensitive recording materials
EP0055847B1 (en) Pressure sensitive recording unit
USRE30803E (en) Colorless recording paper
US3912831A (en) Recording material
US3952117A (en) Method of desensitizing
US3833400A (en) Sheet with improved image durability
US4007310A (en) Method of desensitization using desensitizing composition
JPS59214686A (en) Recording material
US4418942A (en) Microcapsule sheet for pressure-sensitive recording paper
US3732141A (en) Pressure-sensitive record material
US2927041A (en) Non-staining transfer sheet
US3377185A (en) Arylmethane dye azides and method of forming colored indicia therewith
US2714074A (en) Method of making different colored marks with a single fluid
US4411700A (en) Desensitizer compositions
US4060262A (en) Record material
DE3047630A1 (en) "PRINT-SENSITIVE RECORDING MATERIAL"
US3413071A (en) Hexamethyltriaminophenylfluorene printing composition and manifolding sheet therewith
CH637922A5 (en) CHROMOGENIC PROPENYLENE SULPHONE COMPOUNDS.
US5053277A (en) Microcapsules and their production
US2505477A (en) Pressure sensitive record material