US3213596A - Chromatography column structure - Google Patents

Chromatography column structure Download PDF

Info

Publication number
US3213596A
US3213596A US177386A US17738662A US3213596A US 3213596 A US3213596 A US 3213596A US 177386 A US177386 A US 177386A US 17738662 A US17738662 A US 17738662A US 3213596 A US3213596 A US 3213596A
Authority
US
United States
Prior art keywords
column
spacers
heater
assembly
chromatographic column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US177386A
Inventor
Harry A Gill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Biosystems Inc
Original Assignee
Perkin Elmer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Perkin Elmer Corp filed Critical Perkin Elmer Corp
Priority to US177386A priority Critical patent/US3213596A/en
Priority to CH160063A priority patent/CH419667A/en
Priority to GB7493/63A priority patent/GB1023982A/en
Application granted granted Critical
Publication of US3213596A publication Critical patent/US3213596A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3084Control of physical parameters of the fluid carrier of temperature ovens

Definitions

  • Another object is to provide such a column having improved coupling between such column and the heat source.
  • Another object is to provide such a' column wherein expansion of the heated column does not destroy the improved coupling.
  • Another object is to provide such a column which may be rapidly cooled from its maximum temperature to a new starting temperature.
  • FIG. 1 is a plan view, partially cut away, of an apparatus embodying this invention
  • FIG. 2 is an elevational view of the apparatus of FIG.
  • FIG. 3 is a cross-sectional view of the column assembly taken along line 3-3 of FIG. 1;
  • FIG. 4 is a plan view, partially cut away, of the heater used with this invention.
  • FIG. 5 is a cross-section taken along line 5-5 of FIG. 4;
  • FIG. 6 is a plan view, partially cut away, of a typical column assembly for use with this invention.
  • FIG. 7 is a View taken along line 77 of FIG. 6;
  • FIG. 8 is an elevational view showing the mechanical construction of the heater mounting device of this invention.
  • FIG. 9 is an overall schematic view of a chromatographic apparatus embodying this invention.
  • a column is wound so as to lie in a single plane and to allow the two ends of the column to be exposed without crossovers.
  • Such a planar wound column is then mounted in direct contact with a plate-like heater.
  • the column and heater may be maintained in close thermal contact by means of a suitable clamping mechanism.
  • passages for air or other cooling fluid may be provided along the surfaces of the heater-column combination and suitable means may be provided for passing cooling fluid therethrough.
  • FIGS. 6 and 7 The manner in which the column structure 11 of this invention is constructed will be best understood by reference to FIGS. 6 and 7.
  • Two thin plates 10, 12 of a suitable heat conducting material such as aluminum are spot welded to opposite sides of a central core assembly made up of segments 14 and 16.
  • the spacing provided between members 10 and 12 is such as to closely contact both sides of the chromatographic column 13 to be employed.
  • Such a column may be either a Golay column or a packed column.
  • the column is wound by passing approximately one-half the tube through the opening between spacers 14 and 16.
  • the twoends of the column are then brought together and are spirally wound about the central core in the manner illustrated. It will be noted that the ends 18, 20 of the column may be brought out from the edge of the assembly without crossing over any previous turns.
  • the heater employed with this column is constructed as shown in FIG. 4.
  • the heater 24 is a solid aluminum disc.
  • the disc is cast to include a suitable electrical heating element 26 wound in double spiral form as was the column.
  • a temperature sensing wire 28 is also cast into the assembly between the double spiral turns. Heating element 26 and temperature sensor 28 are insulated electrically from the aluminum disc. Suitable metallic positioning spacers 30 retain the elements in proper alignment during the casting process.
  • FIG. 3 A cross-section of a completed heater assembly is shown in FIG. 3. It will be seen that a base plate 32 is provided with a number of ceramic insulators 34 which are mechanically fastened thereto by wires 35 through the insulators and inserted into holes in plate 32. The function of these spacers is to provide air cooling passages for channeling cool air from inlet air duct 36.
  • the heating element 24 may be hinged as shown in FIG. 8 wherein hinge 38 is of the type that provides a degree of freedom in the vertical direction. Heater 24 may be pivoted downward to the position shown in FIG. 3, where it rests upon the ceramic spacers 34.
  • the completed column assembly llis placed directly upon the surface of heater 24.
  • a cover plate 40 is then positioned over the column.
  • Cover plate 40 carries upon its surface a number of ceramic spacers 42 identical to spacers 34 which similarly form passages for cooling fluid across the surface of column assembly 11.
  • the top and bottom of the complete assembly are covered with rigid heat insulation 44.
  • a clamp mechanism including a U strap 46 and a thumb screw 48 holds the assembly together and provides adequate pressure on the heater-column assembly to insure good thermal contact.
  • Rapid cooling of the column of this invention is provided by cooling air duct 36 which receives air either from a blower 50 driven by a suitable motor 52 or from a compressed air supply 54.
  • the housing for the heater- 3 column assembly may be of sheet metal provided with additional heat insulation 56 as required in addition to the rigid heat insulation 44.
  • FIG. 9 illustrates the manner in which the column 13 is connected into a chromatographic system.
  • carrier gas supply conduit 58 provides carrier flow to a heated injector block 60.
  • the carrier gas flows' through block 60, past assembly injection point 62 where it picks up the sample to be analyzed.
  • a suitable stream splitter 64 Upon reaching a suitable stream splitter 64 a portion of the carrier-sample combination passes into conduit 66. The remainder is vented through waste line 68.
  • the samplecarrier combination in line 66 passes into inlet 18 of column 13 where separation occurs.
  • Upon leaving column 13 the various components are separately eluted through line 20 and eventually pass to a suitable mixing T 70.
  • Mixing T 70 mixes the elutant with a fuel gas, such as hydrogen, supplied from line 72.
  • a fuel gas such as hydrogen
  • the resulting mixture passes to a detector such as flame detector 74.
  • the electrical signal from detector 74 is amplified by amplifier 76 and applied to a suitable recorder 78.
  • Jumper 80 which is in the flow path between column 13 and mixing T 70, is provided in order that a second column may be easily inserted in series with column 13. This is accomplished by merely removing this jumper and connecting the second column inlet and outlet in its place. It will be understood that a detector of any suitable type may be used with this invention. The invention is not limited to use with a flame detector.
  • the sensing wire 28 of the heater may be included in a bridge circuit for automatically programming the temperature of the assembly. In this way extremely accurate and linear temperature control is achieved. Furthermore, it
  • a chromatographic column assembly comprising:
  • a support member having a top surface
  • a cover having a top and bottom side positioned parallel to and above said heater but spaced therefrom;
  • a chromatographic column sub-assembly including .a chromatographic column wound in a double spiral and having substantially its entire length in a common plane and a pair of heat conductive plates, one disposed on each side of said wound column and in direct physical contact with said column, said chromatographic column assembly positioned between said heater and said' second plurality of spacers and in direct physical contact with said heater and said second plurality of spacers.
  • a chromatographic column assembly comprising:
  • a cover having a top and bottom side positioned parallel to and above said heater but spaced therefrom;
  • a chromatographic column sub-assembly including a chromatographic column wound in a double spiral and having substantially its entire length in a common plane and a pair of heat conductive plates, one disposed on each side of said wound column and in direct physical contact with said column, said chromatographic column assembly positioned between said heater and said second plurality of spacers and in direct physical contact with said heater and said second plurality of spacers;
  • a chromatographic column assembly comprising:
  • a support member having a top surface and a bottom surface
  • a cover having a top and bottom side positioned parallel to and above said heater but spaced therefrom;
  • a chromatographic column sub-assembly including a chromatographic column wound in a double spiral and having substantially its entire length in a common plane and a pair of heat conductive plates, one disposed on each side of said wound column and in direct physical contact with said column, said chromatographic column assembly positioned between said heater and said second plurality of spacers and in direct physical contact with said heater and said second plurality of spacers;
  • a chromatographic column assembly comprising:
  • a support member having a top surface and a bottom surface
  • a cover having a top and bottom side positioned parallel to and above said heater but spaced therefrom;
  • a chromatographic column sub-assembly including a chromatographic column wound in a double spiral and having substantially its entire length in a common plane and a pair of heat conductive plates, one disposed on each side of said Wound column and in direct physical contact with said column, said chromatographic column assembly positioned between said heater and said second plurality of spacers and in direct physical contact with said heater and said second plurality of spacers;

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

Oct. 26, 1965 H. A. GILL CHROMATOGRAPHY COLUMN STRUCTURE 4 Sheets-Sheet 1 Filed March 5, 1962 HTTOBNEX Oct. 26, 1965 H. A. GILL 3,213,596
CHROMATOGRAPHY COLUMN STRUCTURE Filed March 5, 1962 4 Sheets-Sheet 2 INVENTOR.
Oct. 26, 1965 H. A. GILL 3,213,596
CHROMATOGRAPHY COLUMN STRUCTURE Filed March 5, 1962 4 Sheets-Sheet 3 INVENTOR Harry 1? Gil Oct. 26, 1965 H. A. GILL 3,213,596
CHROMATOGRAPHY COLUMN STRUCTURE v Filed March 5, 1962 4 Sheets-Sheet 4 ZNVENTOR. 97719 H. GJZZ HTTOKNE'X BY W4.
United States Patent 3,213,596 CHROMATOGRAPHY COLUMN STRUCTURE Harry A. Gill, Ridgefield, Conn., assignor to The Perkin- Elmer Corporation, Norwalk, Conn, a corporation of New York Filed Mar. 5, 1962, Ser. No. 177,386 4 Claims. (Cl. 55-208) This invention relates to vapor phase chromatography and, more particularly, to a novel chromatographic column structure.
In chromatography, it is often desirable to program the temperature of the column throughout a range such that components having various boiling points will elute separately from the column. By proper programming, a large number of components may be detected and the usefulness of chromatography is thereby greatly extended. It is also desirable to be able to rapidly cool a column which has undergone such temperature programming. In this manner the column is more readily available for a subsequent analysis.
In prior art chromatography, temperature programming has been attempted by various methods. One such method is to place the column in a heated oven and rely on radiation and convection to provide the necessary heat. The primary ditficulty with this approach is that the thermal coupling between the heat source and the column is very loose. This makes accurate temperature control practically impossible.
Another approach which has been attempted is to wind the column in cylindrical form around a heated mandrel. This approach improves the coupling between the heat source and the column. However, as the column is heated it expands and thereby tends to move away from the mandrel. Thus, much of the improvement in heat coupling is lost and, furthermore, the thermal resistance becomes non-linear.
It is, therefore, the primary object of this invention to provide an improved temperature programmed chromatographic column.
Another object is to provide such a column having improved coupling between such column and the heat source.
Another object is to provide such a' column wherein expansion of the heated column does not destroy the improved coupling.
Another object is to provide such a column which may be rapidly cooled from its maximum temperature to a new starting temperature.
Other objects, features, and advantages will be apparent from the following description taken together with the figures of the attached drawings wherein:
FIG. 1 is a plan view, partially cut away, of an apparatus embodying this invention;
FIG. 2 is an elevational view of the apparatus of FIG.
FIG. 3 is a cross-sectional view of the column assembly taken along line 3-3 of FIG. 1;
FIG. 4 is a plan view, partially cut away, of the heater used with this invention;
FIG. 5 is a cross-section taken along line 5-5 of FIG. 4;
FIG. 6 is a plan view, partially cut away, of a typical column assembly for use with this invention;
FIG. 7 is a View taken along line 77 of FIG. 6;
FIG. 8 is an elevational view showing the mechanical construction of the heater mounting device of this invention; and
FIG. 9 is an overall schematic view of a chromatographic apparatus embodying this invention.
In accordance With this invention, a column is wound so as to lie in a single plane and to allow the two ends of the column to be exposed without crossovers. Such a planar wound column is then mounted in direct contact with a plate-like heater. The column and heater may be maintained in close thermal contact by means of a suitable clamping mechanism. In addition, passages for air or other cooling fluid may be provided along the surfaces of the heater-column combination and suitable means may be provided for passing cooling fluid therethrough.
The manner in which the column structure 11 of this invention is constructed will be best understood by reference to FIGS. 6 and 7. Two thin plates 10, 12 of a suitable heat conducting material such as aluminum are spot welded to opposite sides of a central core assembly made up of segments 14 and 16. The spacing provided between members 10 and 12 is such as to closely contact both sides of the chromatographic column 13 to be employed. Such a column may be either a Golay column or a packed column. The column is wound by passing approximately one-half the tube through the opening between spacers 14 and 16. The twoends of the column are then brought together and are spirally wound about the central core in the manner illustrated. It will be noted that the ends 18, 20 of the column may be brought out from the edge of the assembly without crossing over any previous turns. By this technique substantially the entire length of the column lies in a single plane and in excellent thermal contactwith the thin aluminum discs 10, 12. To complete the assembly, a circumferential spacer 22 is inserted around the edge of the assembly and theentire structure is suitably spot welded or riveted. The particular configuration of this type column will hereinafter be referred to as a double spiral.
The heater employed with this column is constructed as shown in FIG. 4. The heater 24 is a solid aluminum disc. The disc is cast to include a suitable electrical heating element 26 wound in double spiral form as was the column. In addition, a temperature sensing wire 28 is also cast into the assembly between the double spiral turns. Heating element 26 and temperature sensor 28 are insulated electrically from the aluminum disc. Suitable metallic positioning spacers 30 retain the elements in proper alignment during the casting process.
A cross-section of a completed heater assembly is shown in FIG. 3. It will be seen that a base plate 32 is provided with a number of ceramic insulators 34 which are mechanically fastened thereto by wires 35 through the insulators and inserted into holes in plate 32. The function of these spacers is to provide air cooling passages for channeling cool air from inlet air duct 36. The heating element 24 may be hinged as shown in FIG. 8 wherein hinge 38 is of the type that provides a degree of freedom in the vertical direction. Heater 24 may be pivoted downward to the position shown in FIG. 3, where it rests upon the ceramic spacers 34. The completed column assembly llis placed directly upon the surface of heater 24. A cover plate 40 is then positioned over the column. Cover plate 40 carries upon its surface a number of ceramic spacers 42 identical to spacers 34 which similarly form passages for cooling fluid across the surface of column assembly 11. The top and bottom of the complete assembly are covered with rigid heat insulation 44. A clamp mechanism including a U strap 46 and a thumb screw 48 holds the assembly together and provides adequate pressure on the heater-column assembly to insure good thermal contact.
It will be noted that this invention is not restricted to apparatus utilizing a single column. Two columns may advantageously be employed by positioning one above and one below heater 24.
Rapid cooling of the column of this invention is provided by cooling air duct 36 which receives air either from a blower 50 driven by a suitable motor 52 or from a compressed air supply 54. The housing for the heater- 3 column assembly may be of sheet metal provided with additional heat insulation 56 as required in addition to the rigid heat insulation 44.
FIG. 9 illustrates the manner in which the column 13 is connected into a chromatographic system. In this illustration 3. carrier gas supply conduit 58 provides carrier flow to a heated injector block 60. The carrier gas flows' through block 60, past assembly injection point 62 where it picks up the sample to be analyzed. Upon reaching a suitable stream splitter 64 a portion of the carrier-sample combination passes into conduit 66. The remainder is vented through waste line 68. The samplecarrier combination in line 66 passes into inlet 18 of column 13 where separation occurs. Upon leaving column 13 the various components are separately eluted through line 20 and eventually pass to a suitable mixing T 70. Mixing T 70 mixes the elutant with a fuel gas, such as hydrogen, supplied from line 72. The resulting mixture passes to a detector such as flame detector 74. The electrical signal from detector 74 is amplified by amplifier 76 and applied to a suitable recorder 78. Jumper 80, which is in the flow path between column 13 and mixing T 70, is provided in order that a second column may be easily inserted in series with column 13. This is accomplished by merely removing this jumper and connecting the second column inlet and outlet in its place. It will be understood that a detector of any suitable type may be used with this invention. The invention is not limited to use with a flame detector.
By means of this invention, extremely close coupling is provided between the heater and the column. The sensing wire 28 of the heater may be included in a bridge circuit for automatically programming the temperature of the assembly. In this way extremely accurate and linear temperature control is achieved. Furthermore, it
will be apparent that expansion of column 13 does not resultin any decrease in thermal coupling. All expansion of the column takes place in the plane in which it is positioned. The mechanical clamping between the heater and the column also insures against deterioration in thermal coupling. In addition, the provision of aircooling immediately adjacent the column and the heater provides unusually rapid return of the column to a temperature suitable for subsequent sample injection.
It will be apparent that many benefits and advantages accrue from this invention. It will be further apparent that this invention is capable of many variations and modifications without departing from the spirit thereof. It is, therefore, intended that this invention be limited only by the scope of the following claims.
I claim:
1. A chromatographic column assembly comprising:
a support member having a top surface;
a first plurality of spacers on the top surface of said support member defining a first group of air flow channels between said spacers;
a flat heater positioned on said first plurality of spacers;
a cover having a top and bottom side positioned parallel to and above said heater but spaced therefrom;
' a second plurality of spacers on the bottom side of said cover defining a second group of air flow channels between said second plurality of spacers;
and a chromatographic column sub-assembly including .a chromatographic column wound in a double spiral and having substantially its entire length in a common plane and a pair of heat conductive plates, one disposed on each side of said wound column and in direct physical contact with said column, said chromatographic column assembly positioned between said heater and said' second plurality of spacers and in direct physical contact with said heater and said second plurality of spacers.
2. A chromatographic column assembly comprising:
.a support member having a top surface;
a first plurality of spacers on the top surface of said support member defining a first group of air flow channels between said spacers;
a flat heater positioned on said first plurality of spacers;
a cover having a top and bottom side positioned parallel to and above said heater but spaced therefrom;
a second plurality of spacers on the bottom side of said cover defining a second group of air flow channels between said second plurality of spacers;
a chromatographic column sub-assembly including a chromatographic column wound in a double spiral and having substantially its entire length in a common plane and a pair of heat conductive plates, one disposed on each side of said wound column and in direct physical contact with said column, said chromatographic column assembly positioned between said heater and said second plurality of spacers and in direct physical contact with said heater and said second plurality of spacers;
and means for passing a cooling fluid through said first and second groups of air flow channels.
3. A chromatographic column assembly comprising:
a support member having a top surface and a bottom surface;
a first plurality of spacers on the top surface of said support member defining a first group of air flow channels between said spacers;
a flat heater positioned on said first plurality of spacers;
a cover having a top and bottom side positioned parallel to and above said heater but spaced therefrom;
a second plurality of spacers on the bottom side of said cover defining a second group of air flow channels between said second plurality of spacers;
a chromatographic column sub-assembly including a chromatographic column wound in a double spiral and having substantially its entire length in a common plane and a pair of heat conductive plates, one disposed on each side of said wound column and in direct physical contact with said column, said chromatographic column assembly positioned between said heater and said second plurality of spacers and in direct physical contact with said heater and said second plurality of spacers;
a first heat insulator positioned on the bottom surface of said support member;
and a second heat insulator positioned on the top side of said cover.
4. A chromatographic column assembly comprising:
a support member having a top surface and a bottom surface;
a first plurality of spacers on the top surface of said support member defining a first group of air flow channels between the spacers;
a flat heater positioned on said first plurality of spacers;
a cover having a top and bottom side positioned parallel to and above said heater but spaced therefrom;
a second plurality of spacers on the bottom side of said cover defining a second group of air flow channels between said second plurality of spacers;
a chromatographic column sub-assembly including a chromatographic column wound in a double spiral and having substantially its entire length in a common plane and a pair of heat conductive plates, one disposed on each side of said Wound column and in direct physical contact with said column, said chromatographic column assembly positioned between said heater and said second plurality of spacers and in direct physical contact with said heater and said second plurality of spacers;
means for passing a cooling fluid through said first and second group of air flow channels;
a first heat insulator positioned on the bottom surface of said support member;
5 a second heat insulator positioned on the top side of said cover; and a housing surrounding said chromatographic column assembly.
References Cited by the Examiner 5 UNITED STATES PATENTS 480,286 8/92 Serpollett 165-180 X 1,847,573 3/32 Rupp 165-180 X 2,169,852 8/39 Scott. 10 2,281,065 4/42 Lavigne 6217 X 2,300,634 11/42 Schoenfeld. 2,362,163 11/44 Shipman 261146 2,398,818 4/46 Turner 55--67 X 2,469,435 5/49 Hirsch 55-19 X 15 2,833,527 5/58 Kohl et a1. 261- -148 2,841,005 7/58 Coggeshall 55-197 X 2,868,011 1/59 Coggeshall 55-197 FOREIGN PATENTS Canada. Canada. Canada. France.
Great Britain.
OTHER REFERENCES Wisemann et 211.: German application 1,113,319, printed August 31, 1961, KL.421 4/16 (2 pp. dwg. 3 pp. spec.).
REUBEN FRIEDMAN, Primary Examiner.

Claims (1)

  1. 4. A CHROMATOGRAPHIC COLUMN ASSEMBLY COMPRISING: A SUPPORT MEMBER HAVING A TOP SURFACE AND A BOTTOM SURFACE; A FIRST PLURALITY OF SPACERS ON THE TOP SURFACE OF SAID SUPPORT MEMBER DEFINING A FIRST GROUP OF AIR FLOW CHANNELS BETWEEN THE SPACERS; A FLAT HEATER POSITIONED ON SAID FIRST PLURALITY OF SPACERS; A COVER HAVING A TOP AND BOTTOM SIDE POSITIONED PARALLEL TO AND ABOVE SAID HEATER BUT SPACED THEREFROM; A SECOND PLURALITY OF SPACERS ON THE BOTTOM SIDE OF SAID COVER DEFINING A SECOND GROUP OF AIR FLOW CHANNELS BETWEEN SAID SECOND PLURALITY OF SPACERS; A CHROMATOGRAPHIC COLUMN SUB-ASSEMBLY INCLUDING A CHROMATOGRAPHIC COLUMN WOUND IN A DOUBLE SPIRAL AND HAVING SUBSTANTIALLY ITS ENTIRE LENGTH IN A COMMON PLANE AND A PAIR OF HEAT CONDUCTIVE PLATES, ONE DISPOSED ON EACH SIDE OF SAID WOUND COLUMN AND IN DIRECT PHYSICAL CONTACT WITH SAID COLUMN, SAID CHROMATOGRAPHIC COLUMN ASSEMBLY POSITIONED BETWEEN SAID HEATER AND SAID SECOND PLURALITY OF SPACERS AND IN DIRECT PHYSICAL CONTACT WITH SAID HEATER AND SAID SECOND PLURALITY OF SPACERS; MEANS FOR PASSING A COOLING FLUID THROUGH SAID FIRST AND SECOND GROUPS OF AIR FLOW CHANNELS; A FIRST HEAT INSULATOR POSITIONED ON THE BOTTOM SURFACE OF SAID SUPPORT MEMBER; A SECOND HEAT INSULATOR POSITIONED ON THE TOP SIDE OF SAID COVER; AND A HOUSING SURROUNDING SAID CHROMATOGRAPHIC COLUMN ASSEMBLY.
US177386A 1962-03-05 1962-03-05 Chromatography column structure Expired - Lifetime US3213596A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US177386A US3213596A (en) 1962-03-05 1962-03-05 Chromatography column structure
CH160063A CH419667A (en) 1962-03-05 1963-02-08 Gas chromatograph
GB7493/63A GB1023982A (en) 1962-03-05 1963-02-25 Chromatography column structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US177386A US3213596A (en) 1962-03-05 1962-03-05 Chromatography column structure

Publications (1)

Publication Number Publication Date
US3213596A true US3213596A (en) 1965-10-26

Family

ID=22648398

Family Applications (1)

Application Number Title Priority Date Filing Date
US177386A Expired - Lifetime US3213596A (en) 1962-03-05 1962-03-05 Chromatography column structure

Country Status (3)

Country Link
US (1) US3213596A (en)
CH (1) CH419667A (en)
GB (1) GB1023982A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327520A (en) * 1964-02-28 1967-06-27 Beckman Instruments Inc Heated sample injection port
US3363447A (en) * 1966-02-14 1968-01-16 Universal Oil Prod Co Multiple chromatograph column heater unit
EP0445967A2 (en) * 1990-03-05 1991-09-11 The University Of Dayton Improved gas chromatography methods and apparatus
WO1993013415A1 (en) * 1991-12-23 1993-07-08 Higdon William R Detachable column cartridge for gas chromatograph
US5298225A (en) * 1991-12-23 1994-03-29 Microsensor Technology, Inc. Detachable column cartridge gas chromatograph
US5578157A (en) * 1991-12-23 1996-11-26 Microsensor Technology, Inc. Method of fabricating connector
US20150135861A1 (en) * 2012-03-08 2015-05-21 Waters Technologies Corporation Pre-column heating of mobile phase solvent in chromatography systems
US9714926B2 (en) 2010-01-11 2017-07-25 Waters Technologies Corporation Column heater with active pre-heating
EP3191833A4 (en) * 2014-09-13 2018-02-28 Agilent Technologies, Inc. Gas chromatography (gc) column heater
US10145823B2 (en) 2014-09-13 2018-12-04 Agilent Technologies, Inc. Gas chromatography (GC) column heater control using multiple temperature sensors
US10401331B2 (en) 2014-09-13 2019-09-03 Agilent Technologies, Inc. Gas chromatography (GC) column heater
US10764964B2 (en) 2015-10-07 2020-09-01 Agilent Technologies, Inc. Conical heater assembly for a gas chromatography column

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3026267C2 (en) * 1980-07-11 1983-10-27 Hewlett-Packard GmbH, 7030 Böblingen Thermostating device for liquid chromatographs
WO1992015853A1 (en) * 1991-02-28 1992-09-17 Tekamr Company Heated sample transfer apparatus

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US480286A (en) * 1892-08-09 Xrateurs
FR553950A (en) * 1922-04-14 1923-06-01 Griscom Russell Co Device used to rid liquids of the gases they contain, with automatic descaling
US1847573A (en) * 1930-03-12 1932-03-01 Commercial Iron Works Platen for presses with heating coils
US2169852A (en) * 1937-09-10 1939-08-15 Gen Electric Coffee maker
US2281065A (en) * 1936-05-14 1942-04-28 Lavigne Jean Loumiet Et Fluid separation
US2300634A (en) * 1941-04-26 1942-11-03 Comb Eng Co Inc Tube coils
US2362163A (en) * 1940-12-20 1944-11-07 Raldo E Shipman Carburetor
US2398818A (en) * 1940-11-13 1946-04-23 Nelson C Turner Apparatus for separating gases and the like
US2469435A (en) * 1944-01-17 1949-05-10 Hirsch Abraham Adler Regenerable desiccator
CA478891A (en) * 1951-11-27 C. Beese Norman Separation of gases
GB783713A (en) * 1954-12-30 1957-09-25 Parsons C A & Co Ltd Improvements in or relating to gas chromatography
US2833527A (en) * 1955-06-06 1958-05-06 Fluor Corp Liquid and gas contacting columns and their tray structures
US2841005A (en) * 1956-12-11 1958-07-01 Gulf Oil Corp Chromatographic method and apparatus
US2868011A (en) * 1955-12-16 1959-01-13 Gulf Research Development Co Multiple-column chromatographic apparatus
CA636165A (en) * 1962-02-06 R. Carew James Chromatography column
CA636078A (en) * 1962-02-06 Standard Oil Company Gas chromatography apparatus
US3023835A (en) * 1958-10-20 1962-03-06 Phillips Petroleum Co Thermochromatographic analyzer heater
US3035383A (en) * 1959-01-12 1962-05-22 Phillips Petroleum Co Thermochromatographic column
US3043127A (en) * 1958-12-11 1962-07-10 Phillips Petroleum Co Thermochromatography heater
US3062037A (en) * 1957-04-22 1962-11-06 Beckman Instruments Inc Temperature regulator for chromatographs
US3063286A (en) * 1959-07-14 1962-11-13 Standard Oil Co Sample introduction system for gas chromatography apparatus
US3122014A (en) * 1961-07-05 1964-02-25 Murrell R Dobbins Chromatography column enclosure

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA636165A (en) * 1962-02-06 R. Carew James Chromatography column
US480286A (en) * 1892-08-09 Xrateurs
CA636078A (en) * 1962-02-06 Standard Oil Company Gas chromatography apparatus
CA478891A (en) * 1951-11-27 C. Beese Norman Separation of gases
FR553950A (en) * 1922-04-14 1923-06-01 Griscom Russell Co Device used to rid liquids of the gases they contain, with automatic descaling
US1847573A (en) * 1930-03-12 1932-03-01 Commercial Iron Works Platen for presses with heating coils
US2281065A (en) * 1936-05-14 1942-04-28 Lavigne Jean Loumiet Et Fluid separation
US2169852A (en) * 1937-09-10 1939-08-15 Gen Electric Coffee maker
US2398818A (en) * 1940-11-13 1946-04-23 Nelson C Turner Apparatus for separating gases and the like
US2362163A (en) * 1940-12-20 1944-11-07 Raldo E Shipman Carburetor
US2300634A (en) * 1941-04-26 1942-11-03 Comb Eng Co Inc Tube coils
US2469435A (en) * 1944-01-17 1949-05-10 Hirsch Abraham Adler Regenerable desiccator
GB783713A (en) * 1954-12-30 1957-09-25 Parsons C A & Co Ltd Improvements in or relating to gas chromatography
US2833527A (en) * 1955-06-06 1958-05-06 Fluor Corp Liquid and gas contacting columns and their tray structures
US2868011A (en) * 1955-12-16 1959-01-13 Gulf Research Development Co Multiple-column chromatographic apparatus
US2841005A (en) * 1956-12-11 1958-07-01 Gulf Oil Corp Chromatographic method and apparatus
US3062037A (en) * 1957-04-22 1962-11-06 Beckman Instruments Inc Temperature regulator for chromatographs
US3023835A (en) * 1958-10-20 1962-03-06 Phillips Petroleum Co Thermochromatographic analyzer heater
US3043127A (en) * 1958-12-11 1962-07-10 Phillips Petroleum Co Thermochromatography heater
US3035383A (en) * 1959-01-12 1962-05-22 Phillips Petroleum Co Thermochromatographic column
US3063286A (en) * 1959-07-14 1962-11-13 Standard Oil Co Sample introduction system for gas chromatography apparatus
US3122014A (en) * 1961-07-05 1964-02-25 Murrell R Dobbins Chromatography column enclosure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327520A (en) * 1964-02-28 1967-06-27 Beckman Instruments Inc Heated sample injection port
US3363447A (en) * 1966-02-14 1968-01-16 Universal Oil Prod Co Multiple chromatograph column heater unit
EP0445967A2 (en) * 1990-03-05 1991-09-11 The University Of Dayton Improved gas chromatography methods and apparatus
EP0445967A3 (en) * 1990-03-05 1992-07-22 University Of Dayton Improved gas chromatography methods and apparatus
EP0724722B1 (en) * 1991-12-23 2002-04-10 Agilent Technologies, Inc. (a Delaware corporation) Detachable column cartridge for gas chromatograph
US5298225A (en) * 1991-12-23 1994-03-29 Microsensor Technology, Inc. Detachable column cartridge gas chromatograph
EP0724722A1 (en) * 1991-12-23 1996-08-07 Inc. Microsensor Technology Detachable column cartridge for gas chromatograph
US5578157A (en) * 1991-12-23 1996-11-26 Microsensor Technology, Inc. Method of fabricating connector
US5601785A (en) * 1991-12-23 1997-02-11 Microsensor Technology, Inc. Connector for detachable column cartridge for gas chromatograph
WO1993013415A1 (en) * 1991-12-23 1993-07-08 Higdon William R Detachable column cartridge for gas chromatograph
US5236668A (en) * 1991-12-23 1993-08-17 Higdon William R Detachable column cartridge gas chromatograph
US9714926B2 (en) 2010-01-11 2017-07-25 Waters Technologies Corporation Column heater with active pre-heating
US20150135861A1 (en) * 2012-03-08 2015-05-21 Waters Technologies Corporation Pre-column heating of mobile phase solvent in chromatography systems
US9557304B2 (en) * 2012-03-08 2017-01-31 Waters Technologies Corporation Pre-column heating of mobile phase solvent in chromatography systems
DE112013001342B4 (en) 2012-03-08 2019-07-18 Waters Technologies Corporation Precolumn heating of mobile phase solvent in chromatography systems
EP3191833A4 (en) * 2014-09-13 2018-02-28 Agilent Technologies, Inc. Gas chromatography (gc) column heater
US10067101B2 (en) 2014-09-13 2018-09-04 Agilent Technologies Gas chromatography (GC) column heater
US10145823B2 (en) 2014-09-13 2018-12-04 Agilent Technologies, Inc. Gas chromatography (GC) column heater control using multiple temperature sensors
US10401331B2 (en) 2014-09-13 2019-09-03 Agilent Technologies, Inc. Gas chromatography (GC) column heater
US10764964B2 (en) 2015-10-07 2020-09-01 Agilent Technologies, Inc. Conical heater assembly for a gas chromatography column

Also Published As

Publication number Publication date
GB1023982A (en) 1966-03-30
CH419667A (en) 1966-08-31

Similar Documents

Publication Publication Date Title
US3213596A (en) Chromatography column structure
JP5943085B2 (en) Gas chromatograph
US6907796B2 (en) Temperature-controlled injector for a chemical analysis unit
US4088458A (en) Heater block for low cost gas chromatograph
ATE403148T1 (en) ELECTRICALLY ISOLATED GAS CHROMATOGRAPHY ARRANGEMENT
JPH10221324A (en) Low-power consuming gas chromatograph system
JP4701855B2 (en) Gas chromatograph mass spectrometer
ATE40208T1 (en) SAMPLING PROBE FOR HOT GAS SAMPLING.
US4804839A (en) Heating system for GC/MS instruments
US3581465A (en) Method and apparatus for concentrating and trapping sample component
US3139745A (en) Gas chromatographic unit
US3122014A (en) Chromatography column enclosure
US3581898A (en) Magnetic filter
US3290482A (en) Heating structures for chromatographic columns
JP4430623B2 (en) Direct heating tube and fluid heating method using the tube
US3592044A (en) Sample handling means for use in gas analysis apparatus
US3309504A (en) System for heating chromatographic columns
US2868944A (en) Electric fluid heater
CN109164128B (en) Furnace body for thermal analyzer
US3115766A (en) Gas chromatography apparatus
US3097517A (en) volts
US3363447A (en) Multiple chromatograph column heater unit
US3111023A (en) Temperature control of a thermochromatographic column
FR2380520A1 (en) Gas venting for liq. heating channels - has high heat conductivity capillary covering layer at higher temp. above channels
US2602046A (en) Multiple thermocouple fractionating column