US3233697A - Muffler internally coated with highly refractory fibers - Google Patents

Muffler internally coated with highly refractory fibers Download PDF

Info

Publication number
US3233697A
US3233697A US278330A US27833063A US3233697A US 3233697 A US3233697 A US 3233697A US 278330 A US278330 A US 278330A US 27833063 A US27833063 A US 27833063A US 3233697 A US3233697 A US 3233697A
Authority
US
United States
Prior art keywords
exhaust gases
liner
exhaust
fibers
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US278330A
Inventor
Slayter Games
Robert G Russell
Willard L Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US34408A external-priority patent/US3109511A/en
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Priority to US278330A priority Critical patent/US3233697A/en
Application granted granted Critical
Publication of US3233697A publication Critical patent/US3233697A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/003Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages
    • F01N1/006Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages comprising at least one perforated tube extending from inlet to outlet of the silencer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/023Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/04Silencing apparatus characterised by method of silencing by using resonance having sound-absorbing materials in resonance chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1888Construction facilitating manufacture, assembly, or disassembly the housing of the assembly consisting of two or more parts, e.g. two half-shells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/26Construction of thermal reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2835Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2885Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with exhaust silencers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2230/00Combination of silencers and other devices
    • F01N2230/04Catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • F01N2310/02Mineral wool, e.g. glass wool, rock wool, asbestos or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • F01N2310/06Porous ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/10Fibrous material, e.g. mineral or metallic wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/06Inserting sound absorbing material into a chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/22Methods or apparatus for fitting, inserting or repairing different elements by welding or brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/24Methods or apparatus for fitting, inserting or repairing different elements by bolts, screws, rivets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/28Methods or apparatus for fitting, inserting or repairing different elements by using adhesive material, e.g. cement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/28Tubes being formed by moulding or casting x
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/15Plurality of resonance or dead chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/15Plurality of resonance or dead chambers
    • F01N2490/155Plurality of resonance or dead chambers being disposed one after the other in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/08Surface coverings for corrosion prevention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/26Multi-layered walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to an improved muffling system and more particularly to a vehicle muflling system in which components are lined with highly refractory fibers.
  • Present mufilers include casings or walls of one or more wraps of steel which enclose a plurality of internal steel battles to mutile the sound of the engine and exhaust gases. These mufflers are subjected to conditions which cause the casings to be attacked with the result that the mufilers are relatively short lived. For example, particularly in winter and on short trips, liquids of an acidic nature from the engine will deposit on and attack the interior surface of a muffler casing. On long trips the mufller casing also tends to become very hot, the gases within the casing often being over 1600 F.
  • the present invention relates to a muffling system having a lined component and to an insulating liner which overcomes the above-discussed disadvantages of existing muffling systems.
  • the liner is preferably made of highly refractory fibers held together by a suitable binder, the
  • liner being located near the inner surface of the component, between it and the exhaust gases.
  • the relatively cool walls thus tend to oxidize, rust, and warp to a much smaller degree than formerly and no special steels are required for the mufiler components as might otherwise be necessary.
  • the new liner prevents contact between the exhaust gases and the steel or cast iron walls of the lined exhaust system component and thus prevents an increase in the amount of olefins which otherwise occurs.
  • Another object of the invention is to provide an exhaust system where fewer deleterious substances are present in the exhausted gases.
  • Still another object of the invention is to provide a muffler having a longer life than those presently known in the art.
  • Yet another object of the invention is to provide a muffling system in which the exhaust gases are maintained at higher temperatures so that additional, secondary combustion can occur therein.
  • FIG. 1 is a somewhat schematic view, with parts broken away and parts in cross section, of an engine and a muifling system embodying the principles of the inventron;
  • FIG. 2 is a greatly enlarged view in cross section of a muffler of the system shown in FIG. 1;
  • FIG. 3 is a view in transverse cross section taken along the line 3-3 of FIG. 2;
  • FIG. 4 is a view in perspective of a liner segment used in the mufiiing system and the mufller of FIGS. 1-3;
  • FIG. 5 is a view in vertical cross section of a mold for making the segment shown in FIG. 4;
  • FIG. 6 is a somewhat schematic view in cross section of modified apparatus for lining mufiling systems.
  • FIG. 7 is a view in cross section of further modified apparatus for lining mufiling systems.
  • an eight cylinder engine is indicated at 10, the cylinders of Which are connected to a mufili-ng system indicated generally at 12, although the two banks of cylinders can alternately be connected to separate mufiling systems.
  • the system 12 includes lined manifolds 14, a lined connecting pipe 15, a lined' exhaust pipe 16, a lined mufiler 18, and a tailpipe 20 which can be lined or not.
  • the mufiler 18 (FIGS. 2 and 3) includes a casing 22 comprising two half sections 24 and 26 which can be bolted together at flanges 28 and 30 (FIG. 3) extending longitudinally thereof.
  • Suitable conecting pipes 32 and 34 (FIG. 2) are afiixed to end walls of the casing 22 for connection with the exhaust pipe 16 and the tailpipe 20, in a maner well known in the art.
  • Within the casing 22 is a perforate metal tube 36, which is spaced from the casing 22 by suitable spacers 38, reinforced cement rings being suitable for this purpose.
  • a cylindrical liner 40 made of a plurality of circular or ring segments 42 which are placed in coaxial, end-to-end relationship and preferably cemented together by a ceramic band.
  • the outer diameter of the segments 42 is large enough to enable them to be held tightly within the tube 36 and the inner diameter of the segments 42 is sufiicient to form a passage for exhaust gases from the engine 10.
  • the walls of the segments 42 are at least A" thick to provide reasonable strength and have been made in thicknesses up to approximately 1 /2 of either porous or non-porous ceramic of the type described below.
  • the segments 42 are integral, porous bodies containing highly refractory, titania fibers, and are self-sustaining within the tube 36, requiring no internal wall or support within the bodies.
  • the liner 40 prevents attack of the muffler casing -by keeping any corrosive liquids in the exhaust gases out of contact therewith.
  • the titania ceramic is also resistant to acids, to high temperature steam, and to the various corrosive contaminants within the exhaust gases.
  • the liner 40 also acts as an extremely good insulator with the result that the temperature of the casing 22 seldom exceeds 300 F., even when the exhaust gases are at 1600 F. or higher.
  • the exhaust gases are kept out of contact with the casing 22 to prevent an increase in the amount of olefins which might otherwise result.
  • the exhaust gases are kept at a higher temperature within the exhaust system due to the insulating effect of the liner 40 that additional combustion of these gases can take place in order to reduce the amount of deleterious contaminants therein.
  • additional air can be added to the exhaust system through an air pipe 44 (FIG. 1), which is conected to the exhaust pipe 16.
  • the air can be supplied by a small blower 46 or, duringmovemerit of the vehicle, by an air scoop. I
  • the segments 42 a single one of which is shown in perspective in FIG. 4, have been made from a mixture of 87 grams crystalline titania fibers from /4" to /2" long, 20 grams of wood sawdust, 25 grams of Montmorillonite and 13 grams of powdered soda-lime glass. This mixture was combined with sufficient water to make a mortar or paste of fibrous pellets which were then pressed into a mold the size and shape of the segment 42 and fired at 2500" F. to cause the soda-lime glass and Montmorillonite to form a binder for the titania fibers and to cause the sawdust to burn out and leave a porous body. The resulting body consisted essentially to 70% titania, 20% Montmorill-onite, and sodalime glass.
  • the body contained approximately 70% air, titania fibers, and 10% binder (Montniorillonite and soda-lime glass), with an apparent density of approximately 70 pounds per cubic foot. Segments 1" thick show only slight resistance when air is blown through them.
  • the segments 42 have been made in a metal mold having an annular, tapered cavity, it has been found that the material is difficult to remove therefrom preparatory to firing. For this reason, the segments 42 are preferably made in a mold 44 shown in FIG. 5.
  • the mold 44 includes an outer cylindrical wall 46 and an end wall 48 of paper, cardboard, or other organic material which will burn away at a temperature below the firing temperature of the segment material.
  • a metal rod 50 which is concentric of the mold 44 extends through the end wall 48 to form an annular cavity with the end wall 48 and the cylindrical wall 46, the cavity having a shape and size similar to those of the segment 42.
  • the metal rod 50 is removed to leave the green liner and the walk 46 and 48 which are fired as a unit, the Walls 46 and 48 burning away, with only the fired, hardened segment 42 then remaining. With this arrangement, the liner material need not be removed from the mold prior to firing.
  • the porous liner 49 not only provides the advantages outlined above, but also constitutes an effective acoustic material to absorb sound and muffle the noise of the exhaust gases and engine.
  • the perforate tube 36 further enhances the acoustical absorption properties of the muffler 18, particularly for sound of lower frequency.
  • the liner 40 can be made with a larger diameter and placed immediately adjacent the casing 22, with the porous tube 36 eliminated, to provide substantially as good sound absorption. It is desirable that the muffler have a volume about ten times the volumetric displacement of the engine cylinders from an acoustical standpoint.
  • the liner material can 'be employed in the manifold 14 and the exhaust pipe 16 to maintain the temperature of the exhaust gases several hundred degrees higher than otherwise and also to keep th eexhaust gases separate from the steel or iron of which the manifold 14 and the exhaust pipe 16 are made to pre vent reaction on the surface thereof.
  • the manifold 14 and the exhaust pipe 16 are also maintained at cooler temperatures by being insulated from the exhaust gases, and temperatures under the hood are decreased.
  • the manifold 14 can be made of welded or fabricated sheet steel, the manifold 14 in this case comprising a cylindrical metal tube 52 and shorter connecting tubes 54 of welded sheet steel.
  • it was necessary in most instances to cast the manifold 14 which, because of its high temperature, had considerable tendency to warp, making the use of fabricated steel impractical.
  • the manifold 14 and the exhaust pipe 16 have been lined with segments similar to the segments 42, but of smaller diameter. However, where the manifold 14 or the exhaust pipe 16 is of relatively complicated shape, the liner can be applied to these components in the form of a thick coating on the interior walls thereof. Because sound absorption is not a consideration in the manifold 14 and the exhaust pipe 16, the liner in this casen'eed not be porous, and the sawdust or other material forming voids in the final product need not be employed or can be employed to a lesser degree.
  • the refractory f bers in the liner material preferably are shorter than those used in the liner 40 to enable the liner material to be more easily applied to the interior of the com onent After the liner material is applied it can be fired in the mufiling system components by passing highly heated gases therethrough to provide the proper firing temperatures therein without excessively heating the outer walls of the components.
  • a thick layer of the coating material can be applied to the inner surfaces of the manifold 14 and the exhaust pipe 16 with the apparatus shown in FIG. 6.
  • the binder materials and the titania fibers can be supplied separately, and titania powder can be added to increase the strength of the liner.
  • the apparatus, indicated generally at 56, moves from left to right in FIG. 6 through the exhaust pipe 16, for example, which preferably is concommitantly rotated. Titania powder can first be supplied to the interior of the pipe 16 through a supply line 58 and the binder material then supplied through a second supply line 60, with the titania fibers then being supplied to the surface of the binder material through a third supply tube 62.
  • the binder and titania also can be supplied through a single supply line 'as a premixed aqueous paste by means of air pressure.
  • the liner material which is now deposited on the interior of the tube 16 is subsequently spread evenly by means of a spreader 64 which is in the form of a flexible cone or a plurality of flexible arms. In either case the spreader 64 is spaced from the inner surface of the pipe 16 by means of spacers 66 which determine the thickness of the liner.
  • a modified liner applicator 68 is shown in FIG. 7 and includes an outer passage 70 through which the binder or coating material is sprayed through an annular nozzle 72 which also can be a plurality of individual nozzles.
  • the titania fibers are subsequently sprayed onto the wet coating material by means of an inner passage 74 through which the titania fibers are blown, being deflected to the wall of the pipe 16 by a deflector 76.
  • the titania fibers and the binder material can be supplied through a single spray passage.
  • binders and other highly refractory fibers such as zircon and zirconia fibers, have been found to be suitable for use in a lined mufiiing system according to the invention.
  • the fibers employed must be of a highly refractory nature, capable of withstanding temperatures of 1800 F. and preferably 2600 F. because the internal temperature of the exhaust system may be as high as 2600 F., or possibly higher, if a spark plug is inoperative and a mixture of air and raw gas is expelled into the exhaust system.
  • the titania fibers whether oxidized or oxygen deficient, have properties which render them particularly suitable for a mufiiing system, these fibers apparently having a catalytic effect on the exhaust gases.
  • Titania, zirconia, and zircon fibers over an inch in length and in single crystalline form have been produced in quantities according to a process set forth in a copending application of Russell, Morgan, and Schefiier, Serial No. 31,964, filed on or about May 26, 1960, now Patent No. 3,065,091.
  • a mufiiing system component comprising a casing forming an elongate chamberhaving an inlet opening and an outlet opening, and an integral coating within said chamber forming a passage for exhaust gases between said inlet opening and said outlet opening, said coating being interposed between said passage and said casing with the inner surface of said coating being substantially unobstructed for contact with exhaust gases flowing through said component, said coating comprising highly refractory, inorganic, crystalline fibers selected from the group consisting of titania, zirconia, and zircon, and an inorganic binder.
  • a mufiling system component comprising a casing forming an elongate chamber having an inlet opening and an outlet opening, and an integral, porous coating within said chamber forming a passage for exhaust gases between said inlet opening and said outlet opening, said porous coating being interposed between said passage and said casing with the inner surface of said coating being substantially unobstructed for contact with exhaust gases flowing through said component, said porous coating comprising highly refractory, inorganic, titania fibers, and an inorganic binder holding said fibers together and forming a multiplicity of voids in said coatmg.

Description

Feb. 8, 1966 G. SLAYTER ETAL 3,233,697
MUFFLER INTERNALLY COATED WITH HIGHLY REFRACTORY FIBERS Original Filed June 7, 1960 2 Sheets-Sheet 1 INVENTORS GAMES Smvrm, Roam-r G Passe-u. &
BY Mann A. Moran/v Arron/vars Feb. 8, 1966 e. SLAYTER ETAL 3,233,697
MUFFLER INTERNALLY COATED WITH HIGHLY REFRACTORY FIBERS Original Filed June '7, 1960 2 Sheets-Sheet 2 INVENTORS GAMES SLAYrER, Panzer 6. Russsu &
Z WILLARD L. Manamv A 7 Rfi/E Y5 United States Patent 3,233,697 MUFFLER INTERNALLY COATED WITH HIGHLY REFRACTORY FIBERS Games Slayter, Newark, and Robert G. Russell, Granville, Ohio, and Willard L. Morgan, Spartanhurg, S.C., assignors to Owens-Corning Fiberglas Corporation, a corporation of Delaware Original application June 7, 1960, Ser. No. 34,408, now Patent No. 3,109,511, dated Nov. 5, 1963. Divided and this applicatiouMay 6, 1963, Ser. No. 278,330
2 Claims. (Cl. 181-42) This application is a division of our copending application Serial No. 34,408, filed June 7, 1960, now Patent No. 3,109,511.
This invention relates to an improved muffling system and more particularly to a vehicle muflling system in which components are lined with highly refractory fibers.
Present mufilers include casings or walls of one or more wraps of steel which enclose a plurality of internal steel battles to mutile the sound of the engine and exhaust gases. These mufflers are subjected to conditions which cause the casings to be attacked with the result that the mufilers are relatively short lived. For example, particularly in winter and on short trips, liquids of an acidic nature from the engine will deposit on and attack the interior surface of a muffler casing. On long trips the mufller casing also tends to become very hot, the gases within the casing often being over 1600 F. under normal operating conditions and may be substantially higher than this if a spark plug is not functioning with the result that a cylinder exhausts a mixture of air and raw fuel into the exhaust system where it burns partially. Oil expelled from the engine through the exhaust system, and deposited in the mufller, may also smolder and thereby further increase interior temperatures. Elevated mufiler casing temperatures increase the rate at which the casing oxidizes or rusts.
There is also reason to believe that conventional mufflersmay increase the amounts of certain deleterious contaminants in exhaust gases. Available evidence indicates that exhaust gases in contact with hot iron or steel undergo a reaction which increases the amounts of olefins in the gases. This reaction can occur in conventional muffiing systems, wherever exhaust gases contact hot steel or oxidized cast iron components of an exhaust system.
In addition, the bare metal walls of conventional muf- ,flers and mufiling systems extract heat rapidly from the exhaust gases, thus causing the gases to cool rapidly. Such cooling prevents secondary combustion in the exhaust system that might otherwise consume at least part of the carbon monoxide and olefins in the exhaust gases. In present mufiiing systems, secondary combustion is very rare and may onlyoccur at high operating speeds when raw fuel and air flow through the exhaust system.
The present invention relates to a muffling system having a lined component and to an insulating liner which overcomes the above-discussed disadvantages of existing muffling systems. The liner is preferably made of highly refractory fibers held together by a suitable binder, the
. liner being located near the inner surface of the component, between it and the exhaust gases. There is a much smaller tendency for condensation to occur with the new exhaust system because the exhaust gases are kept out I of contact with the cold walls of the system, and because the linear remains hot longer after the engine is stopped.
Any such liquid that does condense, as in winter when the engine is not operated for a long enough period to heat the liner sufficiently, will eventually evaporate in the tern components at much lower temperatures by comparison with conventional systems, the walls being approximately 300 F. or less when the exhaust gases are 1600 F. when a liner only one-half inch thick is used. The relatively cool walls thus tend to oxidize, rust, and warp to a much smaller degree than formerly and no special steels are required for the mufiler components as might otherwise be necessary. In addition, the new liner prevents contact between the exhaust gases and the steel or cast iron walls of the lined exhaust system component and thus prevents an increase in the amount of olefins which otherwise occurs. Reduction in heat loss from the manifold under the hood also reduces driver discomfort in the summer when the maniold is lined in accordance with the invention. Because the insulating liner prevents rapid extraction of heat from the exhaust gases to the mufiier walls, the exhaust gases remain at much higher temperatures and can undergo secondary combustion in the system. The liner also provides an effective surface in contact with which combustion of the gases can proceed. To aid in secondary combustion, air can be added to the exhaust gases at a point upstream of the mufiier to provide additional oxygen for combustion of the remaining fuel in the exhaust gases.
It is, therefore, a principal object of the invention to provide an improved muflling system including an interior, insulating liner.
Another object of the invention is to provide an exhaust system where fewer deleterious substances are present in the exhausted gases.
Still another object of the invention is to provide a muffler having a longer life than those presently known in the art.
Yet another object of the invention is to provide a muffling system in which the exhaust gases are maintained at higher temperatures so that additional, secondary combustion can occur therein.
Other objects and advantages of the invention will be apparent from the following detailed description of a preferred embodiment thereof, reference being made to the accompanying drawings, in which:
FIG. 1 is a somewhat schematic view, with parts broken away and parts in cross section, of an engine and a muifling system embodying the principles of the inventron;
FIG. 2 is a greatly enlarged view in cross section of a muffler of the system shown in FIG. 1;
FIG. 3 is a view in transverse cross section taken along the line 3-3 of FIG. 2;
FIG. 4 is a view in perspective of a liner segment used in the mufiiing system and the mufller of FIGS. 1-3;
FIG. 5 is a view in vertical cross section of a mold for making the segment shown in FIG. 4;
FIG. 6 is a somewhat schematic view in cross section of modified apparatus for lining mufiling systems; and
FIG. 7 is a view in cross section of further modified apparatus for lining mufiling systems.
Referring to FIG. 1, an eight cylinder engine is indicated at 10, the cylinders of Which are connected to a mufili-ng system indicated generally at 12, although the two banks of cylinders can alternately be connected to separate mufiling systems. The system 12 includes lined manifolds 14, a lined connecting pipe 15, a lined' exhaust pipe 16, a lined mufiler 18, and a tailpipe 20 which can be lined or not.
The mufiler 18 (FIGS. 2 and 3) includes a casing 22 comprising two half sections 24 and 26 which can be bolted together at flanges 28 and 30 (FIG. 3) extending longitudinally thereof. Suitable conecting pipes 32 and 34 (FIG. 2) are afiixed to end walls of the casing 22 for connection with the exhaust pipe 16 and the tailpipe 20, in a maner well known in the art. Within the casing 22 is a perforate metal tube 36, which is spaced from the casing 22 by suitable spacers 38, reinforced cement rings being suitable for this purpose. Within the perforate tube 36 is a cylindrical liner 40 made of a plurality of circular or ring segments 42 which are placed in coaxial, end-to-end relationship and preferably cemented together by a ceramic band. The outer diameter of the segments 42 is large enough to enable them to be held tightly within the tube 36 and the inner diameter of the segments 42 is sufiicient to form a passage for exhaust gases from the engine 10. The walls of the segments 42 are at least A" thick to provide reasonable strength and have been made in thicknesses up to approximately 1 /2 of either porous or non-porous ceramic of the type described below.
The segments 42 are integral, porous bodies containing highly refractory, titania fibers, and are self-sustaining within the tube 36, requiring no internal wall or support within the bodies. The liner 40 prevents attack of the muffler casing -by keeping any corrosive liquids in the exhaust gases out of contact therewith. The titania ceramic is also resistant to acids, to high temperature steam, and to the various corrosive contaminants within the exhaust gases. The liner 40 also acts as an extremely good insulator with the result that the temperature of the casing 22 seldom exceeds 300 F., even when the exhaust gases are at 1600 F. or higher. In addition, the exhaust gases are kept out of contact with the casing 22 to prevent an increase in the amount of olefins which might otherwise result. Finally, the exhaust gases are kept at a higher temperature within the exhaust system due to the insulating effect of the liner 40 that additional combustion of these gases can take place in order to reduce the amount of deleterious contaminants therein. For this purpose, additional air can be added to the exhaust system through an air pipe 44 (FIG. 1), which is conected to the exhaust pipe 16. The air can be supplied by a small blower 46 or, duringmovemerit of the vehicle, by an air scoop. I
The segments 42, a single one of which is shown in perspective in FIG. 4, have been made from a mixture of 87 grams crystalline titania fibers from /4" to /2" long, 20 grams of wood sawdust, 25 grams of Montmorillonite and 13 grams of powdered soda-lime glass. This mixture was combined with sufficient water to make a mortar or paste of fibrous pellets which were then pressed into a mold the size and shape of the segment 42 and fired at 2500" F. to cause the soda-lime glass and Montmorillonite to form a binder for the titania fibers and to cause the sawdust to burn out and leave a porous body. The resulting body consisted essentially to 70% titania, 20% Montmorill-onite, and sodalime glass. By volume, the body contained approximately 70% air, titania fibers, and 10% binder (Montniorillonite and soda-lime glass), with an apparent density of approximately 70 pounds per cubic foot. Segments 1" thick show only slight resistance when air is blown through them. I
While the segments 42 have been made in a metal mold having an annular, tapered cavity, it has been found that the material is difficult to remove therefrom preparatory to firing. For this reason, the segments 42 are preferably made in a mold 44 shown in FIG. 5. The mold 44 includes an outer cylindrical wall 46 and an end wall 48 of paper, cardboard, or other organic material which will burn away at a temperature below the firing temperature of the segment material. A metal rod 50 which is concentric of the mold 44 extends through the end wall 48 to form an annular cavity with the end wall 48 and the cylindrical wall 46, the cavity having a shape and size similar to those of the segment 42. After the liner material is placed in the cavity and tamped therein, the metal rod 50 is removed to leave the green liner and the walk 46 and 48 which are fired as a unit, the Walls 46 and 48 burning away, with only the fired, hardened segment 42 then remaining. With this arrangement, the liner material need not be removed from the mold prior to firing.
The porous liner 49 not only provides the advantages outlined above, but also constitutes an effective acoustic material to absorb sound and muffle the noise of the exhaust gases and engine. The perforate tube 36 further enhances the acoustical absorption properties of the muffler 18, particularly for sound of lower frequency. However, the liner 40 can be made with a larger diameter and placed immediately adjacent the casing 22, with the porous tube 36 eliminated, to provide substantially as good sound absorption. It is desirable that the muffler have a volume about ten times the volumetric displacement of the engine cylinders from an acoustical standpoint.
In accordance with the principles of the invention, it also has been discovered that the liner material can 'be employed in the manifold 14 and the exhaust pipe 16 to maintain the temperature of the exhaust gases several hundred degrees higher than otherwise and also to keep th eexhaust gases separate from the steel or iron of which the manifold 14 and the exhaust pipe 16 are made to pre vent reaction on the surface thereof. The manifold 14 and the exhaust pipe 16 are also maintained at cooler temperatures by being insulated from the exhaust gases, and temperatures under the hood are decreased. Because the temperatures of the lined exhaust system components are much lower than in conventional exhaust systems, the manifold 14 can be made of welded or fabricated sheet steel, the manifold 14 in this case comprising a cylindrical metal tube 52 and shorter connecting tubes 54 of welded sheet steel. Previously, it was necessary in most instances to cast the manifold 14 which, because of its high temperature, had considerable tendency to warp, making the use of fabricated steel impractical.
The manifold 14 and the exhaust pipe 16 have been lined with segments similar to the segments 42, but of smaller diameter. However, where the manifold 14 or the exhaust pipe 16 is of relatively complicated shape, the liner can be applied to these components in the form of a thick coating on the interior walls thereof. Because sound absorption is not a consideration in the manifold 14 and the exhaust pipe 16, the liner in this casen'eed not be porous, and the sawdust or other material forming voids in the final product need not be employed or can be employed to a lesser degree. The refractory f bers in the liner material preferably are shorter than those used in the liner 40 to enable the liner material to be more easily applied to the interior of the com onent After the liner material is applied it can be fired in the mufiling system components by passing highly heated gases therethrough to provide the proper firing temperatures therein without excessively heating the outer walls of the components.
A thick layer of the coating material can be applied to the inner surfaces of the manifold 14 and the exhaust pipe 16 with the apparatus shown in FIG. 6. In this instance, the binder materials and the titania fibers can be supplied separately, and titania powder can be added to increase the strength of the liner. The apparatus, indicated generally at 56, moves from left to right in FIG. 6 through the exhaust pipe 16, for example, which preferably is concommitantly rotated. Titania powder can first be supplied to the interior of the pipe 16 through a supply line 58 and the binder material then supplied through a second supply line 60, with the titania fibers then being supplied to the surface of the binder material through a third supply tube 62. The binder and titania also can be supplied through a single supply line 'as a premixed aqueous paste by means of air pressure. The liner material which is now deposited on the interior of the tube 16 is subsequently spread evenly by means of a spreader 64 which is in the form of a flexible cone or a plurality of flexible arms. In either case the spreader 64 is spaced from the inner surface of the pipe 16 by means of spacers 66 which determine the thickness of the liner.
A modified liner applicator 68 is shown in FIG. 7 and includes an outer passage 70 through which the binder or coating material is sprayed through an annular nozzle 72 which also can be a plurality of individual nozzles. The titania fibers are subsequently sprayed onto the wet coating material by means of an inner passage 74 through which the titania fibers are blown, being deflected to the wall of the pipe 16 by a deflector 76. Again, the titania fibers and the binder material can be supplied through a single spray passage.
Other binders and other highly refractory fibers, such as zircon and zirconia fibers, have been found to be suitable for use in a lined mufiiing system according to the invention. The fibers employed must be of a highly refractory nature, capable of withstanding temperatures of 1800 F. and preferably 2600 F. because the internal temperature of the exhaust system may be as high as 2600 F., or possibly higher, if a spark plug is inoperative and a mixture of air and raw gas is expelled into the exhaust system. However, the titania fibers, whether oxidized or oxygen deficient, have properties which render them particularly suitable for a mufiiing system, these fibers apparently having a catalytic effect on the exhaust gases. Titania, zirconia, and zircon fibers over an inch in length and in single crystalline form have been produced in quantities according to a process set forth in a copending application of Russell, Morgan, and Schefiier, Serial No. 31,964, filed on or about May 26, 1960, now Patent No. 3,065,091.
We claim:
1. A mufiiing system component comprising a casing forming an elongate chamberhaving an inlet opening and an outlet opening, and an integral coating within said chamber forming a passage for exhaust gases between said inlet opening and said outlet opening, said coating being interposed between said passage and said casing with the inner surface of said coating being substantially unobstructed for contact with exhaust gases flowing through said component, said coating comprising highly refractory, inorganic, crystalline fibers selected from the group consisting of titania, zirconia, and zircon, and an inorganic binder.
2. A mufiling system component comprising a casing forming an elongate chamber having an inlet opening and an outlet opening, and an integral, porous coating within said chamber forming a passage for exhaust gases between said inlet opening and said outlet opening, said porous coating being interposed between said passage and said casing with the inner surface of said coating being substantially unobstructed for contact with exhaust gases flowing through said component, said porous coating comprising highly refractory, inorganic, titania fibers, and an inorganic binder holding said fibers together and forming a multiplicity of voids in said coatmg.
References Cited by the Examiner UNITED STATES PATENTS 2,065,343 12/1936 Moore et al. 181-50 2,072,961 3/1937 Nelson. 2,523,260 9/1950 Campbell 181-50 2,654,136 10/1953 Harford et al 252-62 X 2,811,457 10/1957 Speil et a1. 2,833,620 5/1958 Gier et al. 252-62 X 2,837,169 6/1958 Sawyer 181-36 2,848,349 8/1958 Rechter et al. 106-57 X 2,884,380 4/1959 Cook et al. 252-62 2,938,937 5/ 1960 Shenk. 2,981,057 4/ 1961 Buttler 181-62 X 2,991,200 7/1961 Sheridan et al. 106-57 X 3,043,094 7/1962 Nichols. 3,061,416 10/ 1962 Kazokas 181-36 3,065,091 11/1962 Russell et al. 106-57 X 3,110,545 11/1963 Beasley et a1 252-62 X FOREIGN PATENTS 654,685 12/ 1937 Germany.
679,940 9/ 1952 Great Britain.
961,667 11/ 1949 France.
LEO SMILOW, Primary Examiner.

Claims (1)

1. A MUFFLING SYSTEM COMPONENT COMPRISING A CASING FORMING AN ELONGATE CHAMBER HAVING AN INLET OPENING AND AN OUTLET OPENING, AND AN INTEGRAL COATING WITHIN SAID CHAMBER FORMING A PASSAGE FOR EXHAUST GASES BETWEEN SAID INLET OPENING AND SAID OUTLET OPENING, SAID COATING BEING INTERPOSED BETWEEN SAID PASSAGE AND SAID CASING WITH THE INNER SURFACE OF SAID COATING BEING SUBSTANTIALLY UNOBSTRUCTED FOR CONTACT WITH EXHAUST GASES FLOWING THROUGH SAID COMPONENT, SAID COATING COMPRISING HIGHLY REFRACTORY, INORGANIC, CRYSTALLINE FIBERS SELECTED FROM THE GROUP CONSISTING OF TITANIA, ZIRCONIA, AND ZICRON, AND AN INORGANIC BINDER.
US278330A 1960-06-07 1963-05-06 Muffler internally coated with highly refractory fibers Expired - Lifetime US3233697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US278330A US3233697A (en) 1960-06-07 1963-05-06 Muffler internally coated with highly refractory fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34408A US3109511A (en) 1960-06-07 1960-06-07 Muffler liner
US278330A US3233697A (en) 1960-06-07 1963-05-06 Muffler internally coated with highly refractory fibers

Publications (1)

Publication Number Publication Date
US3233697A true US3233697A (en) 1966-02-08

Family

ID=26710905

Family Applications (1)

Application Number Title Priority Date Filing Date
US278330A Expired - Lifetime US3233697A (en) 1960-06-07 1963-05-06 Muffler internally coated with highly refractory fibers

Country Status (1)

Country Link
US (1) US3233697A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488723A (en) * 1966-07-05 1970-01-06 Owens Corning Fiberglass Corp Acoustical material for high temperature application
US3495950A (en) * 1964-05-20 1970-02-17 Texaco Inc Catalytic muffler construction for exhaust emissions control in an internal combustion engine system
US3641768A (en) * 1970-02-20 1972-02-15 George W Cornelius Afterburner apparatus having lined burner can
US3799196A (en) * 1971-12-03 1974-03-26 Arvin Ind Inc Exhaust gas manifold
US3958312A (en) * 1974-01-18 1976-05-25 British Leyland Motor Corporation Limited Catalytic device for an exhaust system for an internal combustion engine
US3976728A (en) * 1972-03-10 1976-08-24 Foseco International Limited Refractory heat insulating materials
US4064963A (en) * 1975-05-30 1977-12-27 Vereinigte Metallwerke Ranshofen-Berndorf Aktiengesellschaft Exhaust for internal-combustion engine
US4098590A (en) * 1974-04-04 1978-07-04 Didier Engineering Gmbh Explosive gas pipeline
FR2470856A1 (en) * 1979-11-15 1981-06-12 Johns Manville CATALYTIC CONVERTER EXHAUST SYSTEM FOR MOTOR VEHICLE
EP0060503A1 (en) * 1981-03-17 1982-09-22 Mitsubishi Denki Kabushiki Kaisha Muffler for an internal combustion engine
EP0093779A1 (en) * 1981-11-17 1983-11-16 United Technologies Corp Plasma coatings comprised of sprayed fibers.
WO1984002954A1 (en) * 1983-01-20 1984-08-02 Honda Motor Co Ltd Heat and sound insulating apparatus
US4595637A (en) * 1981-11-17 1986-06-17 United Technologies Corporation Plasma coatings comprised of sprayed fibers
EP0232919A2 (en) * 1986-02-13 1987-08-19 Yoshiyuki Tsunekawa Method of manufacturing composite material by combined melt-spraying
US4846302A (en) * 1986-08-08 1989-07-11 Tenneco Inc. Acoustic muffler
US4930678A (en) * 1988-11-25 1990-06-05 Cyb Frederick F Heat-resistant exhaust manifold and method of preparing same
US5014903A (en) * 1988-11-25 1991-05-14 Cyb Frederick F Heat-retaining exhaust components and method of preparing same
US5415692A (en) * 1988-03-17 1995-05-16 Kurosaki Refractories Co., Ltd. Apparatus for applying material against the wall of a molten metal discharging hole
FR2761619A1 (en) * 1997-04-07 1998-10-09 Ca Nat Research Council METHOD FOR PRODUCING REINFORCED COMPOSITE PROFILES WITH METAL MATRIX AND AXIAL SYMMETRY
US5987882A (en) * 1996-04-19 1999-11-23 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
US6256984B1 (en) * 1996-04-19 2001-07-10 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
US6422008B2 (en) 1996-04-19 2002-07-23 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
US6655369B2 (en) 2001-08-01 2003-12-02 Diesel Engine Transformations Llc Catalytic combustion surfaces and method for creating catalytic combustion surfaces
EP1520614A1 (en) * 2003-06-10 2005-04-06 Ibiden Co., Ltd. Honeycomb structure body
US20060075731A1 (en) * 2003-07-15 2006-04-13 Ibiden Co., Ltd. Honeycomb structural body
US20070151798A1 (en) * 2005-12-29 2007-07-05 Harley-Davidson Motor Company Group, Inc. Muffler for a motorcycle
US20100307632A1 (en) * 2009-06-03 2010-12-09 Nilsson Gunnar B Apparatus For And Process Of Filling A Muffler With Fibrous Material Utilizing A Directional Jet
US20110000575A1 (en) * 2007-11-28 2011-01-06 Ibiden Co., Ltd. Exhaust pipe
US8931591B2 (en) * 2012-09-28 2015-01-13 Fisher Controls International Llc Simplified modal attenuator
US20160097309A1 (en) * 2014-10-07 2016-04-07 Electro-Motive Diesel, Inc. Suppressor for gaseous fuel system
US9376946B1 (en) 2015-04-02 2016-06-28 Fisher Controls International Llc Modal attenuator
CN108131277A (en) * 2017-12-11 2018-06-08 青岛海尔股份有限公司 Porous resistive muffler and refrigerator

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2065343A (en) * 1930-11-13 1936-12-22 M & M Engineering Corp Exhaust muffler
US2072961A (en) * 1934-03-01 1937-03-09 Burgess Lab Inc C F Silencer
DE654685C (en) * 1937-12-27 Willy Bestaendig Silencer for internal combustion engines
FR961667A (en) * 1950-05-17
US2523260A (en) * 1946-03-28 1950-09-26 John M Campbell Baffle type muffler with refractory lining
GB679940A (en) * 1950-03-30 1952-09-24 Claude Suckling Improvements in or relating to silencers for exhaust gases
US2654136A (en) * 1950-02-23 1953-10-06 Little Inc A Method of making lightweight aggregate
US2811457A (en) * 1952-12-18 1957-10-29 Johns Manville Inorganic bonded thermal insulating bodies and method of manufacture
US2833620A (en) * 1954-09-24 1958-05-06 Du Pont An inorganic flexible fibrous material consisting of the asbestos-like form of an alkali metal titanate and its preparation
US2837169A (en) * 1955-02-07 1958-06-03 Howard C Sawyer Combined engine muffler and combustion chamber
US2848349A (en) * 1955-08-02 1958-08-19 Armour Res Found Flame spraying process
US2884380A (en) * 1956-08-23 1959-04-28 Carey Philip Mfg Co Thermal insulation material and method of making the same
US2938937A (en) * 1955-03-23 1960-05-31 Ideal Chemical Products Inc Flame-resistant, high-heat insulating composition
US2981057A (en) * 1959-08-20 1961-04-25 Buttler John Allen Combination muffler and after burner
US2991200A (en) * 1957-11-27 1961-07-04 William R Sheridan Refractory coating composition and method of coating surfaces therewith
US3043094A (en) * 1960-02-29 1962-07-10 Alco Products Inc Exhaust manifolds
US3061416A (en) * 1957-11-22 1962-10-30 George P Kazokas Catalytic muffler
US3065091A (en) * 1960-05-26 1962-11-20 Owens Corning Fiberglass Corp Crystalline fibers
US3110545A (en) * 1958-12-01 1963-11-12 Horizons Inc Inorganic fibers and preparation thereof

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE654685C (en) * 1937-12-27 Willy Bestaendig Silencer for internal combustion engines
FR961667A (en) * 1950-05-17
US2065343A (en) * 1930-11-13 1936-12-22 M & M Engineering Corp Exhaust muffler
US2072961A (en) * 1934-03-01 1937-03-09 Burgess Lab Inc C F Silencer
US2523260A (en) * 1946-03-28 1950-09-26 John M Campbell Baffle type muffler with refractory lining
US2654136A (en) * 1950-02-23 1953-10-06 Little Inc A Method of making lightweight aggregate
GB679940A (en) * 1950-03-30 1952-09-24 Claude Suckling Improvements in or relating to silencers for exhaust gases
US2811457A (en) * 1952-12-18 1957-10-29 Johns Manville Inorganic bonded thermal insulating bodies and method of manufacture
US2833620A (en) * 1954-09-24 1958-05-06 Du Pont An inorganic flexible fibrous material consisting of the asbestos-like form of an alkali metal titanate and its preparation
US2837169A (en) * 1955-02-07 1958-06-03 Howard C Sawyer Combined engine muffler and combustion chamber
US2938937A (en) * 1955-03-23 1960-05-31 Ideal Chemical Products Inc Flame-resistant, high-heat insulating composition
US2848349A (en) * 1955-08-02 1958-08-19 Armour Res Found Flame spraying process
US2884380A (en) * 1956-08-23 1959-04-28 Carey Philip Mfg Co Thermal insulation material and method of making the same
US3061416A (en) * 1957-11-22 1962-10-30 George P Kazokas Catalytic muffler
US2991200A (en) * 1957-11-27 1961-07-04 William R Sheridan Refractory coating composition and method of coating surfaces therewith
US3110545A (en) * 1958-12-01 1963-11-12 Horizons Inc Inorganic fibers and preparation thereof
US2981057A (en) * 1959-08-20 1961-04-25 Buttler John Allen Combination muffler and after burner
US3043094A (en) * 1960-02-29 1962-07-10 Alco Products Inc Exhaust manifolds
US3065091A (en) * 1960-05-26 1962-11-20 Owens Corning Fiberglass Corp Crystalline fibers

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495950A (en) * 1964-05-20 1970-02-17 Texaco Inc Catalytic muffler construction for exhaust emissions control in an internal combustion engine system
US3488723A (en) * 1966-07-05 1970-01-06 Owens Corning Fiberglass Corp Acoustical material for high temperature application
US3641768A (en) * 1970-02-20 1972-02-15 George W Cornelius Afterburner apparatus having lined burner can
US3799196A (en) * 1971-12-03 1974-03-26 Arvin Ind Inc Exhaust gas manifold
US3976728A (en) * 1972-03-10 1976-08-24 Foseco International Limited Refractory heat insulating materials
US3958312A (en) * 1974-01-18 1976-05-25 British Leyland Motor Corporation Limited Catalytic device for an exhaust system for an internal combustion engine
US4098590A (en) * 1974-04-04 1978-07-04 Didier Engineering Gmbh Explosive gas pipeline
US4064963A (en) * 1975-05-30 1977-12-27 Vereinigte Metallwerke Ranshofen-Berndorf Aktiengesellschaft Exhaust for internal-combustion engine
FR2470856A1 (en) * 1979-11-15 1981-06-12 Johns Manville CATALYTIC CONVERTER EXHAUST SYSTEM FOR MOTOR VEHICLE
EP0060503A1 (en) * 1981-03-17 1982-09-22 Mitsubishi Denki Kabushiki Kaisha Muffler for an internal combustion engine
US4444288A (en) * 1981-03-17 1984-04-24 Mitsubishi Denki Kabushiki Kaisha Muffler for internal combustion engine
EP0093779A1 (en) * 1981-11-17 1983-11-16 United Technologies Corp Plasma coatings comprised of sprayed fibers.
EP0093779A4 (en) * 1981-11-17 1984-06-29 United Technologies Corp Plasma coatings comprised of sprayed fibers.
US4595637A (en) * 1981-11-17 1986-06-17 United Technologies Corporation Plasma coatings comprised of sprayed fibers
GB2143902A (en) * 1983-01-20 1985-02-20 Honda Motor Co Ltd Heat and sound insulating apparatus
US4598790A (en) * 1983-01-20 1986-07-08 Honda Giken Kogyo Kabushiki Kaisha Heat and sound insulation device
WO1984002954A1 (en) * 1983-01-20 1984-08-02 Honda Motor Co Ltd Heat and sound insulating apparatus
EP0232919A3 (en) * 1986-02-13 1989-08-16 Yoshiyuki Tsunekawa Method of manufacturing composite material by combined melt-spraying
EP0232919A2 (en) * 1986-02-13 1987-08-19 Yoshiyuki Tsunekawa Method of manufacturing composite material by combined melt-spraying
US4846302A (en) * 1986-08-08 1989-07-11 Tenneco Inc. Acoustic muffler
US5415692A (en) * 1988-03-17 1995-05-16 Kurosaki Refractories Co., Ltd. Apparatus for applying material against the wall of a molten metal discharging hole
US4930678A (en) * 1988-11-25 1990-06-05 Cyb Frederick F Heat-resistant exhaust manifold and method of preparing same
WO1990006207A1 (en) * 1988-11-25 1990-06-14 Cyb Frederick F Heat-resistant exhaust manifold and method of preparing same
US5014903A (en) * 1988-11-25 1991-05-14 Cyb Frederick F Heat-retaining exhaust components and method of preparing same
US6422008B2 (en) 1996-04-19 2002-07-23 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
US5987882A (en) * 1996-04-19 1999-11-23 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
US6006516A (en) * 1996-04-19 1999-12-28 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
US6256984B1 (en) * 1996-04-19 2001-07-10 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
FR2761619A1 (en) * 1997-04-07 1998-10-09 Ca Nat Research Council METHOD FOR PRODUCING REINFORCED COMPOSITE PROFILES WITH METAL MATRIX AND AXIAL SYMMETRY
US20050016512A1 (en) * 2001-08-01 2005-01-27 Gillston Lionel M. Catalytic combustion surfaces and method for creating catalytic combustion surfaces
US6655369B2 (en) 2001-08-01 2003-12-02 Diesel Engine Transformations Llc Catalytic combustion surfaces and method for creating catalytic combustion surfaces
US7527048B2 (en) 2001-08-01 2009-05-05 Diesel Engine Transformation Llc Catalytic combustion surfaces and method for creating catalytic combustion surfaces
US7521025B2 (en) 2003-06-10 2009-04-21 Ibiden Co., Ltd. Honeycomb structural body
EP1520614A1 (en) * 2003-06-10 2005-04-06 Ibiden Co., Ltd. Honeycomb structure body
EP1520614A4 (en) * 2003-06-10 2005-06-22 Ibiden Co Ltd Honeycomb structure body
US20050266991A1 (en) * 2003-06-10 2005-12-01 Ibiden Co., Ltd. Honeycomb structural body
US20060075731A1 (en) * 2003-07-15 2006-04-13 Ibiden Co., Ltd. Honeycomb structural body
US7455709B2 (en) 2003-07-15 2008-11-25 Ibiden Co., Ltd. Honeycomb structural body
US7424931B2 (en) * 2005-12-29 2008-09-16 Harley-Davidson Motor Company Group, Inc. Muffler for a motorcycle
US20070151798A1 (en) * 2005-12-29 2007-07-05 Harley-Davidson Motor Company Group, Inc. Muffler for a motorcycle
US20110000575A1 (en) * 2007-11-28 2011-01-06 Ibiden Co., Ltd. Exhaust pipe
US8201584B2 (en) * 2007-11-28 2012-06-19 Ibiden Co., Ltd. Exhaust pipe
US20100307632A1 (en) * 2009-06-03 2010-12-09 Nilsson Gunnar B Apparatus For And Process Of Filling A Muffler With Fibrous Material Utilizing A Directional Jet
US8590155B2 (en) * 2009-06-03 2013-11-26 Ocv Intellectual Capital, Llc Apparatus for and process of filling a muffler with fibrous material utilizing a directional jet
US8931591B2 (en) * 2012-09-28 2015-01-13 Fisher Controls International Llc Simplified modal attenuator
US20160097309A1 (en) * 2014-10-07 2016-04-07 Electro-Motive Diesel, Inc. Suppressor for gaseous fuel system
US9593606B2 (en) * 2014-10-07 2017-03-14 Electro-Motive Diesel, Inc. Suppressor for gaseous fuel system
US9376946B1 (en) 2015-04-02 2016-06-28 Fisher Controls International Llc Modal attenuator
CN108131277A (en) * 2017-12-11 2018-06-08 青岛海尔股份有限公司 Porous resistive muffler and refrigerator

Similar Documents

Publication Publication Date Title
US3233697A (en) Muffler internally coated with highly refractory fibers
US3109511A (en) Muffler liner
US3166895A (en) Catalytic muffling system for reducing contaminants in exhaust gases
US2065343A (en) Exhaust muffler
US3488723A (en) Acoustical material for high temperature application
US5163289A (en) Automotive exhaust system
US3861881A (en) Catalyst converter with monolithic element
JPH0379531B2 (en)
US3163256A (en) Muffler with ceramic honeycomb baffle
GB2070972A (en) Exhaust gas filter
GB2480182A (en) Exhaust muffler
US3470689A (en) Exhaust gas burner and muffler
US3112007A (en) Silencing element for exhaust gas conduit
US3975826A (en) Catalytic converter for exhaust gases
US4109755A (en) Noise attenuator
JPH09504072A (en) Exhaust pipe for catalyst exhaust system
GB563110A (en) Improvement in means for silencing the exhaust of internal-combustion engines
US1968456A (en) Gaseous pressure wave absorbing construction
US2837169A (en) Combined engine muffler and combustion chamber
GB1530836A (en) Device for silencing a radiant heating tube for an industrial furnace
US1921468A (en) Muffler
CN112145271A (en) Integrated heat preservation device for diesel engine exhaust system
US1912544A (en) Method for tightly packing materials and product formed thereby
US4205420A (en) Process for making a bent metal tube having a metal-ceramic liner
GB1532785A (en) Muffler for internal combustion engine exhaust gases