Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS3246084 A
Type de publicationOctroi
Date de publication12 avr. 1966
Date de dépôt26 août 1960
Date de priorité26 août 1960
Numéro de publicationUS 3246084 A, US 3246084A, US-A-3246084, US3246084 A, US3246084A
InventeursKryter Karl D
Cessionnaire d'origineBolt Beranek & Newman
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Method of and apparatus for speech compression and the like
US 3246084 A
Résumé  disponible en
Images(4)
Previous page
Next page
Revendications  disponible en
Description  (Le texte OCR peut contenir des erreurs.)

Apnl 12, 1966 K. D. KRYTER 3,246,034

METHOD OF AND APPARATUS FOR SPEECH COMPRESSION ANDTHE LIKE Filed Aug. 26, 1960 4 Sheets-Sheet 1 Emz ESE 1 52m w $2 58: bkmofijamo Hz dzzfiB EEEmEE tmz 55E M253 i H 5E1E2 w 8E 02% motjaooz 5 8% Q2524 E 9 N INVENTOR KARL D. KRYTER B 4 anl fin ATTORNEYS NOISSIWSNVHJ.

K. D. KRYTER METHOD OF AND APPARATUS FOR SPEECH COMPRESSION AND THE LIKE Filed Aug. 26. 1960 4 Sheets-Sheet 2 WHLSAS HHAIEOBH INVENTOR KARL D. KRYTER ATTORN EYQI K. D. KRYTER METHOD OF AND APPARATUS FOR SPEECH COMPRESSION AND THE LIKE Filed Aug. 26, 1960 4 Sheets-Sheet 5 N I 524 58 32 62256 b Emz 55$ 8E 02%. $2.58: J mofi amo mmz n zz zu Rm: ESE 7 8E 02% $253: 1 l i l I l III -l i I i l |l||| k roijamo 62 6255 km: 55c U858 m2. 928 105G382 185% J J WBLSAS QNLLLIWSNVHJ,

INVENTOR KARL D. KRYTER ATTORNEY x United States Patent METHOD OF AND APPARATUS FOR SPEECH COMPRESSION AND THE LIKE Karl D. Kryter, Wellesley, Mass., assignor to Bolt Beranek & Newman, Inc., Cambridge, Mass., a corporation of Massachusetts Filed Aug. 26, 1960, Ser. No. 52,184

4 Claims. (Cl. 179-1555) The present invention relates to methods of and apparatus for compressing the bandwidth of signals to be transmitted, and restoring the transmitted signals, upon reception, to the original uncompressed state thereof; the invention being more particularly concerned with the problems of speech compression and the like.

The art is replete with proposals for producing speech compression and the like, this having been a problem that has existed since the early days of commercial telephony and which has been vigorously attacked by those skilled in the art for at least the past three to four decades. Among numerous proposals for solving the problem of reducing the necessary bandwidth for the transmission of speech signals and the like, without unsatisfactorily distorting the signals, are various types of signal sampling circuits based both upon time and frequency spectrum sampling. In some systems, spectrum sampling alone is used; in others, time sampling is employed; in still others, a combination of time and spectrum sampling has been proposed. In still other proposals, narrow bands of frequencies are selected from the speech signal and distortion devices are employed at the reproducing end to provide energy for filling in the gaps between the selected narrow bands of frequencies. All such prior-art proposals, however, have been subject to the difiiculty that the bandwidth saving consistent with intelligibility, has been most restrictive.

An object of the present invention is to provide a new and improved method of and apparatus for signal compression that is not subject to the above-mentioned disadvantages of the prior art, but that, to the contrary, represents a marked advance in the available degree of speech compression and the like, consistent with excellent intelligibility.

A further object is provide new and improved signal compression transmitting and reproducing apparatus for such purposes as speech compression and the like, and for more general use, as well.

An additional object is to provide a new and improved signal compression transmitter.

Still a further object is to provide a novel signal compression receiving and reproducing apparatus.

Other and further objects will be explained hereinafter and will be more particularly pointed out in connection with the appended claims.

In summary, the invention involves a method of and apparatus for transmitting and reproducing a signal, such as speech, having components extending over a predetermined relatively low-frequency band. A signal source is connected to a first plurality of channel circuits each corresponding to a different predetermined frequency subband only, within the said predetermined relatively lowfrequency band, each sub band being frequency-separated from the other sub-bands. The channel circuits are each provided with means for producing, in the preferred embodiment of the invention, a plurality of further frequency-contiguous relatively high-frequency bands of overall bandwidth less than that of the said predetermined relatively low-frequency band. Each of the contiguous high-frequency bands corresponds to one of the separated sub-bands and means is provided for transmitting the contiguous frequency bands along a common channel 3,246,084 Patented Apr. 12, 1966 and for receiving the same. A second plurality of channel circuits is connected with the receiving means, one corresponding to each of the first plurality of channel circuits and each provided with means for converting the received contiguous frequency bands back into the said frequencyseparated sub-bands, representing the sampled original signal. Preferred constructional details and modifications are later set forth.

The invention will now be described in connection with the accompanying drawing, FIGS. 1A and 1B of which are block diagram views of the transmitting and receiving apparatus portions of a preferred embodiment of the transmitting and reproducing invention herein described and claimed; and

FIGS. 2A and 2B are similarly views of a modification.

Assume, for example, that three frequency sub-bands, separated from one another in the speech-signal frequency band, are extracted therefrom. If the sub-bands are then, in effect, juxtaposed, the combined total bandwidth thereof will be much less than that of the total speech-signal band, and may thus be transmitted with such lesser or compressed bandwidth. In reception, the three transmitted juxtaposed sub-bands may be separated out and restored to their normal frequency-separated positions in the speech frequency band, reproducing the speech frequency signal as a three sub-band-sampled signal. Alternatively, the extracted sub-bands at the transmitter may be appropriately sequentially transmitted, again with much compressed bandwidth; this time equal to thatof the individual sub bands.

Under appropriate conditions, it has been found that speech passed through several half-octave band pass filters, corresponding to the above-mentioned sub-bands, separated or spaced at appropriate intervals along the speech spectrum or band, is more intelligible than is predicted on the basis of the Articulation Index. In fact, if constant speech intelligibility is used as the criterion, the present invention produces results that indicate that the total effective bandwidth required for the multiple pass band system is less than that required for the best contiguous pass band systems by a factor of two or three. A further feature of the invention resides in the discovery that the signal resulting from this particular type of multiple sampling in the frequency domain sounds natural and the identity of a talkers voice appears to be maintained.

Referring to the transmission system of FIG. 1A, a source 2 of speech-frequency signal, extending, as an ill ustration, over a predetermined band of frequencies up to five thousand cycles per second, more or less, is connected to each of the modulators 4, 6 and 8 of each of three channels, labelled No. 1, No. 2, and No. 3, to speech-modulate the frequencies generated in corresponding channel oscillators 4', 6' and 8'. The modulators 4, 6 and 8 feed a common channel mixer 10 through respective speech sub-band band pass filters, No. 1T, No. 2T and No. ST. The combined signal in the mixer 10 may be amplified at 12 and transmitted as, for example, free-space radio signals from an antenna 14.

In accordance with a preferred embodiment of the present invention, the sub-bands filtered by the band pass filters are of substantially identical bandwidth B, with the center frequencies thereof separated or spaced by a frequency band AF. For a three sub-band system, for example, B could by 500 cycles and AF could be 1000 cycles, with the separated speech subbands, corresponding to the three channels No. 1, No. 2 and No. 3, being -600 cycles, 1100-1600 cycles and 2100-2600 cycles, respectively. By proper selection of the carrier frequencies above the speech-frequency range, in the three channel oscillators 4', 6 and 8, and by proper selection of the bandwidth and center frequencies of filters No. 1T, No. 2T, and No. 3T, the separated selected sub-bands, now being modulated, are made contiguous with one another. For radio carrier frequencies of, for example, 10,000 cycles for the oscillator 4', 9,500 cycles for the oscillator 6 and 9,000 cycles for the oscillator 8', and filter No. 1T set for a bandwidth of 500 cycles and a center frequency of 10,350 cycles, filter No. 2T set for a bandwidth of 500 cycles and a center frequency of 10,850 cycles, and filter No. 3T set for a bandwidth of 500 cycles and a center frequency of 11,350 cycles, the band pass filters will pass the following bands: filter No. 1T, 10,100-10,600 cycles; filter No. 2T, 10,600-11,100 cycles; and filter N0. 3T, 11,100-1 1,600 cycles from the upper side band of the modulated signal. The envelope of the signal at the output of filter No. 1T corresponds to the original speech frequencies in the frequency region from 100-600 cycles, the envelope of the signal at the output of filter No. 2T corresponds to the original speech frequencies in the frequency region from 1100-1600 cycles, and the envelope of the signal at the output of filter No. 3T corresponds to the original speech frequencies in the frequency region from 2100-2600 cycles. It will thus be observed that the spech modulated frequency bands emerging from the bandpass filters No. 1, No. 2 and No. 3 have thus been rendered frequency-contiguous even though they represent sub-bands of speech that are separated from one another; and that the bandwidth of the combined output of the mixer 10 extends from 10,100 to 11,600 cycles, representing a bandwidth equal only to the sum of the original three SOO-cycle speech sub-bands (1500 cycles), which is only a fraction of the original 5000 cycle speech-signal bandwidth. An appreciable factor of bandwidth compression has thus been achieved.

The transmitted compressed-bandwidth signal may be received at 18, FIG. 1B and fed through corresponding three-channel bandpass filters No. 1R, 2R and SR, the outputs of which beat or heterodyne, in respective modulators 4", 6" and 8", with appropriate local oscillator frequencies from the respective channel oscillators 4', 6" and 8. In accordance with the present invention, the bandpass frequencies of the filters No. 1R, 2R and SR, and the frequencies of the oscillators 4", 6" and 8" are critically selected to separate out the transmitted contiguous three speech sub-bands into the original three separated speech sub-bands, thereby to reproduce the original sub-band-sampled speech signal. If for example, the bandpass filters No. 1R, 2R and SR are respectively adjusted to correspond in frequency-adjusted bandpass to that of the corresponding transmitter bandpass filters No. 1T, 2T and 3T (namely, 10,100-10,600 cycles; 10,600-11,100 cycles; and 1l,l00-l1,600 cycles, respectively), and oscillators 4", 6" and 8' are respectively tuned to frequencies of 10,000 cycles, 9,500 cycles and 9,000 cycles, beat-difference frequencies corresponding to the original separated speech sub-bands 100-600 cycles, 1100-1600 cycles, and 2100-2600 cycles will be separated out. The mixer will then reproduce in loudspeaker 22 the original sub-band-sampled speech signal. As before stated, this has been found, in accordance with the present invention to produce an intelligibility greater than one would predict on the basis of the Articulation Index.

The number of channels correspondings to the number of speech sub-frequency bands selected and transmitted and received may, of course, be more or less than the illustrative example of three. The carrier frequencies involved, moreover, may be in a vastly different frequency range than in the above example. As a further illustration, six speech sub-bands may each be of width B=100 cycles, and the channel oscillator frequencies may be of the order of 200 kc. The first channel oscillator 4 may have a frequency of 200 kc., more generally designated by the symbol F If the space between the uppermost frequency of the first channel band and the lowermost frequency of the second channel band is represented by AF, then the second channel oscilator frequency F will be determined by the expression F =F +AF; and so on, for the remaining channels. In all cases, the same juxtaposing of the originally separated sub-bands, and the same later respacing of the sub-bands in accordance with their original separation will be produced, as above described.

The compression effected by combining the originally separated speech sub-bands (in their modulation form) in the system of FIG. 1A, is not the only possible manner of compression. In the system of FIG. 2A, for example, the oscillators 4', 6' and 8 are tuned so that the output of each of the band pass filters No. 1T, 2T and ST, will have the same center frequency, but will represent the information in the different originally separated speech sub-bands B. For the previous example of the three separated sub-bands -600 cycles, 1100- 1600 cycles, 2100-2600 cycles, corresponding to each of channels No. 1, No. 2 and No. 3, oscillator 4' may be tuned to 12,000 cycles; oscillator 6', to 11,000 cycles; and oscillator 8, to 10,000 cycles. Each of the 500,- cycle band pass filters No. 1T, 2T, 3T will be tuned to the same center frequency of 12,350 cycles, though the output thereof represents the different intelligence in each of the respective 100-600 cycle, 1100-1600 cycle and 2100-2600 cycle speech sub-bands. A common channel frequency transmitter 10' may thus be employed to transmit a common frequency, of the same single contiguous sub-band 500-cycle bandwidth, on a sufficiently rapid sequential time-shared basis, schematically illustrated by the switch 10' labelled Electronic or Mechanical Switch Transmitter and successively and repetitively engaging the outputs of filters No. 1T, 2T and 3T. Any of the well-known time-sharing or sequential transmitters may, in practice, be employed, so that the details thereof are not herein illustrated since they form no part of the novelty of the present invention and would only serve to complicate the drawings and detract from the essential novel features of the present invention.

The successively transmitted signals, the bandwidth of which has been compressed from, for example, a 5,000 cycle total speech-signal bandwidth, to one-tenth that bandwidth or 500 cycles, may be received in wellknown conventional time-sharing or sequential receiving apparatus, schematically illustrated by the switching mechanism 10", FIG. 2B, labelled Electronic or Mechanical Switch Receiver. The receiver 10" distributes the successively switched transmitted signals to respective channel band pass filters No. 1R, 2R and SR (corresponding to the transmitter filters No. 1T, 2T and 3T), in synchronism with the sequential operation of the transmitting switching 10', FIG. 2A, as under the control of well-known synchronizing signals SYNC, transmitted and received at 24 and 24, respectively. Through appropriate tuning of the receiver oscillators 4', 6" and 8", the original 100-600 cycle, 1100-1600 cycle, and

2100-2600 cycle sub-bands will, as before explained, be

separated out and fed through mixer 20 for reproduction as the original sub-band-sampled speech signal, in the loudspeaker 22.

Again, as in the case of the embodiment of FIGS. 1A and B, more or less than three channels may, if desired, be employed. While the invention is of particular importance in connection with speech signals, it may also be employed in other frequency ranges, also, where the advantages of the invention are desired.

Further modifications will occur to those skilled in the art and all such are considered to fall within the spirit and scope of the invention as defined in the appended claims.

What is claimed is:

1. Apparatus for transmitting and reproducing a signal having components extending over a predetermined frequency band, the apparatus having, in combination, a signal source, a first plurality of channel circuits connected to the source and each corresponding to a different predetermined frequency sub-band only within the said predetermined frequency band, each sub-band being frequency separated from the other sub-bands by a predetermined, fixed, substantial frequency gap so as to sample the signal, the channel circuits being each provided with conversion means for producing contiguous further frequency bands of overall bandwidth less than that of the said predetermined frequency band and of higher frequency than the sub-bands and corresponding to the separated sub-bands but without any frequency gaps therebetween, the conversion means of each of said circuits comprising oscillator means generating an elfectively constant carrier frequency different from the carrier frequency of the other oscillator means, modulator means having an input applied from the associated oscillator means and said source for producing an output in one of said further frequency bands, and band-pass filter means receiving the output of the associated modulator means and for passing one of said further frequency bands, means for transmitting the further bands along a common path, and means for receiving the same comprising a second plurality of channel circuits, one corresponding to each of the first plurality of channel circuits and provided with means for converting the received further bands back into the said frequency-sepa- 6 rated sub-bands, thereby to reproduce the said sampled signal.

2. Apparatus as claimed in claim 1 and in which the said signal source comprises asource of speech-frequency signals, and the said oscillators and band-pass filters are tuned to radio frequencies.

3. Apparatus as claimed in claim 1 and in which the means for converting the received further bands back into the said frequency-separated sub-bands comprises, for each of the said second plurality of channel circuits, a further band-pass filter, modulator and oscillator.

4. Apparatus as claimed in claim 1 and in which said transmitting and receiving means comprise synchronously operated means for transmitting and receiving the further bands in time sequence.

References Cited by the Examiner UNITED STATES PATENTS 1,821,004 9/1931 Carpe 179-1555 1,911,850 5/1933 Sandeman et a1. 179-1555 2,151,091 3/1939 Dudley 179l5.55 2,726,283 12/1955 DiToro 179--15.55 2,957,948 10/1960 Edson 179-1555 DAVID G. REDINBAUGH, Primary Examiner.

ROBERT H. ROSE, Examiner.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US1821004 *2 juil. 19291 sept. 1931American Telephone & TelegraphCompression of frequency range
US1911850 *28 déc. 192930 mai 1933Western Electric CoSignaling system
US2151091 *30 oct. 193521 mars 1939Bell Telephone Labor IncSignal transmission
US2726283 *31 déc. 19496 déc. 1955IttMethod and apparatus for reducing band requirements in transmission systems
US2957948 *20 juil. 195625 oct. 1960Bell Telephone Labor IncFrequency band compression
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US3875341 *22 févr. 19731 avr. 1975Int Standard Electric CorpSystem for transferring wideband sound signals
US3914554 *18 mai 197321 oct. 1975Bell Telephone Labor IncCommunication system employing spectrum folding
US656030116 avr. 19996 mai 2003Parkervision, Inc.Integrated frequency translation and selectivity with a variety of filter embodiments
US6647250 *18 août 199911 nov. 2003Parkervision, Inc.Method and system for ensuring reception of a communications signal
US668749316 avr. 19993 févr. 2004Parkervision, Inc.Method and circuit for down-converting a signal using a complementary FET structure for improved dynamic range
US669412810 mai 200017 févr. 2004Parkervision, Inc.Frequency synthesizer using universal frequency translation technology
US67045493 janv. 20009 mars 2004Parkvision, Inc.Multi-mode, multi-band communication system
US67045583 janv. 20009 mars 2004Parkervision, Inc.Image-reject down-converter and embodiments thereof, such as the family radio service
US67482205 mai 20008 juin 2004Nortel Networks LimitedResource allocation in wireless networks
US67983515 avr. 200028 sept. 2004Parkervision, Inc.Automated meter reader applications of universal frequency translation
US681348520 avr. 20012 nov. 2004Parkervision, Inc.Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same
US683665030 déc. 200228 déc. 2004Parkervision, Inc.Methods and systems for down-converting electromagnetic signals, and applications thereof
US687383610 mai 200029 mars 2005Parkervision, Inc.Universal platform module and methods and apparatuses relating thereto enabled by universal frequency translation technology
US687981714 mars 200012 avr. 2005Parkervision, Inc.DC offset, re-radiation, and I/Q solutions using universal frequency translation technology
US696373412 déc. 20028 nov. 2005Parkervision, Inc.Differential frequency down-conversion using techniques of universal frequency translation technology
US69758488 nov. 200213 déc. 2005Parkervision, Inc.Method and apparatus for DC offset removal in a radio frequency communication channel
US70068053 janv. 200028 févr. 2006Parker Vision, Inc.Aliasing communication system with multi-mode and multi-band functionality and embodiments thereof, such as the family radio service
US701028616 mai 20017 mars 2006Parkervision, Inc.Apparatus, system, and method for down-converting and up-converting electromagnetic signals
US701055913 nov. 20017 mars 2006Parkervision, Inc.Method and apparatus for a parallel correlator and applications thereof
US70166634 mars 200221 mars 2006Parkervision, Inc.Applications of universal frequency translation
US702778610 mai 200011 avr. 2006Parkervision, Inc.Carrier and clock recovery using universal frequency translation
US705050818 juil. 200223 mai 2006Parkervision, Inc.Method and system for frequency up-conversion with a variety of transmitter configurations
US70542964 août 200030 mai 2006Parkervision, Inc.Wireless local area network (WLAN) technology and applications including techniques of universal frequency translation
US70724277 nov. 20024 juil. 2006Parkervision, Inc.Method and apparatus for reducing DC offsets in a communication system
US70760117 févr. 200311 juil. 2006Parkervision, Inc.Integrated frequency translation and selectivity
US70821719 juin 200025 juil. 2006Parkervision, Inc.Phase shifting applications of universal frequency translation
US70853359 nov. 20011 août 2006Parkervision, Inc.Method and apparatus for reducing DC offsets in a communication system
US710702812 oct. 200412 sept. 2006Parkervision, Inc.Apparatus, system, and method for up converting electromagnetic signals
US711043514 mars 200019 sept. 2006Parkervision, Inc.Spread spectrum applications of universal frequency translation
US71104444 août 200019 sept. 2006Parkervision, Inc.Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
US719094112 déc. 200213 mars 2007Parkervision, Inc.Method and apparatus for reducing DC offsets in communication systems using universal frequency translation technology
US719424627 déc. 200420 mars 2007Parkervision, Inc.Methods and systems for down-converting a signal using a complementary transistor structure
US72097253 janv. 200024 avr. 2007Parkervision, IncAnalog zero if FM decoder and embodiments thereof, such as the family radio service
US721889912 oct. 200415 mai 2007Parkervision, Inc.Apparatus, system, and method for up-converting electromagnetic signals
US72189075 juil. 200515 mai 2007Parkervision, Inc.Method and circuit for down-converting a signal
US722474913 déc. 200229 mai 2007Parkervision, Inc.Method and apparatus for reducing re-radiation using techniques of universal frequency translation technology
US723396918 avr. 200519 juin 2007Parkervision, Inc.Method and apparatus for a parallel correlator and applications thereof
US72367544 mars 200226 juin 2007Parkervision, Inc.Method and system for frequency up-conversion
US72458863 févr. 200517 juil. 2007Parkervision, Inc.Method and system for frequency up-conversion with modulation embodiments
US727216410 déc. 200218 sept. 2007Parkervision, Inc.Reducing DC offsets using spectral spreading
US729283529 janv. 20016 nov. 2007Parkervision, Inc.Wireless and wired cable modem applications of universal frequency translation technology
US730824210 août 200411 déc. 2007Parkervision, Inc.Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same
US73216404 juin 200322 janv. 2008Parkervision, Inc.Active polyphase inverter filter for quadrature signal generation
US732173510 mai 200022 janv. 2008Parkervision, Inc.Optical down-converter using universal frequency translation technology
US737641016 févr. 200620 mai 2008Parkervision, Inc.Methods and systems for down-converting a signal using a complementary transistor structure
US73795152 mars 200127 mai 2008Parkervision, Inc.Phased array antenna applications of universal frequency translation
US737988318 juil. 200227 mai 2008Parkervision, Inc.Networking methods and systems
US738629225 oct. 200410 juin 2008Parkervision, Inc.Apparatus, system, and method for down-converting and up-converting electromagnetic signals
US738910024 mars 200317 juin 2008Parkervision, Inc.Method and circuit for down-converting a signal
US743391018 avr. 20057 oct. 2008Parkervision, Inc.Method and apparatus for the parallel correlator and applications thereof
US745445324 nov. 200318 nov. 2008Parkervision, Inc.Methods, systems, and computer program products for parallel correlation and applications thereof
US746058418 juil. 20022 déc. 2008Parkervision, Inc.Networking methods and systems
US748368627 oct. 200427 janv. 2009Parkervision, Inc.Universal platform module and methods and apparatuses relating thereto enabled by universal frequency translation technology
US749634225 oct. 200424 févr. 2009Parkervision, Inc.Down-converting electromagnetic signals, including controlled discharge of capacitors
US751589614 avr. 20007 avr. 2009Parkervision, Inc.Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US752952218 oct. 20065 mai 2009Parkervision, Inc.Apparatus and method for communicating an input signal in polar representation
US753947417 févr. 200526 mai 2009Parkervision, Inc.DC offset, re-radiation, and I/Q solutions using universal frequency translation technology
US754609622 mai 20079 juin 2009Parkervision, Inc.Frequency up-conversion using a harmonic generation and extraction module
US755450815 janv. 200830 juin 2009Parker Vision, Inc.Phased array antenna applications on universal frequency translation
US759942117 avr. 20066 oct. 2009Parkervision, Inc.Spread spectrum applications of universal frequency translation
US762037816 juil. 200717 nov. 2009Parkervision, Inc.Method and system for frequency up-conversion with modulation embodiments
US765314525 janv. 200526 janv. 2010Parkervision, Inc.Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
US765315817 févr. 200626 janv. 2010Parkervision, Inc.Gain control in a communication channel
US769323022 févr. 20066 avr. 2010Parkervision, Inc.Apparatus and method of differential IQ frequency up-conversion
US76935022 mai 20086 avr. 2010Parkervision, Inc.Method and system for down-converting an electromagnetic signal, transforms for same, and aperture relationships
US769791621 sept. 200513 avr. 2010Parkervision, Inc.Applications of universal frequency translation
US772484528 mars 200625 mai 2010Parkervision, Inc.Method and system for down-converting and electromagnetic signal, and transforms for same
US777368820 déc. 200410 août 2010Parkervision, Inc.Method, system, and apparatus for balanced frequency up-conversion, including circuitry to directly couple the outputs of multiple transistors
US782240112 oct. 200426 oct. 2010Parkervision, Inc.Apparatus and method for down-converting electromagnetic signals by controlled charging and discharging of a capacitor
US782681720 mars 20092 nov. 2010Parker Vision, Inc.Applications of universal frequency translation
US78651777 janv. 20094 janv. 2011Parkervision, Inc.Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US78947897 avr. 200922 févr. 2011Parkervision, Inc.Down-conversion of an electromagnetic signal with feedback control
US792963814 janv. 201019 avr. 2011Parkervision, Inc.Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments
US79360229 janv. 20083 mai 2011Parkervision, Inc.Method and circuit for down-converting a signal
US793705931 mars 20083 mai 2011Parkervision, Inc.Converting an electromagnetic signal via sub-sampling
US799181524 janv. 20082 août 2011Parkervision, Inc.Methods, systems, and computer program products for parallel correlation and applications thereof
US80192915 mai 200913 sept. 2011Parkervision, Inc.Method and system for frequency down-conversion and frequency up-conversion
US80363045 avr. 201011 oct. 2011Parkervision, Inc.Apparatus and method of differential IQ frequency up-conversion
US807779724 juin 201013 déc. 2011Parkervision, Inc.Method, system, and apparatus for balanced frequency up-conversion of a baseband signal
US816019631 oct. 200617 avr. 2012Parkervision, Inc.Networking methods and systems
US816053414 sept. 201017 avr. 2012Parkervision, Inc.Applications of universal frequency translation
US819010826 avr. 201129 mai 2012Parkervision, Inc.Method and system for frequency up-conversion
US81901164 mars 201129 mai 2012Parker Vision, Inc.Methods and systems for down-converting a signal using a complementary transistor structure
US82238987 mai 201017 juil. 2012Parkervision, Inc.Method and system for down-converting an electromagnetic signal, and transforms for same
US822428122 déc. 201017 juil. 2012Parkervision, Inc.Down-conversion of an electromagnetic signal with feedback control
US822902319 avr. 201124 juil. 2012Parkervision, Inc.Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments
US823385510 nov. 200931 juil. 2012Parkervision, Inc.Up-conversion based on gated information signal
US829540610 mai 200023 oct. 2012Parkervision, Inc.Universal platform module for a plurality of communication protocols
US82958007 sept. 201023 oct. 2012Parkervision, Inc.Apparatus and method for down-converting electromagnetic signals by controlled charging and discharging of a capacitor
US834061822 déc. 201025 déc. 2012Parkervision, Inc.Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US84070619 mai 200826 mars 2013Parkervision, Inc.Networking methods and systems
US84469949 déc. 200921 mai 2013Parkervision, Inc.Gain control in a communication channel
US859422813 sept. 201126 nov. 2013Parkervision, Inc.Apparatus and method of differential IQ frequency up-conversion
US20030125083 *12 déc. 20023 juil. 2003Sony CorporationSystem, method, apparatus, control method thereof and computer program for wireless communications
USB361569 *18 mai 197328 janv. 1975 Titre non disponible
EP0104313A1 *11 mai 19834 avr. 1984Robert Bosch GmbhMethod and apparatus for narrow band voice transmission
Classifications
Classification aux États-Unis704/205, 455/61, 455/45, 455/72, 455/59
Classification internationaleH04B1/66
Classification coopérativeH04B1/66
Classification européenneH04B1/66