US3253978A - Method of forming an inorganic waterlaid sheet containing colloidal silica and cationic starch - Google Patents

Method of forming an inorganic waterlaid sheet containing colloidal silica and cationic starch Download PDF

Info

Publication number
US3253978A
US3253978A US39465064A US3253978A US 3253978 A US3253978 A US 3253978A US 39465064 A US39465064 A US 39465064A US 3253978 A US3253978 A US 3253978A
Authority
US
United States
Prior art keywords
sheet
inorganic
colloidal silica
percent
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Warren J Bodendorf
Fay H Osborne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C H Dexter & Sons Inc
Original Assignee
C H Dexter & Sons Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C H Dexter & Sons Inc filed Critical C H Dexter & Sons Inc
Priority to US39465064 priority Critical patent/US3253978A/en
Application granted granted Critical
Publication of US3253978A publication Critical patent/US3253978A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • B44C1/1712Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/38Inorganic fibres or flakes siliceous
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31634Next to cellulosic

Definitions

  • the present invention relates to sheet structures of inorganic fibers or particles, and to the process for their manufacture.
  • Another object is to provide a porous inorganic sheet product substantially free from organic binders and characterized by relatively strong bonding between the inorganic particle-s, relatively high strength and porosity as well as resistance to solvents.
  • a further object is to provide a porous sheet product of high strength comprised of inorganic fibers which are firmly bonded together and which is characterized by resistance to attack by acids and alkalis and by substantial resistance to heat.
  • Still another object is to provide .a novel and highly efficient method for making inorganic sheet products having relatively high strength and porosity and substantially uniform structure.
  • the invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others and the article possessing the features, properties, and the relation of elements, which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims.
  • the figure is a diagrammatic illustration of a process I in accordance with the present invention.
  • the inorganic particles are initially thoroughly admixed with colloidal silica to provide a substantially homogeneous aqueous slurry or dispersion which is fed into the headbox of the papermaking machine while simultaneously introducing therewith a solution of a cationic agent, which dispersion and solution interact to deposit the inorganic fibers and colloidal silica upon the wire of the papermaking machine in substantially uniform admixture to form a web, the cationic agent also being incorporated therein in a minor amount.
  • the web is then dried and may be treated in accordance with conventional papermaking practice.
  • a process embodying the present invention is generally illustrated by the diagrammatic flow sheet.
  • the inorganic particles 2 and colloidal silica 4 are admixed to form a substantially homogeneous aqueous dispersion in a papermill beater or mixing device 6.
  • the resultant admixture is then fed into the headbox 8 of a papermaking machine into which is being fed simultaneously a solution or dispersion of a cationic agent 10, and the two feeds intermix in the headbox but a very stort time before the inorganic particles and colliodal silica deposit upon the wire of the papermaking machine to form the inorganic sheet product 12 Patented May 31, 1966 of the present invention.
  • the pH may be adjusted by metering a bulfer or acid solution 14 into the headbox 8 or by incorporating it into the solution of cationic agent 10.
  • the inorganic particles may be either in fiber or flake form, and fibers may be desirably utilized in admixture with the flakes for increased strength in the sheet product.
  • various inorganic particles can be utilized including glass fibers, quartz fibers (acidleached glass), ceramic fibers such as aluminum silicate (sold as Fiberfrax by Carborundum Company), mineral wool fibers (a mixture of iron, magnesium, calcium and aluminum silicates, and silicon dioxide); mica flakes, glass flakes and quartz flakes.
  • inorganic fibers may be desirably employed even in a minor amount to lend flexural strength to the product.
  • the fibers utilized are preferably of papermaking length, i.e. predominately greater than inch length, and may range to even more than 1 /2 inches in size depending upon dispersibility in water to form dilute slurries, and ceramic fibers (Fiberfrax) of 2-3 inches in length have been employed.
  • the diameter of the fibers does not appear to be particularly significant since glass fibers of up to 12 microns diameter have been satisfactorily employed.
  • the flake particle-s are generally quite small by reason of the process for their manufacture.
  • inorganic particles refers to inorganic fibers or flakes including glass fibers, quartz fibers, ceramic fibers, mineral wool, glass flakes, quartz flakes, mica flakes, and combinations thereof.
  • the colloidal silica is admixed with the inorganic particles in an amount equal to at least 2 percent by Weight of the inorganic particles and may be used in amounts of up to about 30 percent by weight.
  • the amount of collodial silica utilized will vary with the intended end use for the product and with the nature of the inorganic particle, i.e. whether it is a fiber or flake.
  • the strength of a given sheet product, both dry and wet, will tend to increase with increase in the colloidal silica content, but the flexibility will decrease and the sheet will become more brittle.
  • the lower portion of the above range i.e. about 2-15 percent
  • the colloidal silica comprises extremely fine particles of silica such as described in United States Patents No. 2,574,902, No. 2,577,485 and No. 2,980,558.
  • the particles are generally of a diameter less than about millimicrons and preferably predominately of a mean diameter less than 15 millimicrons, and are generally considered to be comprised of silica molecules of a relatively low degree of polymerization.
  • the colloidal silica particles are readily dispersible in water to form colloidal dispersions or sols.
  • colloidal silica may be added in dry form directly to the inorganic fibers or flakes and water in preparing the base furnish, it is preferable to disperse the silica in water separately under conditions affording greater control over the dispersing operation and undesired dusting of the very fine particles. Furthermore, it is possible to purchase such colloidal sols directly from the manufacturers.
  • colloidal silica materials are Ludox LS, MS and HS, all aqueous sols containing about 30 percent solids sold by E. I. du Pont de Nemours & Company; and Cab-O-Sil, a colloidal silica powder sold by Cabot Corporation of Boston, Massachusetts.
  • the admixing of the colloidal silica and inorganic particles should be sufficient to ensure substantially homogeneity. This can be accomplished in a papermill beater during a brushing operation using light roll pressure or during a simple mixing operation with the roll raised off the bed pl-ate, or it can be accomplished by a conventional mixing apparatus or during the continuous mixing in the storage chest for the headbox.
  • the cationic or positively charged agent must not interfere with the ultimately desired properties of the sheet, such as porosity, or with the papermaking operation. It has been found that the.cationic agent must be added to the headbox in an amount of about 0.5-l0.0' percent by weight of the solids content of the inorganic particle and coloidal silica furnish which is being added thereto simultaneously. Amounts in excess of percent by weight produce no significant additional benefit.
  • the cationic agent is preferably employed in an amount of about l-3 percent by weight of the solids in the furnish so as to obtain maximum effect commensurate with low organic content in the final sheet.
  • Such cationic starches are generally aminemodified starches which are considered to be starch ethers using an aminoor iminogroup to provide a positive charge.
  • amine-modified starches are: Cato 8 (a modifiedcornstarch) and Cato Amylon (a hybrid starch containing 55-60 perc nt amylose), both sold by National Starch and Chemical Corporation of Plainfield, New Jersey; Starbond W (a modified potato starch) sold by Morningstar-Paisley Corporation of New York, New York; and Keotac 22-5 (a modified cornstarch) sold by Hubinger Company, Keokuk, Iowa.
  • cationic starches are best added to the headbox in an aqueous solution (colloidal) of about 1-5 percent by weight and preferably about 2-3 percent by weight.
  • aqueous solution cold water
  • the solution is readily prepared by mixing the starch in cold water, heating the mixture to a temperature of about 160-200 F., and continuing the agitation for about 10- 30 minutes to effect the desired colloidal solution.
  • the pH of the headbox dispersion should generally be maintained in the range of about 2.7-6.
  • the pH is preferably maintained in the range of about 2.8-4.
  • Ceramic fibers preferably utilize a pH of about 4-6.
  • -Mica flakes are most effectively treated 4 in a headbox dispersion having an essentially neutral or slightly alkaline pH of about 6.5-8.0.
  • the pH of the headbox can be adjusted by addition of a noninterfering acid salt or acid agent such as potassium aluminum sulfate (alum) or of mineral acids such as hydrochloric acid.
  • a noninterfering acid salt or acid agent such as potassium aluminum sulfate (alum) or of mineral acids such as hydrochloric acid.
  • the pH can be readily adjusted by use of mineral acids in conjunction with a metering device operating in response to variations in the acidity of the headbox dispersion.
  • an acid salt may be added to the headbox at a predetermined rate and conveniently in the cationic agent dispersion.
  • the glass, quartz and mineral wool materials should be mixed into a slurry and stored at a pH of about 2.7-6.0, and preferably about 2.7-4.0.
  • the ceramic fibers are mixed in an unadjusted aqueous medium or at a slightly alkaline pH, i.e., at about 6.5-8.0 and should be stored in an alkaline slurry.
  • Mica flakes should also be mixed under essentially neutral or slightly alkaline conditions, i.e., at a pH of about 6.5-8.0.
  • the desired neutrality or mild alkalinity will generally be provided by inherent alkalinity of the colloidal silica.
  • the sheet is most desirably formed in a papermaking machine utilizing an inclined Fourdrinier wire since more dilute dispersions may be employed with greater uniformity in the sheet structure and greater control of the porosity of the final sheet.
  • the inorganic particle dispersion is generally maintained at 0.1-1.0 percent by weight solids and preferably at about 0.20-0.30 percent for optimum results. Higher consistencies may be readily employed on cylinder and conventional Fourdrinier machines so long as a sheet porosity of at least about five cubic feet per minute is obtained.
  • the cationic agent be added to the inorganic particle slurry but a very short time before the particles start to deposit upon the wire.
  • the two dispersions can be admixed by feeding thereinto at closely spaced points within the headbox so as to obtain optimum intermixing commensurate with almost instantaneous deposition of theinorganic particles upon the wire after ad mixing.
  • the various inorganic particles can be used in combination to obtain the benefits of each. As pointed out previously, this is particularly true in the use of fibers in combination with flakes to obtain a less brittle sheet product.
  • organic fibers may also be incorporated in the sheet of the present invention for particular application. However, generally the presence of any substantial percentage of organic materials in such sheet products is considered deleterious for most intended applications.
  • the sheet product may be produced essentially free from organic materials since the retained amount of cationic agent is generally. quite small and may be further adjusted by reduction in the ratio of cationic agent to inorganic particles and silica fed into the headbox. For example, in a ratio of 3:100 using amine-modified starch, the amount of total organics in the finished sheet (including residual organics in the water used for the slurry) is 1 percent or less.
  • the cationic agent which forms a colloidal dispersion in which the particles carry a positive charge, overcomes the small negative charge on the colloidal silica particles in their initially formed uniform slurry with the inorganic particles.
  • the colloidal silica particles then appear to act as if positively charged and are attracted to the surface of the inorganic fibers or flakes which act as if negatively charged.
  • the colloidal silica is substantially homogeneously distributed upon the surface of the inorganic particles throughout the sheet and bonds the particles together strongly, providing both dry strength and a most significant degree of wet-strength. Since this is a charge mechanism it is important that the cationic agent be added to the system just prior to sheet formation, otherwise it is not fully effective.
  • the cationic agent should not gel the colloidal silica, which gelling would be most undesirable since substantially discrete silica particles are essentially for the present invention.
  • other known cationic agents such as alum, dicyandiamide formaldehyde, epichlorhydrin-polyamide and melamine formaldehyde
  • the cationic starch will not gel the silica even after prolonged periods of time.
  • gelation of the silica tends to cause poor drainage and sticking to the papermaking wire as well as reduced porosity resulting from the sheets tendency to tighten.
  • the cationic agent may tend to produce a flocculating action when admixed with the inorganic particle-silica furnish,
  • the inorganic sheet products obtained in accordance with the method of the present invention generally exhibit a porosity of greater than 5 c.f.m. as measured on a Frazier permeometer.
  • the porosity of these sheets will vary depending upon the exact composition thereof.
  • the cationic starch will constitute only a minor portion of the total weight of the sheet, i.e., 0.5- percent and preferably 1.0-3.0 percent, while the silica will account for about one quarter or less by weight, i.e., about 2-27 percent and preferably about 2-15 percent.
  • the inorganic sheet products of the present invention are suitable for a wide number of applications. Because of their inherent wet-strength, they are adapted to coating or impregnation with various aqueous or organic solvent solutions such as for manufacture of electrical tape.
  • the fibrous structures have a high degree of absorbency due to their porosity and are suitable for manu- -facture of photo-tape products containing solutions of developer and the like. They have been widely evaluated with most satisfactory results as filters for air, fuel, and acids.
  • carbon particles may be admixed with inorganic fibers and colloidal silica to provide a base furnish which will result in a carbon-filled sheet, as fully described in our copendingapplication Serial No. 125,113, filed July 19, 1961, now US. Patent N0. 3,149,023.
  • Example I To a conventional paper mill beater were furnished 85 pounds of AAA glass fiber (diameter of about 0.5-0.8 micron), pounds A glass fiber (diameter 1.5-2.5 microns), both fibers being predominately about $5 4 inch in length and sold by the Johns-Manville Company, 1 quart commercial hydrochloric acid and 1200 gallons of water. The pH of the mixture was approximately 3.0. This mixture was initially defibered for ten minutes with the roll of the beater raised off from the bed plate, and
  • the glass fiber-silica slurry was further diluted to a consistency of 0.25 percent by Weight solids and fed into the headbox of a papermaking machine using an inclined Fourdrinier wire.
  • the cationic agent solution was fed into the headbox at a rate providing approximately 1.2 percent by weight starch based upon the solids in the glass-silica slurry.
  • hydrochloric acid was metered into the headbox to maintain the pH at approximately 3.4.
  • the glass fibers and silica deposited almost instantaneously upon the wire along with a. portion of the cationic agent to form a web which was removed from the Fourdrinier wire and dried in accordance with conventional practice.
  • the base sheet thus formed had a basis weight of 40 pounds (480 sheets-24" x 36") and a thickness of 13 mils.
  • the tensile strength was 2131 grams per inch in the machine direction and 1169 grams per inch in the cross direction.
  • the density was determined at 0.203 gram per cubic centimeter and the porosity at 5.53 c.f.m. on the Frazier permeometer.
  • the Mullen was determined at 1.5 pounds and the wet tensile strength was 750 grams in the machine direction and 431 in the cross direction.
  • This sheet product has been found particularly advantageous for use as a jet fuel filter. It is also adapted for converting processes in both aqueous and solvent processes, as an impregnant carrier, for cryogenic insulation, photo-saturant tape, electrical tape, and manufacture of hollow tubes to serve as cores for electrical windings.
  • Example 2 A quartz fiber sheet was formed in a similar fashion to Example 1.
  • the resultant sheet had a basis weight of 45 pounds and a thickness of 16.5 mils.
  • the tensile strength was 2000 grams in the machine direction and 1508 grams in the cross direction.
  • the density was determined at 0.179 gram per cubic centimeter, the Mullen as 1.7 pounds and the porosity at 19.9 c.f.m. on the Frazier permeometer.
  • the wet tensile strength was 338 grams in the machine direction and 195 grams in the cross direction.
  • Example 3 A similar sheet was prepared from ceramic fibers.
  • the heater furnish in this instance comprised 40 pounds of long, fine-staple Fiberfrax (fibers of fused alumina-silica, sold by Carborundum Company of America), and 40 pounds of washed Fiberfrax (shot-free), 50 pounds of colloidal silica sol (Ludox LS) and 1200 gallons of water.
  • the long-staple fibers were predominately 2-3 inches in length and about 7 microns in diameter, and the washed fibers were predominately about inch in length and about 2.5 microns with some fibers ranging up to 1% inches in length.
  • the resultant sheet had a basis weight of 24 pounds and was 6 mils in thickness.
  • the tensile strength was '463 grams in the machine direction and 460 grams in the cross direction.
  • the density was found to be 0.259 gram per cubic. centimeter, the Mullen 1.4 pounds and the porosity 85 c.f.m. on the Frazier permeometer.
  • the wet tensile strength was 214 grams in the machine direction and 17 5 grams in the cross direction.
  • the sheet is particularly suitable for use as high temperature insulation, electrical insulation and hot liquid filtration.
  • Example 4 A similar sheet product containing predominately mineral wool fibers was similarly prepared.
  • the furnish to the beater in this instance comprised 5 pounds AAA microglass fiber, 50 pounds mineral wool fibers of predominately about A inch length and about l.5-2.5 microns diameter (PMC-35, Eagle Pitcher Company), 1 quart hydrochloric acid and 1200 gallons water. This mixture was defibered in the beater for ten minutes and then admixed with 40 pounds of colloidal silica sol (Ludox LS). The remainder of the papermaking operation was substantially identical to that outlined in Example 1.
  • the resultant sheet product had a basis weight of 61 pounds and a thickness of 15 mils.
  • the tensile strength in the machine direction was 994 grams and in the cross direction was 892 grams.
  • the density of the sheet was 0.274 gram per cubic centimeter, and the porosity was found to be 33.2 c.f.m. on the Frazier permeometer.
  • the Mullen was 0.8 pound.
  • the wet tensile strength was 569 grams in the machine direction and 483 grams in the cross direction.
  • This sheet product is desirably employed for high temperature insulation and for lamination with Masonite or building board to provide fire-proofing.
  • Example 5 The sheet in this instance utilized glass flakes. To a mixer were added 42.7 percent by weight glass 1 flakes having an average thickness of 3 microns (Microweight solids and a solution of cationic starch was introduced into the headbox at a rate calculated to provide 1.5 percent by weight based. upon the solids in the flakesilica furnish. The pH of the headbox dispersion was adjusted by hydrochloric acid approximately 3.0.
  • the resultant web had a basis weight of 40 pounds and a thickness of 5 mils.
  • the average dry tensile strength was '900 grams and the aver-age wet tensile strength'was 600 grams.
  • This glass flake sheet product has been found highly desirable as an electrical insulation material.
  • Example 6 The sheet in this instance utilized mica flakes.
  • the resultant sheet had a basis weight of pounds and a thickness of 6 mils.
  • the average dry tensile strength was 1200 grams and the average wet tensile strength was 650 grams.
  • This particular sheet product has been evaluated as being most satisfactory as an electrical insulating material and as a heat insulating material.
  • Example 7 The sheet in this instance utilized glass fiber.
  • the base furnish-comprised 35.4 percent by weight of AAA (Grade 106) microglass fiber, 6.3 percent AA (Grade 110) microglass fiber, 4.2 percent colloidal silica sol (Ludox LS), and 54.1 percent activated carbon (LC- These components were thoroughly admixed in water and fed to the headbox at a consistency of about 0.25 percent by weight solids. The pH in the headbox was maintained at about 3.0 by means of hydrochloric acid.
  • the resultant sheet was found to be 10 mils in thickness I and have a basis weight of 35 pounds.
  • the average tensile strength was 850 grams of the porosity was determined to be 6 c.f.m. on the Frazier permeometer.
  • Example 8 This example illustrates the improved strength characteristics obtained by adding a cationic material according to the present invention.
  • Example 9 This example illustrates the effect of adding the cationic agent just prior to sheet formation.
  • Sample 9-A An aliquot of the above furnish (approximately 3 grams dry fiber weight) and 6 ml. of a 1% solution of a dicyandiamide formaldehyde condensate (Warco F71) were mixed well and then allowed to stand for minutes. Colloidal silica (Ludox LS) was added in an amount equal to 12% of the furnish and after standing for 10 minutes a handsheet was made. This sheet was labeled Sample 9-A. Due to the slow drainage time repeat handsheets were made in order to time the flow of white water through the wire.
  • a dicyandiamide formaldehyde condensate Warco F71
  • Sample 9-B An aliquot of the above furnish and approximately 2% starch solids (Cato 8) were mixed well. Then colloidal silica (Ludox LS) was added in an amount of 12% of the furnish and the entire mixture was agitated for minutes. The handsheet made from the resultant mixture was labeled Sample 9-B.
  • colloidal silica Lidox LS
  • Sample 9-C To an aliquot of the above furnish was added colloidal silica (Ludox LS) to the extent of 12% of the furnish.
  • Handsheets labeled Sample 9-C were prepared by adding approximately 2% starch solids (Cato 8) to the handsheet mold just prior to sheet formation.
  • the present invention provides a novel and highly desirable inorganic sheet product having high strength and readily controllable physical characteristics including high porosity and flexibility.
  • the method of forming an inorganic sheet comprising forming a substantially homogeneous aqueous slurry of inorganic particles and colloidal silica; feeding said slurry to the headbox of a papermaking machine while simultaneously feeding therewith a solution of a cationic starch to form a mixture with said slurry, said cationic starch solution admixing with said slurry shortly before deposition of the inorganic particles upon the wire of the papermaking machine and being present in an amount sufficient to provide about 05-100 percent by weight of the solids in said slurry; and causing said mixture to deposit upon the screen of a papermaking machine to form a web having the'inorganic particles firmly bonded to gether with colloidal silica uniformly distributed across the surfaces of the inorganic particles.
  • said inorganic particles are of a material selected from the group consisting of fibers and flakes, wherein said fibers are selected from the group consisting of glass, quartz, ceramic, mineral wool and combinations thereof and said flakes are selected from the group consisting of glass and quartz, and wherein the pH of said aqueous mixture in the headbox is maintained at about 2.7-6.0.
  • the method of forming an inorganic sheet comprising forming a substantial homogeneous aqueous slurry containing essentially inorganic particles and colloidal silica, said inorganic particles and silica being present in a weight percentage of about 70-98 and 2-30 respectively; feeding said slurry into the headbox of a papermaking machine while simultaneously feeding therewith a solution of a cationic starch in an amount sufficient to provide about 0.5-10.0 percent by weight of the solids in said slurry, said cationic starch solution admixing with said slurry shortly before deposition of the inorganic particles upon the wire of the papermaking machine; and causing said admixture to deposit upon the screen of the papermaking machine to form a web having the inorganic particles firmly bonded together with colloidal silica uniformly distributed across the surfaces of the inorganic particles.
  • said inorganic particles are predominately fibers selected from the group consisting of glass, quartz, ceramic, mineral Wool and combinations thereof, and wherein the pH of said headbox mixture is maintained at a pH of 2.7-6.0.

Description

y 1966 w. J. BODENDORF ETAL 3,253,978
METHOD OF FORMING AN INORGANIC WATER-LAID SHEET CONTAINING COLLOIDAL SILICA AND CATIONIC STARCH Filed Aug. 31, 1964 INORGANIC PARTICLES OOLLOIDAL SILICA BEATER 4 OR MIXER /4- a P H CONTROL AGENT 1 i ueag aox gg i' PAPERMAKING MACHINE /0 INORGANIC SHEET INVENTORS WARREN J. BODENDORF FAY H.0SBORNE United States Patent METHOD OF FORMING AN INQRGANIC WATER- LAID SHEET CQNTAINING COLLOIDAL SELICA AND CATEQNIC STARCH Warren J. Bodendorf, Montgomery, Mass., and Fay H. Osborne, Windsor Locks, Conn., assignors to C. H. Dexter dz Sons, Inc, Windsor Locks, Conn, a corporation of Connecticut Filed Aug. 31, 1964, Ser. No. 394,650 8 Claims. (Cl. 162152) This application is a continuation-in-part of our copending application Serial No. 125,112, filed July 19, 1961, now abandoned.
The present invention relates to sheet structures of inorganic fibers or particles, and to the process for their manufacture.
It is an object of the present invention to provide a novel inorganic sheet product of relatively high strength and porosity and substantially uniform structure. 7
Another object is to provide a porous inorganic sheet product substantially free from organic binders and characterized by relatively strong bonding between the inorganic particle-s, relatively high strength and porosity as well as resistance to solvents.
A further object is to provide a porous sheet product of high strength comprised of inorganic fibers which are firmly bonded together and which is characterized by resistance to attack by acids and alkalis and by substantial resistance to heat.
Still another object is to provide .a novel and highly efficient method for making inorganic sheet products having relatively high strength and porosity and substantially uniform structure.
Other objects and advantages will be readily apparent from the following detailed description and the appended claims.
The invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others and the article possessing the features, properties, and the relation of elements, which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims.
In the drawing:
The figure is a diagrammatic illustration of a process I in accordance with the present invention.
It has now been found that the foregoing and related objects can be attained by a process in which the inorganic particles are initially thoroughly admixed with colloidal silica to provide a substantially homogeneous aqueous slurry or dispersion which is fed into the headbox of the papermaking machine while simultaneously introducing therewith a solution of a cationic agent, which dispersion and solution interact to deposit the inorganic fibers and colloidal silica upon the wire of the papermaking machine in substantially uniform admixture to form a web, the cationic agent also being incorporated therein in a minor amount. The web is then dried and may be treated in accordance with conventional papermaking practice. I
Referring to the attached drawing, .a process embodying the present invention is generally illustrated by the diagrammatic flow sheet. Here the inorganic particles 2 and colloidal silica 4 are admixed to form a substantially homogeneous aqueous dispersion in a papermill beater or mixing device 6. The resultant admixture is then fed into the headbox 8 of a papermaking machine into which is being fed simultaneously a solution or dispersion of a cationic agent 10, and the two feeds intermix in the headbox but a very stort time before the inorganic particles and colliodal silica deposit upon the wire of the papermaking machine to form the inorganic sheet product 12 Patented May 31, 1966 of the present invention. A portion of the cationic agent '10 is also retained in the web. As will be pointed out more fully hereinafter, the pH may be adjusted by metering a bulfer or acid solution 14 into the headbox 8 or by incorporating it into the solution of cationic agent 10.
The inorganic particles may be either in fiber or flake form, and fibers may be desirably utilized in admixture with the flakes for increased strength in the sheet product. By the present invention, various inorganic particles can be utilized including glass fibers, quartz fibers (acidleached glass), ceramic fibers such as aluminum silicate (sold as Fiberfrax by Carborundum Company), mineral wool fibers (a mixture of iron, magnesium, calcium and aluminum silicates, and silicon dioxide); mica flakes, glass flakes and quartz flakes.
Since the glass flakes will generally tend to produce a more brittle sheet structure, care must be exercised in handling to avoid cracking the sheet, particularly during reeling and other operations involving substantial flexure. As pointed out above, inorganic fibers may be desirably employed even in a minor amount to lend flexural strength to the product.
Generally, the fibers utilized are preferably of papermaking length, i.e. predominately greater than inch length, and may range to even more than 1 /2 inches in size depending upon dispersibility in water to form dilute slurries, and ceramic fibers (Fiberfrax) of 2-3 inches in length have been employed. The diameter of the fibers does not appear to be particularly significant since glass fibers of up to 12 microns diameter have been satisfactorily employed. The flake particle-s are generally quite small by reason of the process for their manufacture.
The term inorganic particles as used herein refers to inorganic fibers or flakes including glass fibers, quartz fibers, ceramic fibers, mineral wool, glass flakes, quartz flakes, mica flakes, and combinations thereof.
The colloidal silica is admixed with the inorganic particles in an amount equal to at least 2 percent by Weight of the inorganic particles and may be used in amounts of up to about 30 percent by weight. Generally, the amount of collodial silica utilized will vary with the intended end use for the product and with the nature of the inorganic particle, i.e. whether it is a fiber or flake. The strength of a given sheet product, both dry and wet, will tend to increase with increase in the colloidal silica content, but the flexibility will decrease and the sheet will become more brittle.
With fibers, the lower portion of the above range, i.e. about 2-15 percent, 'will produce a strong sheet product having a relatively high degree of flexibility; however, the percentage of colloidal silica may be increased for even greater strength. Generally for flexible sheet applications, it is preferred to use 3-8 percent by weight of colloidal silica.
With flakes, it is generally necessary to use higher percentages of silica, i.e. 15-30 percent, for strong sheet products to be maximum binding of the individual flakes, and the actual amount necessary will be dependent in part upon the size of the individual flake particles. For example, with mica and glass flakes, about 20- 30 percent by weight has been found most satisfactory.
The colloidal silica comprises extremely fine particles of silica such as described in United States Patents No. 2,574,902, No. 2,577,485 and No. 2,980,558. The particles are generally of a diameter less than about millimicrons and preferably predominately of a mean diameter less than 15 millimicrons, and are generally considered to be comprised of silica molecules of a relatively low degree of polymerization. The colloidal silica particles are readily dispersible in water to form colloidal dispersions or sols.
Although the colloidal silica may be added in dry form directly to the inorganic fibers or flakes and water in preparing the base furnish, it is preferable to disperse the silica in water separately under conditions affording greater control over the dispersing operation and undesired dusting of the very fine particles. Furthermore, it is possible to purchase such colloidal sols directly from the manufacturers.
Exemplary of such colloidal silica materials are Ludox LS, MS and HS, all aqueous sols containing about 30 percent solids sold by E. I. du Pont de Nemours & Company; and Cab-O-Sil, a colloidal silica powder sold by Cabot Corporation of Boston, Massachusetts.
The admixing of the colloidal silica and inorganic particles should be sufficient to ensure substantially homogeneity. This can be accomplished in a papermill beater during a brushing operation using light roll pressure or during a simple mixing operation with the roll raised off the bed pl-ate, or it can be accomplished by a conventional mixing apparatus or during the continuous mixing in the storage chest for the headbox.
Because of the relative brittleness of flakes and ceramic fibers, these materials should not be subjected to any substantial pressure during the mixing operation, and so the beater roll should be raised off the bed plate for mixing such materials where a papermill heater is employed.
The cationic or positively charged agent must not interfere with the ultimately desired properties of the sheet, such as porosity, or with the papermaking operation. It has been found that the.cationic agent must be added to the headbox in an amount of about 0.5-l0.0' percent by weight of the solids content of the inorganic particle and coloidal silica furnish which is being added thereto simultaneously. Amounts in excess of percent by weight produce no significant additional benefit. The cationic agent is preferably employed in an amount of about l-3 percent by weight of the solids in the furnish so as to obtain maximum effect commensurate with low organic content in the final sheet.
.in operation by reason of their true ionic activity, ease of handling and noninterference with the papermaking operation. Such cationic starches are generally aminemodified starches which are considered to be starch ethers using an aminoor iminogroup to provide a positive charge.
Exemplary of such amine-modified starches are: Cato 8 (a modifiedcornstarch) and Cato Amylon (a hybrid starch containing 55-60 perc nt amylose), both sold by National Starch and Chemical Corporation of Plainfield, New Jersey; Starbond W (a modified potato starch) sold by Morningstar-Paisley Corporation of New York, New York; and Keotac 22-5 (a modified cornstarch) sold by Hubinger Company, Keokuk, Iowa.
These cationic starches are best added to the headbox in an aqueous solution (colloidal) of about 1-5 percent by weight and preferably about 2-3 percent by weight. The solution is readily prepared by mixing the starch in cold water, heating the mixture to a temperature of about 160-200 F., and continuing the agitation for about 10- 30 minutes to effect the desired colloidal solution.
The pH of the headbox dispersion should generally be maintained in the range of about 2.7-6. For glass fibers, quartz fibers, mineral wool fibers, and glass flakes, the pH is preferably maintained in the range of about 2.8-4. Ceramic fibers preferably utilize a pH of about 4-6. -Mica flakes, however, are most effectively treated 4 in a headbox dispersion having an essentially neutral or slightly alkaline pH of about 6.5-8.0.
The pH of the headbox can be adjusted by addition of a noninterfering acid salt or acid agent such as potassium aluminum sulfate (alum) or of mineral acids such as hydrochloric acid. The pH can be readily adjusted by use of mineral acids in conjunction with a metering device operating in response to variations in the acidity of the headbox dispersion. Alternatively, an acid salt may be added to the headbox at a predetermined rate and conveniently in the cationic agent dispersion.
Prior to the headbox, control of the pH of the dispersion is quite significant for certain of the inorganic particles. Generally, the glass, quartz and mineral wool materials should be mixed into a slurry and stored at a pH of about 2.7-6.0, and preferably about 2.7-4.0.. The ceramic fibers are mixed in an unadjusted aqueous medium or at a slightly alkaline pH, i.e., at about 6.5-8.0 and should be stored in an alkaline slurry. Mica flakes should also be mixed under essentially neutral or slightly alkaline conditions, i.e., at a pH of about 6.5-8.0. In the instance of the ceramic fibers and mica flakes, the desired neutrality or mild alkalinity will generally be provided by inherent alkalinity of the colloidal silica.
Although cylinder machines and conventional Fourdrinier machines may be employed, the sheet is most desirably formed in a papermaking machine utilizing an inclined Fourdrinier wire since more dilute dispersions may be employed with greater uniformity in the sheet structure and greater control of the porosity of the final sheet. In such inclined Fourdrinier papermaking machines, the inorganic particle dispersion is generally maintained at 0.1-1.0 percent by weight solids and preferably at about 0.20-0.30 percent for optimum results. Higher consistencies may be readily employed on cylinder and conventional Fourdrinier machines so long as a sheet porosity of at least about five cubic feet per minute is obtained.
It is imperative that the cationic agent be added to the inorganic particle slurry but a very short time before the particles start to deposit upon the wire. In a fluid system moving rapidly in the headbox, the two dispersions can be admixed by feeding thereinto at closely spaced points within the headbox so as to obtain optimum intermixing commensurate with almost instantaneous deposition of theinorganic particles upon the wire after ad mixing.
The various inorganic particles can be used in combination to obtain the benefits of each. As pointed out previously, this is particularly true in the use of fibers in combination with flakes to obtain a less brittle sheet product.
It will be apparent that organic fibers may also be incorporated in the sheet of the present invention for particular application. However, generally the presence of any substantial percentage of organic materials in such sheet products is considered deleterious for most intended applications. With the process of the present invention, the sheet product may be produced essentially free from organic materials since the retained amount of cationic agent is generally. quite small and may be further adjusted by reduction in the ratio of cationic agent to inorganic particles and silica fed into the headbox. For example, in a ratio of 3:100 using amine-modified starch, the amount of total organics in the finished sheet (including residual organics in the water used for the slurry) is 1 percent or less.
Although the theory of the present invention is not fully understood, it is believed that the cationic agent, which forms a colloidal dispersion in which the particles carry a positive charge, overcomes the small negative charge on the colloidal silica particles in their initially formed uniform slurry with the inorganic particles. The colloidal silica particles then appear to act as if positively charged and are attracted to the surface of the inorganic fibers or flakes which act as if negatively charged. As a result, the colloidal silica is substantially homogeneously distributed upon the surface of the inorganic particles throughout the sheet and bonds the particles together strongly, providing both dry strength and a most significant degree of wet-strength. Since this is a charge mechanism it is important that the cationic agent be added to the system just prior to sheet formation, otherwise it is not fully effective.
The cationic agent should not gel the colloidal silica, which gelling would be most undesirable since substantially discrete silica particles are essentially for the present invention. For example, other known cationic agents, such as alum, dicyandiamide formaldehyde, epichlorhydrin-polyamide and melamine formaldehyde, when mixed with colloidal silica produce almost instantaneous gelation indicating that the retention of the silica by such agents is purely mechanical. The cationic starch, on the other hand, will not gel the silica even after prolonged periods of time. Additionally, gelation of the silica tends to cause poor drainage and sticking to the papermaking wire as well as reduced porosity resulting from the sheets tendency to tighten. However, the cationic agent may tend to produce a flocculating action when admixed with the inorganic particle-silica furnish,
particularly when glass fibers are employed, and this action is best controlled by utilizing close control of the pH for optimum operation, particularly where higher percentages of cationic agent are employed.
The inorganic sheet products obtained in accordance with the method of the present invention generally exhibit a porosity of greater than 5 c.f.m. as measured on a Frazier permeometer. The porosity of these sheets, of course, will vary depending upon the exact composition thereof. As is evident from the process, as described hereinbefore, the cationic starch will constitute only a minor portion of the total weight of the sheet, i.e., 0.5- percent and preferably 1.0-3.0 percent, while the silica will account for about one quarter or less by weight, i.e., about 2-27 percent and preferably about 2-15 percent. The remainder of the sheet, up to 97.5 percent by weight, will consist essentially of the ino-rganic particles mentioned hereinbeform The inorganic sheet products of the present invention are suitable for a wide number of applications. Because of their inherent wet-strength, they are adapted to coating or impregnation with various aqueous or organic solvent solutions such as for manufacture of electrical tape. The fibrous structures have a high degree of absorbency due to their porosity and are suitable for manu- -facture of photo-tape products containing solutions of developer and the like. They have been widely evaluated with most satisfactory results as filters for air, fuel, and acids.
It has also been proposed to use these sheet products for plastic overlay sheets, in electroluminescent paneling and in the manufacture of ceramic decals wherein the sheet would be printed with a decal and subsequently fired to provide a glazed coating.
Various of the sheet products made in accordance with the present invention have been thoroughly evaluated and enthusiastically received as insulating materials for both cryogenic and high-temperature applications.
Other materials may also be included in the sheet. In particular, carbon particles may be admixed with inorganic fibers and colloidal silica to provide a base furnish which will result in a carbon-filled sheet, as fully described in our copendingapplication Serial No. 125,113, filed July 19, 1961, now US. Patent N0. 3,149,023.
Exemplary of the efficacy of the present invention are the following specific examples wherein various inorganic sheet products were produced in accordance with the present invention.
6 Example I To a conventional paper mill beater were furnished 85 pounds of AAA glass fiber (diameter of about 0.5-0.8 micron), pounds A glass fiber (diameter 1.5-2.5 microns), both fibers being predominately about $5 4 inch in length and sold by the Johns-Manville Company, 1 quart commercial hydrochloric acid and 1200 gallons of water. The pH of the mixture was approximately 3.0. This mixture was initially defibered for ten minutes with the roll of the beater raised off from the bed plate, and
was then lightly brushed to separate the'fibers for fifteen and Chemical Corporation) in 40 gallons of cold water,
heating the mixture to F., agitating for fifteen minutes, and thereafter diluting with water to a total volume of 60 gallons.
The glass fiber-silica slurry was further diluted to a consistency of 0.25 percent by Weight solids and fed into the headbox of a papermaking machine using an inclined Fourdrinier wire. At the same time, the cationic agent solution was fed into the headbox at a rate providing approximately 1.2 percent by weight starch based upon the solids in the glass-silica slurry. Simultaneously, hydrochloric acid was metered into the headbox to maintain the pH at approximately 3.4.
The glass fibers and silica deposited almost instantaneously upon the wire along with a. portion of the cationic agent to form a web which was removed from the Fourdrinier wire and dried in accordance with conventional practice.
The base sheet thus formed had a basis weight of 40 pounds (480 sheets-24" x 36") and a thickness of 13 mils. The tensile strength Was 2131 grams per inch in the machine direction and 1169 grams per inch in the cross direction. The density was determined at 0.203 gram per cubic centimeter and the porosity at 5.53 c.f.m. on the Frazier permeometer. The Mullen was determined at 1.5 pounds and the wet tensile strength was 750 grams in the machine direction and 431 in the cross direction.
This sheet product has been found particularly advantageous for use as a jet fuel filter. It is also adapted for converting processes in both aqueous and solvent processes, as an impregnant carrier, for cryogenic insulation, photo-saturant tape, electrical tape, and manufacture of hollow tubes to serve as cores for electrical windings.
Example 2 A quartz fiber sheet was formed in a similar fashion to Example 1.
To the beater were initially supplied 15 pounds of AAA microquartz fiber, 35 pounds of AA microquartz fiber, 1 quart hydrochloric acid and 1200 gallons of water. This mixture was defibered for ten minutes and then subjected to a light brushing operation for ten minu es.
To this mixture was then added 10 pounds of a colloidal silica aqueous sol [(30 percent solids) Ludox LS, E. I. du Pont de Nemours & Company], and the resultant slurry was mixed for ten minutes.
The slurry .Was fed to the headbox of the papermaking machine and admixed therein with a cationic starch solution as set forth in Example 1, the pH again being maintairciied at approximately 3.4 by metering in hydrochloric aci The resultant sheet had a basis weight of 45 pounds and a thickness of 16.5 mils. The tensile strength was 2000 grams in the machine direction and 1508 grams in the cross direction. The density was determined at 0.179 gram per cubic centimeter, the Mullen as 1.7 pounds and the porosity at 19.9 c.f.m. on the Frazier permeometer. The wet tensile strength was 338 grams in the machine direction and 195 grams in the cross direction.
This sheet has been found highly satisfactory for high temperature insulation materials. I
Example 3 A similar sheet was prepared from ceramic fibers. The heater furnish in this instance comprised 40 pounds of long, fine-staple Fiberfrax (fibers of fused alumina-silica, sold by Carborundum Company of America), and 40 pounds of washed Fiberfrax (shot-free), 50 pounds of colloidal silica sol (Ludox LS) and 1200 gallons of water. The long-staple fibers were predominately 2-3 inches in length and about 7 microns in diameter, and the washed fibers were predominately about inch in length and about 2.5 microns with some fibers ranging up to 1% inches in length.
This mixture was defibered for five minutes in the paper mill beater and transferred to the chest wherein agitation was continued. The resultant slurry was further diluted to a consistency of 0.25 percent by weight solids and fed into the headbox of the-papermaking machine wherein the remainder of the papermaking formation was the same as in Example 1.
The resultant sheet had a basis weight of 24 pounds and was 6 mils in thickness. The tensile strength was '463 grams in the machine direction and 460 grams in the cross direction. The density was found to be 0.259 gram per cubic. centimeter, the Mullen 1.4 pounds and the porosity 85 c.f.m. on the Frazier permeometer. The wet tensile strength was 214 grams in the machine direction and 17 5 grams in the cross direction.
The sheet is particularly suitable for use as high temperature insulation, electrical insulation and hot liquid filtration.
- Example 4 A similar sheet product containing predominately mineral wool fibers was similarly prepared.
The furnish to the beater in this instance comprised 5 pounds AAA microglass fiber, 50 pounds mineral wool fibers of predominately about A inch length and about l.5-2.5 microns diameter (PMC-35, Eagle Pitcher Company), 1 quart hydrochloric acid and 1200 gallons water. This mixture was defibered in the beater for ten minutes and then admixed with 40 pounds of colloidal silica sol (Ludox LS). The remainder of the papermaking operation was substantially identical to that outlined in Example 1.
The resultant sheet product had a basis weight of 61 pounds and a thickness of 15 mils. The tensile strength in the machine direction was 994 grams and in the cross direction was 892 grams. The density of the sheet was 0.274 gram per cubic centimeter, and the porosity was found to be 33.2 c.f.m. on the Frazier permeometer. The Mullen was 0.8 pound. The wet tensile strength was 569 grams in the machine direction and 483 grams in the cross direction.
This sheet product is desirably employed for high temperature insulation and for lamination with Masonite or building board to provide fire-proofing.
Example 5 The sheet in this instance utilized glass flakes. To a mixer were added 42.7 percent by weight glass 1 flakes having an average thickness of 3 microns (Microweight solids and a solution of cationic starch was introduced into the headbox at a rate calculated to provide 1.5 percent by weight based. upon the solids in the flakesilica furnish. The pH of the headbox dispersion was adjusted by hydrochloric acid approximately 3.0.
The resultant web had a basis weight of 40 pounds and a thickness of 5 mils. The average dry tensile strength was '900 grams and the aver-age wet tensile strength'was 600 grams.
This glass flake sheet product has been found highly desirable as an electrical insulation material.
Example 6 The sheet in this instance utilized mica flakes.
To a mixer were added 42.7 percent by weight mica flakes (Integrated Mica Corporation) and 57.3 percent by weight of a percent solids colloidal silica sol (Ludox LS). The pH of the dispersion was not adjusted and was at about 7.0. The solids were mixed in the water under mild conditions so as to avoid fragmentation of the mica flakes and the dispersion was further diluted to a consistency of 0.25 percent by weight in the headbox. A solution of cationic. agent was simultaneously introduced into the headbox at a rate calculated toprovide approximately 1.5 percent by weight] cationic starch based upon the solids in the mica flake-silica furnish. The pH of the headbox dispersion was approximately 7.0.
The resultant sheet had a basis weight of pounds and a thickness of 6 mils. The average dry tensile strength was 1200 grams and the average wet tensile strength was 650 grams.
This particular sheet product has been evaluated as being most satisfactory as an electrical insulating material and as a heat insulating material.
Example 7 The sheet in this instance utilized glass fiber.
The base furnish-comprised 35.4 percent by weight of AAA (Grade 106) microglass fiber, 6.3 percent AA (Grade 110) microglass fiber, 4.2 percent colloidal silica sol (Ludox LS), and 54.1 percent activated carbon (LC- These components were thoroughly admixed in water and fed to the headbox at a consistency of about 0.25 percent by weight solids. The pH in the headbox was maintained at about 3.0 by means of hydrochloric acid.
The resultant sheet was found to be 10 mils in thickness I and have a basis weight of 35 pounds. The average tensile strength was 850 grams of the porosity was determined to be 6 c.f.m. on the Frazier permeometer.
Example 8 This example illustrates the improved strength characteristics obtained by adding a cationic material according to the present invention.
Approximately 17 liters of water and ml. of 5% HCl were placed in a Valley beater. To the acid solution was added 83 grams of Code 106 (Johns-Manville Co.) glass microfiber, 14 grams of Code 110 (Johns- Manville Co.) glass microfiber and 3' grams of A chopped glass strand (9 microns). The glass was dispersed at fast speed for 10 minutes and then brushed with a two pound weight for six minutes. Thereafter, 40 grams of colloidal silica (12 grams solid-Ludox LS) was added and dispersed. A handsheet made from this furnish was designated Sample 8-A.
An aliquot of the above furnish was modified by dispersing 5 cc. of a 1% solution-of cationic starch (Cato 8National Starch and Chemical Corporation) in a handsheet mold just prior to draining and forming the sheet. This sheet was labeled Sample 8-B.
The results of physical tests made on both sheets are tabulated below:
Example 9 This example illustrates the effect of adding the cationic agent just prior to sheet formation.
One hundred grams of glass microfiber (Code 106) were dispersed by means of a laboratory Valley beater in about 17 liters of water and acidified with 50 ml. of HCl. The dispersion was then brushed with a 2 pound weight for 6 minutes and the resultant furnish was used for the following samples.
Sample 9-A.An aliquot of the above furnish (approximately 3 grams dry fiber weight) and 6 ml. of a 1% solution of a dicyandiamide formaldehyde condensate (Warco F71) were mixed well and then allowed to stand for minutes. Colloidal silica (Ludox LS) was added in an amount equal to 12% of the furnish and after standing for 10 minutes a handsheet was made. This sheet was labeled Sample 9-A. Due to the slow drainage time repeat handsheets were made in order to time the flow of white water through the wire.
Sample 9-B.An aliquot of the above furnish and approximately 2% starch solids (Cato 8) were mixed well. Then colloidal silica (Ludox LS) was added in an amount of 12% of the furnish and the entire mixture was agitated for minutes. The handsheet made from the resultant mixture was labeled Sample 9-B.
Sample 9-C.To an aliquot of the above furnish was added colloidal silica (Ludox LS) to the extent of 12% of the furnish. Handsheets labeled Sample 9-C were prepared by adding approximately 2% starch solids (Cato 8) to the handsheet mold just prior to sheet formation.
The test results on the above handsheets are as follows:
1 Ditficulty in removing sheets from wire, tended to stick.
While there appears to be some retention of colloidal silica in Sample 9-A, such a sheet requires an excessively long and impractical drainage time (about ten times that of Sample 9-C) and exhibits no porosity, which property is, of course, necessary for filtration purposes. Further, when the starch was added before the silica, poor strength Was obtained.
It can be seen from the foregoing specification and specific examples that the present invention provides a novel and highly desirable inorganic sheet product having high strength and readily controllable physical characteristics including high porosity and flexibility.
As will be readily apparent to persons skilled in the art, various modifications and adaptions may be effected without departing from the spirit and scope of the invention.
We claim:
1. The method of forming an inorganic sheet comprising forming a substantially homogeneous aqueous slurry of inorganic particles and colloidal silica; feeding said slurry to the headbox of a papermaking machine while simultaneously feeding therewith a solution of a cationic starch to form a mixture with said slurry, said cationic starch solution admixing with said slurry shortly before deposition of the inorganic particles upon the wire of the papermaking machine and being present in an amount sufficient to provide about 05-100 percent by weight of the solids in said slurry; and causing said mixture to deposit upon the screen of a papermaking machine to form a web having the'inorganic particles firmly bonded to gether with colloidal silica uniformly distributed across the surfaces of the inorganic particles.
2. The method in accordance with claim 1 wherein said inorganic particles are of a material selected from the group consisting of fibers and flakes, wherein said fibers are selected from the group consisting of glass, quartz, ceramic, mineral wool and combinations thereof and said flakes are selected from the group consisting of glass and quartz, and wherein the pH of said aqueous mixture in the headbox is maintained at about 2.7-6.0.
3. The method in accordance with claim 1 wherein said inorganic particles are mica flakes and wherein the pH of said aqueous mixture in the headbox is maintained at about 6.5-8.
4. The method in accordance with claim 1 wherein said cationic starch is an amine-modified starch.
5. The method of forming an inorganic sheet comprising forming a substantial homogeneous aqueous slurry containing essentially inorganic particles and colloidal silica, said inorganic particles and silica being present in a weight percentage of about 70-98 and 2-30 respectively; feeding said slurry into the headbox of a papermaking machine while simultaneously feeding therewith a solution of a cationic starch in an amount sufficient to provide about 0.5-10.0 percent by weight of the solids in said slurry, said cationic starch solution admixing with said slurry shortly before deposition of the inorganic particles upon the wire of the papermaking machine; and causing said admixture to deposit upon the screen of the papermaking machine to form a web having the inorganic particles firmly bonded together with colloidal silica uniformly distributed across the surfaces of the inorganic particles.
6. The method in accordance with claim 5 wherein said inorganic particles are predominately fibers selected from the group consisting of glass, quartz, ceramic, mineral Wool and combinations thereof, and wherein the pH of said headbox mixture is maintained at a pH of 2.7-6.0.
7. The method in accordance with claim 5 wherein said inorganic particles are mica flakes and wherein the pH of said headbox admixture is about 6.5-8.0.
8. The method in accordance with claim 5 wherein the inorganic particles are ceramic fibers and wherein the pH of said headbox admixture is about 4.0-6.0.
References Cited by the Examiner UNITED STATES PATENTS DONALL H. SYLVESTER, Primary Examiner.

Claims (1)

1. THE METHOD OF FORMING AN INORGANIC SHEET COMPRISING FORMING A SUBSTANTIALLY HOMOGENEOUS AQUEOUS SLURRY OF INORGANIC PARTICLES AND COLLOIDAL SILICA; FEEDING SAID SLURRY TO THE HEADBOX OF A PAPERMAKING MACHINE WHILE SIMULTANEOUSLY FEEDING THEREWITH A SOLUTION OF A CATIONIC STARCH TO FORM A MIXTURE WITH SAID SLURRY, SAID CATIONIC STARCH SOLUTION ADMIXING WITH SAID SLURRY SHORTLY BEFORE DEPOSITION OF THE INORGANIC PARTICLES UPON THE WIRE OF THE PAPERMAKING MACHINE AND BEING PRESENT IN AN AMOUNT SUFFICIENT TO PROVIDE ABOUT 0.5-10.0 PERCENT BY WEIGHT OF THE SOLIDS IN SAID SLURRY; AND CAUSING SAID MIXTURE TO DEPOSIT UPON THE SCREEN OF A PAPERMAKING MACHINE TO FORM A WEB HAVING THE INORGANIC PARTICLES FIRMLY BONDED TO GETHER WITH COLLOIDAL SILICA UNIFORMLY DISTRIBUTED ACROSS THE SURFACES OF THE INORGANIC PARTICLES.
US39465064 1961-07-19 1964-08-31 Method of forming an inorganic waterlaid sheet containing colloidal silica and cationic starch Expired - Lifetime US3253978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US39465064 US3253978A (en) 1961-07-19 1964-08-31 Method of forming an inorganic waterlaid sheet containing colloidal silica and cationic starch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12511261A 1961-07-19 1961-07-19
US39465064 US3253978A (en) 1961-07-19 1964-08-31 Method of forming an inorganic waterlaid sheet containing colloidal silica and cationic starch

Publications (1)

Publication Number Publication Date
US3253978A true US3253978A (en) 1966-05-31

Family

ID=26823268

Family Applications (1)

Application Number Title Priority Date Filing Date
US39465064 Expired - Lifetime US3253978A (en) 1961-07-19 1964-08-31 Method of forming an inorganic waterlaid sheet containing colloidal silica and cationic starch

Country Status (1)

Country Link
US (1) US3253978A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331833A (en) * 1964-03-23 1967-07-18 Nat Starch Chem Corp The graft polymerization of ethylenimine onto tertiary amino starch
US3935060A (en) * 1973-10-25 1976-01-27 Mcdonnell Douglas Corporation Fibrous insulation and process for making the same
US3979253A (en) * 1974-04-22 1976-09-07 The United States Of America As Represented By The Secretary Of The Navy Method for dispersing glass fibers for the preparation of glass filter media
US4116761A (en) * 1976-03-08 1978-09-26 Whatman Reeve Angel Limited Porous element and the preparation thereof
DE2839845A1 (en) * 1977-09-19 1979-03-22 Yuasa Battery Co Ltd SEPARATOR FOR GALVANIC ELEMENTS AND METHOD OF MANUFACTURING THEREOF
FR2474885A1 (en) * 1980-02-04 1981-08-07 Amf Inc METHOD OF MANUFACTURING A FILTER FOR CATIONIC CONTAMINANTS, FILTER OBTAINED AND ITS APPLICATION
EP0041056A1 (en) * 1980-05-28 1981-12-02 Eka Ab Papermaking
JPS5751900A (en) * 1980-05-28 1982-03-26 Eka Ab Papermaking method
US4370169A (en) * 1980-12-31 1983-01-25 Ppg Industries, Inc. Aqueous dispersion of glass fibers and method and composition for producing same
US4381199A (en) * 1980-12-31 1983-04-26 Ppg Industries, Inc. Aqueous dispersion of glass fibers and method and composition for producing same
US4394414A (en) * 1981-05-29 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
WO1984000569A1 (en) * 1982-07-23 1984-02-16 Amf Inc Fibrous media containing millimicron sized particulates
US4477524A (en) * 1981-05-29 1984-10-16 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
US4596660A (en) * 1982-07-23 1986-06-24 Amf Inc. Fibrous media containing millimicron-sized particulates
US4643801A (en) * 1986-02-24 1987-02-17 Nalco Chemical Company Papermaking aid
US4645567A (en) * 1980-02-04 1987-02-24 Cuno, Inc. Filter media and method of making same
DE3837746C1 (en) * 1988-11-07 1990-03-29 Manfred Zeuner
US4927498A (en) * 1988-01-13 1990-05-22 E. I. Du Pont De Nemours And Company Retention and drainage aid for papermaking
US5017268A (en) * 1986-09-09 1991-05-21 E. I. Du Pont De Nemours And Company Filler compositions and their use in papermaking
US5176891A (en) * 1988-01-13 1993-01-05 Eka Chemicals, Inc. Polyaluminosilicate process
US5294299A (en) * 1988-11-07 1994-03-15 Manfred Zeuner Paper, cardboard or paperboard-like material and a process for its production
US5506046A (en) * 1992-08-11 1996-04-09 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5508072A (en) * 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5545450A (en) * 1992-08-11 1996-08-13 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5580624A (en) * 1992-08-11 1996-12-03 E. Khashoggi Industries Food and beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders, and the methods of manufacturing such containers
US5582670A (en) * 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5631053A (en) * 1992-08-11 1997-05-20 E. Khashoggi Industries Hinged articles having an inorganically filled matrix
US5658603A (en) * 1992-08-11 1997-08-19 E. Khashoggi Industries Systems for molding articles having an inorganically filled organic polymer matrix
US5705239A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5709913A (en) * 1992-08-11 1998-01-20 E. Khashoggi Industries Method and apparatus for manufacturing articles of manufacture from sheets having a highly inorganically filled organic polymer matrix
US5738921A (en) * 1993-08-10 1998-04-14 E. Khashoggi Industries, Llc Compositions and methods for manufacturing sealable, liquid-tight containers comprising an inorganically filled matrix
US5830548A (en) * 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets
US5849155A (en) * 1993-02-02 1998-12-15 E. Khashoggi Industries, Llc Method for dispersing cellulose based fibers in water
US5928741A (en) * 1992-08-11 1999-07-27 E. Khashoggi Industries, Llc Laminated articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US6479164B1 (en) 1996-02-05 2002-11-12 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Method for preparing composite materials from renewable raw materials
US6533897B2 (en) * 2001-04-13 2003-03-18 Fmj Technologies, Llc Thermally and structurally stable noncombustible paper
US20040038013A1 (en) * 2002-08-20 2004-02-26 Schaefer James W. Fiber containing filter media
US20040038014A1 (en) * 2002-08-20 2004-02-26 Donaldson Company, Inc. Fiber containing filter media
US6884321B2 (en) 2001-09-20 2005-04-26 Tex Tech Industries, Inc. Fireblocking/insulating paper
US20050119397A1 (en) * 2001-02-08 2005-06-02 Hon Technology Inc. Compression molded inorganic fiber articles, and methods and compositions used in molding same
US20060096260A1 (en) * 2004-11-08 2006-05-11 Bryner Michael A Filtration media for filtering particulate material from gas streams
WO2006071980A1 (en) 2004-12-28 2006-07-06 E.I. Dupont De Nemours And Company Filtration media for filtering particulate material from gas streams
US20080108266A1 (en) * 2005-07-12 2008-05-08 Johns Manville Multilayer nonwoven fibrous mats with good hiding properties, laminated and method
US20080113172A1 (en) * 2006-11-13 2008-05-15 Erick Jose Acosta Partially fluorinated compositions and surface active agents
US20080113573A1 (en) * 2006-11-13 2008-05-15 Erick Jose Acosta Partially fluorinated amino acid derivatives as gelling and surface active agents
US20090047498A1 (en) * 2007-08-13 2009-02-19 E. I. Dupont De Nemours And Company Method for providing nanoweb composite material
US20090142978A1 (en) * 2005-08-24 2009-06-04 Saint-Gobain Isover G+H Ag Anorganic mixed fiber product with anorganic fiber flakes and glass wool fibers
US20090291222A1 (en) * 2008-05-20 2009-11-26 E. I. Du Pont De Nemours And Company Ethylene tetrafluoroethylene (meth)acrylate copolymers
US20100062263A1 (en) * 2008-09-09 2010-03-11 Graig Cropper Use of ceramic fiber fire barriers in vehicular compartments
US20100058699A1 (en) * 2008-09-09 2010-03-11 Graig Cropper Fire barrier for wall sheathing materials
US20100058695A1 (en) * 2008-09-09 2010-03-11 Graig Cropper Method and apparatus for protecting buildings from fire
US8044239B2 (en) 2007-08-13 2011-10-25 E. I. Du Pont De Nemours And Company Partially fluorinated ureas and amides
US8282712B2 (en) 2008-04-07 2012-10-09 E I Du Pont De Nemours And Company Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
WO2016040768A1 (en) 2014-09-12 2016-03-17 R. J. Reynolds Tobacco Company Tobacco-derived filter element
US9950858B2 (en) 2015-01-16 2018-04-24 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
US11154087B2 (en) 2016-02-02 2021-10-26 R.J. Reynolds Tobacco Company Method for preparing flavorful compounds isolated from black liquor and products incorporating the flavorful compounds
US11370870B2 (en) * 2017-07-14 2022-06-28 Guangdong Huarun Paints Co., Ltd. Aqueous dispersion comprising a polymer-inorganic particles composite and method for preparing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721139A (en) * 1952-08-27 1955-10-18 Hurlbut Paper Company Paper manufacture
US2919211A (en) * 1954-12-30 1959-12-29 Lof Glass Fibers Co Evaporator plate and method of producing the same
US2935436A (en) * 1957-05-09 1960-05-03 Nat Starch Chem Corp Method of making paper containing a starch ether and product produced thereby
US3016325A (en) * 1955-11-01 1962-01-09 Electro Chem Fiber Seal Corp Process of combining water-insoluble additament with organic fibrous material
US3017318A (en) * 1962-01-16 High temperature resistant siliceous compositions
US3022213A (en) * 1958-02-13 1962-02-20 Michigan Res Lab Inc Conductive web and method of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017318A (en) * 1962-01-16 High temperature resistant siliceous compositions
US2721139A (en) * 1952-08-27 1955-10-18 Hurlbut Paper Company Paper manufacture
US2919211A (en) * 1954-12-30 1959-12-29 Lof Glass Fibers Co Evaporator plate and method of producing the same
US3016325A (en) * 1955-11-01 1962-01-09 Electro Chem Fiber Seal Corp Process of combining water-insoluble additament with organic fibrous material
US2935436A (en) * 1957-05-09 1960-05-03 Nat Starch Chem Corp Method of making paper containing a starch ether and product produced thereby
US3022213A (en) * 1958-02-13 1962-02-20 Michigan Res Lab Inc Conductive web and method of making same

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331833A (en) * 1964-03-23 1967-07-18 Nat Starch Chem Corp The graft polymerization of ethylenimine onto tertiary amino starch
US3935060A (en) * 1973-10-25 1976-01-27 Mcdonnell Douglas Corporation Fibrous insulation and process for making the same
US3979253A (en) * 1974-04-22 1976-09-07 The United States Of America As Represented By The Secretary Of The Navy Method for dispersing glass fibers for the preparation of glass filter media
US4116761A (en) * 1976-03-08 1978-09-26 Whatman Reeve Angel Limited Porous element and the preparation thereof
DE2839845A1 (en) * 1977-09-19 1979-03-22 Yuasa Battery Co Ltd SEPARATOR FOR GALVANIC ELEMENTS AND METHOD OF MANUFACTURING THEREOF
US4645567A (en) * 1980-02-04 1987-02-24 Cuno, Inc. Filter media and method of making same
FR2474885A1 (en) * 1980-02-04 1981-08-07 Amf Inc METHOD OF MANUFACTURING A FILTER FOR CATIONIC CONTAMINANTS, FILTER OBTAINED AND ITS APPLICATION
DE3103789A1 (en) * 1980-02-04 1982-08-05 AMF Inc., 10604 White Plains, N.Y. METHOD FOR PRODUCING FILTER MEDIA
US4288462A (en) * 1980-02-04 1981-09-08 Amf Incorporated Method for removing cationic contaminants from beverages
EP0041056A1 (en) * 1980-05-28 1981-12-02 Eka Ab Papermaking
JPS5751900A (en) * 1980-05-28 1982-03-26 Eka Ab Papermaking method
JPH0341598B2 (en) * 1980-05-28 1991-06-24
JPS62223395A (en) * 1980-05-28 1987-10-01 エカ、ノベル、アクチエボラーグ Papermaking method
JPS6231120B2 (en) * 1980-05-28 1987-07-07 Eka Ab
US4370169A (en) * 1980-12-31 1983-01-25 Ppg Industries, Inc. Aqueous dispersion of glass fibers and method and composition for producing same
US4381199A (en) * 1980-12-31 1983-04-26 Ppg Industries, Inc. Aqueous dispersion of glass fibers and method and composition for producing same
US4394414A (en) * 1981-05-29 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
US4477524A (en) * 1981-05-29 1984-10-16 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
US4596660A (en) * 1982-07-23 1986-06-24 Amf Inc. Fibrous media containing millimicron-sized particulates
US4578150A (en) * 1982-07-23 1986-03-25 Amf Inc. Fibrous media containing millimicron-sized particulates
WO1984000569A1 (en) * 1982-07-23 1984-02-16 Amf Inc Fibrous media containing millimicron sized particulates
US4643801A (en) * 1986-02-24 1987-02-17 Nalco Chemical Company Papermaking aid
US5017268A (en) * 1986-09-09 1991-05-21 E. I. Du Pont De Nemours And Company Filler compositions and their use in papermaking
US4927498A (en) * 1988-01-13 1990-05-22 E. I. Du Pont De Nemours And Company Retention and drainage aid for papermaking
US5176891A (en) * 1988-01-13 1993-01-05 Eka Chemicals, Inc. Polyaluminosilicate process
DE3837746C1 (en) * 1988-11-07 1990-03-29 Manfred Zeuner
US5294299A (en) * 1988-11-07 1994-03-15 Manfred Zeuner Paper, cardboard or paperboard-like material and a process for its production
US5800647A (en) * 1992-08-11 1998-09-01 E. Khashoggi Industries, Llc Methods for manufacturing articles from sheets having a highly inorganically filled organic polymer matrix
US5709913A (en) * 1992-08-11 1998-01-20 E. Khashoggi Industries Method and apparatus for manufacturing articles of manufacture from sheets having a highly inorganically filled organic polymer matrix
US5545450A (en) * 1992-08-11 1996-08-13 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5580624A (en) * 1992-08-11 1996-12-03 E. Khashoggi Industries Food and beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders, and the methods of manufacturing such containers
US5582670A (en) * 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5631053A (en) * 1992-08-11 1997-05-20 E. Khashoggi Industries Hinged articles having an inorganically filled matrix
US5658603A (en) * 1992-08-11 1997-08-19 E. Khashoggi Industries Systems for molding articles having an inorganically filled organic polymer matrix
US5660904A (en) * 1992-08-11 1997-08-26 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5665442A (en) * 1992-08-11 1997-09-09 E. Khashoggi Industries Laminated sheets having a highly inorganically filled organic polymer matrix
US5691014A (en) * 1992-08-11 1997-11-25 E. Khashoggi Industries Coated articles having an inorganically filled organic polymer matrix
US5702787A (en) * 1992-08-11 1997-12-30 E. Khashoggi Industries Molded articles having an inorganically filled oragnic polymer matrix
US5705239A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5705242A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Coated food beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders
US5705238A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5707474A (en) * 1992-08-11 1998-01-13 E. Khashoggi, Industries Methods for manufacturing hinges having a highly inorganically filled matrix
US5508072A (en) * 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US6090195A (en) * 1992-08-11 2000-07-18 E. Khashoggi Industries, Llc Compositions used in manufacturing articles having an inorganically filled organic polymer matrix
US5753308A (en) * 1992-08-11 1998-05-19 E. Khashoggi Industries, Llc Methods for manufacturing food and beverage containers from inorganic aggregates and polysaccharide, protein, or synthetic organic binders
US5506046A (en) * 1992-08-11 1996-04-09 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5830548A (en) * 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets
US5830305A (en) * 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Methods of molding articles having an inorganically filled organic polymer matrix
US5928741A (en) * 1992-08-11 1999-07-27 E. Khashoggi Industries, Llc Laminated articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5851634A (en) * 1992-08-11 1998-12-22 E. Khashoggi Industries Hinges for highly inorganically filled composite materials
US5879722A (en) * 1992-08-11 1999-03-09 E. Khashogi Industries System for manufacturing sheets from hydraulically settable compositions
US5849155A (en) * 1993-02-02 1998-12-15 E. Khashoggi Industries, Llc Method for dispersing cellulose based fibers in water
US5738921A (en) * 1993-08-10 1998-04-14 E. Khashoggi Industries, Llc Compositions and methods for manufacturing sealable, liquid-tight containers comprising an inorganically filled matrix
US6479164B1 (en) 1996-02-05 2002-11-12 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Method for preparing composite materials from renewable raw materials
US7470729B2 (en) * 2001-02-08 2008-12-30 Hni Technologies Inc. Compression molded inorganic fiber articles, and methods and compositions used in molding same
US20050165160A1 (en) * 2001-02-08 2005-07-28 Hon Technology Inc. Compression molded inorganic fiber articles, and methods and compositions used in molding same
US20050119397A1 (en) * 2001-02-08 2005-06-02 Hon Technology Inc. Compression molded inorganic fiber articles, and methods and compositions used in molding same
US6533897B2 (en) * 2001-04-13 2003-03-18 Fmj Technologies, Llc Thermally and structurally stable noncombustible paper
US6884321B2 (en) 2001-09-20 2005-04-26 Tex Tech Industries, Inc. Fireblocking/insulating paper
US20040038013A1 (en) * 2002-08-20 2004-02-26 Schaefer James W. Fiber containing filter media
US20040038014A1 (en) * 2002-08-20 2004-02-26 Donaldson Company, Inc. Fiber containing filter media
US20050163955A1 (en) * 2002-08-20 2005-07-28 Donaldson Company, Inc. Fiber containing filter media
US7235122B2 (en) 2004-11-08 2007-06-26 E. I. Du Pont De Nemours And Company Filtration media for filtering particulate material from gas streams
US20060096260A1 (en) * 2004-11-08 2006-05-11 Bryner Michael A Filtration media for filtering particulate material from gas streams
WO2006071980A1 (en) 2004-12-28 2006-07-06 E.I. Dupont De Nemours And Company Filtration media for filtering particulate material from gas streams
US20080108266A1 (en) * 2005-07-12 2008-05-08 Johns Manville Multilayer nonwoven fibrous mats with good hiding properties, laminated and method
US8187418B2 (en) * 2005-07-12 2012-05-29 Johns Manville Method of making multilayer nonwoven fibrous mats
US20090142978A1 (en) * 2005-08-24 2009-06-04 Saint-Gobain Isover G+H Ag Anorganic mixed fiber product with anorganic fiber flakes and glass wool fibers
US20080113573A1 (en) * 2006-11-13 2008-05-15 Erick Jose Acosta Partially fluorinated amino acid derivatives as gelling and surface active agents
US7473658B2 (en) 2006-11-13 2009-01-06 E. I. Du Pont Nemours And Company Partially fluorinated amino acid derivatives as gelling and surface active agents
US20080113172A1 (en) * 2006-11-13 2008-05-15 Erick Jose Acosta Partially fluorinated compositions and surface active agents
US7842626B2 (en) 2006-11-13 2010-11-30 E. I. Du Pont De Nemours And Company Partially fluorinated compositions and surface active agents
US20090047498A1 (en) * 2007-08-13 2009-02-19 E. I. Dupont De Nemours And Company Method for providing nanoweb composite material
US8841484B2 (en) 2007-08-13 2014-09-23 E I Du Pont De Nemours And Company Partially fluorinated ureas and amides
US8044239B2 (en) 2007-08-13 2011-10-25 E. I. Du Pont De Nemours And Company Partially fluorinated ureas and amides
US8282712B2 (en) 2008-04-07 2012-10-09 E I Du Pont De Nemours And Company Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
US8318877B2 (en) 2008-05-20 2012-11-27 E.I. Du Pont De Nemours And Company Ethylene tetrafluoroethylene (meth)acrylate copolymers
US20090291222A1 (en) * 2008-05-20 2009-11-26 E. I. Du Pont De Nemours And Company Ethylene tetrafluoroethylene (meth)acrylate copolymers
US9259600B2 (en) 2008-09-09 2016-02-16 Graig Cropper Method and apparatus for protecting buildings from fire
US20100058699A1 (en) * 2008-09-09 2010-03-11 Graig Cropper Fire barrier for wall sheathing materials
US20100062263A1 (en) * 2008-09-09 2010-03-11 Graig Cropper Use of ceramic fiber fire barriers in vehicular compartments
US8663422B2 (en) 2008-09-09 2014-03-04 Graig Cropper Use of ceramic fiber fire barriers in vehicular compartments
US20100058695A1 (en) * 2008-09-09 2010-03-11 Graig Cropper Method and apparatus for protecting buildings from fire
US8062464B2 (en) 2008-09-09 2011-11-22 Graig Cropper Use of ceramic fiber fire barriers in vehicular compartments
US9777473B2 (en) 2008-09-09 2017-10-03 Graig Cropper Fire barrier for wall sheathing materials
US9988810B2 (en) 2008-09-09 2018-06-05 Graig Cropper Fire barrier for wall sheathing materials
WO2016040768A1 (en) 2014-09-12 2016-03-17 R. J. Reynolds Tobacco Company Tobacco-derived filter element
US9950858B2 (en) 2015-01-16 2018-04-24 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
US11154087B2 (en) 2016-02-02 2021-10-26 R.J. Reynolds Tobacco Company Method for preparing flavorful compounds isolated from black liquor and products incorporating the flavorful compounds
US11370870B2 (en) * 2017-07-14 2022-06-28 Guangdong Huarun Paints Co., Ltd. Aqueous dispersion comprising a polymer-inorganic particles composite and method for preparing the same

Similar Documents

Publication Publication Date Title
US3253978A (en) Method of forming an inorganic waterlaid sheet containing colloidal silica and cationic starch
US3749638A (en) Formation of non-woven structures from fibrous glass dispersion
US3149023A (en) Carbon-filled sheet and method for its manufacture
EP0006362B1 (en) Process for the production of non-combustible asbestos-free board products
US5294299A (en) Paper, cardboard or paperboard-like material and a process for its production
CN106676947A (en) Inorganic fire-resistant paper as well as preparation method and application thereof
GB2046324A (en) Method of dispersing bundles of glass fibres for making glass fibre mats by the wet-laid process
US4178204A (en) Wet-strength of wet glass fiber mats by treatment with anionic polyelectrolytes
JPH0151600B2 (en)
US2705198A (en) Wallboard composition and method of making same
US3904539A (en) Insulation having a reduced thermal conductivity
JPS6356342B2 (en)
US2772157A (en) Production of mixed fibrous sheet material
FI93757C (en) Paper, board or cardboard raw material and method of making it
US2801169A (en) Method of sizing paper with the condensation product of a long chain alkylamine withmethylenebisacrylamide
GB2031043A (en) Fibrous Sheet Material
JP4110431B2 (en) Flame retardant paper
JP4214495B2 (en) Separator paper for air conditioning filter
JPH0450439B2 (en)
JP3351599B2 (en) Foam board
GB2130264A (en) Starch-bound non-asbestos paper
JPH0684599B2 (en) Calcium silicate paper and its manufacturing method
JPH0816320B2 (en) Heat-resistant sheet and manufacturing method thereof
JPH0694640B2 (en) Method for producing patterned paper having foamed flock
JPH089892B2 (en) Fire wall