US3303841A - Process and apparatus for pressurizing lower extremities of a patient during ventricular diastole - Google Patents

Process and apparatus for pressurizing lower extremities of a patient during ventricular diastole Download PDF

Info

Publication number
US3303841A
US3303841A US377178A US37717864A US3303841A US 3303841 A US3303841 A US 3303841A US 377178 A US377178 A US 377178A US 37717864 A US37717864 A US 37717864A US 3303841 A US3303841 A US 3303841A
Authority
US
United States
Prior art keywords
pressure
aorta
blood
aortic
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US377178A
Inventor
Dennis Clarence
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US377178A priority Critical patent/US3303841A/en
Application granted granted Critical
Publication of US3303841A publication Critical patent/US3303841A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/005Pneumatic massage
    • A61H9/0071Pneumatic massage by localized pressure, e.g. air streams or jets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/04Heartbeat characteristics, e.g. E.G.C., blood pressure modulation

Definitions

  • My invention relates to the process of and apparatus for reducing the work of the left ventricle of the heart by forcing blood back into the aorta and great arterial vessels through external compression of the body during ventricular diastole and relieving this back pressure when the left ventricle is emptying to the aorta.
  • My invention avoids the necessity for the trauma of making incisions and putting cannulas into blood vessels and avoids the necessity of administering heparin to prevent clotting.
  • a particularly effective technique involves squeezing blood out of the caudal arterial tree to produce a rise in aortic pressure during ventricular diastole and relieving the caudal arterial tree when the left ventricle is emptying to the aorta.
  • a surveillance means such as an electrocardiograph, can through a synchronizing means operate a compression means to compress and release the hind quarters and pelvis and thereby cyclically squeeze blood from the arterial tree in the desired synchronization with the cardiac cycle.
  • FIG. 1 is a diagrammatic view of the human body and the apparatus of my invention
  • FIG. 2 is a graphical showing from top to bottom of pressures in the left ventricle, aortic arch, and compression means, and also of the cardiac cycle as shown on the electrocardiograph;
  • FIG. 3 is a perspective View of a flexible envelope used in my invention.
  • the container 17 includes a two-piece cover 16 which forms opening 18 and which is tightly clamped to the walls of the container by swing clamps 19.
  • the container includes an envelope 2%) of flexible material, such as mil polypropylene, which 33%,841 Patented Feb. 14, 1967 has peripheral outer walls 22 which conform to the inner confines of the container, the envelope 20 also having inner walls 24 which define a cavity for the part of the body within the container.
  • the envelope 20 takes the form of what might be considered a pantaloon type garment, the material of the envelope completely contacting and engirdling the legs and lower torso of the body.
  • a filling connection 26 is provided for filling the envelope with water, a suitable vent 28 being provided for exhausting air from the envelope as the envelope is filled.
  • a flexible air bladder 30 is suitably positioned within the container 17 and connected through a solenoid air control valve 32 to a pressured air source such as tank and supply line 34, these elements making up a pressure means.
  • the solenoid air control valve 32 is electrically connected to a synchronizing means 36 which in turn is connected to a surveillance means 38.
  • the synchronizing means 36 responds to this signal and actuates the solenoid valve 32 to admit air to the bladder 30 and to inflate the bladder and thereby increase the pressure in the bladder to a predetermined pressure as determined by the pressure setting and relief valve unit such as the pressure controller 40.
  • the bladder 3% is inflated as shown in FIG. 1, the pressure within the container is increased due to the incompressibility of the water in the envelope 20 and the legs and lower torso of the body part are compressed, thereby squeezing blood from the caudal arterial tree 42 back into the aorta 44 to establish a satisfactory perfusion pressure in the arterial tree.
  • an electrocardiograph with voltage taps 39 can serve as the surveillance means 38 and that the synchronizing means 36 can take the form of an electronic timing device which will synchronize the compression means 46 with the cardiac cycle. It has been found that with a human being in a half pressure suit engirdling the lower torso and legs, approximately 7.5 gm./kg. of body Weight can be expressed from the legs and pelvis at a pressure of mm. Hg.
  • the synchronizing means 36 in response to a signal from the surveillance means 38 identifying the opening of the aortic valve will cause the opening of the solenoid valve 32 and thereby exhaust the high pressure air from the bladder 30 to relieve the pressure in the container and relieve the pressure in the caudal arterial tree and the aorta to enable emptying of the ventricle against a lower aortic pressure.
  • an incompressible fluid to transmit the pressure developed by a compression means provides a fast and sound technique for accomplishing compression of the body part within the short time period afforded by the cardiac cycle.
  • Suitably sized air fittings and air volumes are required to substantially instantaneously produce the required predetermined pressure in the bladder and to accomplish relief of this pressure in synchronism with the cardiac cycle.
  • Fluids employed have been air and water although other gases and liquids may be substituted.
  • the liquid should have a specific gravity equal to or greater than the blood when the body part is in the somewhat vertical position to prevent a top to bottom closing of the arteries in the body part.
  • the flexible polypropylene envelope 20 of FIG. 3 provides a feasible method of enveloping the body; a simple pant garment might also be used with the container 17 being made fluid tight and equipped with the necessary connections.
  • the air-liquid combination provides a fluid system capable of substantially instantaneous response to signals from the surveillance means 38 and synchronizing means 36.
  • An application of my process and apparatus to an 11 kg. dog involved a rigid container somewhat similar to that shown in FIG. 1 and having the opening 18 at one end precisely formed to fit the contour of the dog just above the pelvis.
  • the envelope pressure was produced by a -14 p.s.i. pressure line with an air reservoir tank and a /4 inch solenoid communicating through a 1 inch iron pipe connection to a heavy rubber bladder in the bottom of the encasing box.
  • the solenoid was activated through an electronic circuit so as to provide external pressure of predetermined duration, pressure level, or lag after initiation of ventricular contraction.
  • the electronic circuit was triggered by the R wave of the QRS complex of the electrocardiograph; the beginning rise in the left ventricular pressure may also be used for triggering the electronic circuit.
  • FIG. 2 shows typical recordings identifying changes in left ventricular and aortic pulse waves with external counterpulsation applied to the hind quarters.
  • the left ventricular component of the aortic pressure curve is reduced from 112 mm. Hg to 90 mm. Hg.
  • the left ventricular peak pressure is lowered from 112 mm. Hg to 100 mm. Hg.
  • the imposed aortic peak pressure is 114 mm. Hg. Paper speeds: slow-O.25 mm./sec.; fast mm./sec. Use of a slow paper speed permits perspective as to relatively slow responses.
  • the left ventricular pressure rose late in the first 30 seconds of external counterpulsation to a level 12 to 15 mm. Hg below the control left ventricular systolic pressure.
  • the changes in left ventricular pressure were essentially mirror images of those at the beginning.
  • the aortic arch pressure changes were slower to revert to control levels, but did so in 1% min.
  • the electronically controlled external counterpulsator unit of my invention has proven capable of raising the envelope pressure to 150 mm. Hg in 0.04 second and of permitting it to drop to the atmospheric level in 0.06 second. It has been possible to lower the peak aortic pressure 5 to 10 mm. Hg, to raise the aortic pressure during left ventricular diastole to levels higher than the control systolic pressure, and to lower the timetension index 8 to 10 percent.
  • the time-tension index is a chief determinant of the work of the heart as measured by oxygen consumption and is determined by securing the product of the pressure against which the left ventricle must eject blood into the aorta and the duration of that ejection. Pressure tracings in an 11 kg.
  • FIG. 2 indicates the results of the application of my method and process to such a dog. It also has been noted that some reduction in time-tension index was obtained even though the envelope pressure peak was less than the systolic blood pressure. External counterpulsation as above discussed indicates that the effect on intra-abdominal and central venous pressure was very small.
  • the above application of my invention to a dog demonstrates that sufficient blood can be expressed from the buttocks and hind legs of the dog to be effective in lessening the time-tension index of the left ventricle, while providing a peak aortic pressure during left ventricular diastole equal to the control systemic blood pressure.
  • the arterial blood expressible from the caudal arterial tree of a dog is of the order of magnitude of 3 ml./kg. of body weight. At pressures below 50 mm. Hg, much larger extremity weight losses occurred, these being attributed to expression of venous blood and lymph.
  • the fluid pressure developed in my apparatus is preferably in the range of 2 to 5 p.s.i. It will be noted that the anatomical and physiological characteristics of the human arterial system and the arterial system of a dog are somewhat similar, even though the dog normally has a higher blood pressure and faster pulse than the human.
  • the body is preferably placed at an inclination of about 20 from the horizontal with the heart approximately at a level at or above the highest level of the fluid in the container, the fluid being oriented by the container to transmit pressure to the buttocks and to the lower torso preferably at and below the upper margin of the bony pelvis thereby to minimize compression of the internal organs.
  • the inclination of the body may vary from patient to patient, the degree of inclination being similar to that presently employed in treating patients with acute left heart failure, the inclination being advantageous in that it positions the heart and upper part of the body at a level which tends to compensate for the increased pressure in the blood system produced by the liquid in the container in unpressurized condition.
  • the fluid While in an emergency, water may be used, it is advantageous that the fluid have a higher specific gravity than blood, satisfactory fluids being, for example, salt solutions such as magnesium sulfate solutions which have a specific gravity slightly higher than blood.
  • the process of reducing the work of the left ventricle in the heart comprising surveillance of the cardiac cycle to identify the opened condition and the closed condition of the aortic valve, externally compressing the body when the aortic valve is in the closed condition to force blood back into the aorta to establish a satisfactory perfusion pressure in the aorta and arterial tree, relieving the compression when the aortic valve is in the opened condition to permit contraction of the left ventricle against a lowered aortic pressure.
  • the process of reducing the work of the left ventricle in the heart comprising surveillance of the cardiac cycle to identify the opening and closing of the aortic valve, externally compressing the hind quarters and pelvis of the body when the aortic valve is closed to force the blood from the caudal arterial tree back into the aorta to establish a satisfactory perfusion pressure in the aorta and arterial tree, relieving the compression when the aortic valve is open to permit contraction of the left ven tricle against a lowered aortic pressure.
  • a device for reducing the Work of the left ven tricle in the hear comprising surveillance means for identifying the opening and closing of the aortic valve, compression means for compressing the body, synchronizing means operatively interconnecting said surveillance means and said compression means for causing the compression means to compress the body when the aortic valve is closed to force blood into the aorta to establish a satisfactory perfusion pressure in the aorta and arterial tree, and for causing the compression means to relieve the compression when the aortic valve is open to permit contraction of the left ventricle against a lowered aortic pressure.
  • said compression means includes a container having an opening therein for admitting and housing a part of the body, fluid surrounding said part of the body and filling the container, and pressure means acting on said fluid to raise and lower the pressure of the fluid in the container in predetermined response to signals from said synchronizing means.
  • said compression means includes a rigid container having an opening therein for admitting a part of the body, an envelope of flexible material positioned within said container and having peripheral outer walls conforming to said container and inner walls, said inner walls defining a cavity in said envelope for the body part, incompressible fluid filling said envelope thereby causing said outer walls to contact said rigid container and said inner walls to contact and engirdle the body part, pressure means acting on said incompressible fluid to raise and lower the pressure of the fluid in the container in predetermined response to signals from said synchronizing means.
  • a device as defined in claim 5 and wherein said pressure means includes an inflatable flexible bladder positioned within said envelope and gas means connected to said bladder to inflate and deflate said bladder with gas in predetermined response to signals from said synchronizing means.
  • the process of reducing the Work of the left ventricle in the heart comprising surveillance of the cardiac cycle to identify the opening and closing of the aortic valve, externally compressing the distal arterial tree when the aortic valve is closed to force blood back into the aorta to establish a satisfactory perfusion pressure in the aorta and arterial tree, and relieving the compression when the aortic valve is open to permit contraction of the left ventricle against a lowered aortic pressure.

Description

Feb. 14, 1967 c. DENNIS 3,303,841
PROCESS AND APPARATUS FOR PRESSURIZING LOWER EXTREMITIES OF A PATIENT DURING VENTRICULAR DIASTOLE Filed June 18, 1964 IZ HINT CLARENCE DENNIS 4 4 United States Patent 3,303,841 PROCESS AND APPARATUS FOR PRESSURIZING LOWER EXTREMTHES OF A PATENT DURHNG VENTRICULAR DIASTGLE Clarence Dennis, Pelharn Manor, N.Y., assignor to the United States of America as represented by the Secretary, Department of Health, Education and Welfare Filed June 18, 1964, Ser. No. 377,178 9 Claims. (Cl. 128--24) My invention relates to the process of and apparatus for reducing the work of the left ventricle of the heart by forcing blood back into the aorta and great arterial vessels through external compression of the body during ventricular diastole and relieving this back pressure when the left ventricle is emptying to the aorta.
External compression of a part of the body will express a volume of blood larger than the volume of blood pumped in one stroke of the heart, this expressed blood being forced back into the aorta and great arterial vessels to reduce ventricular work while maintaining satisfactory body perfusion during ventricular diastole.
The principle of counterpulsation for support of the failing heart is known. Large cannulas are placed in the femoral vessels directed proximally and blood is removed from the aorta while the ventricle is ejecting blood into the aorta, thus permitting contraction of the left ventricle against a lower than normal pressure and thereby reducing the work of the left ventricle. An external pump is used to return blood to the aorta as soon as the end of the ventricular contraction has occurred and the aortic valve is closed. During the period in which the left ventricle is filling from the left atrium and lungs with the aortic valve closed, blood is returned to the aorta in suflicient volume to raise the pressure to a level equivalent to the peak pressure observed under control circumstances. In this manner, the amount of work required of the left ventricle is reduced while maintaining a satisfactory perfusion pressure in the arterial tree to take care of the needs of the entire body.
My invention avoids the necessity for the trauma of making incisions and putting cannulas into blood vessels and avoids the necessity of administering heparin to prevent clotting. A particularly effective technique involves squeezing blood out of the caudal arterial tree to produce a rise in aortic pressure during ventricular diastole and relieving the caudal arterial tree when the left ventricle is emptying to the aorta. A surveillance means, such as an electrocardiograph, can through a synchronizing means operate a compression means to compress and release the hind quarters and pelvis and thereby cyclically squeeze blood from the arterial tree in the desired synchronization with the cardiac cycle.
Other objects and advantages will become apparent in the course of the following detailed description, wherein:
FIG. 1 is a diagrammatic view of the human body and the apparatus of my invention;
FIG. 2 is a graphical showing from top to bottom of pressures in the left ventricle, aortic arch, and compression means, and also of the cardiac cycle as shown on the electrocardiograph; and
FIG. 3 is a perspective View of a flexible envelope used in my invention.
Referring now to FIG. 1, it will be seen that the body 15 is placed in a container 17 having an opening 18 therein which closely conforms to the lower torso of the body, the legs, hind quarters and pelvis of the body being housed within the container. The container 17 includes a two-piece cover 16 which forms opening 18 and which is tightly clamped to the walls of the container by swing clamps 19. The container includes an envelope 2%) of flexible material, such as mil polypropylene, which 33%,841 Patented Feb. 14, 1967 has peripheral outer walls 22 which conform to the inner confines of the container, the envelope 20 also having inner walls 24 which define a cavity for the part of the body within the container. As shown, the envelope 20 takes the form of what might be considered a pantaloon type garment, the material of the envelope completely contacting and engirdling the legs and lower torso of the body. A filling connection 26 is provided for filling the envelope with water, a suitable vent 28 being provided for exhausting air from the envelope as the envelope is filled. A flexible air bladder 30 is suitably positioned within the container 17 and connected through a solenoid air control valve 32 to a pressured air source such as tank and supply line 34, these elements making up a pressure means. The solenoid air control valve 32 is electrically connected to a synchronizing means 36 which in turn is connected to a surveillance means 38. When the surveillance means 38, which is electrically connected to the body, indicates the closing of the aortic valve, the synchronizing means 36 responds to this signal and actuates the solenoid valve 32 to admit air to the bladder 30 and to inflate the bladder and thereby increase the pressure in the bladder to a predetermined pressure as determined by the pressure setting and relief valve unit such as the pressure controller 40. When the bladder 3% is inflated as shown in FIG. 1, the pressure within the container is increased due to the incompressibility of the water in the envelope 20 and the legs and lower torso of the body part are compressed, thereby squeezing blood from the caudal arterial tree 42 back into the aorta 44 to establish a satisfactory perfusion pressure in the arterial tree. It will be understood that an electrocardiograph with voltage taps 39 can serve as the surveillance means 38 and that the synchronizing means 36 can take the form of an electronic timing device which will synchronize the compression means 46 with the cardiac cycle. It has been found that with a human being in a half pressure suit engirdling the lower torso and legs, approximately 7.5 gm./kg. of body Weight can be expressed from the legs and pelvis at a pressure of mm. Hg. The synchronizing means 36 in response to a signal from the surveillance means 38 identifying the opening of the aortic valve will cause the opening of the solenoid valve 32 and thereby exhaust the high pressure air from the bladder 30 to relieve the pressure in the container and relieve the pressure in the caudal arterial tree and the aorta to enable emptying of the ventricle against a lower aortic pressure.
It has been found that the use of an incompressible fluid to transmit the pressure developed by a compression means provides a fast and sound technique for accomplishing compression of the body part within the short time period afforded by the cardiac cycle. Suitably sized air fittings and air volumes are required to substantially instantaneously produce the required predetermined pressure in the bladder and to accomplish relief of this pressure in synchronism with the cardiac cycle. Fluids employed have been air and water although other gases and liquids may be substituted. The liquid should have a specific gravity equal to or greater than the blood when the body part is in the somewhat vertical position to prevent a top to bottom closing of the arteries in the body part.
It will be understood that the flexible polypropylene envelope 20 of FIG. 3 provides a feasible method of enveloping the body; a simple pant garment might also be used with the container 17 being made fluid tight and equipped with the necessary connections.
The air-liquid combination provides a fluid system capable of substantially instantaneous response to signals from the surveillance means 38 and synchronizing means 36.
An application of my process and apparatus to an 11 kg. dog involved a rigid container somewhat similar to that shown in FIG. 1 and having the opening 18 at one end precisely formed to fit the contour of the dog just above the pelvis. The envelope pressure was produced by a -14 p.s.i. pressure line with an air reservoir tank and a /4 inch solenoid communicating through a 1 inch iron pipe connection to a heavy rubber bladder in the bottom of the encasing box. The solenoid was activated through an electronic circuit so as to provide external pressure of predetermined duration, pressure level, or lag after initiation of ventricular contraction. The electronic circuit was triggered by the R wave of the QRS complex of the electrocardiograph; the beginning rise in the left ventricular pressure may also be used for triggering the electronic circuit. A tracheal tube was routinely placed for utilization of a Jefferson respiration and the left chest was opened for direct placement of polyethylene catheters (0.054 inch in external diameter) into the left ventricle and into the aorta. The electrocardiograph and pressures in the left ventricle, the aortic arch, and the compression envelope were recorded on a 4-channel Sanborn recorder, the recordings being shown in FIG. 2. Intra-abdominal pressure and venous pressure may also be recorded where desired. FIG. 2 shows typical recordings identifying changes in left ventricular and aortic pulse waves with external counterpulsation applied to the hind quarters. The left ventricular component of the aortic pressure curve is reduced from 112 mm. Hg to 90 mm. Hg. The left ventricular peak pressure is lowered from 112 mm. Hg to 100 mm. Hg. The imposed aortic peak pressure is 114 mm. Hg. Paper speeds: slow-O.25 mm./sec.; fast mm./sec. Use of a slow paper speed permits perspective as to relatively slow responses. For 5 to 6 seconds there was a rise in left ventricular and aortic arch pressure, followed by a mm. Hg drop, with resumption in about 30 seconds of a peak pressure in diastole slightly greater than the control systolic pressure. The left ventricular pressure rose late in the first 30 seconds of external counterpulsation to a level 12 to 15 mm. Hg below the control left ventricular systolic pressure. At the end of periods of external counterpulsation, the changes in left ventricular pressure were essentially mirror images of those at the beginning. The aortic arch pressure changes were slower to revert to control levels, but did so in 1% min.
The electronically controlled external counterpulsator unit of my invention has proven capable of raising the envelope pressure to 150 mm. Hg in 0.04 second and of permitting it to drop to the atmospheric level in 0.06 second. It has been possible to lower the peak aortic pressure 5 to 10 mm. Hg, to raise the aortic pressure during left ventricular diastole to levels higher than the control systolic pressure, and to lower the timetension index 8 to 10 percent. The time-tension index is a chief determinant of the work of the heart as measured by oxygen consumption and is determined by securing the product of the pressure against which the left ventricle must eject blood into the aorta and the duration of that ejection. Pressure tracings in an 11 kg. dog with pulse rate of 111 were obtained with 10 p.s.i. air pressure, a lag after the R wave of 0.12 sec. and a duration of compression of 0.32 see. FIG. 2 indicates the results of the application of my method and process to such a dog. It also has been noted that some reduction in time-tension index was obtained even though the envelope pressure peak was less than the systolic blood pressure. External counterpulsation as above discussed indicates that the effect on intra-abdominal and central venous pressure was very small.
The above application of my invention to a dog demonstrates that sufficient blood can be expressed from the buttocks and hind legs of the dog to be effective in lessening the time-tension index of the left ventricle, while providing a peak aortic pressure during left ventricular diastole equal to the control systemic blood pressure. The arterial blood expressible from the caudal arterial tree of a dog is of the order of magnitude of 3 ml./kg. of body weight. At pressures below 50 mm. Hg, much larger extremity weight losses occurred, these being attributed to expression of venous blood and lymph.
The fluid pressure developed in my apparatus is preferably in the range of 2 to 5 p.s.i. It will be noted that the anatomical and physiological characteristics of the human arterial system and the arterial system of a dog are somewhat similar, even though the dog normally has a higher blood pressure and faster pulse than the human.
As noted in the drawing, the body is preferably placed at an inclination of about 20 from the horizontal with the heart approximately at a level at or above the highest level of the fluid in the container, the fluid being oriented by the container to transmit pressure to the buttocks and to the lower torso preferably at and below the upper margin of the bony pelvis thereby to minimize compression of the internal organs. The inclination of the body may vary from patient to patient, the degree of inclination being similar to that presently employed in treating patients with acute left heart failure, the inclination being advantageous in that it positions the heart and upper part of the body at a level which tends to compensate for the increased pressure in the blood system produced by the liquid in the container in unpressurized condition.
While in an emergency, water may be used, it is advantageous that the fluid have a higher specific gravity than blood, satisfactory fluids being, for example, salt solutions such as magnesium sulfate solutions which have a specific gravity slightly higher than blood.
It will be understood that similar apparatus may be applied to one or both of the arms for compressing more peripheral portions of the distal arterial tree and suitably synchronized with the cardiac cycle to replace or supplement back pressure produced through compression of the lower torso, the arms being particularly suitable in that they provide greater volume-per-weight percentage of blood as compared to the lower torso. As seen in FIG. 1, a suitable arm container 50 schematically shown may be employed, this container being interconnected with the control and power components similar to container 17.
The exact synchronization of the solenoid valve varies somewhat from individual to individual and is influenced by the flexibility of the walls of the arterial tree and by the length of the great arteries. In the laboratory the development of the pattern of synchronization has been based upon pressure tracings from the ascending aorta and the lag after the QRS complex of the electrocardiogram, and the electronic circuitry is designed to permit adjustment of the duration of this lag and the duration of compression to the characteristics of the individual. In the clinical case it is uncomplicated to pass a fine flexible catheter through a hypodermic needle passed into the brachial or other artery to the aortic arch for verification of the synchronization. This requires neither incision nor anticoagulants.
I claim:
1. The process of reducing the work of the left ventricle in the heart comprising surveillance of the cardiac cycle to identify the opened condition and the closed condition of the aortic valve, externally compressing the body when the aortic valve is in the closed condition to force blood back into the aorta to establish a satisfactory perfusion pressure in the aorta and arterial tree, relieving the compression when the aortic valve is in the opened condition to permit contraction of the left ventricle against a lowered aortic pressure.
2. The process of reducing the work of the left ventricle in the heart comprising surveillance of the cardiac cycle to identify the opening and closing of the aortic valve, externally compressing the hind quarters and pelvis of the body when the aortic valve is closed to force the blood from the caudal arterial tree back into the aorta to establish a satisfactory perfusion pressure in the aorta and arterial tree, relieving the compression when the aortic valve is open to permit contraction of the left ven tricle against a lowered aortic pressure.
3. A device for reducing the Work of the left ven tricle in the hear comprising surveillance means for identifying the opening and closing of the aortic valve, compression means for compressing the body, synchronizing means operatively interconnecting said surveillance means and said compression means for causing the compression means to compress the body when the aortic valve is closed to force blood into the aorta to establish a satisfactory perfusion pressure in the aorta and arterial tree, and for causing the compression means to relieve the compression when the aortic valve is open to permit contraction of the left ventricle against a lowered aortic pressure.
4. A device as defined in claim 3 and wherein said compression means includes a container having an opening therein for admitting and housing a part of the body, fluid surrounding said part of the body and filling the container, and pressure means acting on said fluid to raise and lower the pressure of the fluid in the container in predetermined response to signals from said synchronizing means.
5. A device as defined in claim 3 and wherein said compression means includes a rigid container having an opening therein for admitting a part of the body, an envelope of flexible material positioned within said container and having peripheral outer walls conforming to said container and inner walls, said inner walls defining a cavity in said envelope for the body part, incompressible fluid filling said envelope thereby causing said outer walls to contact said rigid container and said inner walls to contact and engirdle the body part, pressure means acting on said incompressible fluid to raise and lower the pressure of the fluid in the container in predetermined response to signals from said synchronizing means.
6. A device as defined in claim 5 and wherein said pressure means includes an inflatable flexible bladder positioned within said envelope and gas means connected to said bladder to inflate and deflate said bladder with gas in predetermined response to signals from said synchronizing means.
7. The process of reducing the work of the left ventricle in the heart comprising surveillance of the cardiac cycle to identify the opening and closing of the aortic valve, externally compressing the caudal arterial tree when the aortic valve is closed to force blood back into the aorta to establish a satisfactory perfusion pressure in the aorta and arterial tree, relieving the compression when the aortic valve is open to permit contraction of the left ventricle against a lowered aortic pressure.
8. The process of reducing the Work of the left ventricle in the heart comprising surveillance of the cardiac cycle to identify the opening and closing of the aortic valve, externally compressing the distal arterial tree when the aortic valve is closed to force blood back into the aorta to establish a satisfactory perfusion pressure in the aorta and arterial tree, and relieving the compression when the aortic valve is open to permit contraction of the left ventricle against a lowered aortic pressure.
9. A device as defined in claim 3 and wherein said container is positioned at an inclination from the horizontal to place the heart at about the level of the highest level of liquid in the container.
References Cited by the Examiner UNITED STATES PATENTS 4/1954 Erickson 128-24 X 9/1954 Fuchs 128-44

Claims (1)

1. THE PROCESS OF REDUCING THE WORK OF THE LEFT VENTRICLE IN THE HEART COMPRISING SURVEILLANCE OF THE CARDIAC CYCLE TO IDENTIFY THE OPENED CONDITION AND THE CLOSED CONDITION OF THE AORTIC VALVE, EXTERNALLY COMPRESSING THE BODY WHEN THE AORTIC VALVE IS IN THE CLOSED CONDITION TO FORCE BLOOD BACK INTO THE AORTA AND ARTERIAL TREE, RELIEVING PERFUSION PRESSURE IN THE AORTA AND ARTERIAL TREE, RELIEVING THE COMPRESSION WHEN THE AORTIC VALVE IS IN THE OPENED CONDITION TO PERMIT CONTRACTION OF THE LEFT VENTRICLE AGAINST A LOWERED AORTIC PRESSURE.
US377178A 1964-06-18 1964-06-18 Process and apparatus for pressurizing lower extremities of a patient during ventricular diastole Expired - Lifetime US3303841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US377178A US3303841A (en) 1964-06-18 1964-06-18 Process and apparatus for pressurizing lower extremities of a patient during ventricular diastole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US377178A US3303841A (en) 1964-06-18 1964-06-18 Process and apparatus for pressurizing lower extremities of a patient during ventricular diastole

Publications (1)

Publication Number Publication Date
US3303841A true US3303841A (en) 1967-02-14

Family

ID=23488080

Family Applications (1)

Application Number Title Priority Date Filing Date
US377178A Expired - Lifetime US3303841A (en) 1964-06-18 1964-06-18 Process and apparatus for pressurizing lower extremities of a patient during ventricular diastole

Country Status (1)

Country Link
US (1) US3303841A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3403673A (en) * 1965-07-14 1968-10-01 Welton Whann R Means and method for stimulating arterial and venous blood flow
US3654919A (en) * 1970-11-25 1972-04-11 Medical Innovations Inc Process and apparatus for synchronous assisting of blood circulation
DE2224284A1 (en) * 1972-05-18 1973-11-29 Medical Innovations Inc DEVICE FOR SYNCHRONOUS BLOOD CIRCULATION SUPPORT
US3783859A (en) * 1972-10-13 1974-01-08 Medical Innovations Inc Novel external circulatory assist device
US3786802A (en) * 1972-10-24 1974-01-22 Medical Innovations Inc Leg unit inserts
US3795242A (en) * 1972-10-24 1974-03-05 Medical Innovations Inc Apparatus for applying hydraulic pulsation
US3859989A (en) * 1973-01-05 1975-01-14 Theodore E Spielberg Therapeutic cuff
US3896794A (en) * 1973-12-14 1975-07-29 British Oxygen Co Ltd Venous flow stimulator
US3961625A (en) * 1974-07-02 1976-06-08 Dillon Richard S Promoting circulation of blood
US4077402A (en) * 1976-06-25 1978-03-07 Benjamin Jr J Malvern Apparatus for promoting blood circulation
US4186732A (en) * 1977-12-05 1980-02-05 American Hospital Supply Corporation Method and apparatus for pulsing a blood flow stimulator
US4269175A (en) * 1977-06-06 1981-05-26 Dillon Richard S Promoting circulation of blood
US4275719A (en) * 1979-03-30 1981-06-30 Nathan Mayer Apparatus and method for providing an aseptic surgical environment
US4388919A (en) * 1980-11-17 1983-06-21 Intermedics Cardiassist Corporation Rapid stabilization of external cardiac pulsation
US4397306A (en) * 1981-03-23 1983-08-09 The John Hopkins University Integrated system for cardiopulmonary resuscitation and circulation support
US5020516A (en) * 1988-03-31 1991-06-04 Cardiopulmonary Corporation Circulatory assist method and apparatus
US5027797A (en) * 1989-10-12 1991-07-02 Horace Bullard Apparatus for the movement of blood by external pressure
FR2680354A1 (en) * 1991-08-13 1993-02-19 Centre Nat Etd Spatiales Depressurised sleeping bag enclosing the lower body in order to promote the circulation of blood
US5334211A (en) * 1984-05-14 1994-08-02 Surgical System & Instruments, Inc. Lumen tracking atherectomy system
US5377671A (en) * 1991-04-26 1995-01-03 Cardiopulmonary Corporation Cardiac synchronous ventilation
US5664563A (en) * 1994-12-09 1997-09-09 Cardiopulmonary Corporation Pneumatic system
US5989204A (en) * 1991-09-27 1999-11-23 Kinetic Concepts, Inc. Foot-mounted venous compression device
US20020107461A1 (en) * 2000-11-10 2002-08-08 Hui John C.K. High efficiency external counterpulsation apparatus and method for controlling same
US6572621B1 (en) 1992-05-07 2003-06-03 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US20030139255A1 (en) * 1991-12-17 2003-07-24 Kinetic Concepts, Inc. Pneumatic compression device and methods for use in the medical field
US20030233118A1 (en) * 2002-06-13 2003-12-18 Hui John C. K. Method for treating congestive heart failure using external counterpulsation
WO2003105747A1 (en) 2002-06-01 2003-12-24 Vasomedical, Inc. External counterpulsation system and method for minimizing end diastolic pressure
WO2003105746A1 (en) 2002-06-01 2003-12-24 Vasomedical, Inc. Method for treating congestive heart failure using external counterpulsation
US20050070755A1 (en) * 1993-05-06 2005-03-31 Zhensheng Zheng High efficiency external counterpulsation method
US20050075531A1 (en) * 2003-10-07 2005-04-07 Loeb Marvin P. Devices and methods for non-invasively improving blood circulation
US20060058717A1 (en) * 2004-09-14 2006-03-16 Hui John C K External counterpulsation device having a curvilinear bed
US7074200B1 (en) 2000-12-08 2006-07-11 Lewis Michael P External pulsation unit cuff
US20070272250A1 (en) * 2006-05-24 2007-11-29 Michael Paul Lewis External pulsation treatment apparatus
US20080319248A1 (en) * 2007-06-20 2008-12-25 Michael Paul Lewis Hydraulically Actuated External Pulsation Treatment Apparatus
WO2012011927A1 (en) 2010-07-23 2012-01-26 Munoz Emilio A Leg constriction apparatus for promoting blood circulation
US8961185B2 (en) 2011-08-19 2015-02-24 Pulson, Inc. System and method for reliably coordinating musculoskeletal and cardiovascular hemodynamics
US20160058653A1 (en) * 2014-08-27 2016-03-03 Matthew Thomas OBERDIER External peripheral vascular occlusion for enhanced cardiopulmonary resuscitation
US9457190B2 (en) 2013-03-15 2016-10-04 Pulson, Inc. Coordinating musculoskeletal and cardiovascular hemodynamics
US9522317B2 (en) 2011-08-19 2016-12-20 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics
US10391380B2 (en) 2011-08-19 2019-08-27 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics
WO2019212953A1 (en) * 2018-04-30 2019-11-07 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics
US10478708B2 (en) 2014-09-29 2019-11-19 Pulson, Inc. Coordinating musculoskeletal and cardiovascular hemodynamics
US10674958B2 (en) 2014-09-29 2020-06-09 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular hemodynamics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674231A (en) * 1952-01-02 1954-04-06 Ohio Commw Eng Co Power pack for massage suits
US2690174A (en) * 1945-06-07 1954-09-28 Maurice Fuchs Massage apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2690174A (en) * 1945-06-07 1954-09-28 Maurice Fuchs Massage apparatus
US2674231A (en) * 1952-01-02 1954-04-06 Ohio Commw Eng Co Power pack for massage suits

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3403673A (en) * 1965-07-14 1968-10-01 Welton Whann R Means and method for stimulating arterial and venous blood flow
US3654919A (en) * 1970-11-25 1972-04-11 Medical Innovations Inc Process and apparatus for synchronous assisting of blood circulation
DE2224284A1 (en) * 1972-05-18 1973-11-29 Medical Innovations Inc DEVICE FOR SYNCHRONOUS BLOOD CIRCULATION SUPPORT
US3783859A (en) * 1972-10-13 1974-01-08 Medical Innovations Inc Novel external circulatory assist device
US3786802A (en) * 1972-10-24 1974-01-22 Medical Innovations Inc Leg unit inserts
US3795242A (en) * 1972-10-24 1974-03-05 Medical Innovations Inc Apparatus for applying hydraulic pulsation
US3859989A (en) * 1973-01-05 1975-01-14 Theodore E Spielberg Therapeutic cuff
US3896794A (en) * 1973-12-14 1975-07-29 British Oxygen Co Ltd Venous flow stimulator
US3961625A (en) * 1974-07-02 1976-06-08 Dillon Richard S Promoting circulation of blood
US4077402A (en) * 1976-06-25 1978-03-07 Benjamin Jr J Malvern Apparatus for promoting blood circulation
US4269175A (en) * 1977-06-06 1981-05-26 Dillon Richard S Promoting circulation of blood
US4186732A (en) * 1977-12-05 1980-02-05 American Hospital Supply Corporation Method and apparatus for pulsing a blood flow stimulator
US4275719A (en) * 1979-03-30 1981-06-30 Nathan Mayer Apparatus and method for providing an aseptic surgical environment
US4388919A (en) * 1980-11-17 1983-06-21 Intermedics Cardiassist Corporation Rapid stabilization of external cardiac pulsation
US4397306A (en) * 1981-03-23 1983-08-09 The John Hopkins University Integrated system for cardiopulmonary resuscitation and circulation support
US5334211A (en) * 1984-05-14 1994-08-02 Surgical System & Instruments, Inc. Lumen tracking atherectomy system
US5020516A (en) * 1988-03-31 1991-06-04 Cardiopulmonary Corporation Circulatory assist method and apparatus
US5027797A (en) * 1989-10-12 1991-07-02 Horace Bullard Apparatus for the movement of blood by external pressure
US5377671A (en) * 1991-04-26 1995-01-03 Cardiopulmonary Corporation Cardiac synchronous ventilation
FR2680354A1 (en) * 1991-08-13 1993-02-19 Centre Nat Etd Spatiales Depressurised sleeping bag enclosing the lower body in order to promote the circulation of blood
US5989204A (en) * 1991-09-27 1999-11-23 Kinetic Concepts, Inc. Foot-mounted venous compression device
US20030139255A1 (en) * 1991-12-17 2003-07-24 Kinetic Concepts, Inc. Pneumatic compression device and methods for use in the medical field
US6572621B1 (en) 1992-05-07 2003-06-03 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US20050070755A1 (en) * 1993-05-06 2005-03-31 Zhensheng Zheng High efficiency external counterpulsation method
US5664563A (en) * 1994-12-09 1997-09-09 Cardiopulmonary Corporation Pneumatic system
US20050131456A1 (en) * 2000-11-10 2005-06-16 Hui John C.K. High efficiency external counterpulsation apparatus and method for controlling same
US6589267B1 (en) 2000-11-10 2003-07-08 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US20020107461A1 (en) * 2000-11-10 2002-08-08 Hui John C.K. High efficiency external counterpulsation apparatus and method for controlling same
US6962599B2 (en) 2000-11-10 2005-11-08 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US7314478B2 (en) 2000-11-10 2008-01-01 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US7074200B1 (en) 2000-12-08 2006-07-11 Lewis Michael P External pulsation unit cuff
WO2003105747A1 (en) 2002-06-01 2003-12-24 Vasomedical, Inc. External counterpulsation system and method for minimizing end diastolic pressure
WO2003105746A1 (en) 2002-06-01 2003-12-24 Vasomedical, Inc. Method for treating congestive heart failure using external counterpulsation
US7048702B2 (en) 2002-06-13 2006-05-23 Vasomedical, Inc. External counterpulsation and method for minimizing end diastolic pressure
US20030233118A1 (en) * 2002-06-13 2003-12-18 Hui John C. K. Method for treating congestive heart failure using external counterpulsation
US7244225B2 (en) 2003-10-07 2007-07-17 Cardiomedics, Inc. Devices and methods for non-invasively improving blood circulation
USRE42958E1 (en) * 2003-10-07 2011-11-22 Cardiomedics, Inc. Devices and methods for non-invasively improving blood circulation
US20050075531A1 (en) * 2003-10-07 2005-04-07 Loeb Marvin P. Devices and methods for non-invasively improving blood circulation
US20060058715A1 (en) * 2004-09-14 2006-03-16 Hui John C External counterpulsation device with multiple processors
US20060058716A1 (en) * 2004-09-14 2006-03-16 Hui John C K Unitary external counterpulsation device
US20060058717A1 (en) * 2004-09-14 2006-03-16 Hui John C K External counterpulsation device having a curvilinear bed
US20070272250A1 (en) * 2006-05-24 2007-11-29 Michael Paul Lewis External pulsation treatment apparatus
US7981066B2 (en) 2006-05-24 2011-07-19 Michael Paul Lewis External pulsation treatment apparatus
US8114037B2 (en) 2007-06-20 2012-02-14 Michael Paul Lewis Hydraulically actuated external pulsation treatment apparatus
US20080319248A1 (en) * 2007-06-20 2008-12-25 Michael Paul Lewis Hydraulically Actuated External Pulsation Treatment Apparatus
WO2012011927A1 (en) 2010-07-23 2012-01-26 Munoz Emilio A Leg constriction apparatus for promoting blood circulation
US10702759B2 (en) 2011-08-19 2020-07-07 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics
US11253766B2 (en) 2011-08-19 2022-02-22 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics
US11745079B2 (en) 2011-08-19 2023-09-05 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics
US9522317B2 (en) 2011-08-19 2016-12-20 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics
US8961185B2 (en) 2011-08-19 2015-02-24 Pulson, Inc. System and method for reliably coordinating musculoskeletal and cardiovascular hemodynamics
US10391380B2 (en) 2011-08-19 2019-08-27 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics
US9707466B2 (en) 2011-08-19 2017-07-18 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics
US10512780B2 (en) 2013-03-15 2019-12-24 Pulson, Inc. Coordinating musculoskeletal and cardiovascular hemodynamics
US9457190B2 (en) 2013-03-15 2016-10-04 Pulson, Inc. Coordinating musculoskeletal and cardiovascular hemodynamics
US9872991B2 (en) 2013-03-15 2018-01-23 Pulson, Inc. Coordinating musculoskeletal and cardiovascular hemodynamics
US11311732B2 (en) 2013-03-15 2022-04-26 Pulson, Inc. Coordinating musculoskeletal and cardiovascular hemodynamics
US10258536B2 (en) * 2014-08-27 2019-04-16 Matthew Thomas OBERDIER External peripheral vascular occlusion for enhanced cardiopulmonary resuscitation
US20160058653A1 (en) * 2014-08-27 2016-03-03 Matthew Thomas OBERDIER External peripheral vascular occlusion for enhanced cardiopulmonary resuscitation
US10674958B2 (en) 2014-09-29 2020-06-09 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular hemodynamics
US10478708B2 (en) 2014-09-29 2019-11-19 Pulson, Inc. Coordinating musculoskeletal and cardiovascular hemodynamics
US11369312B2 (en) 2014-09-29 2022-06-28 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular hemodynamics
WO2019212953A1 (en) * 2018-04-30 2019-11-07 Pulson, Inc. Systems and methods for coordinating musculoskeletal and cardiovascular or cerebrovascular hemodynamics

Similar Documents

Publication Publication Date Title
US3303841A (en) Process and apparatus for pressurizing lower extremities of a patient during ventricular diastole
Moulopoulos et al. Diastolic balloon pumping (with carbon dioxide) in the aorta—a mechanical assistance to the failing circulation
US10555870B2 (en) Non-invasive device for synchronizing chest compression and ventilation parameters to residual myocardial activity during cardiopulmonary resuscitation
KR100274696B1 (en) A high efficiencey external counter pulsation apparatus and method for controlling same
Fessler et al. Mechanism of reduced LV afterload by systolic and diastolic positive pleural pressure
US4753226A (en) Combination device for a computerized and enhanced type of external counterpulsation and extra-thoracic cardiac massage apparatus
US4397306A (en) Integrated system for cardiopulmonary resuscitation and circulation support
US3654919A (en) Process and apparatus for synchronous assisting of blood circulation
US3835845A (en) Cardiac synchronization system and method
CN111228102B (en) Device for providing a resuscitation or pause state in cardiac arrest
US3734087A (en) External pressure circulatory assist
Chandra et al. Abdominal binding during cardiopulmonary resuscitation in man
US5490820A (en) Active compression/decompression cardiac assist/support device and method
US6179793B1 (en) Cardiac assist method using an inflatable vest
US7645247B2 (en) Non-invasive device for synchronizing chest compression and ventilation parameters to residual myocardial activity during cardiopulmonary resuscitation
US5487722A (en) Apparatus and method for interposed abdominal counterpulsation CPR
US5279283A (en) Method for promoting circulation of blood
CN106264513A (en) External counterpulsation technology is utilized to evaluate the method and system of cerebral-vessel imaging function
US3452738A (en) Heart pump apparatus
Dormandy et al. Hemodynamics and coronary blood flow with counterpulsation
WO2020045654A1 (en) Cardiac pumping assistance device
JPS6311159A (en) External induced pulsation and chest heart massage combination apparatus and its use
Luce et al. New developments in cardiopulmonary resuscitation
Rodbard Evidence that vascular conductance is regulated at the capillary
Zelano et al. Evaluation of an extraaortic counterpulsation device in severe cardiac failure