US3311561A - Water-in-oil emulsions - Google Patents

Water-in-oil emulsions Download PDF

Info

Publication number
US3311561A
US3311561A US418330A US41833064A US3311561A US 3311561 A US3311561 A US 3311561A US 418330 A US418330 A US 418330A US 41833064 A US41833064 A US 41833064A US 3311561 A US3311561 A US 3311561A
Authority
US
United States
Prior art keywords
water
oil
salts
carbon atoms
volume percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US418330A
Inventor
Frank E Anderson
Robert H Campbell
Samuel E Jolly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunoco Inc
Original Assignee
Sun Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Oil Co filed Critical Sun Oil Co
Priority to US418330A priority Critical patent/US3311561A/en
Application granted granted Critical
Publication of US3311561A publication Critical patent/US3311561A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/081Inorganic acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • C10M2201/083Inorganic acids or salts thereof containing nitrogen nitrites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/141Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/146Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings having carboxyl groups bound to carbon atoms of six-membeered aromatic rings having a hydrocarbon substituent of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/18Tall oil acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/08Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having metal-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles

Definitions

  • Water-in-oil emulsions have found Wide acceptance as fire-resistant hydraulic fluids. However, a problem with such fluids is their tendency to cause wear of metallic pump parts and other equipment with which they come in contact. The water phase, though dispersed in the oil, creates a wear problem that is not encountered with straight petroleum oil compositions.
  • Watcr-in-oil emulsion hydraulic fluids frequently require a water-phase additive in order to reduce wear of metal parts with which the fluid comes in contact.
  • Waterphase additives which have been employed previously for such purpose have had the disadvantage that they tend to precipitate from the emulsion, particularly when the Water content of the emulsion becomes reduced during use.
  • the omission of water-phase additives is undesirable since it is frequently impossible to obtain satisfactory wear-resistance by the use of additives which are dissolved only in the oil phase.
  • the present invention provides water-in-oil emulsions which contain a wear-reducing additive in the water phase, which additive, in addition to being very effective in reducing wear, is soluble in the oil phase and consequently does not precipitate from the emulsion upon reduction of the water content of the latter.
  • the wear-reducing additives according to the invention are the alkanolamine salts of organic monocarboxylic acids.
  • the fluid according to the invention contains, in addition to the alkanola-mine carboxylates, an additive for reduction of loss of copper from coppercontaining equipment with which the fluid is contacted during use. Such loss may occur through electrolytic ac tion, though the invention is not restricted to any theory of the cause of the loss.
  • the copper lost from portions of the equipment may be plated out upon other metallic portions of the equipment.
  • the beneficial wear-reducing action of the alkanolamine carboxylates is obtained, while also reducing or eliminating copper transfer which would otherwise occur.
  • These beneficial results are obtained by employing, in combination with the alkanolamine carboxylates, an alkaline earth metal salt of alkyl aromatic sulfonic acids.
  • the alkanolamine salts which are employed in the composition according to the invention are salts of organic monocarboxylic acids having 12 to 26 carbons atoms per molecule.
  • Suitable acids include fatty acids, petroleum naphthenic acids, abietic acid'and its hydrogenated and dehydrogenated derivatives, and acids produced by liquid phase partial oxidation of hydrocarbon mixtures such as de-aromatized petroleum lubricating oils, petroleum waxes, etc.
  • Pure fatty acids such as oleic, palmitic and stearic acid, can be employed, or mixtures derived from the known natural glycerides such as lard oil, palm oil, coconut oil, tallow, etc.
  • alkanolamines for the salts have the formula, NRRR, wherein R, R and R" are selected from the group consisting of hydroxyalkyl containing 2 to 4 carbon atoms, hydrogen, alkyl, aminoethyl and phenyl provided that at least one of the radicals R, R and R" is hydroxyalkyl include ethanolamine, diethanolamine, triethanolamine, isopropanolamine, diisopropanolamine, triisopropanolamine, isobutanolamines, N-aminoethyl ethanolamine, N-phenyl ethanolamine, dimethyl ethanolamine, isobutyl ethanolamine, etc.
  • alkanolamine salts of organic monocarboxylic acids which salts are soluble both in water and in petroleum oil, such salts constituting a recognized class of compounds, are suitable for use according to the invention.
  • Such salts will be sometimes referred to hereafter as amine salts or amine carboxylates.
  • the amine salts are soluble in either the water or oil phases, they can be dissolved initially either in the oil phase or in the water phase. This makes it possible, by dissolving the salts in the oil phase initially, to prepare, store and transport a concentrate comprising oil and additives, from which the emulsion containing all necessary ingredients can be prepared by adding water alone at the point of use.
  • the oil solubility of the amine salts is further advantageous in that, if water loss from the emulsion occurs during service, there is no precipitation of the salts from the composition.
  • the salts are, however, preferentially soluble in the water, and the salts dissolved in the aqueous phase provide important wear-resisting characteristics, in the absence of which the aqueous phase would cause undesirable wear of metal parts.
  • composition according to one embodiment of the invention contains, as additional additive, alkaline earth metal salts of alkyl aromatic sulfonic acids, hereafter sometimes referred to as sulfonate salts.
  • Suitable metals include calcium, magnesium, zinc, barium, strontium, etc.
  • Suitable sulfonic acid include synthetic alkyl benzene sulfonic acids having for example 8 to 16 carbon atoms in the alkyl group, oil-soluble petroleum sulfonic acids produced by conventional sulfonation procedures, etc.
  • Complex salts having excess alkalinity as known in the art of detergent additives for lubricating oils, can be employed. Simple salts lacking such excess alkalinity can alternatively be employed.
  • the sulfonate salts are effective to reduce the loss of copper from parts such as copper-containing thrust plates in a vane pump.
  • the alkaline earth sulfonates provide particularly good reduction in loss of metal from thrust plates and other parts of a vane pump.
  • composition of the invention is an emulsion of water in petroleum oil, which emulsion contains certain amine salts as wear-reducing agents, and contains in one embodiment certain sulfonate salts as copper-transferreducing agents.
  • Emulsions of water in petroleum oil are well known in the art, and the invention involves the addition of the amine salts, and in one embodiment the sulfonate salts, to such emulsions.
  • the amine sats, and preferably the sulfonate salts also are employed in combination with non-ionic water-in-oil emulsifying agents.
  • Combinations of relatively hydrophobic emulsifying agents, tending to act as water-in-oil emulsifying agents, and of relatively hydrophilic emulsifying agents, tending to act as oil-in-water emulsifying agents, are preferably employed, the combination acting to produce particularly stable water-in-oil emulsions.
  • An example of such combination is a mixture of glycerol monooleate as relatively hydrophobic agent and polyoxyethylene sorbitan trioleate (Atlas Powder Co.s
  • Tween as relatively hydrophilic agent.
  • Suitable emulsifying agents for use according to the invention include the carboxylic acid partial esters of polyhydn'c alcohols, and the polyalkoxylated derivatives of such esters, as disclosed for example in Atlas Surface Active Agents, Atlas Powder Co., Wilmington, Del.
  • esters having relatively low HLB hydrophile-lipophile balance
  • HLB hydrophile-lipophile balance
  • Preferred hydrophobic esters are the glycerol monoesters of fatty acids having 16 to 20 carbon atoms
  • preferred hydrophilic esters are the polyoxyethylene sorbitan esters of fatty acids having 16 to 20 carbon atoms, which esters are the reaction product of 1 to 3 fatty acid molecules and 3 to 20 ethylene oxide molecules per molecule of sorbitan.
  • non-ionic emulsifiers are preferred, other known types of water-in-oil emulsifying agents, or combinations of agents, can be employed.
  • the emulsion contains 1.0 to 5.0 volume percent of water-in-oil emulsifier.
  • the amount of hydrophilic emulsifier is preferably in the above range and the total amount of emulsifier is preferably in the range from 2.0 to 8.0 volume percent.
  • additives for water-in-oil emulsion fluids can be employed in the composition according to the invention.
  • Such additives include oil-soluble wear-reducing additives such as the alkaline earth metal dialkyl dithiophosphates, the chlorohydrocarbon xanthates, etc.; anti-static agents; antioxidants; corrosion inhibitors for aqueous systems; etc.
  • wear-reducing additives such as the alkaline earth metal dialkyl dithiophosphates, the chlorohydrocarbon xanthates, etc.
  • anti-static agents such as the alkaline earth metal dialkyl dithiophosphates, the chlorohydrocarbon xanthates, etc.
  • antioxidants such as sodium bicarbon xanthates, sodium bicarbon xanthates, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite
  • the composition according to the invention contains alkali metal, ammonium or amine salts of alkyl aromatic sulfonic acids as previously described.
  • Suitable alkali metals for such salts include sodium, potassium, lithium, etc.
  • suitable amines include alkylamines having for example 1 to carbon atoms, alkanolamines as previously disclosed herein, etc.
  • compositions according to the invention contain, in one embodiment, a water-soluble salt of an aromatic carboxylic acid, a water-soluble salt of nitrous acid, or both.
  • Alkali metal, alkaline earth metal or nitrogen base salts of the respective acids can be employed; e.g. sodium, potassium, calcium, magnesium, ammonium, methylamine, ethylenediamine, ethanolamine etc. salts, of nitrous acid, benzoic acid, salicylic acid, etc.
  • the salts provide, in some instances at least, a beneficial reduction in the loss of metal from equipment with which the composition is contacted.
  • Other corrosion inhibitors for aqueous systems can be employed.
  • the alkanolamine salts of carboxylic acids which are employed in the emulsions according to the invention are used in amount effective to improve the wear-reducing properties of the emulsion. This amount varies with the circumstances, but is usually in the range from 0.1 to 5.0 volume percent based on emulsion. Frequently, less than 1.0 volume percent, or even less than 0.5 volume percent, is sufiicient.
  • the amount of alkaline earth sulfonates which are employed in one embodiment is usually in the range from 0.1 to 5.0 volume percent.
  • the amount of the alkali metal or nitrogen base salts of sulfonic acids which are employed in one embodiment is usually in the range from 0.1 to 5.0 volume percent.
  • composition of the invention contains, in one embodiment, free alkanolamine in addition to alkanolamine salt of carboxylic acid.
  • the amount of such free amine is usually in the range from 0.05 to 2.5 volume percent based on emulsion. Frequently, less than 0.5 volume percent, or even less than 0.25 volume percent, is suflicient to obtain beneficial reduction in wear from the presence of the free amine.
  • Preferred ranges of the various components of the fiuid based on oil phase are generally 1.6 times the preferred ranges based on emulsion, as given previously.
  • the emulsion according to the invention contains 25 to 45 volume percent of water, but any amount of water greater than 20 volume percent and insufiicient to cause formation of an oil-in-water emulsion can be used.
  • Example 1 The following compositions, which are water-in-oil emulsions, are prepared; the amounts shown being volume percents in the oil phase and water phase respectively:
  • the petroleum oil is a solvent-refined and dewaxed petroleum distillate having viscosity of 100 SUS at 100 F.
  • the emulsifier A is polyoxyethylene sorbitan trioleate (Atlas Powder Co.s Tween 85).
  • the emulsifier B is glycerol monooleate.
  • the zinc-barium dithiophosphate is a complex metal dihydrocarbon dithiophosphate containing about 11.3 wt. percent barium, 1.8% zinc, 4.3% sulfur and 2.1% phosphorus.
  • the basic barium sulfonate indicated in the above table has average molecular weight of 1010 and base number of 65 mg. of KOH per gram, and contains 47 wt. percent neutral barium sulfonates, 42% petroleum lubricating oil and 0.4 wt. percent water.
  • the amine salts are isopropanolamine salts of tall oil acids and are prepared by admixing at room temperature 477 grams of mixed isopropanolamines and 876 grams of tall oil acids, the latter having the following properties: acid number mg. of KOH per gram, saponification number 192 mg.
  • the amine salt-sodium sulfonate composition contains 48.25% water, 17.5% sodium salts of oil-soluble petroleum sulfonic acids, 11.0% of naphthenic petroleum lubricating oil having viscosity of about 100 SUS at 100 F., 9.25% of triethanolamine and 7.4% of tall oil fatty acids, which acids contain 4% of rosin acid.
  • the com position also contains 3.75% propylene glycol as coupling agent, 1% of a bactericide containing 10 parts of phenylmercuric acetate, 50 parts of potassium orthophenylphenate and 40 parts of inert material, 0.10% of a silicone fluid anti-foaming agent, and 1.0% of sodium benzoate and 0.75% of sodium nitrite as corrosion inhibitors.
  • the triethanolamine is present in excess, so that compositions C, D, E and F contain free triethanolamine.
  • Compositions A and B differ only in that B contains 10 ppm. of a conventional anti-static additive, whereas A contains no such additive.
  • the anti-static additive contains chromium salts of mixed monoand dialkyl salicylic acids having 14 to 18 carbon atoms in each alkyl group, and calcium salts of di(2-ethylhexyl) sulfosuccinate.
  • Composition B contains the anti-static additive in addition to the components shown in the table. The other compositions contain only the components shown in the table.
  • Each composition is prepared by dissolving the indicated additives in the oil and water phases respectively, then passing the water phase as fine droplets through a sparger into the oil phase.
  • Composition C shows some formation of globules of water, indicating less than optimum emulsion stability.
  • Composition D is free of such tendency to form water globules and has highly satisfactory emulsion stability.
  • the anti-wear properties of the compositions are determined by circulating the emulsion through a Vickers vane pump (Model V 105 C for 200 hours at 8 gallons per minute flow rate through the pump, 1000 p.s.i. and fluid temperature of 150 F.
  • the weight loss in grams undergone by the ring, vanes, rotor and thrust plates during the run is measured; the total weight of Y the pump is about 900 grams.
  • the following results are Comparison of compositions C, D, E and F with compositions A and B shows the beneficial effect of the free alkanolamine on the reduction of weight loss.
  • compositions A and B which contain substantially no free alkanolamine, have improved wear-resisting properties resulting from the presence of the alkanolamine salts, but the inclusion of the free alkanolamine in compositions C, D, E and F, in addition to the alkanolamine salts, provides a very substantial further improvement in wearresisting properties.
  • Composition F contains barium sulfonates in addition to the alkanolamine salt-sodiumsulfonate composition. Comparison of this composition with composition D, which is the same but without the barium sulfonates, shows the beneficial effect of the barium sulfonates. With composition D, there is considerable loss of copper from the thrust plates and plating of copper on the ring for example. With composition F, the undesirable copper plating is substantially eliminated, while maintaining a highly satisfactory low rate of wear generally.
  • Example 2 A composition is prepared containing oil, water, emulsifiers A and B, the amine salt-sodium sulfonate composition, and barium sulfonates, all as defined in Example 1, and in the same proportions as in composition F of Example 1.
  • the amine saltasodium sulfonate composition is dissolved initially in the oil phase, rather than in the water phase as in Example 1.
  • the emulsion gives, in the pump test of Example 1, substantially similar results to those obtained with composition F in Example 1, indicating that the wear-resisting properties of the emulsions are not widely different, whether the amine saltsodium sulfonate composition is dissolved initially in the oil phase or the water phase. Both methods of preparing the emulsion are applicable generally to the various amine salts disclosed herein.
  • Example 3 An emulsion having the oil phase composition of composition F of Example 1 and the water-phase composition of composition A of Example 1 is prepared in a 62:38 volume ratio of oil phase to water phase.
  • the barium sulfonates in the emulsion provide superior results, as compared with composition A which lacks barium sulfonates, in a manner generally similar to composition F of Example 1 as compared with composition D of Example 1.
  • Example 4 The following additional compositions, both water-inoil emulsions, are prepared; the amounts shown being volume percents in the oil phase and water phase respectively:
  • the emulsions are prepared by mixing the oil phase, containing the indicated additives, with water, using the technique disclosed in Example 1.
  • the amine salts are triethanolamine salts of tall oil fatty acids obtained by admixing at room temperature triethanolamine and tall oil acids in a volume ratio of 1.25 to 1. An excess of triethanolam-ine is present, so that composition H contains free t-riethanolamine.
  • the tall oil acids have the same properties as those used in composition A of Example 1.
  • the barium sulfonates are a 30% solution of neutral barium sulfonates in petroleum oil.
  • the amine salts are initially dissolved in the oil phase, but upon admixture of the latter with water, the amine salts become incorporated in the water phase to a large extent.
  • composition H a composition according to the invention
  • composition G a prior art composition lacking the amine salts of the invent-ion.
  • An emulsion of water in petroleum oil suitable for use as a fire-resistant hydraulic fluid which consists essentially of 20 to 45 volumes of water and 55 to volumes of petroleum oi-l containing 1.6 to 8 volume percent of glycerol moonester of fatty acid having 16 to 20 carbon atoms, 1.
  • Emulsion according to claim 1 wherein said salt of alkanolamine is a triethanolamine salt of tall oil acids.
  • Emulsion according to claim 1 wherein the alkaline earth metal is barium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

United States Patent Ofiice 3,311,561 Patented Mar. 28, 1967 3,311,561 WATER-IN-QIL EMULSIONS Frank E. Anderson, Springfield, Robert H. Campbell, Brookhaven, and Samuel E. Jolly, Ridley Park, Pa., assignors to Sun Oil Company, Philadelphia, Pa., a corporation of New Jersey No Drawing. Filed Dec. 14, 1964, Ser. No. 418,330 3 Claims. (Cl. 252--75) This application is a continuationdn-part of application Ser. No. 138,292, filed Sept. 15, 1961, and now abandoned.
Water-in-oil emulsions have found Wide acceptance as fire-resistant hydraulic fluids. However, a problem with such fluids is their tendency to cause wear of metallic pump parts and other equipment with which they come in contact. The water phase, though dispersed in the oil, creates a wear problem that is not encountered with straight petroleum oil compositions.
Watcr-in-oil emulsion hydraulic fluids frequently require a water-phase additive in order to reduce wear of metal parts with which the fluid comes in contact. Waterphase additives which have been employed previously for such purpose have had the disadvantage that they tend to precipitate from the emulsion, particularly when the Water content of the emulsion becomes reduced during use. The omission of water-phase additives, on the other hand, is undesirable since it is frequently impossible to obtain satisfactory wear-resistance by the use of additives which are dissolved only in the oil phase.
In order to overcome these problems, the present invention provides water-in-oil emulsions which contain a wear-reducing additive in the water phase, which additive, in addition to being very effective in reducing wear, is soluble in the oil phase and consequently does not precipitate from the emulsion upon reduction of the water content of the latter. The wear-reducing additives according to the invention are the alkanolamine salts of organic monocarboxylic acids.
In one embodiment, the fluid according to the invention contains, in addition to the alkanola-mine carboxylates, an additive for reduction of loss of copper from coppercontaining equipment with which the fluid is contacted during use. Such loss may occur through electrolytic ac tion, though the invention is not restricted to any theory of the cause of the loss. The copper lost from portions of the equipment may be plated out upon other metallic portions of the equipment.
In this embodiment of the invention, the beneficial wear-reducing action of the alkanolamine carboxylates is obtained, while also reducing or eliminating copper transfer which would otherwise occur. These beneficial results are obtained by employing, in combination with the alkanolamine carboxylates, an alkaline earth metal salt of alkyl aromatic sulfonic acids.
The alkanolamine salts which are employed in the composition according to the invention are salts of organic monocarboxylic acids having 12 to 26 carbons atoms per molecule. Suitable acids include fatty acids, petroleum naphthenic acids, abietic acid'and its hydrogenated and dehydrogenated derivatives, and acids produced by liquid phase partial oxidation of hydrocarbon mixtures such as de-aromatized petroleum lubricating oils, petroleum waxes, etc. Pure fatty acids such as oleic, palmitic and stearic acid, can be employed, or mixtures derived from the known natural glycerides such as lard oil, palm oil, coconut oil, tallow, etc. Specific examples of suitable alkanolamines for the salts have the formula, NRRR, wherein R, R and R" are selected from the group consisting of hydroxyalkyl containing 2 to 4 carbon atoms, hydrogen, alkyl, aminoethyl and phenyl provided that at least one of the radicals R, R and R" is hydroxyalkyl include ethanolamine, diethanolamine, triethanolamine, isopropanolamine, diisopropanolamine, triisopropanolamine, isobutanolamines, N-aminoethyl ethanolamine, N-phenyl ethanolamine, dimethyl ethanolamine, isobutyl ethanolamine, etc.
Generally, the alkanolamine salts of organic monocarboxylic acids, which salts are soluble both in water and in petroleum oil, such salts constituting a recognized class of compounds, are suitable for use according to the invention. Such salts will be sometimes referred to hereafter as amine salts or amine carboxylates.
Since the amine salts are soluble in either the water or oil phases, they can be dissolved initially either in the oil phase or in the water phase. This makes it possible, by dissolving the salts in the oil phase initially, to prepare, store and transport a concentrate comprising oil and additives, from which the emulsion containing all necessary ingredients can be prepared by adding water alone at the point of use.
The oil solubility of the amine salts is further advantageous in that, if water loss from the emulsion occurs during service, there is no precipitation of the salts from the composition. The salts are, however, preferentially soluble in the water, and the salts dissolved in the aqueous phase provide important wear-resisting characteristics, in the absence of which the aqueous phase would cause undesirable wear of metal parts.
The composition according to one embodiment of the invention contains, as additional additive, alkaline earth metal salts of alkyl aromatic sulfonic acids, hereafter sometimes referred to as sulfonate salts. Suitable metals include calcium, magnesium, zinc, barium, strontium, etc. Suitable sulfonic acid include synthetic alkyl benzene sulfonic acids having for example 8 to 16 carbon atoms in the alkyl group, oil-soluble petroleum sulfonic acids produced by conventional sulfonation procedures, etc. Complex salts having excess alkalinity, as known in the art of detergent additives for lubricating oils, can be employed. Simple salts lacking such excess alkalinity can alternatively be employed.
The sulfonate salts are effective to reduce the loss of copper from parts such as copper-containing thrust plates in a vane pump. When used in combination with the amine carboxylates according to the invention, the alkaline earth sulfonates provide particularly good reduction in loss of metal from thrust plates and other parts of a vane pump.
The composition of the invention is an emulsion of water in petroleum oil, which emulsion contains certain amine salts as wear-reducing agents, and contains in one embodiment certain sulfonate salts as copper-transferreducing agents. Emulsions of water in petroleum oil are well known in the art, and the invention involves the addition of the amine salts, and in one embodiment the sulfonate salts, to such emulsions.
In one particularly advantageous embodiment, the amine sats, and preferably the sulfonate salts also, are employed in combination with non-ionic water-in-oil emulsifying agents. Combinations of relatively hydrophobic emulsifying agents, tending to act as water-in-oil emulsifying agents, and of relatively hydrophilic emulsifying agents, tending to act as oil-in-water emulsifying agents, are preferably employed, the combination acting to produce particularly stable water-in-oil emulsions. An example of such combination is a mixture of glycerol monooleate as relatively hydrophobic agent and polyoxyethylene sorbitan trioleate (Atlas Powder Co.s
Tween as relatively hydrophilic agent.
Suitable emulsifying agents for use according to the invention include the carboxylic acid partial esters of polyhydn'c alcohols, and the polyalkoxylated derivatives of such esters, as disclosed for example in Atlas Surface Active Agents, Atlas Powder Co., Wilmington, Del.
a (1950); in Patent No. 2,965,574, issued Dec. 20, 1960, to Raymond B. Tierney et al.; and elsewhere in the art. The esters having relatively low HLB (hydrophile-lipophile balance) are generally suitable for use as waterin-oil emulsifying agents, and are advantageously employed in combination with those esters, frequently the polyoxyalkylated ones, which have relatively high HLB and have oil-in-water emulsifying tendencies.
Preferred hydrophobic esters are the glycerol monoesters of fatty acids having 16 to 20 carbon atoms, and preferred hydrophilic esters are the polyoxyethylene sorbitan esters of fatty acids having 16 to 20 carbon atoms, which esters are the reaction product of 1 to 3 fatty acid molecules and 3 to 20 ethylene oxide molecules per molecule of sorbitan.
Although non-ionic emulsifiers are preferred, other known types of water-in-oil emulsifying agents, or combinations of agents, can be employed.
Preferably, the emulsion contains 1.0 to 5.0 volume percent of water-in-oil emulsifier. Where both hydrophobic and hydrophilic emulsifier are used, the amount of hydrophilic emulsifier is preferably in the above range and the total amount of emulsifier is preferably in the range from 2.0 to 8.0 volume percent.
In addition to the alkanolamine salts and alkaline earth metal sulfonates disclosed previously, various known additives for water-in-oil emulsion fluids can be employed in the composition according to the invention. Such additives include oil-soluble wear-reducing additives such as the alkaline earth metal dialkyl dithiophosphates, the chlorohydrocarbon xanthates, etc.; anti-static agents; antioxidants; corrosion inhibitors for aqueous systems; etc. However, in many cases, it is preferable to use the alkanolamine carboxylate salts and alkaline earth metal sulfonate salts without other wear-reducing additives.
In one embodiment, the composition according to the invention contains alkali metal, ammonium or amine salts of alkyl aromatic sulfonic acids as previously described. Suitable alkali metals for such salts include sodium, potassium, lithium, etc., and suitable amines include alkylamines having for example 1 to carbon atoms, alkanolamines as previously disclosed herein, etc.
The compositions according to the invention contain, in one embodiment, a water-soluble salt of an aromatic carboxylic acid, a water-soluble salt of nitrous acid, or both. Alkali metal, alkaline earth metal or nitrogen base salts of the respective acids can be employed; e.g. sodium, potassium, calcium, magnesium, ammonium, methylamine, ethylenediamine, ethanolamine etc. salts, of nitrous acid, benzoic acid, salicylic acid, etc. The salts provide, in some instances at least, a beneficial reduction in the loss of metal from equipment with which the composition is contacted. Other corrosion inhibitors for aqueous systems can be employed.
The alkanolamine salts of carboxylic acids which are employed in the emulsions according to the invention are used in amount effective to improve the wear-reducing properties of the emulsion. This amount varies with the circumstances, but is usually in the range from 0.1 to 5.0 volume percent based on emulsion. Frequently, less than 1.0 volume percent, or even less than 0.5 volume percent, is sufiicient. The amount of alkaline earth sulfonates which are employed in one embodiment is usually in the range from 0.1 to 5.0 volume percent. The amount of the alkali metal or nitrogen base salts of sulfonic acids which are employed in one embodiment is usually in the range from 0.1 to 5.0 volume percent. The amount of water-soluble salt of aromatic carboxylic acid,
or of nitrous acid, employed in one embodiment, is.
usually in the range from 0.0 to 1.0 volume percent. Other amounts of the various additives can be employed in some cases.
The composition of the invention contains, in one embodiment, free alkanolamine in addition to alkanolamine salt of carboxylic acid. The amount of such free amine is usually in the range from 0.05 to 2.5 volume percent based on emulsion. Frequently, less than 0.5 volume percent, or even less than 0.25 volume percent, is suflicient to obtain beneficial reduction in wear from the presence of the free amine.
Preferred ranges of the various components of the fiuid based on oil phase are generally 1.6 times the preferred ranges based on emulsion, as given previously.
Preferably, the emulsion according to the invention contains 25 to 45 volume percent of water, but any amount of water greater than 20 volume percent and insufiicient to cause formation of an oil-in-water emulsion can be used.
The following examples illustrate the invention:
Example 1 The following compositions, which are water-in-oil emulsions, are prepared; the amounts shown being volume percents in the oil phase and water phase respectively:
t A B C D E F Oil Phase:
Petroleum oil 92 92 96 92 92. 7 89 Emulsifier A 4 4 2 4 2 4 Emulsifier B 4 4 2 4 2 4 Zn-Ba dithiophosphate 3.3
Basic barium sulfonates Water Phase:
Water 97 97 95 95 95 Amine salts 3 3 Amine salt-Na sulfonate compositiom 5 5 5 Volume ratio, oil phase to water phase 62:38 in all compositions The petroleum oil is a solvent-refined and dewaxed petroleum distillate having viscosity of 100 SUS at 100 F. The emulsifier A is polyoxyethylene sorbitan trioleate (Atlas Powder Co.s Tween 85). The emulsifier B is glycerol monooleate. The zinc-barium dithiophosphate is a complex metal dihydrocarbon dithiophosphate containing about 11.3 wt. percent barium, 1.8% zinc, 4.3% sulfur and 2.1% phosphorus. The basic barium sulfonate indicated in the above table has average molecular weight of 1010 and base number of 65 mg. of KOH per gram, and contains 47 wt. percent neutral barium sulfonates, 42% petroleum lubricating oil and 0.4 wt. percent water.
The amine salts are isopropanolamine salts of tall oil acids and are prepared by admixing at room temperature 477 grams of mixed isopropanolamines and 876 grams of tall oil acids, the latter having the following properties: acid number mg. of KOH per gram, saponification number 192 mg. of KOH per gram, iodine number 150, refractive index 1.484, specific gravity 0.936, viscosity 265 Saybolt Universal seconds at 100 F., fatty acid acid content 73%, rosin acid content 25%, unsaponifiables content 2%; the fatty acid content is composed of 45- 52% oleic, 3542% linoleic, 4-11% conjugated linoleic and 26% saturated fatty acids. The amine and the tall acids are used in stoichiometric amounts, so that compositions A and B contain substantially no free amine.
The amine salt-sodium sulfonate composition contains 48.25% water, 17.5% sodium salts of oil-soluble petroleum sulfonic acids, 11.0% of naphthenic petroleum lubricating oil having viscosity of about 100 SUS at 100 F., 9.25% of triethanolamine and 7.4% of tall oil fatty acids, which acids contain 4% of rosin acid. The com position also contains 3.75% propylene glycol as coupling agent, 1% of a bactericide containing 10 parts of phenylmercuric acetate, 50 parts of potassium orthophenylphenate and 40 parts of inert material, 0.10% of a silicone fluid anti-foaming agent, and 1.0% of sodium benzoate and 0.75% of sodium nitrite as corrosion inhibitors. The triethanolamine is present in excess, so that compositions C, D, E and F contain free triethanolamine.
Compositions A and B differ only in that B contains 10 ppm. of a conventional anti-static additive, whereas A contains no such additive. The anti-static additive contains chromium salts of mixed monoand dialkyl salicylic acids having 14 to 18 carbon atoms in each alkyl group, and calcium salts of di(2-ethylhexyl) sulfosuccinate. Composition B contains the anti-static additive in addition to the components shown in the table. The other compositions contain only the components shown in the table.
Each composition is prepared by dissolving the indicated additives in the oil and water phases respectively, then passing the water phase as fine droplets through a sparger into the oil phase.
Composition C shows some formation of globules of water, indicating less than optimum emulsion stability. Composition D is free of such tendency to form water globules and has highly satisfactory emulsion stability.
The anti-wear properties of the compositions are determined by circulating the emulsion through a Vickers vane pump (Model V 105 C for 200 hours at 8 gallons per minute flow rate through the pump, 1000 p.s.i. and fluid temperature of 150 F. The weight loss in grams undergone by the ring, vanes, rotor and thrust plates during the run is measured; the total weight of Y the pump is about 900 grams. The following results are Comparison of compositions C, D, E and F with compositions A and B shows the beneficial effect of the free alkanolamine on the reduction of weight loss. Compositions A and B, which contain substantially no free alkanolamine, have improved wear-resisting properties resulting from the presence of the alkanolamine salts, but the inclusion of the free alkanolamine in compositions C, D, E and F, in addition to the alkanolamine salts, provides a very substantial further improvement in wearresisting properties.
Composition F contains barium sulfonates in addition to the alkanolamine salt-sodiumsulfonate composition. Comparison of this composition with composition D, which is the same but without the barium sulfonates, shows the beneficial effect of the barium sulfonates. With composition D, there is considerable loss of copper from the thrust plates and plating of copper on the ring for example. With composition F, the undesirable copper plating is substantially eliminated, while maintaining a highly satisfactory low rate of wear generally.
Example 2 A composition is prepared containing oil, water, emulsifiers A and B, the amine salt-sodium sulfonate composition, and barium sulfonates, all as defined in Example 1, and in the same proportions as in composition F of Example 1. The amine saltasodium sulfonate composition is dissolved initially in the oil phase, rather than in the water phase as in Example 1. The emulsion gives, in the pump test of Example 1, substantially similar results to those obtained with composition F in Example 1, indicating that the wear-resisting properties of the emulsions are not widely different, whether the amine saltsodium sulfonate composition is dissolved initially in the oil phase or the water phase. Both methods of preparing the emulsion are applicable generally to the various amine salts disclosed herein.
6 Example 3 An emulsion having the oil phase composition of composition F of Example 1 and the water-phase composition of composition A of Example 1 is prepared in a 62:38 volume ratio of oil phase to water phase. The barium sulfonates in the emulsion provide superior results, as compared with composition A which lacks barium sulfonates, in a manner generally similar to composition F of Example 1 as compared with composition D of Example 1.
Generally similar results to those obtained in the preceding examples are obtained using other allcanolamine salts and other alkaline earth metal sulfonates, such as those disclosed previously.
Example 4 The following additional compositions, both water-inoil emulsions, are prepared; the amounts shown being volume percents in the oil phase and water phase respectively:
PPS
ooco
The emulsions are prepared by mixing the oil phase, containing the indicated additives, with water, using the technique disclosed in Example 1.
In composition H, the amine salts are triethanolamine salts of tall oil fatty acids obtained by admixing at room temperature triethanolamine and tall oil acids in a volume ratio of 1.25 to 1. An excess of triethanolam-ine is present, so that composition H contains free t-riethanolamine. The tall oil acids have the same properties as those used in composition A of Example 1. The barium sulfonates are a 30% solution of neutral barium sulfonates in petroleum oil. In composition H, the amine salts are initially dissolved in the oil phase, but upon admixture of the latter with water, the amine salts become incorporated in the water phase to a large extent.
The following results are obtained in 200 hours in the 8 gallon per minute Vickers pump under the Example 1 conditions:
These data show the superiority of composition H, a composition according to the invention, to composition G, a prior art composition lacking the amine salts of the invent-ion.
The invention claimed is:
1. An emulsion of water in petroleum oil suitable for use as a fire-resistant hydraulic fluid which consists essentially of 20 to 45 volumes of water and 55 to volumes of petroleum oi-l containing 1.6 to 8 volume percent of glycerol moonester of fatty acid having 16 to 20 carbon atoms, 1. 6 to 8 volume percent of polyoxyethylene sorbitan ester of fatty acid having 16 to 20 carbon atoms, said ester being the reaction product of 1 to 3 fatty acid molecules and 3 to 20 ethylene oxide molecules per molecule of sorbitan 0.0 8 to 4 volume percent of alkanol amine having the formula NRRR" wherein R, R and R" are selected from the group consisting of hydroxyalkyl containing 2 to 4 carbon atoms, hydrogen, lower alkyl, aminoethyl and phenyl provided that at least one of the radicals R, R and R" is hydroxyalkyl, 0.16 to 8 volume percent of a salt of alkanolamine as defined above and an organic monocarboxyli'c acid having 12 to 26 carbon atoms and 0.1 6 to 8 volume percent of alkaline earth metal salt of sulfonic acid selected from the group consisting of alkyl benzene sul-fonic acids having 8 to 16 carbon atoms in the alkyl group and oil-soluble petroleum sulfonic acids.
2. Emulsion according to claim 1 wherein said salt of alkanolamine is a triethanolamine salt of tall oil acids.
3. Emulsion according to claim 1 wherein the alkaline earth metal is barium.
References Cited by the Examiner UNITED STATES PATENTS Holtzc'law et a1. 25249.5 X
LEON D. ROSDOL, Primary Examiner.
DONALD E. CZA] A, Examiner.
R. D. LOVERING, S. D. SCHWARTZ,
Assistant Examiners.

Claims (1)

1. AN EMULSION OF WATER IN PETROLEUM OIL SUITABLE FOR USE AS A FIRE-RESISTANT HYDRAULIC FLUID WHICH CONSISTS ESSENTIALLY OF 20 TO 45 VOLUMES OF WATER AND 55 TO 80 VOLUMES OF PETROLEUM OIL CONTAINING 1.6 TO 8 VOLUME PERCENT OF GLYCEROL MOONESTER OF FATTY ACID HAVING 16 TO 20 CARBON ATOMS, 1.6 TO 8 VOLUME PERCENT OF POLYOXYETHYLENE SORBITAN ESTER OF FATTY ACID HAVING 16 TO 20 CARBON ATOMS, SAID ESTER BEING THE REACTION PRODUCT OF 1 TO 3 FATTY ACID MOLECULES AND 3 TO 20 ETHYLENE OXIDE MOLECULES PER MOLECULE OF SORBITAN 0.08 TO 4 VOLUME PERCENT OF ALKANOLAMINE HAVING THE FORMULA NRR''R" WHEREIN R, R'' AND R" ARE SELECTED FROM THE GROUP CONSISTING OF HYDROXYALKYL CONTAINING 2 TO 4 CARBON ATOMS, HYDROGEN, LOWER ALKYL, AMINOETHYL AND PHENYL PROVIDED THAT AT LEAST ONE OF THE RADICALS R, R'' AND R" IS HYDROXYALKYL, 0.16 TO 8VOLUME PERCENT OF A SALT OF ALKANOLAMINE AS DEFINED ABOVE AND AN ORGANIC MONOCARBOXYLIC ACID HAVING 12 TO 26 CARBON ATOMS AND 0.16 TO 8 VOLUME PERCENT OF ALKALINE EARTH METAL SALT OF SULFONIC ACID SELECTED FROM THE GROUP CONSISTING OF ALKYL BENZENE SULFONIC ACIDS HAVING 8 TO 16 CARBON ATOMS IN THE ALKYL GROUP AND OIL-SOLUBLE PETROLEUM SULFONIC ACIDS.
US418330A 1964-12-14 1964-12-14 Water-in-oil emulsions Expired - Lifetime US3311561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US418330A US3311561A (en) 1964-12-14 1964-12-14 Water-in-oil emulsions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US418330A US3311561A (en) 1964-12-14 1964-12-14 Water-in-oil emulsions

Publications (1)

Publication Number Publication Date
US3311561A true US3311561A (en) 1967-03-28

Family

ID=23657662

Family Applications (1)

Application Number Title Priority Date Filing Date
US418330A Expired - Lifetime US3311561A (en) 1964-12-14 1964-12-14 Water-in-oil emulsions

Country Status (1)

Country Link
US (1) US3311561A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405067A (en) * 1965-11-08 1968-10-08 Atlas Chem Ind Hydraulic fluid
US3532632A (en) * 1967-02-10 1970-10-06 Gaf Corp Hydraulic fluids containing nonionic surface action agents and phosphate esters of nonionic surface active agents
DE3016544A1 (en) * 1980-04-29 1981-11-05 Lanko, Inc., Philadelphia, Pa. Aq. hydrocarbon emulsions contg. surfactant - and water-soluble or swellable polymer, used as (additives for) fuels for IC engines, aircraft engines turbines etc.
US4329249A (en) * 1978-09-27 1982-05-11 The Lubrizol Corporation Carboxylic acid derivatives of alkanol tertiary monoamines and lubricants or functional fluids containing the same
US4368133A (en) * 1979-04-02 1983-01-11 The Lubrizol Corporation Aqueous systems containing nitrogen-containing, phosphorous-free carboxylic solubilizer/surfactant additives
US4379755A (en) * 1978-08-10 1983-04-12 Nihon Surfactant Industry Co., Ltd. Gelatinizing agent composition, and gel and aqueous emulsion prepared therefrom
US4384974A (en) * 1979-07-27 1983-05-24 Revlon, Inc. Stable water-in-oil emulsions
US4446044A (en) * 1981-04-09 1984-05-01 E. I. Du Pont De Nemours And Company Aqueous water-in-oil cleaning emulsion
US4447348A (en) * 1981-02-25 1984-05-08 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4448703A (en) * 1981-02-25 1984-05-15 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4559155A (en) * 1982-08-09 1985-12-17 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4666620A (en) * 1978-09-27 1987-05-19 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4708753A (en) * 1985-12-06 1987-11-24 The Lubrizol Corporation Water-in-oil emulsions
US4770803A (en) * 1986-07-03 1988-09-13 The Lubrizol Corporation Aqueous compositions containing carboxylic salts
US4828633A (en) * 1987-12-23 1989-05-09 The Lubrizol Corporation Salt compositions for explosives
US4840687A (en) * 1986-11-14 1989-06-20 The Lubrizol Corporation Explosive compositions
US4844756A (en) * 1985-12-06 1989-07-04 The Lubrizol Corporation Water-in-oil emulsions
US4863534A (en) * 1987-12-23 1989-09-05 The Lubrizol Corporation Explosive compositions using a combination of emulsifying salts
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
US5047175A (en) * 1987-12-23 1991-09-10 The Lubrizol Corporation Salt composition and explosives using same
US5129972A (en) * 1987-12-23 1992-07-14 The Lubrizol Corporation Emulsifiers and explosive emulsions containing same
US5360458A (en) * 1989-03-02 1994-11-01 The Lubrizol Corporation Oil-water emulsions
US5527491A (en) * 1986-11-14 1996-06-18 The Lubrizol Corporation Emulsifiers and explosive emulsions containing same
US5622649A (en) * 1991-06-27 1997-04-22 Emory University Multiple emulsions and methods of preparation
USRE36479E (en) * 1986-07-03 2000-01-04 The Lubrizol Corporation Aqueous compositions containing nitrogen-containing salts
WO2008051330A1 (en) * 2006-10-24 2008-05-02 Chemtura Corporation Soluble oil containing overbased sulfonate additives
US20120149608A1 (en) * 2010-12-08 2012-06-14 Meyer G Richard Corrosion inhibitors for oil and gas applications
US20150148416A1 (en) * 2012-05-14 2015-05-28 Hankkija Oy Use of saponified tall oil fatty acid
US9789143B2 (en) 2013-05-14 2017-10-17 Hankkija Oy Use of tall oil fatty acid
US9962353B2 (en) 2013-10-24 2018-05-08 Hankkija Oy Use of tall oil fatty acid in binding toxins
US10799544B2 (en) 2013-11-13 2020-10-13 Hankkija Oy Feed supplement and a feed composition comprising resin acid based composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2079803A (en) * 1934-05-11 1937-05-11 Standard Oil Dev Co Soluble oil
US2345199A (en) * 1942-07-01 1944-03-28 Hodson Corp Emulsifiable lubricant
US2554985A (en) * 1948-01-03 1951-05-29 Standard Francaise Petroles Process for the protection of metals
US2581132A (en) * 1949-07-13 1952-01-01 Texas Co Lubricating oil
US2907714A (en) * 1957-07-12 1959-10-06 Shell Dev Water-in-oil lubricant and hydraulic fluid
US2961104A (en) * 1956-10-09 1960-11-22 Seneca Falls Machine Co Apparatus for discharge and replenishment of automatic unloading and reloading mechanism
US2965574A (en) * 1956-07-12 1960-12-20 Texaco Inc Fire resistant hydraulic fluid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2079803A (en) * 1934-05-11 1937-05-11 Standard Oil Dev Co Soluble oil
US2345199A (en) * 1942-07-01 1944-03-28 Hodson Corp Emulsifiable lubricant
US2554985A (en) * 1948-01-03 1951-05-29 Standard Francaise Petroles Process for the protection of metals
US2581132A (en) * 1949-07-13 1952-01-01 Texas Co Lubricating oil
US2965574A (en) * 1956-07-12 1960-12-20 Texaco Inc Fire resistant hydraulic fluid
US2961104A (en) * 1956-10-09 1960-11-22 Seneca Falls Machine Co Apparatus for discharge and replenishment of automatic unloading and reloading mechanism
US2907714A (en) * 1957-07-12 1959-10-06 Shell Dev Water-in-oil lubricant and hydraulic fluid

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405067A (en) * 1965-11-08 1968-10-08 Atlas Chem Ind Hydraulic fluid
US3532632A (en) * 1967-02-10 1970-10-06 Gaf Corp Hydraulic fluids containing nonionic surface action agents and phosphate esters of nonionic surface active agents
US4379755A (en) * 1978-08-10 1983-04-12 Nihon Surfactant Industry Co., Ltd. Gelatinizing agent composition, and gel and aqueous emulsion prepared therefrom
US4329249A (en) * 1978-09-27 1982-05-11 The Lubrizol Corporation Carboxylic acid derivatives of alkanol tertiary monoamines and lubricants or functional fluids containing the same
US4666620A (en) * 1978-09-27 1987-05-19 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4368133A (en) * 1979-04-02 1983-01-11 The Lubrizol Corporation Aqueous systems containing nitrogen-containing, phosphorous-free carboxylic solubilizer/surfactant additives
US4384974A (en) * 1979-07-27 1983-05-24 Revlon, Inc. Stable water-in-oil emulsions
DE3016544A1 (en) * 1980-04-29 1981-11-05 Lanko, Inc., Philadelphia, Pa. Aq. hydrocarbon emulsions contg. surfactant - and water-soluble or swellable polymer, used as (additives for) fuels for IC engines, aircraft engines turbines etc.
US4447348A (en) * 1981-02-25 1984-05-08 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4448703A (en) * 1981-02-25 1984-05-15 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4446044A (en) * 1981-04-09 1984-05-01 E. I. Du Pont De Nemours And Company Aqueous water-in-oil cleaning emulsion
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4559155A (en) * 1982-08-09 1985-12-17 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4708753A (en) * 1985-12-06 1987-11-24 The Lubrizol Corporation Water-in-oil emulsions
US4844756A (en) * 1985-12-06 1989-07-04 The Lubrizol Corporation Water-in-oil emulsions
US4770803A (en) * 1986-07-03 1988-09-13 The Lubrizol Corporation Aqueous compositions containing carboxylic salts
USRE36479E (en) * 1986-07-03 2000-01-04 The Lubrizol Corporation Aqueous compositions containing nitrogen-containing salts
US4840687A (en) * 1986-11-14 1989-06-20 The Lubrizol Corporation Explosive compositions
US5527491A (en) * 1986-11-14 1996-06-18 The Lubrizol Corporation Emulsifiers and explosive emulsions containing same
US5047175A (en) * 1987-12-23 1991-09-10 The Lubrizol Corporation Salt composition and explosives using same
US4828633A (en) * 1987-12-23 1989-05-09 The Lubrizol Corporation Salt compositions for explosives
US5129972A (en) * 1987-12-23 1992-07-14 The Lubrizol Corporation Emulsifiers and explosive emulsions containing same
US5336439A (en) * 1987-12-23 1994-08-09 The Lubrizol Corporation Salt compositions and concentrates for use in explosive emulsions
US5407500A (en) * 1987-12-23 1995-04-18 The Lubrizol Corporation Salt compositions and explosives using same
US4863534A (en) * 1987-12-23 1989-09-05 The Lubrizol Corporation Explosive compositions using a combination of emulsifying salts
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
US5360458A (en) * 1989-03-02 1994-11-01 The Lubrizol Corporation Oil-water emulsions
US5622649A (en) * 1991-06-27 1997-04-22 Emory University Multiple emulsions and methods of preparation
US5885590A (en) * 1991-06-27 1999-03-23 Hunter; Robert L. Oral vaccines comprising multiple emulsions and methods of preparation
WO2008051330A1 (en) * 2006-10-24 2008-05-02 Chemtura Corporation Soluble oil containing overbased sulfonate additives
JP2010507718A (en) * 2006-10-24 2010-03-11 ケムチュア コーポレイション Soluble oil containing overbased sulfonate additive
US8114822B2 (en) 2006-10-24 2012-02-14 Chemtura Corporation Soluble oil containing overbased sulfonate additives
RU2458110C2 (en) * 2006-10-24 2012-08-10 Кемтура Корпорейшн Soluble oil containing ultra-alkaline sulphonate additives
US8618027B2 (en) * 2010-12-08 2013-12-31 Nalco Company Corrosion inhibitors for oil and gas applications
US9382467B2 (en) * 2010-12-08 2016-07-05 Nalco Company Corrosion inhibitors for oil and gas applications
US20140076567A1 (en) * 2010-12-08 2014-03-20 Nalco Company Corrosion inhibitors for oil and gas applications
US20120149608A1 (en) * 2010-12-08 2012-06-14 Meyer G Richard Corrosion inhibitors for oil and gas applications
US9789077B2 (en) 2012-05-14 2017-10-17 Hankkija Oy Use of saponified tall oil fatty acid
US9358218B2 (en) * 2012-05-14 2016-06-07 Hankkija Oy Use of saponified tall oil fatty acid
US20150148416A1 (en) * 2012-05-14 2015-05-28 Hankkija Oy Use of saponified tall oil fatty acid
US9907771B2 (en) 2012-05-14 2018-03-06 Hankkija Oy Saponified tall oil fatty acid for use in treatment and animal feed supplements and compositions
US9789143B2 (en) 2013-05-14 2017-10-17 Hankkija Oy Use of tall oil fatty acid
US9919013B2 (en) 2013-05-14 2018-03-20 Hankkija Oy Use of tall oil fatty acid
US10092610B2 (en) 2013-05-14 2018-10-09 Hankkija Oy Tall oil fatty acid for use in treatment and animal feed supplements and compositions
US9962353B2 (en) 2013-10-24 2018-05-08 Hankkija Oy Use of tall oil fatty acid in binding toxins
US10799544B2 (en) 2013-11-13 2020-10-13 Hankkija Oy Feed supplement and a feed composition comprising resin acid based composition
US10849947B2 (en) 2013-11-13 2020-12-01 Hankkija Oy Feed supplement and a feed composition comprising resin acid based composition
US11253562B2 (en) 2013-11-13 2022-02-22 Forchem Oy Feed supplement

Similar Documents

Publication Publication Date Title
US3311561A (en) Water-in-oil emulsions
EP0206833B1 (en) Aqueous fluids
US4274973A (en) Aqueous water-soluble soap lubricant concentrates and aqueous lubricants containing same
US3933658A (en) Metalworking additive and composition
US2481372A (en) Rust protective lubricants
EP1174489A1 (en) Process for preparing cutting lubricant fluids
TW201540825A (en) Water-soluble metalworking fluid, and metalworking coolant
US4260499A (en) Water-based lubricants
US3723314A (en) Lubricant for metalworking
US4670168A (en) Aqueous metal removal fluid
US3798164A (en) Polyoxyalkylene bis-thiourea extreme pressure agents and methods of use
US3050465A (en) Water-in-oil emulsion hydraulic fluids
EP0260019A2 (en) Aqueous fluids
US3071544A (en) Emulsifiable mixtures of mineral oil and esters
US2466647A (en) Lubricating oil composition
US6780824B2 (en) Emulsifier system, anti-corrosive and low-temperature lubricant emulsion
US3296129A (en) Method of forming stable emulsions
US3645901A (en) Water-in-oil hydraulic fluid
JP4392245B2 (en) Process for processing or forming metals in the presence of aqueous lubricants based on methanesulfonic acid
US3057799A (en) Rust inhibiting soluble oil composition
US3201349A (en) Emulsifiable oil composition
US3080322A (en) Fire-resistant hydraulic fluids
US3152990A (en) Water-in-oil emulsions
US2708660A (en) Soluble oil rust inhibitors
US3222284A (en) Emulsion hydraulic fluid, concentrate and method of preparing same