US3353536A - Nebulizer - Google Patents

Nebulizer Download PDF

Info

Publication number
US3353536A
US3353536A US447852A US44785265A US3353536A US 3353536 A US3353536 A US 3353536A US 447852 A US447852 A US 447852A US 44785265 A US44785265 A US 44785265A US 3353536 A US3353536 A US 3353536A
Authority
US
United States
Prior art keywords
gases
passage
nozzle
cover
nebulizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US447852A
Inventor
Forrest M Bird
Henry L Pohndorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US447852A priority Critical patent/US3353536A/en
Priority to GB6767/66A priority patent/GB1091985A/en
Priority to FR53627A priority patent/FR1471534A/en
Priority to DE19661491651 priority patent/DE1491651A1/en
Application granted granted Critical
Publication of US3353536A publication Critical patent/US3353536A/en
Anticipated expiration legal-status Critical
Assigned to CITICORP INDUSTRIAL CREDIT, INC., A CORP. OF DE. reassignment CITICORP INDUSTRIAL CREDIT, INC., A CORP. OF DE. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIRD PRODUCT CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/06Sprayers or atomisers specially adapted for therapeutic purposes of the injector type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/65Vaporizers

Definitions

  • ABSTRACT OF THE DISQLOSURE Nebilizer having a container and a cover removably mounted on the container and in which the cover is formed with an inlet passage and outlet passage and with a skirt which is disposed in front of the inlet passage and the outlet passage, the cover havinga nozzle mounted thereon for taking fluid from the container and nebulizing the same at a point which is above the lower extremity of the skirt.
  • This invention relates to a nebulizer and more particularly to a nebulizer which can be utilized for long-term therapy.
  • Nebulizers heretofore available have either been relatively small in size requiring frequent re-filling, or have been very expensive for the larger sizes.- There is, therefore, a need for a new and improved low price nebulizer which can be utilized for long-term therapy.
  • Another object of the invention is to provide a nebulizer of the above character which is relatively inexpensive.
  • Another object of the invention is to provide a nebulizer of the above character which can be used on many different types of respirators.
  • Another object of the invention is to provide a nebulizer of the above character which can be readily filled and refilled.
  • Another object of the invention is to provide a nebulizer of the above character which can be readily maintained.
  • Another object of the invention is to provide a nebulizer of the above character which can be readily cleaned.
  • Another object of the invention is to provide a nebulizer of the above character in which the critical parts are always in alignment.
  • FIGURE 1 is a side elevational view of a neubulizer incorporating the present invention.
  • FIGURE 2 is a top plan view of the nebulizer shown in FIGURE 1.
  • FIGURE 3 is a front elevational view of the nebulizer shown in FIGURE 1.
  • FIGURE 4 is a side elevational view partially in crosssection of a portion of the nebulizer shown in FIGURE 1.
  • FIGURE 5 is a side elevational view similar to that shown in FIGURE 1 showing another way of using the nebulizer and showing the cap in cross-section.
  • FIGURE 6 is a cross-sectional view of the nebulizer shown in FIGURE 5.
  • FIGURE 7 is an enlarged fragmentary view of a portion of the nebulizer shown in FIGURE 6.
  • the nebulizer is utilized for supplying small liquid particles in a mainstream of gases supplied to a patient.
  • the nebulizer consists of a container defining a chamber which is adapted to contain a liquid.
  • a cover is removably mounted on the container and is formed with inlet and outlet passages having relatively large crosssectional areas for carrying the mainstream of gases for the patient.
  • a nozzle is mounted on the cover and has a passage therein for supplying additional gases into the chamber and mixing with the mainstream gases.
  • a nipple is formed on the nozzle and has a passage opening into the passage in the nozzle.
  • a tube is connected to the nipple and is adapted to extend into the liquid in the container so that as gases pass through the nozzle, the liquid is drawn upwardly and entrained in the gases passing through the nozzle.
  • Means is mounted in the cover and provides a surface disposed in front of the nozzle to break up the liquid particles entrained in the gases passing from the nozzle.
  • a skirt is mounted in the cover and surrounds the nozzle and has its lower extremity extending beyond the point at which the liquid particles impinge upon the surface whereby the larger particles engage the skirt and fall back into the liquid in the reservoir and the smaller particles are picked up by the mainstream of gases passing from the inletpassage and into the outlet passage.
  • the nebulizer consists of a container 11 with a castellated cover 12 removably mounted thereon.
  • the container 11 can be formed in any suitable shape as, for example, cylindrically, as shown in the drawings, and can be formed of any suitable material such as a transparent plastic.
  • the container can be of any suitable size but preferably should be relatively large in order to provide a relatively large chamber 13 for long-term therapy as hereinafter described.
  • the container can be of a size such as to contain 500 cc. of liquid.
  • the container 11 can be provided with vertical calibrations 14 so that the amount of liquid in the chamber can be readily determined by visually examining the level of the liquid in the chamber or reservoir.
  • the container 11 is open at the top and is provided with threads 15 on its upper extremity.
  • the cove-r 12 can also be formed of a suitable material such as an opaque plastic and can be of any suitable shape. For example, as shown in the drawings, it can have a dome-shaped portion 12a and a cylindrical portion 12b.
  • the cylindrical portion 12b is provided with threads which are adapted to cooperate with the threads 15 to form a threaded connection between the cover 12 and the container 11.
  • the cover 12 is provided with extensions 16 and 17 which have axially aligned inlet and outlet passages 18 and 19 formed therein having relatively large cross-secional areas for carrying the mainstream gases for the patient.
  • the outlet passage 19 is slightly larger than the inlet passage 18.
  • the cover 12 is provided with an annular recess 21 which carries an O-ring 22 which is adapted to engage the top edge of the reservoir 11 to form a tight seal between the cover .12 and the reservoir 11 as shown particularly in FIGURE 4.
  • the upper portion of the cover is provided with a frustoconical depending skirt 24 which extends downwardly into the cover 12 for a substantial distance and which has its lowermost extremity substantially below the lower portions of the inlet and outlet passages 18 and 19 for a purpose hereinafter described.
  • the skirt 24 is provided with a slight inward taper in a downward direction and forms a large opening 26 in the top of the cover 12.
  • the cover 12 is also provided with a vertically extending threaded boss 27 which has a mantle 28 threadedly mounted thereon.
  • the mantle 28 is provided with large and small plug-like male portions 28a and 28b.
  • the male portion 28a is of a size so that it can be inserted in the outlet passage 19 to plug the same, whereas the portion 28b is of such a size that it can be inserted in the inlet passage 18 to plug that passage when desired.
  • the large opening 26 provided in the cover 12 is normally closed by a large plug or crown 31.
  • the plug is provided with a frustoconical portion 31a and a planar bottom wall portion 31b which adjoins the frustoconical portion 31a.
  • the plug is also provided with an outwardly extending lip 31c.
  • An arcuate recess 32 is formed in the lip portion 310 to accommodate the mantle or cap 28.
  • the plug 31 forms a relatively tight fit in the skirt 24 and normally seals the opening 26.
  • a nozzle 34 is mounted in the plug 31 and is formed as an integral part thereof and extends through the bottom wall portion 31b.
  • the nozzle 34 is provided with a vertically extending passage 36 which has a tapered portion 36a and a capillary-like portion 36b which are in communication with a port or orifice 37 disposed below the bottom wall portion 31b to provide a downwardly directed jet of air.
  • the nozzle is provided with a nipple 38 which has a passage 39 which communicates with the passage 36.
  • the nozzle 34 and the nipple 38 are cast as integral parts so that they cannot become misaligned. This assures maximum efficiency of the nozzle at all times.
  • a flexible tube 41 of a suitable material such as plastic is mounted on the nipple 38 and is adapted to extend downwardly into the chamber 13 and into the liquid carried in the container 11.
  • the nozzle 34 is adapted to carry gases and through conventional aspirator action, is able to draw liquid from the chamber 13 and to cause liquid particles to be entrained in the gases as they pass through the nozzle 37.
  • one nozzle 34 and nipple 38 had the following dimensions.
  • the passage 36 had a diameter of .025 inch; the passage 39 had a diameter of .045 inch; and the port or orifice 37 had a diameter of .047 inch.
  • the tapered portion 36a of the passage 36 had an included angle of 8".
  • the portion 36b had a length of A of an inch and the orifice or port 37 had a length of .067 inch.
  • the ratio of the size of the portion 36b of the passage 36 and the orifice 37 is .025 1.047, and the ratio of the area was 1:3.54.
  • Means is provided on the plug 31 which forms a surface disposed in front of the nozzle for breaking up the liquid particles entrained in the gases passing from the port 37
  • This means consists of a ball 42 which is formed as an integral part of a substantially U-shaped pendant 43.
  • the pendant 43 is provided with upper tapered portions 43a which are adapted to fit relatively tightly in holes 44 provided in bosses 46 formed integral with the planar bottom wall portion 31b.
  • the pendant 43 is so positioned so that the spherical surface provided by the ball 44 is disposed slightly below the port 37 for the nozzle 34.
  • the port 37 and the ball 42 are positioned so that the gases carrying the liquid particles impinge upon the ball at a point which is above the lower extremity of the skirt 24 or, in other words, the skirt 24 extends beyond the point at which the liquid particles impinge upon the ball 42.
  • the plug 31 is also provided with a pair of risers 48 which have passages 49 extending therethrough.
  • a fitting assembly 56 is provided which consists of a T-shaped fitting 57.
  • the fitting 57 has one leg 5711 which is tapered and adapted to seat within the passage 36 provided in the nozzle 34.
  • the fitting is also provided with nipples 57b and 57c which are stepped as shown and which are connected to tubes 58 and 59.
  • Tube 58 is adapted to be connected to a source of gas under pressure so that the gas is supplied to the nozzle 34.
  • the tube 59 is adapted to be connected to other accessories as, for
  • an exhalation valve of a breathing assembly provided as a part of a respirator.
  • another fitting assembly 61 which consists of an extension member 62 which is provided with a cap 63which is adapted to be threaded onto the threaded boss 27 and a tapered element 64 which is adapted to seat within a tapered recess 66 provided in the boss 27.
  • the extension member 62 can be formed of any suitable material such as plastic. It is provided with a vertically extending passage 67. It also is provided with an integral fitting 68 which has a passage 69 therein opening into the passage 67.
  • a tube 71 is mounted on the fitting 68.
  • An adapter 72 is mounted on the other end of the tube 71 and is provided with a tapered portion 72a adapted to fit within the passage 36 provided in the nozzle 34.
  • the adapter is provided with a passage 73 which opens into the tube 71.
  • a metal fitting 76 is mounted on the upper end of the extension member 72 and has a swivel 77 of a conventional type mounted thereon which is adapted to be connected to an outlet assembly 78 of a conventional type that is connected to a source of gas 79 under pressure.
  • the inlet extension 16 is connected to means for supplying mainstream gases to a patient, as, for example, a respirator 81 such as disclosed in Patent No. 3,068,856, and that the outlet extension 17 is connected to a suitable patient adapter such as a breathing assembly and that the fitting assembly 56 has its tube 58 connected to a suitable supply of gas under pressure such as supplied from the respirator.
  • the container 11 has been filled to a suitable level with a liquid with which it is desired to supply to the patient as, for example, water.
  • the gases passing through the tube 58 enter the passage 36 and the nozzle 34 and discharge at relatively high velocity through the port 37.
  • liquid from the container 11 is siphoned through the tube 41 and is entrained in liquid particles in the gases passing through the passage 36 by conventional aspiratory action and the liquid particles are discharged with the jet of gases emerging from the port 37 and impinge upon the spherical surface provided by the ball 42 which breaks the entrained particles of liquid into many smaller particles as, for example, particles having a size of .5 to 4 microns.
  • These particles, with the jet of air, are dispersed downwardly within the skirt 24.
  • Certain of the larger normally undesirable particles collect on the skirt, whereas the smaller particles enter the mainstream of gases passing through the nebulizer from the inlet passage 18 and around the skirt 24 out the outlet passage to the patient. Since the mainstream does not take a direct route across the point at which the gas jet emerging from the port 37 strikes the ball 42 because of the protection afforded by the skirt 24, the mainstream of gases passing around the skirt 24 will only pick up or capture those smaller particles which readily travel with the gases, whereas the larger particles will be collected by the skirt 24 and will drain down into the container 11.
  • the smaller particles captured by the main air stream passing through the nebulizer are delivered to the patient so that the patient is supplied with properly moistened gases.
  • the integral one-piece construction of the nozzle 34 and nipple 38 which alternatively can be called a one-piece air jet capillary and discharge port assembly, is relatively important. This is because the amount of liquid delivered to the pendant ball 42 through the metering orifice 37 is determined by its size relationship with respect to the size of the passage 36a and the length of the passage 39 that must be bridged by the jet of gases which passes from the passage 36 through the orifice 37.
  • the area of the passage 36b, the length of the free gas jet travel across the passage 39 to the inlet of the larger orifice 37 and the relationship of the large orifice 37 to the passage 36b controls the amount of liquid placed in the jet stream and which is slammed against the ball 42 and thus, in a great measure, determining the availability of the volume of liquid to be suspended in the mechanical airway to the patient.
  • the element efficiency of the jet capillary construction depends greatly on the registration or concentricity of the jet orifice 36b and the discharge orifice 37 which emits the mixed gas and liquid.
  • the present construction precludes misalignment of the parts.
  • the size of the ball 42 determines the particulate size.
  • the nebulizer When the nebulizer is connected as shown in FIGURES 14, an in-line connection is provided for the mainstream gases and all of the mainstream gases as, for. example, all of the inspired gases during pressure breathing, can be caused to flow directly through the nebulizer to make possible maximum transport of the liquid particles to the patient.
  • Additional liquids for giving the necessary therapy to the patient such as anaesthetic agents, drugs and bronchodialators, can be introduced by way of hypodermic needles through the caps 51 and through the passage 49 provided in the risers 48.
  • the chamber or reservoir 13 can be refilled during the expiratory phase merely by removing the cover 12 and filling the reservoir without disconnecting the various fittings.
  • the container 11 can be unscrewed from the cover 12, filled with liquid and then screwed back into the cover.
  • the mantle 28 closes the inlet passage 18 and the only gas which passes through the nebulizer and out the outlet passage 19 is the gas supplied through the nozzle 34.
  • Such an arrangement is used where the patient is being supplied with oxygen through a nasal catheter, etc. Since the oxygen passes through the nebulizer, it is properly moistened for the patients use.
  • the crown 31 can act as a relief valve which will automatically pop out of the cover 12 when excessive high pressure gases accumulate in the mechanical airway to the patient.
  • the nebulizer may be used in combination with any metered oxygen supply to provide a suspension of water particles to resolve any humidity deficit in the gases being supplied to the patient.
  • the nebulizer may also be called a humidifier.
  • the container 11 is of sufficient size so that continuous therapy can be provided for the patient.
  • the inlet and outlets are in line and can be reversed.
  • the nebulizer humidifier can be applied without alternation on free flow oxygen inhalation therapy or pulmonary therapy.
  • a container forming a chamber adapted to contain a liquid, a cover mounted on said container, the cover being formed with an inlet opening and an outlet opening for carrying main stream gases to the patient, a nozzle mounted on said cover and having a passage therein for supplying gases into the chamber, an additional passage formed in said nozzle and communicating with said first named passage, means connecting said additional passage to the fluid in the reservoir, means mounted in the cover providing a surface disposed in front of the nozzle for breaking up liquid particles entrained in the gases passing from the nozzle, and a skirt disposed in the cover and surrounding the nozzle and having its lower extremity extending below said inlet and outlet openings and below the point at which the liquid particles impinge upon said surface, said skirt being disposed in front of said inlet opening and said outlet opening and in said mainstream gases so that the mainstream gases have a tendency to flow around the skirt.
  • a nebulizer as in claim 1 wherein said cover has a large opening formed therein, a plug removably mounted in said cover and closing said opening and wherein said nozzle and said means providing a surface are mounted on said plug.
  • a container forming a chamber adapted to contain a liquid, a cover removably mounted on said reservoir and being formed with axially aligned inlet and outlet passages having relatively large cross-sectional areas for carrying the mainstream of gases for the patient, a cylindrical skirt formed in the cover and defining a relatively large opening extending downwardly at right angles to and below the axially aligned inlet and outlet passages, the skirt being disposed in front of the inlet and outlet passages in the main airstream so that the mainstream gases have a tendency to flow around the skirt, a plug removably mounted in said large opening in the cover and serving to close the same, a nozzle mounted in said plug and having a downwardly disposed port so that gases jetting therefrom pass in a direction which is substantially at right angles to the direction of flow of the mainstream gases through the nebulizer, said nozzle being formed with an additional passage, means connecting said additional passage to the liquid
  • a nebulizer as in claim 4 together with a boss mounted on said cover and a mantle removably mounted on said boss, said mantle having portions thereof adapted to be inserted in either said inlet passage or said outlet passage to close either said inlet passage or said outlet passage.
  • a nebulizer as in claim 4 wherein said means supporting said substantially spherical surface consists of a substantially U-shaped member removably mounted in said plug.
  • a nebulizer as in claim 4 together with at least one riser mounted on said plug, a passage in said riser, and a resilient cap mounted on said riser and closing said passage.

Description

Nov. 21, 1967 F. M. BIRD ET AL NEBULI ZER 2 Sheets-Sheet 1 Filed April 13, 1965 Fig.3
INVENTORS d? a@ Wm .r n r "mm m .P, A M. ...L@ 8 RH United States Patent 3,353,536 NEBULIZER Forrest M. Bird, Airport, Box 970, Palm Springs, Calif. 92262, and Henry L. Pohndorf, 1227 Brewster Drive, El Cerrito, Calif. 94530 Filed Apr. 13, 1965, Ser. No. 447,852 8 Claims. (Cl. 128-194) ABSTRACT OF THE DISQLOSURE Nebilizer having a container and a cover removably mounted on the container and in which the cover is formed with an inlet passage and outlet passage and with a skirt which is disposed in front of the inlet passage and the outlet passage, the cover havinga nozzle mounted thereon for taking fluid from the container and nebulizing the same at a point which is above the lower extremity of the skirt.
This invention relates to a nebulizer and more particularly to a nebulizer which can be utilized for long-term therapy.
Nebulizers heretofore available have either been relatively small in size requiring frequent re-filling, or have been very expensive for the larger sizes.- There is, therefore, a need for a new and improved low price nebulizer which can be utilized for long-term therapy.
In general, it is an object of the present invention to provide a nebulizer which can be utilized for long-term therapy for all applications where oxygen or air is admin istered to a patient.
Another object of the invention is to provide a nebulizer of the above character which is relatively inexpensive.
Another object of the invention is to provide a nebulizer of the above character which can be used on many different types of respirators.
Another object of the invention is to provide a nebulizer of the above character which can be readily filled and refilled.
Another object of the invention is to provide a nebulizer of the above character which can be readily maintained.
Another object of the invention is to provide a nebulizer of the above character which can be readily cleaned.
Another object of the invention is to provide a nebulizer of the above character in which the critical parts are always in alignment.
Additional objects and features of the invention will appear from the following description in which the preferred embodiment is set forth in detail in conjunction with the accompanying drawings.
Referring to the drawings:
FIGURE 1 is a side elevational view of a neubulizer incorporating the present invention.
FIGURE 2 is a top plan view of the nebulizer shown in FIGURE 1.
FIGURE 3 is a front elevational view of the nebulizer shown in FIGURE 1.
FIGURE 4 is a side elevational view partially in crosssection of a portion of the nebulizer shown in FIGURE 1.
FIGURE 5 is a side elevational view similar to that shown in FIGURE 1 showing another way of using the nebulizer and showing the cap in cross-section.
FIGURE 6 is a cross-sectional view of the nebulizer shown in FIGURE 5.
FIGURE 7 is an enlarged fragmentary view of a portion of the nebulizer shown in FIGURE 6.
In general, the nebulizer is utilized for supplying small liquid particles in a mainstream of gases supplied to a patient. The nebulizer consists of a container defining a chamber which is adapted to contain a liquid. A cover is removably mounted on the container and is formed with inlet and outlet passages having relatively large crosssectional areas for carrying the mainstream of gases for the patient. A nozzle is mounted on the cover and has a passage therein for supplying additional gases into the chamber and mixing with the mainstream gases. A nipple is formed on the nozzle and has a passage opening into the passage in the nozzle. A tube is connected to the nipple and is adapted to extend into the liquid in the container so that as gases pass through the nozzle, the liquid is drawn upwardly and entrained in the gases passing through the nozzle. Means is mounted in the cover and provides a surface disposed in front of the nozzle to break up the liquid particles entrained in the gases passing from the nozzle. A skirt is mounted in the cover and surrounds the nozzle and has its lower extremity extending beyond the point at which the liquid particles impinge upon the surface whereby the larger particles engage the skirt and fall back into the liquid in the reservoir and the smaller particles are picked up by the mainstream of gases passing from the inletpassage and into the outlet passage.
As shown in the drawing, the nebulizer consists of a container 11 with a castellated cover 12 removably mounted thereon. The container 11 can be formed in any suitable shape as, for example, cylindrically, as shown in the drawings, and can be formed of any suitable material such as a transparent plastic. The container can be of any suitable size but preferably should be relatively large in order to provide a relatively large chamber 13 for long-term therapy as hereinafter described. Thus, the container can be of a size such as to contain 500 cc. of liquid. If desired, as shown particularly in FIGURE 1, the container 11 can be provided with vertical calibrations 14 so that the amount of liquid in the chamber can be readily determined by visually examining the level of the liquid in the chamber or reservoir.
The container 11 is open at the top and is provided with threads 15 on its upper extremity. The cove-r 12 can also be formed of a suitable material such as an opaque plastic and can be of any suitable shape. For example, as shown in the drawings, it can have a dome-shaped portion 12a and a cylindrical portion 12b. The cylindrical portion 12b is provided with threads which are adapted to cooperate with the threads 15 to form a threaded connection between the cover 12 and the container 11.
The cover 12 is provided with extensions 16 and 17 which have axially aligned inlet and outlet passages 18 and 19 formed therein having relatively large cross-secional areas for carrying the mainstream gases for the patient. As shown in the drawing, the outlet passage 19 is slightly larger than the inlet passage 18. However, it should be pointed out that the functions of the two passages can be reversed.
The cover 12 is provided with an annular recess 21 which carries an O-ring 22 which is adapted to engage the top edge of the reservoir 11 to form a tight seal between the cover .12 and the reservoir 11 as shown particularly in FIGURE 4.
The upper portion of the cover is provided with a frustoconical depending skirt 24 which extends downwardly into the cover 12 for a substantial distance and which has its lowermost extremity substantially below the lower portions of the inlet and outlet passages 18 and 19 for a purpose hereinafter described. The skirt 24 is provided with a slight inward taper in a downward direction and forms a large opening 26 in the top of the cover 12. The cover 12 is also provided with a vertically extending threaded boss 27 which has a mantle 28 threadedly mounted thereon. The mantle 28 is provided with large and small plug-like male portions 28a and 28b.
The male portion 28a is of a size so that it can be inserted in the outlet passage 19 to plug the same, whereas the portion 28b is of such a size that it can be inserted in the inlet passage 18 to plug that passage when desired.
The large opening 26 provided in the cover 12 is normally closed by a large plug or crown 31. The plug is provided with a frustoconical portion 31a and a planar bottom wall portion 31b which adjoins the frustoconical portion 31a. The plug is also provided with an outwardly extending lip 31c. An arcuate recess 32 is formed in the lip portion 310 to accommodate the mantle or cap 28. As can be seen from FIGURE 4, the plug 31 forms a relatively tight fit in the skirt 24 and normally seals the opening 26.
A nozzle 34 is mounted in the plug 31 and is formed as an integral part thereof and extends through the bottom wall portion 31b. The nozzle 34 is provided with a vertically extending passage 36 which has a tapered portion 36a and a capillary-like portion 36b which are in communication with a port or orifice 37 disposed below the bottom wall portion 31b to provide a downwardly directed jet of air. The nozzle is provided with a nipple 38 which has a passage 39 which communicates with the passage 36. The nozzle 34 and the nipple 38 are cast as integral parts so that they cannot become misaligned. This assures maximum efficiency of the nozzle at all times. A flexible tube 41 of a suitable material such as plastic is mounted on the nipple 38 and is adapted to extend downwardly into the chamber 13 and into the liquid carried in the container 11. As hereinafter described, the nozzle 34 is adapted to carry gases and through conventional aspirator action, is able to draw liquid from the chamber 13 and to cause liquid particles to be entrained in the gases as they pass through the nozzle 37.
By way of example, one nozzle 34 and nipple 38 had the following dimensions. The passage 36 had a diameter of .025 inch; the passage 39 had a diameter of .045 inch; and the port or orifice 37 had a diameter of .047 inch. The tapered portion 36a of the passage 36 had an included angle of 8". The portion 36b had a length of A of an inch and the orifice or port 37 had a length of .067 inch. Thus, in this example, the ratio of the size of the portion 36b of the passage 36 and the orifice 37 is .025 1.047, and the ratio of the area was 1:3.54.
Means is provided on the plug 31 which forms a surface disposed in front of the nozzle for breaking up the liquid particles entrained in the gases passing from the port 37 This means consists of a ball 42 which is formed as an integral part of a substantially U-shaped pendant 43. The pendant 43 is provided with upper tapered portions 43a which are adapted to fit relatively tightly in holes 44 provided in bosses 46 formed integral with the planar bottom wall portion 31b. The pendant 43 is so positioned so that the spherical surface provided by the ball 44 is disposed slightly below the port 37 for the nozzle 34. It also will be noted that the port 37 and the ball 42 are positioned so that the gases carrying the liquid particles impinge upon the ball at a point which is above the lower extremity of the skirt 24 or, in other words, the skirt 24 extends beyond the point at which the liquid particles impinge upon the ball 42.
The plug 31 is also provided with a pair of risers 48 which have passages 49 extending therethrough. Caps 51 of a suitable material, such as rubber, are mounted over the risers and close the upper ends of the passages 49.
Suitable additional fittings are provided for use with the nebulizer. For example, as shown in FIGURES 1, 2, 3 and 4, a fitting assembly 56 is provided which consists of a T-shaped fitting 57. The fitting 57 has one leg 5711 which is tapered and adapted to seat within the passage 36 provided in the nozzle 34. The fitting is also provided with nipples 57b and 57c which are stepped as shown and which are connected to tubes 58 and 59. Tube 58 is adapted to be connected to a source of gas under pressure so that the gas is supplied to the nozzle 34. The tube 59 is adapted to be connected to other accessories as, for
example, an exhalation valve of a breathing assembly provided as a part of a respirator.
In FIGURES 5 and 6, another fitting assembly 61 is provided which consists of an extension member 62 which is provided with a cap 63which is adapted to be threaded onto the threaded boss 27 and a tapered element 64 which is adapted to seat within a tapered recess 66 provided in the boss 27. The extension member 62 can be formed of any suitable material such as plastic. It is provided with a vertically extending passage 67. It also is provided with an integral fitting 68 which has a passage 69 therein opening into the passage 67. A tube 71 is mounted on the fitting 68. An adapter 72 is mounted on the other end of the tube 71 and is provided with a tapered portion 72a adapted to fit within the passage 36 provided in the nozzle 34. The adapter is provided with a passage 73 which opens into the tube 71. A metal fitting 76 is mounted on the upper end of the extension member 72 and has a swivel 77 of a conventional type mounted thereon which is adapted to be connected to an outlet assembly 78 of a conventional type that is connected to a source of gas 79 under pressure.
Operation and use of the nebulizer may now be briefly described as follows. Let it be assumed that the inlet extension 16 is connected to means for supplying mainstream gases to a patient, as, for example, a respirator 81 such as disclosed in Patent No. 3,068,856, and that the outlet extension 17 is connected to a suitable patient adapter such as a breathing assembly and that the fitting assembly 56 has its tube 58 connected to a suitable supply of gas under pressure such as supplied from the respirator. Let it also be assumed that the container 11 has been filled to a suitable level with a liquid with which it is desired to supply to the patient as, for example, water.
In operation, the gases passing through the tube 58 enter the passage 36 and the nozzle 34 and discharge at relatively high velocity through the port 37. During the travel of the gases through the passage 36, liquid from the container 11 is siphoned through the tube 41 and is entrained in liquid particles in the gases passing through the passage 36 by conventional aspiratory action and the liquid particles are discharged with the jet of gases emerging from the port 37 and impinge upon the spherical surface provided by the ball 42 which breaks the entrained particles of liquid into many smaller particles as, for example, particles having a size of .5 to 4 microns. These particles, with the jet of air, are dispersed downwardly within the skirt 24. Certain of the larger normally undesirable particles collect on the skirt, whereas the smaller particles enter the mainstream of gases passing through the nebulizer from the inlet passage 18 and around the skirt 24 out the outlet passage to the patient. Since the mainstream does not take a direct route across the point at which the gas jet emerging from the port 37 strikes the ball 42 because of the protection afforded by the skirt 24, the mainstream of gases passing around the skirt 24 will only pick up or capture those smaller particles which readily travel with the gases, whereas the larger particles will be collected by the skirt 24 and will drain down into the container 11. The smaller particles captured by the main air stream passing through the nebulizer are delivered to the patient so that the patient is supplied with properly moistened gases.
The integral one-piece construction of the nozzle 34 and nipple 38, which alternatively can be called a one-piece air jet capillary and discharge port assembly, is relatively important. This is because the amount of liquid delivered to the pendant ball 42 through the metering orifice 37 is determined by its size relationship with respect to the size of the passage 36a and the length of the passage 39 that must be bridged by the jet of gases which passes from the passage 36 through the orifice 37. Thus, the area of the passage 36b, the length of the free gas jet travel across the passage 39 to the inlet of the larger orifice 37 and the relationship of the large orifice 37 to the passage 36b controls the amount of liquid placed in the jet stream and which is slammed against the ball 42 and thus, in a great measure, determining the availability of the volume of liquid to be suspended in the mechanical airway to the patient. The element efficiency of the jet capillary construction depends greatly on the registration or concentricity of the jet orifice 36b and the discharge orifice 37 which emits the mixed gas and liquid. The present construction precludes misalignment of the parts. The size of the ball 42 determines the particulate size.
When the nebulizer is connected as shown in FIGURES 14, an in-line connection is provided for the mainstream gases and all of the mainstream gases as, for. example, all of the inspired gases during pressure breathing, can be caused to flow directly through the nebulizer to make possible maximum transport of the liquid particles to the patient. Additional liquids for giving the necessary therapy to the patient, such as anaesthetic agents, drugs and bronchodialators, can be introduced by way of hypodermic needles through the caps 51 and through the passage 49 provided in the risers 48. The chamber or reservoir 13 can be refilled during the expiratory phase merely by removing the cover 12 and filling the reservoir without disconnecting the various fittings. Alternatively, if desired, the container 11 can be unscrewed from the cover 12, filled with liquid and then screwed back into the cover.
The operation is substantially identical with the use of the fitting assembly 61 provided in FIGURES and 6. However, in this arrangement, the mantle 28 closes the inlet passage 18 and the only gas which passes through the nebulizer and out the outlet passage 19 is the gas supplied through the nozzle 34. Such an arrangement is used where the patient is being supplied with oxygen through a nasal catheter, etc. Since the oxygen passes through the nebulizer, it is properly moistened for the patients use.
The crown 31 can act as a relief valve which will automatically pop out of the cover 12 when excessive high pressure gases accumulate in the mechanical airway to the patient.
From the foregoing, it can be seen that the nebulizer may be used in combination with any metered oxygen supply to provide a suspension of water particles to resolve any humidity deficit in the gases being supplied to the patient. Thus, the nebulizer may also be called a humidifier. The container 11 is of sufficient size so that continuous therapy can be provided for the patient. The inlet and outlets are in line and can be reversed. The nebulizer humidifier can be applied without alternation on free flow oxygen inhalation therapy or pulmonary therapy.
We claim:
1. In a nebulizer for supplying small liquid particles in a mainstream of gases supplied to a patient, a container forming a chamber adapted to contain a liquid, a cover mounted on said container, the cover being formed with an inlet opening and an outlet opening for carrying main stream gases to the patient, a nozzle mounted on said cover and having a passage therein for supplying gases into the chamber, an additional passage formed in said nozzle and communicating with said first named passage, means connecting said additional passage to the fluid in the reservoir, means mounted in the cover providing a surface disposed in front of the nozzle for breaking up liquid particles entrained in the gases passing from the nozzle, and a skirt disposed in the cover and surrounding the nozzle and having its lower extremity extending below said inlet and outlet openings and below the point at which the liquid particles impinge upon said surface, said skirt being disposed in front of said inlet opening and said outlet opening and in said mainstream gases so that the mainstream gases have a tendency to flow around the skirt.
2. A nebulizer as in claim 1 wherein said cover has a large opening formed therein, a plug removably mounted in said cover and closing said opening and wherein said nozzle and said means providing a surface are mounted on said plug.
3. A nebulizer as in claim 1 wherein the inlet and outlet passages are in alignment and wherein the nozzle is disposed so that the gases jetting therefrom are substantially at right angles to the aligned inlet and outlet passages.
4. In a nebulizer for supplying small liquid particles in a mainstream of gases supplied to a patient, a container forming a chamber adapted to contain a liquid, a cover removably mounted on said reservoir and being formed with axially aligned inlet and outlet passages having relatively large cross-sectional areas for carrying the mainstream of gases for the patient, a cylindrical skirt formed in the cover and defining a relatively large opening extending downwardly at right angles to and below the axially aligned inlet and outlet passages, the skirt being disposed in front of the inlet and outlet passages in the main airstream so that the mainstream gases have a tendency to flow around the skirt, a plug removably mounted in said large opening in the cover and serving to close the same, a nozzle mounted in said plug and having a downwardly disposed port so that gases jetting therefrom pass in a direction which is substantially at right angles to the direction of flow of the mainstream gases through the nebulizer, said nozzle being formed with an additional passage, means connecting said additional passage to the liquid in the container so that as gases pass through the nozzle, liquid is siphoned from the container and entrained in the gases, and means mounted on the cover supporting a substantially spherical surface disposed in front of the nozzle for breaking up the liquid particles entrained in the gases passing from the port into smaller particles.
5. A nebulizer as in claim 4 together with a boss mounted on said cover and a mantle removably mounted on said boss, said mantle having portions thereof adapted to be inserted in either said inlet passage or said outlet passage to close either said inlet passage or said outlet passage.
6. A nebulizer as in claim 4 wherein said means supporting said substantially spherical surface consists of a substantially U-shaped member removably mounted in said plug.
7. A nebulizer as in claim 4 together with at least one riser mounted on said plug, a passage in said riser, and a resilient cap mounted on said riser and closing said passage.
8. A nebulizer as in claim 4 wherein said substantially spherical surface is positioned so that it is above the lower extremity of the skirt.
References Cited UNITED STATES PATENTS 2,709,577 5/1955 Pohndorf et a1 128185 2,840,417 6/1958 Dorsak et a1. 128-194 3,018,971 1/196-2 Cheney 239-338 3,172,406 3/1965 Bird et al. 128-194 3,206,175 9/1965 Boteler 128188 3,269,665 8/1966 Cheney 239338 FOREIGN PATENTS 452,438 11/1948 Canada.
RICHARD A. GAUDET, Primary Examiner. K. L. HOWELL, Assistant Examiner.

Claims (1)

1. IN A NEBULIZER FOR SUPPLYING SMALL LIQUID PARTICLES IN A MAINSTREAM OF GASES SUPPLIED TO A PATIENT, A CONTAINER FORMING A CHAMBER ADAPTED TO CONTAIN A LIQUID, A COVER MOUNTED ON SAID CONTAINER, THE COVER BEING FORMED WITH AN INLET OPENING AND AN OUTLET OPENING FOR CARRYING MAINSTREAM GASES TO THE PATIENT, A NOZZLE MOUNTED ON SAID COVER AND HAVING A PASSAGE THEREIN FOR SUPPLYING GASES INTO THE CHAMBER, AND ADDITIONAL PASSAGE FORMED IN SAID NOZZLE AND COMMUNICATING WITH SAID FIRST NAMED PASSAGE, MEANS CONNECTING SAID ADDITIONAL PASSAGE TO THE FLUID IN THE RESERVOIR, MEANS MOUNTED IN THE COVER PROVIDING A SURFACE DISPOSED IN FRONT OF THE NOZZLE FOR BREAKING UP LIQUID PARTICLES ENTRAINED IN THE GASES PASSING FROM THE NOZZLE, AND A SKIRT DISPOSED IN THE COVER AND SURROUNDING THE NOZZLE AND HAVING ITS LOWER EXTREMITY EXTENDING BELOW SAID INLET AND OUTLET OPENINGS AND BELOW THE POINT AT WHICH THE LIQUID PARTICLES IMPINGE UPON SAID SURFACE, SAID SKIRT BEING DISPOSED IN FRONT OF SAID INLET OPENING AND SAID OUTLET OPENING AND IN SAID MAINSTREAM GASES SO THAT THE MAINSTREAM GASES HAVE A TENDENCY TO FLOW AROUND THE SKIRT.
US447852A 1965-04-13 1965-04-13 Nebulizer Expired - Lifetime US3353536A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US447852A US3353536A (en) 1965-04-13 1965-04-13 Nebulizer
GB6767/66A GB1091985A (en) 1965-04-13 1966-02-16 Improvements in or relating to nebulizers
FR53627A FR1471534A (en) 1965-04-13 1966-03-16 Spray
DE19661491651 DE1491651A1 (en) 1965-04-13 1966-04-03 Device for feeding liquid particles into a gas stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US447852A US3353536A (en) 1965-04-13 1965-04-13 Nebulizer

Publications (1)

Publication Number Publication Date
US3353536A true US3353536A (en) 1967-11-21

Family

ID=23777999

Family Applications (1)

Application Number Title Priority Date Filing Date
US447852A Expired - Lifetime US3353536A (en) 1965-04-13 1965-04-13 Nebulizer

Country Status (3)

Country Link
US (1) US3353536A (en)
DE (1) DE1491651A1 (en)
GB (1) GB1091985A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572660A (en) * 1967-08-04 1971-03-30 Becton Dickinson Co Device for dispensing inhalable fluids
US3744771A (en) * 1970-07-20 1973-07-10 Ahldea Corp Disposable liquid entraining system
US3836079A (en) * 1972-08-02 1974-09-17 Becton Dickinson Co Fluid dispensing device
US3846518A (en) * 1972-06-19 1974-11-05 American Hospital Supply Corp Port system for medical humidifier container
US3903216A (en) * 1969-09-10 1975-09-02 Respiratory Care Inhalation therapy apparatus
US3940064A (en) * 1974-08-19 1976-02-24 Kentaro Takaoka Atomizing equipments for anesthetic liquid compounds
USD244057S (en) * 1975-05-14 1977-04-12 American Hospital Supply Corporation Nebulizer cover or similar article
US4054622A (en) * 1970-11-03 1977-10-18 Lester Victor E Combination nebulizer and humidifier
US4101611A (en) * 1977-02-07 1978-07-18 Amark Industries, Inc. Nebulizer
US4110419A (en) * 1975-04-18 1978-08-29 Respiratory Care, Inc. High-volume disposable and semi-disposable cartridge humidifier with self-contained cartridge sterilizing means, and related method
US4178334A (en) * 1975-04-18 1979-12-11 Respiratory Care, Inc. High volume humidifier/nebulizer
US4343304A (en) * 1980-07-17 1982-08-10 Hickmann Horst R Veterinary inhalation therapy apparatus
US4588129A (en) * 1983-09-06 1986-05-13 Hudson Oxygen Therapy Sales Company Nebulizer
US4767576A (en) * 1984-10-15 1988-08-30 Cimco Nebulizer with auxiliary gas input
US4951659A (en) * 1988-11-04 1990-08-28 Automatic Liquid Packaging, Inc. Nebulizer with cooperating disengageable on-line heater
WO1990013326A1 (en) * 1989-05-12 1990-11-15 Schumacher Wilhelm Guenter Aug Device for producing aerosols for inhalation therapy in humans in an inhalation spray respirator
US5063921A (en) * 1987-11-12 1991-11-12 Cimco, Inc. Nebulizer heater
US5259370A (en) * 1987-11-12 1993-11-09 Cimco, Inc. Nebulizer heater
US5301662A (en) * 1991-09-25 1994-04-12 Cimco, Inc. Nebulizer with high oxygen content and high total flow rate
US5396884A (en) * 1991-11-15 1995-03-14 Cimco, Inc. High flow rate humidifier with baffle plates
US5938083A (en) * 1997-06-13 1999-08-17 Engineered Medical Systems, Inc. Integral nebulizer stand and carrier gas conduit
US6314609B1 (en) * 2000-02-07 2001-11-13 Connie George Mouth powered vacuum
US6328030B1 (en) * 1999-03-12 2001-12-11 Daniel E. Kidwell Nebulizer for ventilation system
US20050235985A1 (en) * 2004-04-21 2005-10-27 Dhd Healthcare Corporation Nebulizer with auxiliary inlet port
US20070163575A1 (en) * 2005-12-30 2007-07-19 Rojas Antonio M Jr Nebulizer
US7322349B2 (en) * 2000-05-05 2008-01-29 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA452438A (en) * 1948-11-09 Edwin Curry Harold Atomizer
US2709577A (en) * 1951-07-28 1955-05-31 Nat Welding Equipment Co Oxygen therapy humidifier
US2840417A (en) * 1957-02-12 1958-06-24 Gordon Armstrong Company Inc Nebulizing apparatus
US3018971A (en) * 1959-05-15 1962-01-30 Ralph G Cheney Atomizer
US3172406A (en) * 1962-04-05 1965-03-09 Forrest M Bird Nebulizer
US3206175A (en) * 1960-04-18 1965-09-14 Puritan Compressed Gas Corp Humidifier
US3269665A (en) * 1964-11-02 1966-08-30 Ralph G Cheney Nebulizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA452438A (en) * 1948-11-09 Edwin Curry Harold Atomizer
US2709577A (en) * 1951-07-28 1955-05-31 Nat Welding Equipment Co Oxygen therapy humidifier
US2840417A (en) * 1957-02-12 1958-06-24 Gordon Armstrong Company Inc Nebulizing apparatus
US3018971A (en) * 1959-05-15 1962-01-30 Ralph G Cheney Atomizer
US3206175A (en) * 1960-04-18 1965-09-14 Puritan Compressed Gas Corp Humidifier
US3172406A (en) * 1962-04-05 1965-03-09 Forrest M Bird Nebulizer
US3269665A (en) * 1964-11-02 1966-08-30 Ralph G Cheney Nebulizer

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572660A (en) * 1967-08-04 1971-03-30 Becton Dickinson Co Device for dispensing inhalable fluids
US3903216A (en) * 1969-09-10 1975-09-02 Respiratory Care Inhalation therapy apparatus
US3744771A (en) * 1970-07-20 1973-07-10 Ahldea Corp Disposable liquid entraining system
US4054622A (en) * 1970-11-03 1977-10-18 Lester Victor E Combination nebulizer and humidifier
US3846518A (en) * 1972-06-19 1974-11-05 American Hospital Supply Corp Port system for medical humidifier container
US3836079A (en) * 1972-08-02 1974-09-17 Becton Dickinson Co Fluid dispensing device
US3940064A (en) * 1974-08-19 1976-02-24 Kentaro Takaoka Atomizing equipments for anesthetic liquid compounds
US4110419A (en) * 1975-04-18 1978-08-29 Respiratory Care, Inc. High-volume disposable and semi-disposable cartridge humidifier with self-contained cartridge sterilizing means, and related method
US4178334A (en) * 1975-04-18 1979-12-11 Respiratory Care, Inc. High volume humidifier/nebulizer
USD244057S (en) * 1975-05-14 1977-04-12 American Hospital Supply Corporation Nebulizer cover or similar article
US4101611A (en) * 1977-02-07 1978-07-18 Amark Industries, Inc. Nebulizer
US4343304A (en) * 1980-07-17 1982-08-10 Hickmann Horst R Veterinary inhalation therapy apparatus
US4588129A (en) * 1983-09-06 1986-05-13 Hudson Oxygen Therapy Sales Company Nebulizer
US4767576A (en) * 1984-10-15 1988-08-30 Cimco Nebulizer with auxiliary gas input
US5063921A (en) * 1987-11-12 1991-11-12 Cimco, Inc. Nebulizer heater
US5259370A (en) * 1987-11-12 1993-11-09 Cimco, Inc. Nebulizer heater
US4951659A (en) * 1988-11-04 1990-08-28 Automatic Liquid Packaging, Inc. Nebulizer with cooperating disengageable on-line heater
WO1990013326A1 (en) * 1989-05-12 1990-11-15 Schumacher Wilhelm Guenter Aug Device for producing aerosols for inhalation therapy in humans in an inhalation spray respirator
US5301662A (en) * 1991-09-25 1994-04-12 Cimco, Inc. Nebulizer with high oxygen content and high total flow rate
US5396884A (en) * 1991-11-15 1995-03-14 Cimco, Inc. High flow rate humidifier with baffle plates
US5938083A (en) * 1997-06-13 1999-08-17 Engineered Medical Systems, Inc. Integral nebulizer stand and carrier gas conduit
US6328030B1 (en) * 1999-03-12 2001-12-11 Daniel E. Kidwell Nebulizer for ventilation system
US6314609B1 (en) * 2000-02-07 2001-11-13 Connie George Mouth powered vacuum
US7322349B2 (en) * 2000-05-05 2008-01-29 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system
US20050235985A1 (en) * 2004-04-21 2005-10-27 Dhd Healthcare Corporation Nebulizer with auxiliary inlet port
US7036500B2 (en) * 2004-04-21 2006-05-02 Smiths Medical Asd, Inc. Nebulizer with auxiliary inlet port
US20070163575A1 (en) * 2005-12-30 2007-07-19 Rojas Antonio M Jr Nebulizer

Also Published As

Publication number Publication date
GB1091985A (en) 1967-11-22
DE1491651A1 (en) 1970-04-30

Similar Documents

Publication Publication Date Title
US3353536A (en) Nebulizer
US3172406A (en) Nebulizer
US4512341A (en) Nebulizer with capillary feed
US3580249A (en) Aerosol nebulizers
US3771721A (en) Nebulizer
US2709577A (en) Oxygen therapy humidifier
EP0957960B1 (en) Breathing circuit apparatus for a nebulizer
US4267974A (en) Nebulizer device
US3903216A (en) Inhalation therapy apparatus
US4036919A (en) Nebulizer-humidifier system
US3826255A (en) Intermittent positive pressure breathing manifold
US4231973A (en) Nebulizer with variable flow rate control and associated method
US3762409A (en) Nebulizer
US3291122A (en) Respirator with nebulizer
US3572660A (en) Device for dispensing inhalable fluids
US4243396A (en) Humidifier separator
US3746000A (en) Continuous feed medical nebulizer
US5490630A (en) Hand-held aerosol dispenser for therapeutic liquids
US3652015A (en) Nebulizer
USRE33642E (en) Nebulizer with capillary feed
JPH06507814A (en) Continuous flow nebulizer device and method
US2840417A (en) Nebulizing apparatus
JPS6336264B2 (en)
US3591090A (en) Nebulizer
US20110168171A1 (en) Nebulizer

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITICORP INDUSTRIAL CREDIT, INC., 635 W. SEVENTH S

Free format text: SECURITY INTEREST;ASSIGNOR:BIRD PRODUCT CORPORATION;REEL/FRAME:004537/0098

Effective date: 19851018