US3381022A - Polymerized olefin substituted succinic acid esters - Google Patents

Polymerized olefin substituted succinic acid esters Download PDF

Info

Publication number
US3381022A
US3381022A US567320A US56732066A US3381022A US 3381022 A US3381022 A US 3381022A US 567320 A US567320 A US 567320A US 56732066 A US56732066 A US 56732066A US 3381022 A US3381022 A US 3381022A
Authority
US
United States
Prior art keywords
acid
ester
mixture
grams
esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US567320A
Inventor
Suer William M Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Priority to US567320A priority Critical patent/US3381022A/en
Application granted granted Critical
Publication of US3381022A publication Critical patent/US3381022A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/08Polyoxyalkylene derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/1817Compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/95Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/54Amines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/025Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/101Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/102Polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • C10M2209/111Complex polyesters having dicarboxylic acid centres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/044Acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/08Halogenated waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/02Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/20Containing nitrogen-to-oxygen bonds
    • C10M2215/202Containing nitrogen-to-oxygen bonds containing nitro groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • C10M2217/023Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • C10M2223/121Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy of alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/02Macromolecular compounds from phosphorus-containg monomers, obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • C10M2225/041Hydrocarbon polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines

Definitions

  • esters include the acidic esters, diesters, and metal salt esters wherein the ester moiety is derived from monohydric and polyhydric alcohols, phenols, and naphthols. These esters are useful as additives in lubricating com positions, fuels, hydrocarbon oils, and power transmitting fluids as well as being plasticizers, detergents, antirust agents, and emulsifiers.
  • This invention relates to novel compositions of matter and processes for preparing the same.
  • this invention relates to compositions useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.
  • an ester of a substantially saturated hydrocarbon-substituted succinic acid wherein the substantially hydrocarbon substituent has at least about 50 aliphatic carbon atoms said ester being other than one having a nitrogen atom attached directly to a succinic radical.
  • a critical aspect of this invention is the size and the chemical constitution of the substantially hydrocarbon substituent of the succinic radical.
  • esters of substituted succinic acids in which the substituent is substantially saturated and has at least about 50 aliphatic carbon atoms are contemplated as being within the scope of this invention.
  • This lower limit for the size of the substituent is based upon a consideration not only of the oil solubility of the esters but also of their effectiveness in applications contemplated by this invention.
  • the substantially hydrocarbon substituent of the succinic radical may contain polar groups, provided, however, that the polar groups are not present in proportions sutficiently large to alter significantly the hydrocarbon character of the substituent.
  • the polar groups are exemplified by the chloro, bromo, keto, ether, aldehyde, nitro, etc.
  • the upper limit with respect to the portion of such polar groups in the substituent is approximately 10% based on the weight of the hydrocarbon portion of the substituent.
  • the sources of the substantially hydrocarbon substituent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefins having from 2 to 30 carbon atoms.
  • the especially I useful polymers are the polymers of 1-mono-olefins such as ethylene, propene, l-butene, isobutene, l-hexene, locetene, 2-methyl-l-heptene, 3-cyclohexyl-l-butene, and 2- methyl-S-propyl-l-hexene.
  • Polymers of medial olefins, i.e.. olefins in which the olefinic linkage is not at the terminal position likewise are useful. They are illustrated by 2- butene, 3-pentene, and 4-octene.
  • interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olcfins, cyclic olefins, and polyolefins.
  • interpolyrners include, for example, those prepared by polymerizing isobutene with styrene: isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-rnethyl styrene; l-hexene with 1,3-hexadiene; l-octene with l-hexene; l-heptene with l-pentene; 3' methyl-l-butene with l-octene; 3,3-dimethyl-l-pentene with l-hexene; isobutene with styrene and piperylene; etc.
  • the relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers.
  • the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95 on a weight basis, of units derived from the aliphatic mono-olefins and no more than about of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be less than about 2% of the total number of carbon-to-carbon covalent linkages.
  • interpolyrners include the copolymer of 95% (by weight) of isobutene with 5% of styrene; the terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; the terpolymer of 95 of isobutene with 2% of l-butene and 3% of lhexene; the terpolymer of 80% of isobutene with of l-pentene and 10% of l-octene; the copolymer of 80% of lhexene and of l-heptene; the terpolyrner of 90% of isobutene with 2% of cyclohexene and 8% of propene; and the copolymer of 80% of ethylene and 20% of propene.
  • Another source of the substantially hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular Weight olefinic substances.
  • olefin polymers having molecular Weights of about 700-5000 are preferred.
  • Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart viscosity index improving properties to the final products of this invention.
  • the use of such higher molecular weight olefin polymers often is desirable.
  • esters of this invention are those of the above-described succinic acids with hydroxy compounds which may be aliphatic compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols.
  • the aromatic hydroxy compounds from which the esters of this invention may be derived are illustrated by the following specific examples: phenol, beta-naphthol, alpha-naphthol, cresol, resorcinol, catehol, p,p-dihydroxybiphenyl, 2-chlorophenol, 2,4-dibutylphenol, propene tetramer-substituted phenol, didodecylphenol, 4,4- methylene-bis-phenol, alpha-decyl-beta-naphthol, polyisobutene(molecular weight of 1000)-substituted phenol, the condensation product of heptylphenol with 0.5 mole of formaldehyde, the condensation product of oc
  • the alcohols from which the esters may be derived preferably contain up to about 40 aliphatic carbon atoms. They may be monohydric alcohols such as methanols, ethanol, isooctanol, dodecanol, cyclohexanol, cyclopentanol, behenyl alcohol, hexatriacontanol, neopentyl alcohol, isobutyl alcohol, benzyl alcohol, betaphenylethyl alcohol, Z-methylcyclohexanol, beta-chloroethanol, monomethyl ether of ethylene glycol, monobutyl ether of ethylene glycol, monopropyl ether of diethylene glycol, monododecyl ether of triethylene glycol, mono-oleate of ethylene glycol, monostearate of diethylene glycol, sec-pentyl alcohol, tert-butyl alcohol, 5- bromo-dodecanol, nitro-octadecano
  • the polyhydric alcohols preferably contain from 2 to about 10 hydroxy radicals. They are illustrated by, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, clibutylene glycol, tributylene glycol, and other alkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms.
  • .0ther useful polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, rnonomethyl ether of glycerol, pentraerythritol, 9,10-dihydroxy stearic acid, methyl ester of 9,10-dihydroxy stearic acid, 1,2-butancdiol, 2,3-hexancdiol, 2,4-hexanediol, pinacol, erythritol, arabitol, sorb
  • Carbohydrates such as sugars, starches, celluloses, etc., likewise may yield the esters of this invention.
  • the carbohydrates may be exemplified by a glucose, fructose, sucrose, rhamnose, mannose, glyceraldehyde, and galactose.
  • An especially preferred class of polyhydric alcohols are those having at least three hydroxy radicals, some of which have been esterified with a monocarboxylic acid having from about 8 to about 30 carbon atoms such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid, or tall oil acid.
  • a monocarboxylic acid having from about 8 to about 30 carbon atoms
  • octanoic acid oleic acid
  • stearic acid linoleic acid
  • dodecanoic acid or tall oil acid.
  • Examples of such partially esterified polyhydric alcohols are the mono-oleate of sorbitol, distearate of sorbitol, mono-oleate of glycerol, rnonostearate of glycerol, di-dodecanoate of erythritol.
  • the esters of this invention may also be derived from unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, 1-cyclohexene-3-ol, an oleyl alcohol.
  • unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, 1-cyclohexene-3-ol, an oleyl alcohol.
  • Still other classes of the alcohols capable of yielding the esters of this invention comprises the ether-alcohols and amino-alcohols including, for example, the oxyalkylene-, oxy-arylene-, amino-alkylene, and amino-arylcue-substituted alcohols having one or more oxy-alkylene, amino-alkylene or amino-arylene oxy-arylene radicals.
  • ether-alcohols having up to about 150 oxy-alkylene radicals in which the alkylene radical contains from 1 to about 8 carbon atoms are preferred.
  • esters of this invention may be di-esters of succinic acids or acidic esters, i.e., partially esterified succinic acids; as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcoholic or phenolic hydroxyl radicals. Mixtures of the above-illustrated esters likewise are contemplated within the scope of the inventiOn.
  • the esters of this invention may be prepared by one of several methods.
  • the method which is preferred because of convenience and superior properties of the esters it produces, involves the reaction of a suitable alcohol or phenol with a substantially hydrocarbon-substituted succinic anhydride.
  • the esterification is usually carried out at a temperature above about C., preferably between C. and 300 C.
  • the water formed as a by-product is removed by distillation as the esterification proceeds.
  • a solvent may be used in the esterification to facilitate mixing and temperature control. It also facilitates the removal of water from he reaction mixture.
  • the useful solvents include xylene, toluene, diphenyl ether, chlorobenzene, and mineral oil.
  • esters of this invention likewise may be obtained by the reaction of a substituted succinic acid or anhydride
  • the esterification is illustrated by the reaction of ethylene glycol with a substituted succinic anhydride as represented by the equations below. with an epoxide or a mixture of an epoxide and water.
  • R is a substantially hydrocarbon radical having at least about 50 aliphatic carbon atoms.
  • a modification of the above process involves the replacement of the substituted succinic anhydride with the corresponding succinic acid.
  • succinic acids readily undergo dehydration at temperatures above about 100 C. and are thus converted to their anhydrides which are then esterified by the reaction with the alcohol reactant.
  • succinic acids appear to be the substantial equivalent of their anhydrides in the process.
  • the relative proportions of the succinic reactant and the hydroxy reactant which are to be used depend to a large measure upon the type of the product desired and the number of hydroxyl groups present in the molecule of the hydroxy reactant. For instance, the formation of a Such reaction is similar to one involving the acid or anhydride with a glycol.
  • the product represented by the structural Formula I above may be prepared by the reaction of a substituted succinic acid with one mole of ethylen oxide.
  • the product of Formula II may be obtained by the reaction of a substituted succinic acid with two moles of ethylene oxide.
  • epoxides which are commonly available for use in such reaction include, for example, propylene oxide, styrene oxide, 1,2-butylene oxide, 2,3-butylene oxide, epichlorohydrin, cyclohexene oxide, 1,2-octylene oxide, epoxidized soya bean oil, methyl ester of 9,10-epoxy-stearic acid, and butadiene mono-epoxide.
  • the epoxides are the alkylene oxides in which the alkylene radical has from 2 to about 8 carbon atoms; or the epoxidized fatty acid esters in which the fatty acid radical has up to about 30 carbon atoms and the ester radical is derived from a lower alcohol having up to about 8 carbon atoms.
  • a substituted succinic acid halide may be used in the processes illustrated above for preparing the esters of this invention.
  • Such acid halides may be acid dibromides, acid dichlorides, acid monochlorides, and acid monobromides.
  • the substituted succinic anhydrides and acids can be prepared by, for example, the reaction of maleic anhydride with a high molecular weight olefin or a halogenated hydrocarbon half ester of a succinic acid, i.e., one in which only one such as is obtained by the chlorination of an olefin polyof the two acid radicals is esterified, involves the use of mer described previously.
  • the reaction involves merely one mole of a monohydric alcohol for each mole of the heating the reactants at a temperature preferably from substituted succinic acid reactant, whereas the formaabout 100 C. to about 250 C.
  • the product from such tion of a diester of a succinic acid involves the use of two a reaction is an alkenyl succinic anhydride.
  • the alkenyl moles of the alcohol for each mole of the acid. On the group may be hydrogenated to an alkyl group.
  • one mole of a hexahydric alcohol may combine with as many as six moles of a succinic acid to form an ester in which each of the six hydroxyl radicals of the alcohol is esterified with one of the two acid radicals of the succinic acid.
  • the maximum proportion of the succinic acid to be used with a polyhydric alcohol is determined by the number of hydroxyl groups present in the molecule of the hydroxy reactant.
  • esterification in the presence of a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst.
  • a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst.
  • the amount of the catalyst in the reaction may be as little as 0.01% (by weight of the reaction mixture), more often from about 0.1% to about 5%.
  • dride may be hydrolyzed by treatment with Water or steam to the corresponding acid.
  • Another method useful for preparing the succinic acids or anhydrides involves the reaction of itaconic acid or anhydride with an olefin or a chlorinated hydrocarbon at a temperature usually within the range from about C. to about 250 C.
  • the succinic acid halides can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
  • esters of this invention may be obtained by the reaction of maleic acid or anhydride with an alcohol such as is illustrated above to form a monoor di-ester of maleic acid and then the reaction of this ester with an olefin or a chlorinated hydrocarbon such as is illustrated above. They may also be obtained by first esterifying itaconic anhydride or acid and subsequently 7 reacting the ester intermediate with an olefin or a chlorinated hydrocarbon under conditions similar to those described hereinabove.
  • esters of this invention illustrate the esters of this invention and the processes for preparing such esters.
  • Example 1 A substantially hydrocarbon-substituted succinic anhydride is prepared by chlorinatin g a polyisobutene having a molecular weight of 1000 to a chlorine content of 4.5% and then heating the chlorinated polyisobutene with 1.2 molar proportions of maleic anhydride at a temperature of 150-220 C.
  • the succinic anhydride thus obtained has an acid number of 130.
  • a mixture of 874 grams (1 mole) of the succinic anhydride and 104 grams (1 mole) of neopentyl glycol is mixed at 240-250 C./30 mm. for 12 hours.
  • the residue is a mixture of the esters resulting from the esterification of one and both hydroxy radicals of the glycol. It has a saponification number of 101 and an alcoholic hydroxyl content of 0.2%.
  • Example 2 The di-methyl ester of the substantially hydrocarbonsubstituted succinic anhydride of Example 1 is prepared by heating a mixture of 2185 grams of the anhydride, 480 grams of methanol, and 1000 cc. of toluene at 50-65 C. while hydrogen chloride is bubbled through the reaction mixture for 3 hours. The mixture is then heated at 60-65 C. for 2 hours, dissolved in benzene. washed with water, dried and filtered. The filtrate is heated at 150 C./60 mm. to rid it of volatile components. The residue is the defined di-methyl ester.
  • Example 3 The substantially hydrocarbon-substituted succinic anhydride of Example 1 is partially esterified with an ether-alcohol as follows. A mixture of 550 grams (0.63 mole) of the anhydride and 190 grams (0.32 mole) of a commercial polyethylene glycol having a molecular weight of 600 is heated at 240250 C. for 8 hours at atmospheric pressure and 12 hours at a pressure of 30 mm. Hg until the acid number of the reaction mixture is reduced to 28. The residue is an acidic ester having a saponification number of 85.
  • Example 4 A mixture of 926 grams of a plyisobutene-substituted succinic anhydride having an acid number of 121, 1023 grams of mineral oil, and 124 grams (2 moles per mole of the anhydride) of ethylene glycol is heated at 50l70 C. While hydrogen chloride is bubbled through the reaction mixture for 1.5 hours. The mixture is then heated to 250 C./ 30 mm. and the residue is purified by washing with aqueous sodium hydroxide followed by washing with water, then dried and filtered. The filtrate is a 50% oil solution of an ester having a saponification number of 48.
  • Example 5 A mixture of 438 grams of the polyisobutene-substituted succinic anhydride prepared as is described in Example 1 and 333 grams of a commercial polybutylene glycol having a molecular weight of 1000 is heated for hours at 150-160 C. The residue is an ester having a saponification number of 73 and an alcoholic hydroxyl content of 0.7%.
  • Example 6 The acidic ester of Example 3 (250 grams) is neutralizecl by mixing with 11 grams (10% excess on a chemical equivalent basis) of barium oxide, grams of methanol, and 267 grams of mineral oil at -60 C. The mixture is then heated to 150 C. to distill off volatile components and the residue is filtered. The filtrate is a mineral oil solution of a mixed ester-metal salt having a saponification number of 17 and a barium sulfate ash content of 4.6%.
  • Example 7 A mixture of 645 grams of the substantially hydrocarbon-substituted succinic anhydride prepared as is described in Example 1 and 44 grams of tetramethylene glycol is heated at -130 C. for 2 hours. To this mixture there is added 51 grams of acetic anhydride (esterification catalyst) and the resulting mixture is heated under reflux at l30l60 C. for 2.5 hours. Thereafter the volatile components of the mixture are distilled by heating the mixture to l96270 C./3O mm. and then at 240 C./0.15 mm. for 10 hours. The residue is an acidic ester having a saponification number of 121 and an acid number of 58.
  • Example 8 A mixted ester-metal salt is prepared as follows. A mixture of 1545 grams (1.5 moles) of the substituted succinic anhydride having an acid number of and prepared as is described in Example 1 and 46 grams (0.5 mole) of glycerol is heated at 150 C. for 3 hours whereupon the acid number of the reaction mixture is reduced to 68. It is then heated at 150-190 C. until the acid number is reduced to 53. To this mixture there is added portionwise grams (1.63 moles) of barium oxide together with 1500 grams of mineral oil and 50 cc. of water. The resulting mixture is heated to 90 C.- 100 C., diluted with 25 cc. of isopropyl alcohol and 100 cc.
  • the filtrate is a mineral oil solution of the mixed ester-barium salt having a barium sulfate content of 5.6%.
  • Example 9 A mixed ester-metal salt is prepared by the procedure of Example 8 except that pentaerythritol (51 grams, 0.38 mole) is used in place of glycerol. The product has a barium sulfate ash content of 4.9%.
  • Example 10 A mixed ester-metal salt is prepared as follows. A mixture is prepared from 1545 grams (1.5 moles) of a polyisobutene-substituted succinic anhydride having an acid number of 110 and 152 grams (0.19 mole) of an etheralcohol prepared by the reaction of a sucrose with 8 moles of propylene oxide. The mixture is heated at 139-l80 C. for 3 hours whereupon the acid number of the mixture is reduced to 45. It is diluted with 320 grams of mineral oil and heated at l70195 C. for 3.5 hours until the acid number is 42. To this mixture there are added 1180 grams of mineral oil, 50 grams of water, 50 cc.
  • the resulting mixture is heated at 90105 C. for 3 hours and dried at 158 C.
  • the residue is filtered.
  • the filtrate is a mineral oil solution of the mixed esterbarium salt having a barium sulfate ash content of 5.6%.
  • Example 11 A mixture of 456 grams of a polyisobutene-substituted succinic anhydride prepared as is described in Example 1 and 350 grams (0.35 mole) of the monophenyl ether of a polyethylene glycol having a molecular Weight of 1000 is heated at -155 C. for 2 hours.
  • the product is an ester having a saponification number of 71, an acid number of 53, and an alcoholic hydroxyl content of 0.52%.
  • Example 12 An ester is prepared by heating at the reflux temperature for 10 hours a xylene solution of an equi-molar mixture of the polyisobutene-substituted succinic anhydride of Example 1 and a commercial polystyrene oxide having a molecular weight of 500 while water is removed by azeotropic distillation. The mixture is then heated to 160 C./l8 mm. The residue is an ester having a saponification number of 67, an acid number of 45, and an alcoholic hydroxyl content of 1.2%.
  • Example 13 A di-oleyl ester is prepared as follows. A mixture of 1 mole of a polyisobutene-substituted succinic anhydride, 2 moles of a commercial oleyl alcohol, 305 grams of xylene, and 5 grams of p-toluene sulfonic acid (esterfication catalyst) is heated at 150-173 C. for 4 hours whereupon 18 grams of water is collected as the distillate. The residue is washed with water and the organic layer dried and filtered. The filtrate is heated to 175 C./ 20 mm. and the residue is the defined ester.
  • a mixture of 1 mole of a polyisobutene-substituted succinic anhydride, 2 moles of a commercial oleyl alcohol, 305 grams of xylene, and 5 grams of p-toluene sulfonic acid (esterfication catalyst) is heated at 150-173 C. for 4 hours whereupon 18 grams of water is collected as
  • Example 14 A di-oleyl ester is prepared by the procedure of Example 13 except that the substituted succinic anhydride used is prepared by the reaction of a chlorinated petroleum oil having a molecular weight of 800 with maleic anhydride.
  • Example 15 An ether-alcohol is prepared by the reaction of 9 moles of ethylene oxide with 0.9 mole of a polyisobutene-substituted phenol in which the polyisobutene substituent has a molecular weight of 1000.
  • a substantially hydrocarbonsubstituted succinic acid ester of this ether-alcohol is prepared by heating a xylene solution of an equi-molar mixture of the two reactants in the presence of a catalytic amount of p-toluene sulfonic acid at 157 C. The ester is found to have a saponification number of 25 and an acid number of 10.
  • Example 16 A polyhydric alcohol is prepared by copolymerizing equi-molar proportions of styrene and allyl alcohol to a copolymer having a molecular weight of 1150 and containing an average of 5 hydroxyl radicals per mole.
  • An ester of this alcohol is prepared as follows. A mixture of 340 grams (0.3 mole) of the alcohol and 1.5 moles of a polyisobutene-substituted succinic anhydride as is prepared in Example 1 in 500 grams of xylene is heated at 80 115 C., diluted with mineral oil, then heated to distill off xylene, and filtered.
  • Example 17 A substantially hydrocarbon-substituted succinic acid is prepared by chlorinating a polyisobutene having a molecular weight of 50,000 to a chlorine content of 3.9%, reacting the chlorinated polyisobutene with maleic anhydride to form a substituted succinic anhydride having an acid number of 20, and hydrolyzing the anhydride by treatment with steam at 102133 C. to the corresponding acid.
  • a mixture of 315 grams of the acid (0.06 mole) and 10 grams (0.17 mole) of propylene oxide is heated at 90102 C. for 1 hour.
  • the residue is then heated at 1001 10 C./1 mm.
  • the above treatment with propylene oxide is repeated twice.
  • the final product is found to have a saponification number of 20.
  • Example 18 An ester of an ether-alcohol is prepared by heating a toluene solution of an aqui-molar mixture of the substantially hydrocarbon-substituted succinic anhydride of Example 1 and a commercial polyethylene glycol at 97- 102 C. for 6 hours and then at 110 C./16 mm.
  • the ester has a saponification number of 37 and an acid number of 26.
  • Example 19 A di-(hydroxypropy1)ester is prepared as follows: propylene oxide (58 grams, 1 mole) is added dropwise to a mixture of 0.5 mole of the substantially hydrocarbonsubstituted succinic anhydride of Example 1 and 8 grams (0.1 mole, esterification catalyst) of pyridine at 90 C. The mixture is heated at reflux for 1 hour, diluted with 400 grams of mineral oil and heated to 170/40 mm. The residue is filtered. The filtrate is a 40% mineral oil solution of the defined ester.
  • Example 20 An ester is obtained by heating a mixture of 525 grams of the substantially hydrocarbon-substituted succinic anhydride of Example 1, 422 grams of butyl 9,10-epoxystearate, and 9.5 grams of pyridine (esterification catalyst) at 200 C. for 2.5 hours. The mixture is diluted with 630 grams of mineral oil and heated to 210 C./20 mm. The residue is a mineral oil solution of the ester having a saponification number of 70, an acid number of 1.4, and an alcoholic hydroxyl content of 0.3%.
  • Example 21 An ester is prepared by the procedure of Example 20 except that the butyl 9,10-epoxystearate is replaced with dipentene di-epoxide (0.64 mole per mole of the anhydride used).
  • a 40% mineral oil solution of the ester obtained has a saponification number of 54 and an acid number of 0.4.
  • Example 22 A partial ester of sorbitol is obtained by heating a xylene solution containing the substantially hydrocarbon substituted succinic anhydride of Example 1 and sorbitol (0.5 mole per mole of the anhydride) at 155 C. for 6 hours while water is removed by azeotropic distillation. The residue is filtered and the filtrate is heated at C./1l mm. to distill off volatile components. The residue is an ester having a saponification number of 97 and an alcoholic hydroxyl content of 1.5%.
  • Example 23 An ester is obtained by heating an aqui-molar mixture of dibutyl itaconate and chlorinated polyisobutene having a chlorine content of 4.7% and a molecular weight of 700 at 220 C. for 7 hours and then at 200 C./ 3 mm. The residue is filtered. The filtrate is the ester having a saponification number of 74.
  • Example 24 An ester is obtained by the further esterification of sorbitol mono-oleate with a substituted succinic anhydride as follows: a mixture of 126 grams of sorbitol mono-oleate, 770 grams of the substantially hydrocarbon substituted succinic anyhydride of Example 1, 588 grams of mineral oil, 500 cc. of xylene and 9 grams of p-toluene sulfonic acid (esterification catalyst) is heated at 140 C. while water is removed by azeotropic distillation. The residue is washed with water and dried at 150 C./20 mm. The product is a 40% mineral oil solution of an ester having a saponification number of 68.
  • Example 25 An ester is obtained by the procedure of Example 24 except that soribtol tri-oleate (272 grams) is used in place of sorbitan mono-oleate.
  • the product is a 40% oil solution of the ester having a saponification number of 79.
  • Example 26 A substantially hydrocarbon-substituted succinic anhydride is prepared as is described in Example 1 except that a copolymer of 90 weight percent of isobutene and 10 weight percent of piperylene having a molecular weight of 66,000 is used in lieu of the polyisobutene used.
  • the anhydride has an acid number of 22.
  • An ester is prepared by heating a toulene solution of an equi-molar mixture of the above anhydride and a commercial alkanol consisting substantially of C1244 alcohols at the reflux temperature for 7 hours while water is removed 1 it by azeotropic distillation. The residue is heated at 150 C./ 3 mm. to remove volatile components and diluted with mineral oil. A 50% oil solution of the ester is found to have a saponification number of 17 and an acid number of 5.7.
  • Example 27 A substantially hydrocarbon-substituted succinic anhydride having an acid number of is obtained from maleic anhydride and a copolymer of 90 Weight percent of isobutene with 10 Weight percent of piperylene having a molecular weight of 20,000.
  • An ester of the above anhydride with allyl alcohol is prepared by heating a toluene solution containing the anhydride and allyl alcohol (4 moles per mole of the anhydride) in the presence of a catalytic amount of p-toluene sulfonic acid at 110- 125 C. The residue is then treated with calcium hydroxide and filtered. The solvent is then removed from the filtrate and the residue is dissolved in a mineral oil to make up a 50% oil solution.
  • Example 28 An ester is obtained by the procedure of Example 24 except that 234 grams of a poly(oxyethylene) substituted sorbitol mono-oleate having a molecular Weight of 234 is used in place of sorbitol mono-oleate.
  • the ester has a saponification number of 53.
  • esters of this invention are useful for a Wide variety of purposes, as pesticides, plasticizers, rust-inhibiting agents, corrosion-inhibiting agents, extreme pressure agents, detergents, etc.
  • esters A principal utility of the esters is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose the esters depend for their effectiveness upon the size of the substantially hydrocarbon substitutent in the succinic radical. More particularly, it has been found that esters in which the substantially hydrocarbon substituent contain more than about 50 aliphatic carbon atoms are effective to impart detergent properties to a lubricant, especially under low temperature, or intermittently high and low temperature, service conditions. It has been further found that the detergent properties of the esters diminish sharply when the size of this substituent is less than about 50 aliphatic carbon atoms, so that esters having less than about aliphatic carbon atoms in this substituent are relatively ineffective for the purposes of this invention.
  • the lubricating oils in which the esters of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily, mineral lubricating oils are preferred by reason of their availability, general excellence, and low csot. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-Z-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about Saybolt Universal Seconds at 100 F. to about 200 Saybolt Universal Seconds at 210 F.
  • the concentration of the esters as additives in lubricants usually ranges from about 0.01% to about 10% by weight.
  • the optimum concentration for a particular application depends to a large extent upon the type of service to which the lubricants are to be subjected.
  • lubricants for use in gasoline engines may contain from about 0.5 to about 5% of the additive
  • lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the additive
  • This invention contemplates also the presence of other additives in the lubricating compositions.
  • Such additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents.
  • the ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
  • olefin polymer e.g., polyisobutene having a molecular weight of 1000
  • a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide,
  • the term basic salt is use to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
  • the commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about C. and filtering the resulting mass.
  • a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known.
  • Examples of compounds useful as the promoter include phenolic substances, such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance, alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl beta-naphthylamine, and dodecylamine.
  • phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance
  • alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, carbitol, ethylene glycol, stearyl alcohol, and
  • a particularly eifective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 200 C.
  • the preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
  • a polyisobutene having a molecular weight of 50,000 is mixed with 10% by weight of phosphorus pentasulfide at 200 C. for 6 hours.
  • the resulting product is hydrolyzed by treatment with Steam at to produce an acidic intermediate.
  • the acidic intermediate is then converted to a basic salt by mixing with twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonatin-g the mixtture at 150 C. to produce a fluid product.
  • the esters of this invention are especially adapted for use in combination with extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates.
  • extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates.
  • Combinations of the esters of this invention with any of the above-mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.
  • the Group 11 metal phosphorodithioates are the salts of acids having the formula in which R and R are substantially hydrocarbon radicals.
  • the metals for forming such salts are exemplified by barium calcium, strontium, zinc, and cadmium.
  • the barium and zinc phosphorodithioates are especially preferred.
  • the substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group.
  • Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc.
  • Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc.
  • Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals.
  • Other substantially hydrocarbon radicals likewise are use ful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc.
  • Many substituted hydrocarbon radicals may also be used, e.'g., chloropentyl, dichlorophenyl, and dichlorodecyl.
  • phosphorodithioic acids from which the Group II metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C.
  • the preparation of o,o-di-n hexylphosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100 C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid.
  • the preparation of the zinc or barium salt of this acid may be eflected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is sufficient to cause the reaction to take place and the resulting product is sufiiciently pure for the purpose of this invention.
  • Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols.
  • the use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids.
  • a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate.
  • mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
  • Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide.
  • the metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates.
  • the epoxides may be alkylene oxides or arylalkylene oxides.
  • the arylalkylene oxides are exemplified by styrene oxide, pethylstyrene oxide, alpha-methylstyrene oxide, 3-betanaphthyl-1,3-butylene oxide, m-dodecylstyrene oxide, and p-chlorostyrene oxide.
  • the alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms.
  • lower alkylene oxides examples include ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene Lmonoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin.
  • epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.
  • the adduct may be obtained by simply mixing the phosphorodithioate and the epoxide.
  • the reaction is usually exothermic and may be carried out within wide temperature limits from about C. to about 200 C.
  • reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction.
  • the reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
  • the chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the prosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
  • the lubricating compositions may contain metal detergent additives in amounts usually within the range of from about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
  • EXAMPLE II SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
  • EXAMPLE IV SAE mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc salt of an equi-molar mixture of di-cyclohexylphosphorodithioic acid and di-isobutyl phosphorodithioic acid.
  • EXAMPLE VII SAE l0W-30 mineral lubricating oil containing 1.5% of the product of Example 2 and 0.05% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.
  • EXAMPLE VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 26 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.
  • EXAMPLE XVH SAE 10 mineral lubricating oil containing 3% of the product of Example 2, 0.075 of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equi-molar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at 150 C.
  • the eifectiveness of the esters of this invention as detergent additives in lubricating compositions is shown by the results in Table I of the modified CRCEX3 engine test (the modification consists of extending the test period from the specified 96 hours to 144 hours, thus making the test more severe).
  • the test is recognized in the field as an important test by which lubricants can be evaluated for use under relatively light duty or intermittently high and low temperature service conditions such as are encountered in the operation of automobiles in urban use.
  • the lubricant is used in the crankcase of a 1954 6-cylinder Chrysler Power-glide engine operated for 144 hours under recurring cyclic conditions, each cycle consisting of: 2 hours at engine speed of 500 rpm.
  • the lubricant is rated in terms of (1) the extent of piston filling, (2) the amount of sludge formed in the engine (rating scale of 80-0, 80 being indicative of no sludge and 0 being indicative of extremely heavy sludge) (3) the total amount of engine deposits, i.e., sludge and varnish formed in the engine (rating scale of 100-0, 100 being indicative of no deposit and 0 being indicative of extremely heavy deposits).
  • the lubricating oil base used in the lubricants tested in a SAE 20 mineral lubricating oil used in the lubricants tested in a SAE 20 mineral lubricating oil.
  • An oil-soluble ester selected from the class consisting of acidic esters, diesters, and mixtures thereof, said esters being esters of substantially saturated polymerized olefin-substituted succinic acid and monoor polyhydric aliphatic alcohols having up to 40 carbon atoms, wherein the polymerized olefin substituent has at least about 50 aliphatic carbon atoms and a molecular weight of about 700 to about 5000, having no more than about olefinic linkages based on the total number of carbon-tocarbon covalent linkages in said substituent.
  • polyhydric alcohol has at least 3 hydroxy radicals and is partially esterified with an aliphatic hydrocarbon monocarboxylic acid having from 8 to 30 carbon atoms.
  • polyhydric alcohol is selected from the class consisting of glycerol, pentaerythritol, and sorbitol.
  • An ester according to claim 10 which is an ester of pentaerythritol.
  • An oil-soluble ester selected from the class consisting of acidic esters, diesters, and mixtures thereof of an oxyalkylene ether alcohol having up to about 150 oxyalkylene radicals in which the alkylene radical contains from 1 to about 8 carbon atoms and a substantially saturated polymerized olefin-substituted succinic acid wherein the substantially saturated polymerized olefin substituent has at least about 50 aliphatic carbon atoms and a molecular weight of about 700 to about 5000 with no more than about 5% olefinic linkages based on the total number of carbon-to-carbon covalent linkages in said substituent.
  • polymerized olefin substituent is polymerized isobutene and said oxyalkylene ether alcohol is selected from the class consisting of polybutylene glycol and monophenyl ether of polyethylene glycol.

Description

United States Patent Ofice 3,381,022 Patented Apr. 30, 1968 3,381,022 POLYMERIZED OLEFIN SUBSTITUTED SUCCINKC ACID ESTERS William M. Le Suer, Cleveland, Ohio, assignor to The gubrizol Corporation, Wicklifie, Ohio, a corporation of bio No Drawing. Continuation of application Ser. No. 274,905, Apr. 23, 1963. This application July 22, 1966, Ser. No. 567,320
18 Claims. (Cl. 260-4048) ABSTRACT OF THE DISCLOSURE Ester derivatives of a hydrocarbon-substituted succinic acid wherein the hydrocarbon substituent contains at least about 50 aliphatic carbon atoms, the substituent being further characterized by having no more than about 5% olefinic linkages therein based on the total number of car-bon-to-carbon covalent linkages in the substituent. The esters include the acidic esters, diesters, and metal salt esters wherein the ester moiety is derived from monohydric and polyhydric alcohols, phenols, and naphthols. These esters are useful as additives in lubricating com positions, fuels, hydrocarbon oils, and power transmitting fluids as well as being plasticizers, detergents, antirust agents, and emulsifiers.
This is a continuation of application Ser. No. 274,905 filed Apr. 23, 1963, now abandoned.
This invention relates to novel compositions of matter and processes for preparing the same. In a more particular sense this invention relates to compositions useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.
Deterioration of lubricating oils, especially mineral oils, has been a great concern in the formulation of lubricating compositions for use in internal combustion engines, transmissions, gears, etc. Deterioration of the oil results in the formation of products which are corrosive to the metal surfaces with which the oil comes into contact. It also results in the formation of products which agglomerate to form sludgeand varnish-like deposits. The deposits cause sticking of the moving metal parts and obstruct their free movement. They are a principal cause of malfunctioning and premature break-down of the equipment which the oil lubricates.
It is known that water is a common contaminant in the crankcase lubricant of an engine. It may result from the decomposition of the lubricating oil or come from the combustion chamber as a blow-by product of the burning of the fuel. The presence of water in the lubricant seems to promote the deposition of a mayonnaiselike sludge. This type of sludge is more objectionable because it clings tenaciously to metal surfaces and is not removed by oil filters. If the engine is operated under conditions such that the crankcase lubricant temperature is continuously high the water will be eliminated about as fast as it accumulates and only a very small amount of the mayonnaise-like sludge will be formed. On the other hand, if the crankcase lubricant temperature is intermittently high and low or consistently low the water will accumulate and a substantial quantity of the mayonnaiselike sludge will be deposited in the engine.
High operating temperatures are characteristic of an engine that is run consistently at a relatively high speed. However, where an automobile is used primarily for trips of short distance such as is characteristic of urban, home to work use, a significant portion of the operation occurs before the engine has reached its optium high temperature. An ideal environment thus obtains for the accumulation of water in the lubricant. In this type of operation the problem of mayonnaise-like sludge has been especially troublesome. Its solution has been approached by the use in the lubricant of detergents such as metal phenates and sulfonates which have been known to be etfective in reducing deposits in engines operated primarily at high temperatures. Unfortunately, such known detergents have not been particularly effective in solving the problems associated with low temperature operation particularly those problems which are associated with crankcase lubricants in engines operated at low or intermittently high and low temperatures.
It is accordingly a principal object of this invention to provide novel compositions of matter.
It is also an object of this invention to provide compositions which are suitable for use as additives in hydrocarbon oils.
It is also an object of this invention to provide compositions which are effective as additives in lubricating compositions.
It is another object of this invention to provide compositions effective as detergents in lubricating compositions intended for use in engines operated at low or intermittently high and low temperatures.
It is another object of this invention to provide a process of preparing additives useful as additives in hydrocarbon oils and lubricating compositions.
It is another object of this invention to provide lubricating compositions.
It is further an object of this invention to provide fuel compositions.
These and other objects are attained in accordance with this invention by means of an ester of a substantially saturated hydrocarbon-substituted succinic acid wherein the substantially hydrocarbon substituent has at least about 50 aliphatic carbon atoms said ester being other than one having a nitrogen atom attached directly to a succinic radical. A critical aspect of this invention is the size and the chemical constitution of the substantially hydrocarbon substituent of the succinic radical. Thus, only the esters of substituted succinic acids in which the substituent is substantially saturated and has at least about 50 aliphatic carbon atoms are contemplated as being within the scope of this invention. This lower limit for the size of the substituent is based upon a consideration not only of the oil solubility of the esters but also of their effectiveness in applications contemplated by this invention.
The substantially hydrocarbon substituent of the succinic radical may contain polar groups, provided, however, that the polar groups are not present in proportions sutficiently large to alter significantly the hydrocarbon character of the substituent. The polar groups are exemplified by the chloro, bromo, keto, ether, aldehyde, nitro, etc. The upper limit with respect to the portion of such polar groups in the substituent is approximately 10% based on the weight of the hydrocarbon portion of the substituent.
The sources of the substantially hydrocarbon substituent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefins having from 2 to 30 carbon atoms. The especially I useful polymers are the polymers of 1-mono-olefins such as ethylene, propene, l-butene, isobutene, l-hexene, locetene, 2-methyl-l-heptene, 3-cyclohexyl-l-butene, and 2- methyl-S-propyl-l-hexene. Polymers of medial olefins, i.e.. olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by 2- butene, 3-pentene, and 4-octene.
Also useful are the interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olcfins, cyclic olefins, and polyolefins. Such interpolyrners include, for example, those prepared by polymerizing isobutene with styrene: isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-rnethyl styrene; l-hexene with 1,3-hexadiene; l-octene with l-hexene; l-heptene with l-pentene; 3' methyl-l-butene with l-octene; 3,3-dimethyl-l-pentene with l-hexene; isobutene with styrene and piperylene; etc.
The relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers. Thus, for reasons of oil-solubility and stability the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95 on a weight basis, of units derived from the aliphatic mono-olefins and no more than about of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be less than about 2% of the total number of carbon-to-carbon covalent linkages.
Specific examples of such interpolyrners include the copolymer of 95% (by weight) of isobutene with 5% of styrene; the terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; the terpolymer of 95 of isobutene with 2% of l-butene and 3% of lhexene; the terpolymer of 80% of isobutene with of l-pentene and 10% of l-octene; the copolymer of 80% of lhexene and of l-heptene; the terpolyrner of 90% of isobutene with 2% of cyclohexene and 8% of propene; and the copolymer of 80% of ethylene and 20% of propene.
Another source of the substantially hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular Weight olefinic substances.
The use of olefin polymers having molecular Weights of about 700-5000 is preferred. Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart viscosity index improving properties to the final products of this invention. The use of such higher molecular weight olefin polymers often is desirable.
The esters of this invention are those of the above-described succinic acids with hydroxy compounds which may be aliphatic compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols. The aromatic hydroxy compounds from which the esters of this invention may be derived are illustrated by the following specific examples: phenol, beta-naphthol, alpha-naphthol, cresol, resorcinol, catehol, p,p-dihydroxybiphenyl, 2-chlorophenol, 2,4-dibutylphenol, propene tetramer-substituted phenol, didodecylphenol, 4,4- methylene-bis-phenol, alpha-decyl-beta-naphthol, polyisobutene(molecular weight of 1000)-substituted phenol, the condensation product of heptylphenol with 0.5 mole of formaldehyde, the condensation product of octylphenol with acetone, di(hydroxyphenyl)oxide, di(hydroxyphenyl)sulfide, di(hydroxyphenyl)disulfide, and 4-cyclohexylphenol. Phenol and alkylated phenols having up to three alkyl substitutents are preferred. Each of the alkyl substitutents may contain 100 or more carbon atoms.
The alcohols from which the esters may be derived preferably contain up to about 40 aliphatic carbon atoms. They may be monohydric alcohols such as methanols, ethanol, isooctanol, dodecanol, cyclohexanol, cyclopentanol, behenyl alcohol, hexatriacontanol, neopentyl alcohol, isobutyl alcohol, benzyl alcohol, betaphenylethyl alcohol, Z-methylcyclohexanol, beta-chloroethanol, monomethyl ether of ethylene glycol, monobutyl ether of ethylene glycol, monopropyl ether of diethylene glycol, monododecyl ether of triethylene glycol, mono-oleate of ethylene glycol, monostearate of diethylene glycol, sec-pentyl alcohol, tert-butyl alcohol, 5- bromo-dodecanol, nitro-octadecanol and dioleate of glycerol. The polyhydric alcohols preferably contain from 2 to about 10 hydroxy radicals. They are illustrated by, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, clibutylene glycol, tributylene glycol, and other alkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms..0ther useful polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, rnonomethyl ether of glycerol, pentraerythritol, 9,10-dihydroxy stearic acid, methyl ester of 9,10-dihydroxy stearic acid, 1,2-butancdiol, 2,3-hexancdiol, 2,4-hexanediol, pinacol, erythritol, arabitol, sorbitol, mannitol, 1,2'cyclohexanediol, and Xylene glycol. Carbohydrates such as sugars, starches, celluloses, etc., likewise may yield the esters of this invention. The carbohydrates may be exemplified by a glucose, fructose, sucrose, rhamnose, mannose, glyceraldehyde, and galactose.
An especially preferred class of polyhydric alcohols are those having at least three hydroxy radicals, some of which have been esterified with a monocarboxylic acid having from about 8 to about 30 carbon atoms such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid, or tall oil acid. Examples of such partially esterified polyhydric alcohols are the mono-oleate of sorbitol, distearate of sorbitol, mono-oleate of glycerol, rnonostearate of glycerol, di-dodecanoate of erythritol.
The esters of this invention may also be derived from unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, 1-cyclohexene-3-ol, an oleyl alcohol. Still other classes of the alcohols capable of yielding the esters of this invention comprises the ether-alcohols and amino-alcohols including, for example, the oxyalkylene-, oxy-arylene-, amino-alkylene, and amino-arylcue-substituted alcohols having one or more oxy-alkylene, amino-alkylene or amino-arylene oxy-arylene radicals. They are exemplified by Cellosolve, carbitol, phenoxyethanol, heptylphenyl-(oxypropylene) -H, octyl-(oxyethylene) -H, phenyl-(oxyoctylene) -l-I, m0no(heptylphenyl-oxypropylene)substituted glycerol, poly(styrene oxide), amino-ethanol, B-amino ethyl-pentanol, di(hydroxyethyl)amine, p-aminophenol, tri(hydroxypropyl)amine, N-hydroxyethyl ethylene diamine, N,N,N',N-tetrahydroxytrimethylene diamine, and the like. For the most part, the ether-alcohols having up to about 150 oxy-alkylene radicals in which the alkylene radical contains from 1 to about 8 carbon atoms are preferred.
The esters of this invention may be di-esters of succinic acids or acidic esters, i.e., partially esterified succinic acids; as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcoholic or phenolic hydroxyl radicals. Mixtures of the above-illustrated esters likewise are contemplated within the scope of the inventiOn.
The esters of this invention may be prepared by one of several methods. The method which is preferred because of convenience and superior properties of the esters it produces, involves the reaction of a suitable alcohol or phenol with a substantially hydrocarbon-substituted succinic anhydride. The esterification is usually carried out at a temperature above about C., preferably between C. and 300 C.
The water formed as a by-product is removed by distillation as the esterification proceeds. A solvent may be used in the esterification to facilitate mixing and temperature control. It also facilitates the removal of water from he reaction mixture. The useful solvents include xylene, toluene, diphenyl ether, chlorobenzene, and mineral oil.
The esters of this invention likewise may be obtained by the reaction of a substituted succinic acid or anhydride The esterification is illustrated by the reaction of ethylene glycol with a substituted succinic anhydride as represented by the equations below. with an epoxide or a mixture of an epoxide and water.
0 A. R-oH--il R-orr-ii-0-c2InoH 0 HOC2H4OH lH2COH CHE-C II (I) wherein R is a substantially hydrocarbon radical having at least about 50 aliphatic carbon atoms. It will be readily appreciated that the above equations are merely illus trative. Other products not represented by Formulas I, II, and III may be formed. Polymeric esters formed by the condensation of two or more molecules of each f the succinic acid reactant and the polyhydric alcohol reactant likewise may be formed. In most cases the product is a mixture of esters, the precise chemical composition and the relative proportions of which in the product are difficult to determine. Consequently, the product of such reaction is best described in terms of the process by which it is formed.
A modification of the above process involves the replacement of the substituted succinic anhydride with the corresponding succinic acid. However, succinic acids readily undergo dehydration at temperatures above about 100 C. and are thus converted to their anhydrides which are then esterified by the reaction with the alcohol reactant. In this regard, succinic acids appear to be the substantial equivalent of their anhydrides in the process.
The relative proportions of the succinic reactant and the hydroxy reactant Which are to be used depend to a large measure upon the type of the product desired and the number of hydroxyl groups present in the molecule of the hydroxy reactant. For instance, the formation of a Such reaction is similar to one involving the acid or anhydride with a glycol. For instance, the product represented by the structural Formula I above may be prepared by the reaction of a substituted succinic acid with one mole of ethylen oxide. Similarly, the product of Formula II may be obtained by the reaction of a substituted succinic acid with two moles of ethylene oxide. Other epoxides which are commonly available for use in such reaction include, for example, propylene oxide, styrene oxide, 1,2-butylene oxide, 2,3-butylene oxide, epichlorohydrin, cyclohexene oxide, 1,2-octylene oxide, epoxidized soya bean oil, methyl ester of 9,10-epoxy-stearic acid, and butadiene mono-epoxide. For the most part, the epoxides are the alkylene oxides in which the alkylene radical has from 2 to about 8 carbon atoms; or the epoxidized fatty acid esters in which the fatty acid radical has up to about 30 carbon atoms and the ester radical is derived from a lower alcohol having up to about 8 carbon atoms.
In lieu of the succinic acid or anhydride, a substituted succinic acid halide may be used in the processes illustrated above for preparing the esters of this invention. Such acid halides may be acid dibromides, acid dichlorides, acid monochlorides, and acid monobromides. The substituted succinic anhydrides and acids can be prepared by, for example, the reaction of maleic anhydride with a high molecular weight olefin or a halogenated hydrocarbon half ester of a succinic acid, i.e., one in which only one such as is obtained by the chlorination of an olefin polyof the two acid radicals is esterified, involves the use of mer described previously. The reaction involves merely one mole of a monohydric alcohol for each mole of the heating the reactants at a temperature preferably from substituted succinic acid reactant, whereas the formaabout 100 C. to about 250 C. The product from such tion of a diester of a succinic acid involves the use of two a reaction is an alkenyl succinic anhydride. The alkenyl moles of the alcohol for each mole of the acid. On the group may be hydrogenated to an alkyl group. The anhyother hand, one mole of a hexahydric alcohol may combine with as many as six moles of a succinic acid to form an ester in which each of the six hydroxyl radicals of the alcohol is esterified with one of the two acid radicals of the succinic acid. Thus, the maximum proportion of the succinic acid to be used with a polyhydric alcohol is determined by the number of hydroxyl groups present in the molecule of the hydroxy reactant. For the purposes of this invention, it has been found that esters obtained by the reaction of equi-molar amounts of the succinic acid reactant and hydroxy reactant have superior properties and are therefore preferred.
In some instances it is advantageous to carry out the esterification in the presence of a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst. The amount of the catalyst in the reaction may be as little as 0.01% (by weight of the reaction mixture), more often from about 0.1% to about 5%.
dride may be hydrolyzed by treatment with Water or steam to the corresponding acid. Another method useful for preparing the succinic acids or anhydrides involves the reaction of itaconic acid or anhydride with an olefin or a chlorinated hydrocarbon at a temperature usually within the range from about C. to about 250 C. The succinic acid halides can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride. These and other methods of preparing the succinic compounds are well known in the art and need not be illustrated in further detail here.
Still other methods of preparing the esters of this invention are available. For instance, the esters may be obtained by the reaction of maleic acid or anhydride with an alcohol such as is illustrated above to form a monoor di-ester of maleic acid and then the reaction of this ester with an olefin or a chlorinated hydrocarbon such as is illustrated above. They may also be obtained by first esterifying itaconic anhydride or acid and subsequently 7 reacting the ester intermediate with an olefin or a chlorinated hydrocarbon under conditions similar to those described hereinabove.
The following examples illustrate the esters of this invention and the processes for preparing such esters.
Example 1 A substantially hydrocarbon-substituted succinic anhydride is prepared by chlorinatin g a polyisobutene having a molecular weight of 1000 to a chlorine content of 4.5% and then heating the chlorinated polyisobutene with 1.2 molar proportions of maleic anhydride at a temperature of 150-220 C. The succinic anhydride thus obtained has an acid number of 130. A mixture of 874 grams (1 mole) of the succinic anhydride and 104 grams (1 mole) of neopentyl glycol is mixed at 240-250 C./30 mm. for 12 hours. The residue is a mixture of the esters resulting from the esterification of one and both hydroxy radicals of the glycol. It has a saponification number of 101 and an alcoholic hydroxyl content of 0.2%.
Example 2 The di-methyl ester of the substantially hydrocarbonsubstituted succinic anhydride of Example 1 is prepared by heating a mixture of 2185 grams of the anhydride, 480 grams of methanol, and 1000 cc. of toluene at 50-65 C. while hydrogen chloride is bubbled through the reaction mixture for 3 hours. The mixture is then heated at 60-65 C. for 2 hours, dissolved in benzene. washed with water, dried and filtered. The filtrate is heated at 150 C./60 mm. to rid it of volatile components. The residue is the defined di-methyl ester.
Example 3 The substantially hydrocarbon-substituted succinic anhydride of Example 1 is partially esterified with an ether-alcohol as follows. A mixture of 550 grams (0.63 mole) of the anhydride and 190 grams (0.32 mole) of a commercial polyethylene glycol having a molecular weight of 600 is heated at 240250 C. for 8 hours at atmospheric pressure and 12 hours at a pressure of 30 mm. Hg until the acid number of the reaction mixture is reduced to 28. The residue is an acidic ester having a saponification number of 85.
Example 4 A mixture of 926 grams of a plyisobutene-substituted succinic anhydride having an acid number of 121, 1023 grams of mineral oil, and 124 grams (2 moles per mole of the anhydride) of ethylene glycol is heated at 50l70 C. While hydrogen chloride is bubbled through the reaction mixture for 1.5 hours. The mixture is then heated to 250 C./ 30 mm. and the residue is purified by washing with aqueous sodium hydroxide followed by washing with water, then dried and filtered. The filtrate is a 50% oil solution of an ester having a saponification number of 48.
Example 5 A mixture of 438 grams of the polyisobutene-substituted succinic anhydride prepared as is described in Example 1 and 333 grams of a commercial polybutylene glycol having a molecular weight of 1000 is heated for hours at 150-160 C. The residue is an ester having a saponification number of 73 and an alcoholic hydroxyl content of 0.7%.
Example 6 The acidic ester of Example 3 (250 grams) is neutralizecl by mixing with 11 grams (10% excess on a chemical equivalent basis) of barium oxide, grams of methanol, and 267 grams of mineral oil at -60 C. The mixture is then heated to 150 C. to distill off volatile components and the residue is filtered. The filtrate is a mineral oil solution of a mixed ester-metal salt having a saponification number of 17 and a barium sulfate ash content of 4.6%.
8 Example 7 A mixture of 645 grams of the substantially hydrocarbon-substituted succinic anhydride prepared as is described in Example 1 and 44 grams of tetramethylene glycol is heated at -130 C. for 2 hours. To this mixture there is added 51 grams of acetic anhydride (esterification catalyst) and the resulting mixture is heated under reflux at l30l60 C. for 2.5 hours. Thereafter the volatile components of the mixture are distilled by heating the mixture to l96270 C./3O mm. and then at 240 C./0.15 mm. for 10 hours. The residue is an acidic ester having a saponification number of 121 and an acid number of 58.
Example 8 A mixted ester-metal salt is prepared as follows. A mixture of 1545 grams (1.5 moles) of the substituted succinic anhydride having an acid number of and prepared as is described in Example 1 and 46 grams (0.5 mole) of glycerol is heated at 150 C. for 3 hours whereupon the acid number of the reaction mixture is reduced to 68. It is then heated at 150-190 C. until the acid number is reduced to 53. To this mixture there is added portionwise grams (1.63 moles) of barium oxide together with 1500 grams of mineral oil and 50 cc. of water. The resulting mixture is heated to 90 C.- 100 C., diluted with 25 cc. of isopropyl alcohol and 100 cc. of benzene (solvent mixture), and heated under reflux for 3 hours. Volatile components are then removed by heating the mixture to 160 C./35 mm. and the residue filtered. The filtrate is a mineral oil solution of the mixed ester-barium salt having a barium sulfate content of 5.6%.
Example 9 A mixed ester-metal salt is prepared by the procedure of Example 8 except that pentaerythritol (51 grams, 0.38 mole) is used in place of glycerol. The product has a barium sulfate ash content of 4.9%.
Example 10 A mixed ester-metal salt is prepared as follows. A mixture is prepared from 1545 grams (1.5 moles) of a polyisobutene-substituted succinic anhydride having an acid number of 110 and 152 grams (0.19 mole) of an etheralcohol prepared by the reaction of a sucrose with 8 moles of propylene oxide. The mixture is heated at 139-l80 C. for 3 hours whereupon the acid number of the mixture is reduced to 45. It is diluted with 320 grams of mineral oil and heated at l70195 C. for 3.5 hours until the acid number is 42. To this mixture there are added 1180 grams of mineral oil, 50 grams of water, 50 cc. of isopropanol, and 128 grams (0.83 mole) of barium oxide at 70 C. The resulting mixture is heated at 90105 C. for 3 hours and dried at 158 C. The residue is filtered. The filtrate is a mineral oil solution of the mixed esterbarium salt having a barium sulfate ash content of 5.6%.
Example 11 A mixture of 456 grams of a polyisobutene-substituted succinic anhydride prepared as is described in Example 1 and 350 grams (0.35 mole) of the monophenyl ether of a polyethylene glycol having a molecular Weight of 1000 is heated at -155 C. for 2 hours. The product is an ester having a saponification number of 71, an acid number of 53, and an alcoholic hydroxyl content of 0.52%.
Example 12 An ester is prepared by heating at the reflux temperature for 10 hours a xylene solution of an equi-molar mixture of the polyisobutene-substituted succinic anhydride of Example 1 and a commercial polystyrene oxide having a molecular weight of 500 while water is removed by azeotropic distillation. The mixture is then heated to 160 C./l8 mm. The residue is an ester having a saponification number of 67, an acid number of 45, and an alcoholic hydroxyl content of 1.2%.
Example 13 A di-oleyl ester is prepared as follows. A mixture of 1 mole of a polyisobutene-substituted succinic anhydride, 2 moles of a commercial oleyl alcohol, 305 grams of xylene, and 5 grams of p-toluene sulfonic acid (esterfication catalyst) is heated at 150-173 C. for 4 hours whereupon 18 grams of water is collected as the distillate. The residue is washed with water and the organic layer dried and filtered. The filtrate is heated to 175 C./ 20 mm. and the residue is the defined ester.
Example 14 A di-oleyl ester is prepared by the procedure of Example 13 except that the substituted succinic anhydride used is prepared by the reaction of a chlorinated petroleum oil having a molecular weight of 800 with maleic anhydride.
Example 15 An ether-alcohol is prepared by the reaction of 9 moles of ethylene oxide with 0.9 mole of a polyisobutene-substituted phenol in which the polyisobutene substituent has a molecular weight of 1000. A substantially hydrocarbonsubstituted succinic acid ester of this ether-alcohol is prepared by heating a xylene solution of an equi-molar mixture of the two reactants in the presence of a catalytic amount of p-toluene sulfonic acid at 157 C. The ester is found to have a saponification number of 25 and an acid number of 10.
Example 16 A polyhydric alcohol is prepared by copolymerizing equi-molar proportions of styrene and allyl alcohol to a copolymer having a molecular weight of 1150 and containing an average of 5 hydroxyl radicals per mole. An ester of this alcohol is prepared as follows. A mixture of 340 grams (0.3 mole) of the alcohol and 1.5 moles of a polyisobutene-substituted succinic anhydride as is prepared in Example 1 in 500 grams of xylene is heated at 80 115 C., diluted with mineral oil, then heated to distill off xylene, and filtered. The filtrate is further esterfied by heating with propylene oxide (one equivalent per equivalent of the un-esterfied anhydride) at 70150 C. under reflux. The product is diluted with oil to an oil solution having an oil content of 40% Example 17 A substantially hydrocarbon-substituted succinic acid is prepared by chlorinating a polyisobutene having a molecular weight of 50,000 to a chlorine content of 3.9%, reacting the chlorinated polyisobutene with maleic anhydride to form a substituted succinic anhydride having an acid number of 20, and hydrolyzing the anhydride by treatment with steam at 102133 C. to the corresponding acid. A mixture of 315 grams of the acid (0.06 mole) and 10 grams (0.17 mole) of propylene oxide is heated at 90102 C. for 1 hour. The residue is then heated at 1001 10 C./1 mm. The above treatment with propylene oxide is repeated twice. The final product is found to have a saponification number of 20.
Example 18 An ester of an ether-alcohol is prepared by heating a toluene solution of an aqui-molar mixture of the substantially hydrocarbon-substituted succinic anhydride of Example 1 and a commercial polyethylene glycol at 97- 102 C. for 6 hours and then at 110 C./16 mm. The ester has a saponification number of 37 and an acid number of 26.
Example 19 A di-(hydroxypropy1)ester is prepared as follows: propylene oxide (58 grams, 1 mole) is added dropwise to a mixture of 0.5 mole of the substantially hydrocarbonsubstituted succinic anhydride of Example 1 and 8 grams (0.1 mole, esterification catalyst) of pyridine at 90 C. The mixture is heated at reflux for 1 hour, diluted with 400 grams of mineral oil and heated to 170/40 mm. The residue is filtered. The filtrate is a 40% mineral oil solution of the defined ester.
Example 20 An ester is obtained by heating a mixture of 525 grams of the substantially hydrocarbon-substituted succinic anhydride of Example 1, 422 grams of butyl 9,10-epoxystearate, and 9.5 grams of pyridine (esterification catalyst) at 200 C. for 2.5 hours. The mixture is diluted with 630 grams of mineral oil and heated to 210 C./20 mm. The residue is a mineral oil solution of the ester having a saponification number of 70, an acid number of 1.4, and an alcoholic hydroxyl content of 0.3%.
Example 21 An ester is prepared by the procedure of Example 20 except that the butyl 9,10-epoxystearate is replaced with dipentene di-epoxide (0.64 mole per mole of the anhydride used). A 40% mineral oil solution of the ester obtained has a saponification number of 54 and an acid number of 0.4.
Example 22 A partial ester of sorbitol is obtained by heating a xylene solution containing the substantially hydrocarbon substituted succinic anhydride of Example 1 and sorbitol (0.5 mole per mole of the anhydride) at 155 C. for 6 hours while water is removed by azeotropic distillation. The residue is filtered and the filtrate is heated at C./1l mm. to distill off volatile components. The residue is an ester having a saponification number of 97 and an alcoholic hydroxyl content of 1.5%.
Example 23 An ester is obtained by heating an aqui-molar mixture of dibutyl itaconate and chlorinated polyisobutene having a chlorine content of 4.7% and a molecular weight of 700 at 220 C. for 7 hours and then at 200 C./ 3 mm. The residue is filtered. The filtrate is the ester having a saponification number of 74.
Example 24 An ester is obtained by the further esterification of sorbitol mono-oleate with a substituted succinic anhydride as follows: a mixture of 126 grams of sorbitol mono-oleate, 770 grams of the substantially hydrocarbon substituted succinic anyhydride of Example 1, 588 grams of mineral oil, 500 cc. of xylene and 9 grams of p-toluene sulfonic acid (esterification catalyst) is heated at 140 C. while water is removed by azeotropic distillation. The residue is washed with water and dried at 150 C./20 mm. The product is a 40% mineral oil solution of an ester having a saponification number of 68.
Example 25 An ester is obtained by the procedure of Example 24 except that soribtol tri-oleate (272 grams) is used in place of sorbitan mono-oleate. The product is a 40% oil solution of the ester having a saponification number of 79.
Example 26 A substantially hydrocarbon-substituted succinic anhydride is prepared as is described in Example 1 except that a copolymer of 90 weight percent of isobutene and 10 weight percent of piperylene having a molecular weight of 66,000 is used in lieu of the polyisobutene used. The anhydride has an acid number of 22. An ester is prepared by heating a toulene solution of an equi-molar mixture of the above anhydride and a commercial alkanol consisting substantially of C1244 alcohols at the reflux temperature for 7 hours while water is removed 1 it by azeotropic distillation. The residue is heated at 150 C./ 3 mm. to remove volatile components and diluted with mineral oil. A 50% oil solution of the ester is found to have a saponification number of 17 and an acid number of 5.7.
Example 27 A substantially hydrocarbon-substituted succinic anhydride having an acid number of is obtained from maleic anhydride and a copolymer of 90 Weight percent of isobutene with 10 Weight percent of piperylene having a molecular weight of 20,000. An ester of the above anhydride with allyl alcohol is prepared by heating a toluene solution containing the anhydride and allyl alcohol (4 moles per mole of the anhydride) in the presence of a catalytic amount of p-toluene sulfonic acid at 110- 125 C. The residue is then treated with calcium hydroxide and filtered. The solvent is then removed from the filtrate and the residue is dissolved in a mineral oil to make up a 50% oil solution.
Example 28 An ester is obtained by the procedure of Example 24 except that 234 grams of a poly(oxyethylene) substituted sorbitol mono-oleate having a molecular Weight of 234 is used in place of sorbitol mono-oleate. The ester has a saponification number of 53.
The esters of this invention are useful for a Wide variety of purposes, as pesticides, plasticizers, rust-inhibiting agents, corrosion-inhibiting agents, extreme pressure agents, detergents, etc.
A principal utility of the esters is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose the esters depend for their effectiveness upon the size of the substantially hydrocarbon substitutent in the succinic radical. More particularly, it has been found that esters in which the substantially hydrocarbon substituent contain more than about 50 aliphatic carbon atoms are effective to impart detergent properties to a lubricant, especially under low temperature, or intermittently high and low temperature, service conditions. It has been further found that the detergent properties of the esters diminish sharply when the size of this substituent is less than about 50 aliphatic carbon atoms, so that esters having less than about aliphatic carbon atoms in this substituent are relatively ineffective for the purposes of this invention.
The lubricating oils in which the esters of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily, mineral lubricating oils are preferred by reason of their availability, general excellence, and low csot. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-Z-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about Saybolt Universal Seconds at 100 F. to about 200 Saybolt Universal Seconds at 210 F.
The concentration of the esters as additives in lubricants usually ranges from about 0.01% to about 10% by weight. The optimum concentration for a particular application depends to a large extent upon the type of service to which the lubricants are to be subjected. Thus, for example, lubricants for use in gasoline engines may contain from about 0.5 to about 5% of the additive Whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the additive This invention contemplates also the presence of other additives in the lubricating compositions. Such additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents.
The ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.
The term basic salt is use to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about C. and filtering the resulting mass. The use of a promoter" in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances, such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance, alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl beta-naphthylamine, and dodecylamine. A particularly eifective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 200 C.
The preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
The preparation of a basic barium salt of a phosphorus acid is illustrated as follows: A polyisobutene having a molecular weight of 50,000 is mixed with 10% by weight of phosphorus pentasulfide at 200 C. for 6 hours. The resulting product is hydrolyzed by treatment with Steam at to produce an acidic intermediate. The acidic intermediate is then converted to a basic salt by mixing with twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonatin-g the mixtture at 150 C. to produce a fluid product.
The esters of this invention are especially adapted for use in combination with extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates. the Group 11 metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl-polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids. Combinations of the esters of this invention with any of the above-mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.
The Group 11 metal phosphorodithioates are the salts of acids having the formula in which R and R are substantially hydrocarbon radicals. The metals for forming such salts are exemplified by barium calcium, strontium, zinc, and cadmium. The barium and zinc phosphorodithioates are especially preferred. The substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group. Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc. Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc. Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals. Other substantially hydrocarbon radicals likewise are use ful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc. Many substituted hydrocarbon radicals may also be used, e.'g., chloropentyl, dichlorophenyl, and dichlorodecyl.
The availability of the phosphorodithioic acids from which the Group II metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C. Thus the preparation of o,o-di-n hexylphosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100 C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid. The preparation of the zinc or barium salt of this acid may be eflected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is sufficient to cause the reaction to take place and the resulting product is sufiiciently pure for the purpose of this invention.
Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols. The use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids. Thus a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate. For the same reason mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide. The metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates. The epoxides may be alkylene oxides or arylalkylene oxides. The arylalkylene oxides are exemplified by styrene oxide, pethylstyrene oxide, alpha-methylstyrene oxide, 3-betanaphthyl-1,3-butylene oxide, m-dodecylstyrene oxide, and p-chlorostyrene oxide. The alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms. Examples of such lower alkylene oxides are ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene Lmonoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin. Other epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.
The adduct may be obtained by simply mixing the phosphorodithioate and the epoxide. The reaction is usually exothermic and may be carried out within wide temperature limits from about C. to about 200 C.
Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction. The reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
The chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the prosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
The lubricating compositions may contain metal detergent additives in amounts usually within the range of from about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
The following examples are illustrative of the lubricating compositions of this invention: (all percentages are by weight.)
EXAMPLE I SAE 20 mineral lubricating oil containing 0.5% of the product of Example 1.
EXAMPLE II SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
EXAMPLE III SAE l0W-30 mineral lubricating oil containing 0.4% of the product of Example 3.
EXAMPLE IV SAE mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc salt of an equi-molar mixture of di-cyclohexylphosphorodithioic acid and di-isobutyl phosphorodithioic acid.
EXAMPLE V SAE 30 mineral lubricating oil containing 2% of the product of Example 12.
EXAMPLE VI SAE 20W-30 mineral lubricating oil containing 5% of the product of Example 24.
EXAMPLE VII SAE l0W-30 mineral lubricating oil containing 1.5% of the product of Example 2 and 0.05% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.
EXAMPLE VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 26 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.
EXAIMPLE IX SA-E 10W-30 mineral lubricating oil containing 2% of the product of Example 2, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
EXAMPLE X SAE 30 mineral lubricating oil containing 5% of the product of Example 10, 0.1% of phosphorus as the zinc 15 salt of a mixture of equi-molar amounts of di-isopropyl phosphorodithioic acid and di-n-decylphosphorodithioic acid, and 2.5% of sulfate ash as a basic barium detergent prepared by carbonating at 150 C. a mixture comprising mineral oil, barium di-dodecylbenzene sulfonate and 1.5 moles of barium hydroxide in the presence of a small amount of water and 0.7 mole of octylphenol as the promoter.
EXAMPLE XI SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 17, 0.075% of phosphorus as zinc di-n-octylphosphorodithioatc, and of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.
EXAMPLE XII SAE mineral lubricating oil containing 2% of the product of Example 25, 0.075% of phosphorus as the adduct of zinc di-cyclohexylphosphorodithioate treated with 0.3 mole of ethylene oxide, 2% of a sulfurized sperm oil having a sulfur content of 10%, 3.5% of a poly-(alkyl methacrylate) viscosity index improvcr, 0.02% of a poly-(alkyl methacrylate) pour point depressant, 0.003% of a poly-(alkyl siloxane) anti-foam agent.
EXAMPLE XIII SAE 10 mineral lubricating oil containing 1.5% of the product of Example 14, 0.075% of phosphorus as the adduct obtained by heating Zinc dinonylphosphorodithioate with 0.25 mole of 1,2-hexene oxide at 120 C., a sulfurized methyl ester of tall oil acid having a sulfur content of 6% of a polybutene viscosity index improvcr, 0.005% of a poly-(alkyl methacrylate) antifoam agent, and 0.5 of lard oil.
EXAMPLE XIV SAE mineral lubricating oil containing 1.5% of the product of Example 2, 0.5% of di-dodecyl phosphite, 2% of the sulfurized sperm oil having a sulfur content of 9%, a basic calcium detergent prepared by carbonating a mixture comprising mineral oil, calcium mahogany sulfonate and 6 moles of calcium hydroxide in the presence of an equi-molar mixture (10% of the mixture) of methyl alcohol and n-butyl alcohol as the promoter at the reflux temperature.
EXAMPLE XV SAE 10 mineral lubricating oil containing of the product of Example 9, 0.07% of phosphorus as zinc dioctylphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide the hydrolyzed reaction product of a polypropylene (molecular weight of 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (weight) of decyl-methacrylate and 5% (weight) of diethylaminoethylacrylate.
EXAMPLE XVI SAE 80 mineral lubricating oil containing 2% of the product of Example 20, 0.1% of phosphorus as zinc din-hexylphosphorodithioate, 10% of a chlorinated parafiin wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% of oleyl amide, 0.003% of an anti-foam agent, 0.02% of a pour point depressant, and 3% Of a viscosity index improver.
1 6 EXAMPLE XVH SAE 10 mineral lubricating oil containing 3% of the product of Example 2, 0.075 of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equi-molar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at 150 C.
EXAMPLE XVIII SAE 20 mineral lubricating oil containing 2% of the product of Example 12 and 0.07% of phosphorus as zinc di-n-octylphosphorodithioate.
EXAMPLE XIX SAE 30 mineral lubricating oil containing 3% of the product of Example 14 and 0.1% of phosphorus as zinc di- (isobutylphenyl) -phosphorodithio ate.
EXAMPLE XX SAE 50 mineral lubricating oil containing 2% of the product of Example 15.
EXAMPLE XXI SAE mineral lubricating oil containing 3% of the product of Example 18 and 0.2% of phosphorus as the reaction product of 4 moles of turpentine with 1 mole of phosphorus pentasulfide.
EXAMPLE XXII SAE 90 mineral lubricating oil containing 3% of the product of Example 19 and 0.2% of 4,4'-rnethylene-bis (2,6-di-tert-butylphenol) EXAMPLE XXIII SAE 30 mineral lubricating oil containing 2% of the product of Example 22 and 0.1% of phosphorus as phenylethyl di-cyclohexylphosphorodithioate.
EXAMPLE XXIV SAE 90 mineral lubricating oil containing 5% of the product of Example 2 and 1% of the calcium salt of the sulfurized phenol obtained by the reaction of 2 moles of heptylphenol with 1 mole of sulfur.
The above lubricants are merely illustrative and the scope of the invention includes the use of all of the additives previously illustrated as Well as others within the broad concept of this invention described herein.
The eifectiveness of the esters of this invention as detergent additives in lubricating compositions is shown by the results in Table I of the modified CRCEX3 engine test (the modification consists of extending the test period from the specified 96 hours to 144 hours, thus making the test more severe). The test is recognized in the field as an important test by which lubricants can be evaluated for use under relatively light duty or intermittently high and low temperature service conditions such as are encountered in the operation of automobiles in urban use. In this test, the lubricant is used in the crankcase of a 1954 6-cylinder Chevrolet Power-glide engine operated for 144 hours under recurring cyclic conditions, each cycle consisting of: 2 hours at engine speed of 500 rpm. under no load, oil sump temperature of 125 F., and air:fuel ratio of 10.1; and 2 hours at an engine speed of 2500 r.p.m. under a load of 40 brake horsepower, oil sump temperature of 240280 F., and an airzfuel ratio of 16:1. At the end of the test the lubricant is rated in terms of (1) the extent of piston filling, (2) the amount of sludge formed in the engine (rating scale of 80-0, 80 being indicative of no sludge and 0 being indicative of extremely heavy sludge) (3) the total amount of engine deposits, i.e., sludge and varnish formed in the engine (rating scale of 100-0, 100 being indicative of no deposit and 0 being indicative of extremely heavy deposits).
The lubricating oil base used in the lubricants tested in a SAE 20 mineral lubricating oil.
1. An oil-soluble ester selected from the class consisting of acidic esters, diesters, and mixtures thereof, said esters being esters of substantially saturated polymerized olefin-substituted succinic acid and monoor polyhydric aliphatic alcohols having up to 40 carbon atoms, wherein the polymerized olefin substituent has at least about 50 aliphatic carbon atoms and a molecular weight of about 700 to about 5000, having no more than about olefinic linkages based on the total number of carbon-tocarbon covalent linkages in said substituent.
2. An ester according to claim 1 wherein said polymerized olefin substituent is polymerized l-mono-olefin substituent.
3. An ester according to claim 2 wherein said l-monoolefin is selected from the class consisting of propene and isobutene.
4. An ester according to claim 1 wherein said polymerized olefin substituent is an interpolymerized olefin substituent.
5. An ester according to claim 1 wherein said hydroxy compound is a polyhydric alcohol having up to 40 aliphatic carbon atoms and from 2 to about hydroxy radicals.
6. An ester according to claim 5 wherein the polyhydric alcohol has at least 3 hydroxy radicals and is partially esterified with an aliphatic hydrocarbon monocarboxylic acid having from 8 to 30 carbon atoms.
7. An ester according to claim 5 wherein said polymerized olefin substituent is an interpolymerized olefin substituent.
8. An ester according to claim 5 wherein said polymerized olefin substituent is polymerized l-mono-olefin substituent.
9. An ester according to claim 8 wherein said l-monoolefin is selected from the class consisting of propene and isobutene.
10. An ester according to claim 9 wherein said 1- mono-olefin is isobutene.
11. An ester according to claim 10 wherein said polyhydric alcohol is selected from the class consisting of glycerol, pentaerythritol, and sorbitol.
12. An ester according to claim 10 which is an ester of pentaerythritol.
13. An oil-soluble ester selected from the class consisting of acidic esters, diesters, and mixtures thereof of an oxyalkylene ether alcohol having up to about 150 oxyalkylene radicals in which the alkylene radical contains from 1 to about 8 carbon atoms and a substantially saturated polymerized olefin-substituted succinic acid wherein the substantially saturated polymerized olefin substituent has at least about 50 aliphatic carbon atoms and a molecular weight of about 700 to about 5000 with no more than about 5% olefinic linkages based on the total number of carbon-to-carbon covalent linkages in said substituent.
14. An ester according to claim 13 wherein said polymerized olefin substituent is polymerized l-mono-olefin substituent.
15. An ester according to claim 14 wherein said 1- mono-olefin is selected from the class consisting of propene and isobutene.
16. An ester according to claim 6 wherein said alcohol is sorbitol monooleate.
17. An ester according to claim 10 wherein said polyhydric alcohol is sorbitol.
18. An ester according to claim 14 wherein said polymerized olefin substituent is polymerized isobutene and said oxyalkylene ether alcohol is selected from the class consisting of polybutylene glycol and monophenyl ether of polyethylene glycol.
References Cited UNITED STATES PATENTS Re. 24,287 3/1957 Smith.
2,883,367 4/1959 Dazzi 26078.4 2,933,468 4/1960 Aldridge et a1. 260297 3,255,108 6/1966 Wiese 25232.7 2,469,371 5/1949 Colbeth. 2,903,382 9/1959 Berls 117-143 2,973,344 2/1961 Fasce. 3,184,474 5/1965 Catle et al 260485 3,197,409 7/1965 de Vries 252-56 3,219,666 11/1965 Norman et al. 2,294,259 8/ 1942 Van Peski. 2,561,232 7/1951 Rudel. 2,575,195 11/1951 Smith. 2,575,196 11/1951 Smith. 2,647,872 8/ 1953 Peterson 25228 2,682,489 6/1954 Von Fuchs 25256 2,825,723 3/1958 Ballauf et a1. 26094.9 2,944,025 7/ 1960 Verdol 252-5 1.5 3,037,051 5/1962 Stromberg 260485 3,047,504 7/ 1962 Peters et al 2525 6 3,057,892 10/1962 DeGrotte. 3,086,043 4/1963 Gaertner 260485 3,155,686 11/1964 Prell et a1. 3,062,745 11/1962 Gaynor 25256 3,117,091 1/1964 Staker 25256 2,999,868 9/ 1961 Phillips 260485 FOREIGN PATENTS 793,07 0 4/ 1958 Great Britain.
LORRAINE A. WEINBERGER, Primary Examiner.
I. R. PELLMAN, T. L. GALLOWAY,
Assistant Examiners.
US567320A 1963-04-23 1966-07-22 Polymerized olefin substituted succinic acid esters Expired - Lifetime US3381022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US567320A US3381022A (en) 1963-04-23 1966-07-22 Polymerized olefin substituted succinic acid esters

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US27490563A 1963-04-23 1963-04-23
US56705266A 1966-07-22 1966-07-22
US567320A US3381022A (en) 1963-04-23 1966-07-22 Polymerized olefin substituted succinic acid esters
US86608469A 1969-10-03 1969-10-03
US86608169A 1969-10-03 1969-10-03
US1133570A 1970-02-13 1970-02-13

Publications (1)

Publication Number Publication Date
US3381022A true US3381022A (en) 1968-04-30

Family

ID=27555696

Family Applications (1)

Application Number Title Priority Date Filing Date
US567320A Expired - Lifetime US3381022A (en) 1963-04-23 1966-07-22 Polymerized olefin substituted succinic acid esters

Country Status (1)

Country Link
US (1) US3381022A (en)

Cited By (467)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448049A (en) * 1967-09-22 1969-06-03 Rohm & Haas Polyolefinic succinates
US3451933A (en) * 1967-08-11 1969-06-24 Rohm & Haas Formamido-containing alkenylsuccinates
US3509052A (en) * 1968-09-13 1970-04-28 Lubrizol Corp Lubricating compositions
DE2022651A1 (en) * 1969-05-12 1970-11-19 Lubrizol Corp Process for the production of additives for hydrocarbons
US3658494A (en) * 1969-01-21 1972-04-25 Lubrizol Corp Fuel compositions comprising a combination of monoether and ashless dispersants
US3658495A (en) * 1968-08-05 1972-04-25 Lubrizol Corp Fuel compositions comprising a combination of oxy compounds and ashless dispersants
US3699154A (en) * 1971-01-18 1972-10-17 Petrolite Corp Reaction products of wax-anhydride compounds and alcohol
US3714042A (en) * 1969-03-27 1973-01-30 Lubrizol Corp Treated overbased complexes
US3720615A (en) * 1969-08-11 1973-03-13 Kao Corp Oil-soluble rust preventive composition
US3755239A (en) * 1971-05-24 1973-08-28 Phillips Petroleum Co Dispersants for dissolution of elastomers in solvents
US3793203A (en) * 1971-05-17 1974-02-19 Sun Oil Co Lubricant comprising gem-structured organo compound
US3819386A (en) * 1971-12-20 1974-06-25 Lubrizol Corp Rheology modifiers for inks
US3920414A (en) * 1972-10-27 1975-11-18 Exxon Research Engineering Co Crude oils containing nitrogen dispersants and alkoxylated ashless surfactants usable as diesel fuels
US3933511A (en) * 1970-08-17 1976-01-20 Petrolite Corporation Polishes containing wax-anhydride compounds
US3933512A (en) * 1970-08-17 1976-01-20 Petrolite Corporation Carbon paper inks containing wax-anhydride compounds
US3936480A (en) * 1971-07-08 1976-02-03 Rhone-Progil Additives for improving the dispersing properties of lubricating oil
DE2608971A1 (en) * 1975-03-06 1976-09-09 Shell Int Research RESIDUAL HEATING OIL
US3991098A (en) * 1971-11-30 1976-11-09 Toa Nenryo Kogyo Kabushiki Kaisha Lubricating oil additive, process for the synthesis thereof and lubricating oil additive composition
US3993493A (en) * 1969-01-03 1976-11-23 Petrolite Corporation Inks containing isocyanated imides of hydrocarbon anhydrides and blends thereof
US4029694A (en) * 1971-09-01 1977-06-14 Basf Wyandotte Corporation Antistatic agents for melt-formed polymers
US4031118A (en) * 1973-09-17 1977-06-21 The Lubrizol Corporation Ester-containing process and compositions
US4053426A (en) * 1975-03-17 1977-10-11 Mobil Oil Corporation Lubricant compositions
US4072618A (en) * 1976-08-27 1978-02-07 Mobil Oil Corporation Metal working lubricant
US4072474A (en) * 1974-09-13 1978-02-07 Rohm And Haas Company Motor fuel composition
DE2757767A1 (en) * 1977-02-14 1978-10-19 Exxon Research Engineering Co LAKTONESTER, THE PROCESS FOR THEIR MANUFACTURING AND THEIR USE AS ADDITIVES
US4129508A (en) * 1977-10-13 1978-12-12 The Lubrizol Corporation Demulsifier additive compositions for lubricants and fuels and concentrates containing the same
FR2401218A1 (en) * 1977-08-22 1979-03-23 Exxon Research Engineering Co COMPOSITION BASED ON LUBRICATING OIL STABLE IN STORAGE AND ITS PRODUCTION PROCESS
FR2404668A1 (en) * 1977-10-03 1979-04-27 Exxon Research Engineering Co COMPOSITION OF LUBRICATING OIL ADDITIONED TO A POLYOL ESTER AND AN IMIDE
US4159958A (en) * 1978-06-30 1979-07-03 Chevron Research Company Succinate dispersant combination
JPS5521402A (en) * 1969-05-12 1980-02-15 Lubrizol Corp Ester contained composition
US4219431A (en) * 1976-07-28 1980-08-26 Mobil Oil Corporation Aroyl derivatives of alkenylsuccinic anhydride as lubricant and fuel additives
US4237020A (en) * 1979-08-20 1980-12-02 Edwin Cooper, Inc. Lubricating and fuel compositions containing succinimide friction reducers
US4239633A (en) * 1979-06-04 1980-12-16 Exxon Research & Engineering Co. Molybdenum complexes of ashless polyol ester dispersants as friction-reducing antiwear additives for lubricating oils
US4240916A (en) * 1976-07-09 1980-12-23 Exxon Research & Engineering Co. Pour point depressant additive for fuels and lubricants
US4255160A (en) * 1979-03-09 1981-03-10 Standard Oil Company (Indiana) Flow improver for heavy petroleum products comprising alkenyl succinate diester
US4255589A (en) * 1979-06-29 1981-03-10 Exxon Research & Engineering Co. Process for the production of oil-soluble polyol esters of dicarboxylic acid materials in the presence of a metal salt of a hydroxy aromatic compound
US4277417A (en) * 1978-12-29 1981-07-07 Exxon Research & Engineering Co. Hydrocarbon soluble sulfonated polyols, esters of hydrocarbon substituted C4 -C10 dicarboxylic acids with polyols and sulfonic acid, processes therefor, and lubricating compositions thereof
US4292186A (en) * 1979-12-04 1981-09-29 Mobil Oil Corporation Metal complexes of alkylsuccinic compounds as lubricant and fuel additives
US4321091A (en) * 1978-09-27 1982-03-23 Sumitomo Electric Industries, Ltd. Method for producing hot forged material from powder
US4344853A (en) * 1980-10-06 1982-08-17 Exxon Research & Engineering Co. Functional fluid containing metal salts of esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols as antioxidants
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
WO1985003504A2 (en) * 1984-02-09 1985-08-15 The Lubrizol Corporation Process for making substituted carboxylic acids and derivatives thereof
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4589993A (en) * 1982-12-27 1986-05-20 Exxon Research & Engineering Co. Power transmission shift fluids containing two-component friction modifier additive
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613679A (en) * 1977-08-01 1986-09-23 Eastman Kodak Company Emulsifiable modified polymers
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4617134A (en) * 1980-11-10 1986-10-14 Exxon Research And Engineering Company Method and lubricant composition for providing improved friction reduction
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
EP0207738A1 (en) * 1985-07-01 1987-01-07 Exxon Research And Engineering Company Solution process for preparing metal salt esters of hydrocarbyl substituted succinic acid or anhydride and alkanols
US4689166A (en) * 1986-07-17 1987-08-25 Pennzoil Product Company Succinic acid esters and hydraulic fluids thereform
EP0240327A2 (en) 1986-03-31 1987-10-07 Exxon Chemical Patents Inc. Cyclic phosphate additives and their use in oleaginous compositions
US4702850A (en) * 1980-10-06 1987-10-27 Exxon Research & Engineering Co. Power transmitting fluids containing esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols
US4720555A (en) * 1986-09-12 1988-01-19 Pennzoil Products Company Hydrocarbyl anhydrides
US4784784A (en) * 1986-07-17 1988-11-15 Pennzoil Products Company Succinic acid esters and hydraulic fluids therefrom
US4803004A (en) * 1985-02-19 1989-02-07 Mobil Oil Corporation Reaction products of alkenylsuccinic compounds with aromatic amines and hindered alcohols and lubricant compositions thereof
US4820432A (en) * 1987-07-24 1989-04-11 Exxon Chemical Patents Inc. Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions
US4866140A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
US4866141A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same
US4866142A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US4866135A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Heterocyclic amine terminated, lactone modified, aminated viscosity modifiers of improved dispersancy
US4866139A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified, esterified dispersant additives useful in oleaginous compositions
US4877557A (en) * 1987-02-12 1989-10-31 Mitsui Petrochemical Industries, Ltd. Lubricating oil composition
EP0351964A1 (en) 1988-06-24 1990-01-24 Exxon Chemical Patents Inc. Synergistic combination of additives useful in power transmitting compositions
US4906394A (en) * 1986-10-07 1990-03-06 Exxon Chemical Patents Inc. Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions
US4909952A (en) * 1989-01-03 1990-03-20 The Lubrizol Corporation Sulfur-containing polymeric polyesters and additive concentrates and lubricating oils containing same
US4933098A (en) * 1988-04-06 1990-06-12 Exxon Chemical Patents Inc. Lactone modified viscosity modifiers useful in oleaginous compositions
US4936866A (en) * 1986-10-07 1990-06-26 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US4943382A (en) * 1988-04-06 1990-07-24 Exxon Chemical Patents Inc. Lactone modified dispersant additives useful in oleaginous compositions
US4954276A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
US4954572A (en) * 1988-11-07 1990-09-04 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy alcohols
US4954277A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same
US4957645A (en) * 1988-02-29 1990-09-18 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US4957649A (en) * 1988-08-01 1990-09-18 The Lubrizol Corporation Lubricating oil compositions and concentrates
US4963275A (en) * 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
US4971711A (en) * 1987-07-24 1990-11-20 Exxon Chemical Patents, Inc. Lactone-modified, mannich base dispersant additives useful in oleaginous compositions
EP0399764A1 (en) 1989-05-22 1990-11-28 Ethyl Petroleum Additives Limited Lubricant compositions
US5026495A (en) * 1987-11-19 1991-06-25 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5030369A (en) * 1988-02-29 1991-07-09 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5032320A (en) * 1986-10-07 1991-07-16 Exxon Chemical Patents Inc. Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions
AU613128B2 (en) * 1988-05-26 1991-07-25 Lubrizol Corporation, The Polymeric polysuccinate esters and lubricating compositions comprising same
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
US5053150A (en) * 1988-02-29 1991-10-01 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5057617A (en) * 1988-11-07 1991-10-15 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy thiols
US5064546A (en) * 1987-04-11 1991-11-12 Idemitsu Kosan Co., Ltd. Lubricating oil composition
US5085788A (en) * 1987-11-19 1992-02-04 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5124055A (en) * 1988-03-31 1992-06-23 Ethyl Petroleum Additives, Inc. Lubricating oil composition
WO1992021736A1 (en) 1991-05-30 1992-12-10 The Lubrizol Corporation Two-cycle lubricant and method of using same
US5176841A (en) * 1989-11-17 1993-01-05 Akzo N.V. Compositions from α,β-unsaturated dicarboxylic acid esters and olefinically unsaturated compounds which are particularly suitable for use as lubricants and lubricant additives and a process for the preparation of such compositions
US5205947A (en) * 1988-11-07 1993-04-27 Exxon Chemical Patents Inc. Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products
US5217634A (en) * 1988-02-29 1993-06-08 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
EP0558835A1 (en) 1992-01-30 1993-09-08 Albemarle Corporation Biodegradable lubricants and functional fluids
US5256325A (en) * 1988-02-29 1993-10-26 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5273672A (en) * 1987-03-02 1993-12-28 Idemitsu Kosan Company Limited Lubricating oil composition containing a partial ester of a polyhydric alcohol and a substituted succinic acid ester
US5275748A (en) * 1988-02-29 1994-01-04 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5286799A (en) * 1992-07-23 1994-02-15 Chevron Research And Technology Company Two-step free radical catalyzed process for the preparation of alkenyl succinic anhydride
US5319030A (en) * 1992-07-23 1994-06-07 Chevron Research And Technology Company One-step process for the preparation of alkenyl succinic anhydride
US5328622A (en) * 1989-01-30 1994-07-12 Exxon Chemical Patents Inc. Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds
US5330662A (en) * 1992-03-17 1994-07-19 The Lubrizol Corporation Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
EP0611818A1 (en) 1990-07-31 1994-08-24 Exxon Chemical Patents Inc. Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing the same
US5356552A (en) * 1993-03-09 1994-10-18 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Chlorine-free lubricating oils having modified high molecular weight succinimides
US5380465A (en) * 1985-09-05 1995-01-10 Imperial Chemical Industries Plc Emulsifiers for polymerization process
US5430105A (en) * 1992-12-17 1995-07-04 Exxon Chemical Patents Inc. Low sediment process for forming borated dispersant
US5444135A (en) * 1992-12-17 1995-08-22 Exxon Chemical Patents Inc. Direct synthesis by living cationic polymerization of nitrogen-containing polymers
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
EP0713907A2 (en) 1994-09-26 1996-05-29 Ethyl Petroleum Additives Limited Zinc additives of enhanced performance capabilities
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5558802A (en) * 1995-09-14 1996-09-24 Exxon Chemical Patents Inc Multigrade crankcase lubricants with low temperature pumpability and low volatility
US5565528A (en) * 1993-12-13 1996-10-15 Chevron Chemical Company Polymeric dispersants having polyalkylene and succinic groups
US5620946A (en) * 1992-03-17 1997-04-15 The Lubrizol Corporation Compositions containing combinations of surfactants and derivatives of succininc acylating agent or hydroxyaromatic compounds and methods of using the same
US5625004A (en) * 1992-07-23 1997-04-29 Chevron Research And Technology Company Two-step thermal process for the preparation of alkenyl succinic anhydride
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
EP0776963A1 (en) 1995-12-01 1997-06-04 Chevron Chemical Company Polyalkylene succinimides and post-treated derivatives thereof
US5637557A (en) * 1992-03-17 1997-06-10 The Lubrizol Corporation Compositions containing derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
EP0778333A2 (en) 1995-11-09 1997-06-11 The Lubrizol Corporation Carboxylic compositions, derivatives, lubricants, fuels and concentrates
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5716912A (en) * 1996-04-09 1998-02-10 Chevron Chemical Company Polyalkylene succinimides and post-treated derivatives thereof
EP0831104A2 (en) 1996-08-20 1998-03-25 Chevron Chemical Company Novel dispersant terpolymers
US5753597A (en) * 1996-08-20 1998-05-19 Chevron Chemical Company Polymeric dispersants
US5756428A (en) * 1986-10-16 1998-05-26 Exxon Chemical Patents Inc. High functionality low molecular weight oil soluble dispersant additives useful in oleaginous composition
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US5861363A (en) * 1998-01-29 1999-01-19 Chevron Chemical Company Llc Polyalkylene succinimide composition useful in internal combustion engines
US5876467A (en) * 1994-02-15 1999-03-02 Basf Aktiengesellschaft Use of carboxylic esters as fuel additives or lubricant additives and their preparation
US5880070A (en) * 1996-08-20 1999-03-09 Chevron Chemical Company Cross-linked succinimides from an acid derivative, a polyamine, and a polycarboxylic acid derivative
US5900466A (en) * 1995-09-08 1999-05-04 Shell Oil Company Polyolefin-substituted dicarboxylic derivatives
AU710644B2 (en) * 1994-12-20 1999-09-23 Sasol Chemical Industries Limited Emulsifier
US5964907A (en) * 1996-08-14 1999-10-12 Akzo Nobel N.V. Fuel compositions containing esteramines
US6015776A (en) * 1998-09-08 2000-01-18 Chevron Chemical Company Polyalkylene polysuccinimides and post-treated derivatives thereof
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6107450A (en) * 1998-12-15 2000-08-22 Chevron Chemical Company Llc Polyalkylene succinimides and post-treated derivatives thereof
EP1063276A1 (en) * 1999-06-22 2000-12-27 Ethyl Corporation Phosphorylated thermal stability additives for distillate fuels
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
US6214775B1 (en) 1999-10-13 2001-04-10 Chevron Chemical Company Llc Haze-free post-treated succinimides
US6306802B1 (en) 1994-09-30 2001-10-23 Exxon Chemical Patents Inc. Mixed antioxidant composition
WO2002002720A2 (en) * 2000-07-03 2002-01-10 The Associated Octel Company Limited Fuel additives
US20030130140A1 (en) * 2001-11-09 2003-07-10 Harrison James J. Polymeric dispersants prepared from copolymers of low molecular weight polyisobutene and unsaturated acidic reagent
US6617287B2 (en) 2001-10-22 2003-09-09 The Lubrizol Corporation Manual transmission lubricants with improved synchromesh performance
US20030173251A1 (en) * 2000-12-22 2003-09-18 Antonio Gutierrez Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions
US6624123B2 (en) * 1997-04-11 2003-09-23 Chevron Chemical S.A. Use of surfactants with high molecular weight for improving the filterability in hydraulic lubricants
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US6642191B2 (en) 2001-11-29 2003-11-04 Chevron Oronite Company Llc Lubricating oil additive system particularly useful for natural gas fueled engines
US20030224948A1 (en) * 2002-02-14 2003-12-04 Dam Willem Van Lubricating oil additive comprising EC-treated succinimide, borated dispersant and corrosion inhibitor
US6756348B2 (en) 2001-11-29 2004-06-29 Chevron Oronite Company Llc Lubricating oil having enhanced resistance to oxidation, nitration and viscosity increase
US20040147410A1 (en) * 2003-01-15 2004-07-29 Milner Jeffrey L Extended drain, thermally stable, gear oil formulations
US20040235682A1 (en) * 2003-05-22 2004-11-25 Chevron Oronite Company Llc Low emission diesel lubricant with improved corrosion protection
US20040260027A1 (en) * 2003-06-20 2004-12-23 Michaud Vincent Jean Marie Process for forming polyalkenyl acylating agents
US20040260032A1 (en) * 2003-06-20 2004-12-23 Irving Matthew David Low sediment process for thermally reacting highly reactive polymers and enophiles
EP1503316A1 (en) 2003-07-30 2005-02-02 Ethyl Petroleum Additives, Inc. Fuel consumption economy credits method
US20050059561A1 (en) * 2003-09-17 2005-03-17 Nubar Ozbalik Power transmitting fluids and additive compositions
US20050065043A1 (en) * 2003-09-23 2005-03-24 Henly Timothy J. Power transmission fluids having extended durability
US20050070446A1 (en) * 2003-09-25 2005-03-31 Ethyl Petroleum Additives, Inc. Boron free automotive gear oil
US20050101497A1 (en) * 2003-11-12 2005-05-12 Saathoff Lee D. Compositions and methods for improved friction durability in power transmission fluids
US20050101494A1 (en) * 2003-11-10 2005-05-12 Iyer Ramnath N. Lubricant compositions for power transmitting fluids
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
US20050202979A1 (en) * 2004-03-10 2005-09-15 Ethyl Petroleum Additives, Inc. Power transmission fluids with enhanced extreme pressure characteristics
US20050202981A1 (en) * 2003-08-01 2005-09-15 The Lubrizol Corporation Mixed dispersants for lubricants
US20050209112A1 (en) * 2004-03-16 2005-09-22 The Lubrizol Corporation, A Corporation Of The State Of Ohio Hydraulic composition containing a substantially nitrogen free dispersant
US20060003905A1 (en) * 2004-07-02 2006-01-05 Devlin Cathy C Additives and lubricant formulations for improved corrosion protection
US20060025314A1 (en) * 2004-07-28 2006-02-02 Afton Chemical Corporation Power transmission fluids with enhanced extreme pressure and antiwear characteristics
US20060025313A1 (en) * 2004-07-29 2006-02-02 Chevron Oronite Company Llc Lubricating oil composition for internal combustion engines
US20060135375A1 (en) * 2004-12-21 2006-06-22 Chevron Oronite Company Llc Anti-shudder additive composition and lubricating oil composition containing the same
WO2006094011A2 (en) 2005-03-01 2006-09-08 R.T. Vanderbilt Company, Inc. Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
US20060217273A1 (en) * 2005-03-23 2006-09-28 Nubar Ozbalik Lubricating compositions
US20060223716A1 (en) * 2005-04-04 2006-10-05 Milner Jeffrey L Tractor fluids
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
US20060287202A1 (en) * 2005-06-15 2006-12-21 Malcolm Waddoups Low ash or ashless two-cycle lubricating oil with reduced smoke generation
US20070027267A1 (en) * 2005-04-29 2007-02-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20070042917A1 (en) * 2005-07-12 2007-02-22 Ramanathan Ravichandran Amine Tungstates and Lubricant Compositions
EP1757673A1 (en) 2005-08-23 2007-02-28 Chevron Oronite Company LLC Lubricating oil composition for internal combustion engines
US20070049503A1 (en) * 2005-08-31 2007-03-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20070111906A1 (en) * 2005-11-12 2007-05-17 Milner Jeffrey L Relatively low viscosity transmission fluids
US20070119340A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Ink carriers containing nanoparticles, phase change inks including same and methods for making same
US20070131138A1 (en) * 2005-12-12 2007-06-14 Xerox Corporation Carbon black inks and method for making same
US20070270317A1 (en) * 2006-05-19 2007-11-22 Milner Jeffrey L Power Transmission Fluids
US20080015124A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant composition
US20080015127A1 (en) * 2006-07-14 2008-01-17 Loper John T Boundary friction reducing lubricating composition
US20080015125A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant compositions
US20080051305A1 (en) * 2006-08-28 2008-02-28 Devlin Mark T Lubricant composition
EP1916293A1 (en) 2006-10-27 2008-04-30 Chevron Oronite Company LLC A lubricating oil additive composition and method of making the same
EP1916292A1 (en) 2006-10-27 2008-04-30 Chevron Oronite Company LLC A lubricating oil additive composition and method of making the same
US20080103250A1 (en) * 2006-10-27 2008-05-01 Xerox Corporation Nanostructed particles, phase change inks including same and methods for making same
US20080098930A1 (en) * 2006-11-01 2008-05-01 Xerox Corporation Colorant dispersant
US20080103076A1 (en) * 2006-10-27 2008-05-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20080103236A1 (en) * 2006-10-27 2008-05-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20080113889A1 (en) * 2006-10-27 2008-05-15 Chevron Oronite Company Llc lubricating oil additive composition and method of making the same
US20080119377A1 (en) * 2006-11-22 2008-05-22 Devlin Mark T Lubricant compositions
US20080182768A1 (en) * 2007-01-31 2008-07-31 Devlin Cathy C Lubricant composition for bio-diesel fuel engine applications
EP1959003A2 (en) 2007-02-08 2008-08-20 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
US20080248980A1 (en) * 2005-02-18 2008-10-09 The Lubrizol Corporation Lubricant Additive Formulation Containing Multifunctional Dispersant
US20080274921A1 (en) * 2007-05-04 2008-11-06 Ian Macpherson Environmentally-Friendly Lubricant Compositions
WO2008154334A1 (en) 2007-06-08 2008-12-18 Infineum International Limited Additives and lubricating oil compositions containing same
US20090011963A1 (en) * 2007-07-06 2009-01-08 Afton Chemical Corporation Truck fleet fuel economy by the use of optimized engine oil, transmission fluid, and gear oil
US20090029888A1 (en) * 2005-07-12 2009-01-29 Ramanathan Ravichandran Amine tungstates and lubricant compositions
US20090038211A1 (en) * 2007-08-10 2009-02-12 Indian Oil Corporation Limited Novel synthetic fuel and method of preparation thereof
US20090054278A1 (en) * 2005-02-18 2009-02-26 The Lubrizol Corporation Multifunctional Dispersants
US20090071067A1 (en) * 2007-09-17 2009-03-19 Ian Macpherson Environmentally-Friendly Additives And Additive Compositions For Solid Fuels
US20090093384A1 (en) * 2007-10-03 2009-04-09 The Lubrizol Corporation Lubricants That Decrease Micropitting for Industrial Gears
EP2075264A1 (en) 2007-12-26 2009-07-01 Infineum International Limited Method of forming polyalkene substituted carboxylic acid compositions
EP2083024A1 (en) 2008-01-24 2009-07-29 Afton Chemical Corporation Olefin copolymer dispersant VI improver and lubricant compositions and uses thereof
EP2083063A1 (en) 2008-01-22 2009-07-29 Infineum International Limited Lubricating oil composition
EP2090642A1 (en) 2008-02-08 2009-08-19 Infineum International Limited Engine lubrication
US20090233823A1 (en) * 2008-03-11 2009-09-17 Volkswagen Aktiengesellschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
US20090233822A1 (en) * 2008-03-11 2009-09-17 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
DE102009012567A1 (en) 2008-03-11 2009-10-01 Afton Chemical Corp. Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
US20090270531A1 (en) * 2008-04-25 2009-10-29 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
EP2116590A1 (en) 2005-02-18 2009-11-11 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
US20100028537A1 (en) * 2008-08-04 2010-02-04 Xerox Corporation Ink Carriers Containing Surface Modified Nanoparticles, Phase Change Inks Including Same, and Methods for Making Same
US20100075038A1 (en) * 2008-09-23 2010-03-25 Xerox Corporation Ink Carriers Containing Low Viscosity Functionalized Waxes, Phase Change Inks Including Same, And Methods For Making Same
US20100081588A1 (en) * 2008-09-30 2010-04-01 Chevron Oronite Company Llc Lubricating oil compositions
WO2010048244A1 (en) 2008-10-23 2010-04-29 The Lubrizol Corporation Lubricating composition containing metal carboxylate
EP2184338A2 (en) 2003-12-12 2010-05-12 The Lubrizol Corporation Lubricating composition containing metal salixarate as detergent and succinimides as dispersants
US20100124611A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Phase Change Inks Containing Graphene-Based Carbon Allotrope Colorants
US20100123746A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Ink jet inks containing nanodiamond black colorants
WO2010077630A1 (en) 2008-12-09 2010-07-08 The Lubrizol Corporation Lubricating composition containing a compound derived from a hydroxy-carboxylic acid
WO2010099136A1 (en) 2009-02-26 2010-09-02 The Lubrizol Corporation Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant
WO2010107882A1 (en) 2009-03-20 2010-09-23 The Lubrizol Corporation Anthranilic esters as additives in lubricants
EP2236590A1 (en) 2009-04-01 2010-10-06 Infineum International Limited Lubricating oil composition
WO2010115594A1 (en) 2009-04-07 2010-10-14 Infineum International Limited Marine engine lubrication
US7820605B2 (en) 2006-10-27 2010-10-26 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
EP2284248A2 (en) 2002-07-16 2011-02-16 The Lubrizol Corporation Slow release lubricant additives gel
WO2011022317A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011022266A2 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011022245A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
EP2290044A1 (en) 2005-03-28 2011-03-02 The Lubrizol Corporation Titanium compounds and complexes as additives in lubricants
EP2290041A2 (en) 2009-08-24 2011-03-02 Infineum International Limited A lubricating oil composition
EP2290040A1 (en) 2009-07-31 2011-03-02 Chevron Japan Ltd. Friction modifier and transmission oil
US20110065612A1 (en) * 2008-06-09 2011-03-17 Stokes Kristoffer K Low interfacial tension surfactants for petroleum applications
WO2011034829A1 (en) 2009-09-16 2011-03-24 The Lubrizol Corporation Lubricating composition containing an ester
EP2302023A2 (en) 2002-10-04 2011-03-30 R.T. Vanderbilt Company, Inc. Synergistic organoborate compositions and lubricating compositions containing same
WO2011038331A1 (en) 2009-09-28 2011-03-31 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
US20110105371A1 (en) * 2009-11-05 2011-05-05 Afton Chemical Corporation Olefin copolymer vi improvers and lubricant compositions and uses thereof
WO2011075401A1 (en) 2009-12-14 2011-06-23 The Lubrizol Corporation Lubricating composition containing a nitrile compound
WO2011075403A1 (en) 2009-12-14 2011-06-23 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011081835A1 (en) 2009-12-14 2011-07-07 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011084657A1 (en) 2009-12-17 2011-07-14 The Lubrizol Corporation Lubricating composition containing an aromatic compound
WO2011085339A1 (en) 2010-01-11 2011-07-14 The Lubrizol Corporation Overbased alkylated arylalkyl sulfonates
WO2011112372A1 (en) 2010-03-10 2011-09-15 The Lubrizol Corporation Titanium and molybdenum compounds and complexes as additives in lubricants
EP2371933A1 (en) 2006-02-06 2011-10-05 The Lubrizol Corporation Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
WO2011126736A1 (en) 2010-04-06 2011-10-13 The Lubrizol Corporation Zinc salicylates for rust inhibition in lubricants
WO2011130142A1 (en) 2010-04-15 2011-10-20 The Lubrizol Corporation Low-ash lubricating oils for diesel engines
WO2011143051A1 (en) 2010-05-12 2011-11-17 The Lubrizol Corporation Tartaric acid derivatives in hths fluids
WO2011146456A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Low ash lubricants with improved seal and corrosion performance
WO2011146467A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2011146692A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2011149810A1 (en) 2010-05-24 2011-12-01 The Lubrizol Corporation Lubricating composition
WO2012027254A1 (en) 2010-08-23 2012-03-01 The Lubrizol Corporation Lubricants containing aromatic dispersants and titanium
WO2012030616A1 (en) 2010-08-31 2012-03-08 The Lubrizol Corporation Star polymer and lubricating composition thereof
WO2012030590A1 (en) 2010-08-31 2012-03-08 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2012040021A1 (en) 2010-09-20 2012-03-29 The Lubrizol Corporation Aminobenzoic acid derivatives
WO2012047949A1 (en) 2010-10-06 2012-04-12 The Lubrizol Corporation Lubricating oil composition with anti-mist additive
WO2012071305A1 (en) 2010-11-23 2012-05-31 The Lubrizol Corporation Polyester quaternary ammonium salts
WO2012071313A1 (en) 2010-11-24 2012-05-31 The Lubrizol Corporation Polyester quaternary ammonium salts
WO2012078572A1 (en) 2010-12-10 2012-06-14 The Lubrizol Corporation Lubricant composition containing viscosity index improver
WO2012087773A1 (en) 2010-12-21 2012-06-28 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2012087775A1 (en) 2010-12-21 2012-06-28 The Lubrizol Corporation Lubricating composition containing a detergent
WO2012094275A1 (en) 2011-01-04 2012-07-12 The Lubrizol Corporation Continuously variable transmission fluid with extended anti-shudder durability
WO2012097026A1 (en) 2011-01-12 2012-07-19 The Lubrizol Corporation Engine lubricants containing a polyether
US8227383B2 (en) 2008-06-09 2012-07-24 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
WO2012106170A1 (en) 2011-01-31 2012-08-09 The Lubrizol Corporation Lubricant composition comprising anti-foam agents
WO2012112648A2 (en) 2011-02-16 2012-08-23 The Lubrizol Corporation Method of lubricating a driveline device
WO2012112658A1 (en) 2011-02-17 2012-08-23 The Lubrzol Corporation Lubricants with good tbn retention
WO2012122202A1 (en) 2011-03-10 2012-09-13 The Lubrizol Corporation Lubricating composition containing a thiocarbamate compound
WO2012141855A1 (en) 2011-04-15 2012-10-18 R.T. Vanderbilt Company, Inc. Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
WO2012151084A1 (en) 2011-05-04 2012-11-08 The Lubrizol Corporation Motorcycle engine lubricant
WO2012166781A1 (en) 2011-05-31 2012-12-06 The Lubrizol Corporation Lubricating composition with improved tbn retention
WO2012174184A1 (en) 2011-06-15 2012-12-20 The Lubrizol Corporation Lubricating composition containing a salt of a carboxylic acid
WO2012174075A1 (en) 2011-06-15 2012-12-20 The Lubrizol Corporation Lubricating composition containing an ester of an aromatic carboxylic acid
WO2012177549A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2012177537A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2012177529A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating compositions containing salts of hydrocarbyl substituted acylating agents
WO2013013026A1 (en) 2011-07-21 2013-01-24 The Lubrizol Corporation Carboxylic pyrrolidinones and methods of use thereof
WO2013012987A1 (en) 2011-07-21 2013-01-24 The Lubrizol Corporation Overbased friction modifiers and methods of use thereof
WO2013043332A1 (en) 2011-09-23 2013-03-28 The Lubrizol Corporation Quaternary ammonium salts in heating oils
WO2013059173A1 (en) 2011-10-20 2013-04-25 The Lubrizol Corporation Bridged alkylphenol compounds
WO2013062924A2 (en) 2011-10-27 2013-05-02 The Lubrizol Corporation Lubricating composition containing an esterified polymer
WO2013066585A1 (en) 2011-10-31 2013-05-10 The Lubrizol Corporation Ashless friction modifiers for lubricating compositions
WO2013070376A2 (en) 2011-11-11 2013-05-16 Vanderbilt Chemicals, Llc Lubricant composition
EP2610332A1 (en) 2011-12-30 2013-07-03 The Lubrizol Corporation Star polymer and lubricating composition thereof
WO2013101882A1 (en) 2011-12-29 2013-07-04 The Lubrizol Corporation Limited slip friction modifiers for differentials
DE202013006323U1 (en) 2013-07-15 2013-08-13 Basf Se Use of di (2-ethylhexyl) adipate as lubricant
DE202013006324U1 (en) 2013-07-15 2013-08-13 Basf Se Use of polyesters as lubricants
WO2013119623A1 (en) 2012-02-08 2013-08-15 The Lubrizol Corporation Method of preparing a sulfurized alkaline earth metal dodecylphenate
WO2013122898A2 (en) 2012-02-16 2013-08-22 The Lubrizol Corporation Lubricant additive booster system
WO2013148146A1 (en) 2012-03-26 2013-10-03 The Lubrizol Corporation Manual transmission lubricants with improved synchromesh performance
WO2013148171A1 (en) 2012-03-26 2013-10-03 The Lubrizol Corporation Manual transmission lubricants with improved synchromesh performance
EP2698418A1 (en) 2012-08-17 2014-02-19 Afton Chemical Corporation Calcium neutral and overbased mannich and anhydride adducts as detergents for engine oil lubricants
EP2727984A1 (en) 2012-11-02 2014-05-07 Infineum International Limited Marine engine lubrication
WO2014074197A1 (en) 2012-09-11 2014-05-15 The Lubrizol Corporation Lubricating composition containing an ashless tbn booster
WO2014078083A1 (en) 2012-11-19 2014-05-22 The Lubrizol Corporation Coupled phenols for use in biodiesel engines
WO2014075957A1 (en) 2012-11-19 2014-05-22 Basf Se Use of polyesters as lubricants
EP2735603A1 (en) 2012-11-21 2014-05-28 Infineum International Limited Marine engine lubrication
US8742165B2 (en) 2009-12-10 2014-06-03 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
WO2014088814A1 (en) 2012-12-07 2014-06-12 The Lubrizol Corporation Pyran dispersants
EP2765179A1 (en) 2013-02-07 2014-08-13 Infineum International Limited Marine engine lubrication
WO2014124187A1 (en) 2013-02-11 2014-08-14 The Lubrizol Corporation Bridged alkaline earth metal alkylphenates
WO2014137580A1 (en) 2013-03-07 2014-09-12 The Lubrizol Corporation Limited slip friction modifiers for differentials
WO2014158435A1 (en) 2013-03-13 2014-10-02 The Lubrizol Corporation Engine lubricants containing a polyether
WO2014164087A1 (en) 2013-03-12 2014-10-09 The Lubrizol Corporation Lubricating composition containing lewis acid reaction product
WO2014184068A1 (en) 2013-05-14 2014-11-20 Basf Se Lubricating oil composition with enhanced energy efficiency
WO2014184062A1 (en) 2013-05-17 2014-11-20 Basf Se The use of polytetrahydrofuranes in lubricating oil compositions
US8901050B2 (en) 2010-03-31 2014-12-02 Chevron Oronite Company Llc Method for improving copper corrosion performance
WO2014193543A1 (en) 2013-05-30 2014-12-04 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
US8933001B2 (en) 2010-03-31 2015-01-13 Chevron Oronite Company Llc Method for improving fluorocarbon elastomer seal compatibility
WO2015017172A1 (en) 2013-07-31 2015-02-05 The Lubrizol Corporation Method of lubricating a transmission which includes a synchronizer with a non-metallic surface
WO2015021129A1 (en) 2013-08-09 2015-02-12 The Lubrizol Corporation Reduced engine deposits from dispersant treated with cobalt
WO2015021135A1 (en) 2013-08-09 2015-02-12 The Lubrizol Corporation Reduced engine deposits from dispersant treated with copper
US8969612B2 (en) 2009-12-10 2015-03-03 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
EP2851412A1 (en) 2013-09-24 2015-03-25 Infineum International Limited Marine engine lubrication
EP2851413A1 (en) 2013-09-23 2015-03-25 Chevron Japan Ltd. Fuel economy engine oil composition
WO2015078707A1 (en) 2013-11-26 2015-06-04 Basf Se The use of polyalkylene glycol esters in lubricating oil compositions
WO2015088769A2 (en) 2013-12-10 2015-06-18 The Lubrizol Corporation Method for preparing functionalized graft polymers
WO2015106090A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015106083A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015134129A2 (en) 2014-03-05 2015-09-11 The Lubrizol Corporation Emulsifier components and methods of using the same
WO2015138108A1 (en) 2014-03-12 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138109A1 (en) 2014-03-12 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138088A1 (en) 2014-03-11 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015142482A1 (en) 2014-03-19 2015-09-24 The Lubrizol Corporation Lubricants containing blends of polymers
WO2015148889A1 (en) 2014-03-28 2015-10-01 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
WO2015153160A1 (en) 2014-04-04 2015-10-08 The Lubrizol Corporation Method for preparing a sulfurized alkaline earth metal dodecylphenate
EP2937408A1 (en) 2014-04-22 2015-10-28 Basf Se Lubricant composition comprising an ester of a C17 alcohol mixture
WO2015164682A1 (en) 2014-04-25 2015-10-29 The Lubrizol Corporation Multigrade lubricating compositions
EP2940110A1 (en) 2014-04-29 2015-11-04 Infineum International Limited Lubricating oil compositions
WO2015171674A1 (en) 2014-05-06 2015-11-12 The Lubrizol Corporation Lubricant composition containing an antiwear agent
WO2015171364A1 (en) 2014-05-06 2015-11-12 The Lubrizol Corporation Anti-corrosion additives
WO2015184254A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation High molecular weight amide/ester containing quaternary ammonium salts
WO2015184251A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Branched amine containing quaternary ammonium salts
WO2015184301A2 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Coupled quaternary ammonium salts
WO2015183908A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Low molecular weight imide containing quaternary ammonium salts
WO2015184280A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Imidazole containing quaternary ammonium salts
WO2015184276A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Epoxide quaternized quaternary ammonium salts
WO2015184247A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation High molecular weight imide containing quaternary ammonium salts
WO2015183916A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Low molecular weight amide/ester containing quaternary ammonium salts
WO2015195614A1 (en) 2014-06-18 2015-12-23 The Lubrizol Corporation Motorcycle engine lubricant
WO2016019216A1 (en) * 2014-08-01 2016-02-04 The Lubrizol Corporation Additive composition for well treatment fluids and methods for their use
WO2016033397A1 (en) 2014-08-28 2016-03-03 The Lubrizol Corporation Lubricating composition with seals compatibility
WO2016044262A1 (en) 2014-09-15 2016-03-24 The Lubrizol Corporation Dispersant viscosity modifiers with sulfonate functionality
WO2016077134A1 (en) 2014-11-12 2016-05-19 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
EP3029133A1 (en) 2014-12-04 2016-06-08 Infineum International Limited Marine engine lubrication
WO2016089565A1 (en) 2014-11-12 2016-06-09 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
WO2016090121A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated aromatic polyol compound
WO2016090065A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
WO2016099490A1 (en) 2014-12-17 2016-06-23 The Lubrizol Corporation Lubricating composition for lead and copper corrosion inhibition
WO2016122911A1 (en) 2015-01-30 2016-08-04 The Lubrizol Corporation Composition for cleaning gasoline engine fuel delivery systems, air intake systems, and combustion chambers
WO2016138227A1 (en) 2015-02-26 2016-09-01 The Lubrizol Corporation Aromatic detergents and lubricating compositions thereof
WO2016138248A1 (en) 2015-02-26 2016-09-01 The Lubrizol Corporation Aromatic tetrahedral borate compounds for lubricating compositions
WO2016138939A1 (en) 2015-03-03 2016-09-09 Basf Se Pib as high viscosity lubricant base stock
WO2016144639A1 (en) 2015-03-10 2016-09-15 The Lubrizol Corporation Lubricating compositions comprising an anti-wear/friction modifying agent
WO2016144880A1 (en) 2015-03-09 2016-09-15 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2016148708A1 (en) 2015-03-18 2016-09-22 The Lubrizol Corporation Lubricant compositions for direct injection engines
EP3072948A1 (en) 2015-03-23 2016-09-28 Chevron Japan Ltd. Lubricating oil compositions for construction machines
EP3072949A1 (en) 2015-03-23 2016-09-28 Chevron Japan Ltd. Lubricating oil composition for construction machines
WO2016156313A1 (en) 2015-03-30 2016-10-06 Basf Se Lubricants leading to better equipment cleanliness
WO2016164345A1 (en) 2015-04-09 2016-10-13 The Lubrizol Corporation Lubricants containing quaternary ammonium compounds
EP3085757A1 (en) 2015-04-23 2016-10-26 Basf Se Stabilization of alkoxylated polytetrahydrofuranes with antioxidants
US9481841B2 (en) 2004-12-09 2016-11-01 The Lubrizol Corporation Process of preparation of an additive and its use
EP3106506A1 (en) 2006-04-24 2016-12-21 The Lubrizol Corporation Star polymer lubricating composition
WO2017011152A1 (en) 2015-07-10 2017-01-19 The Lubrizol Corporation Viscosity modifiers for improved fluoroelastomer seal performance
WO2017031143A1 (en) 2015-08-20 2017-02-23 The Lubrizol Corporation Azole derivatives as lubricating additives
EP3135750A1 (en) 2015-08-26 2017-03-01 Infineum International Limited Lubricating oil compositions
WO2017039855A2 (en) 2015-07-20 2017-03-09 The Lubrizol Corporation Zinc-free lubricating composition
WO2017079017A1 (en) 2015-11-06 2017-05-11 The Lubrizol Corporation Low viscosity gear lubricants
WO2017079016A1 (en) 2015-11-06 2017-05-11 The Lubrizol Corporation Lubricant with high pyrophosphate level
WO2017082182A1 (en) 2015-11-09 2017-05-18 三井化学株式会社 Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil compositions
WO2017083243A1 (en) 2015-11-11 2017-05-18 The Lubrizol Corporation Lubricating composition comprising thioether-substituted phenolic compound
WO2017096159A1 (en) 2015-12-02 2017-06-08 The Lubrizol Corporation Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails
WO2017096175A1 (en) 2015-12-02 2017-06-08 The Lubrizol Corporation Ultra-low molecular weight imide containing quaternary ammonium salts having short hydrocarbon tails
WO2017105747A1 (en) 2015-12-18 2017-06-22 The Lubrizol Corporation Nitrogen-functionalized olefin polymers for engine lubricants
WO2017147380A1 (en) 2016-02-24 2017-08-31 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2017176546A1 (en) 2016-04-07 2017-10-12 The Lubrizol Corporation Mercaptoazole derivatives as lubricating additives
WO2017205274A1 (en) 2016-05-24 2017-11-30 The Lubrizol Corporation Seal swell agents for lubricating compositions
WO2017205270A1 (en) 2016-05-24 2017-11-30 The Lubrizol Corporation Seal swell agents for lubricating compositions
WO2017205271A1 (en) 2016-05-24 2017-11-30 The Lubrizol Corporation Seal swell agents for lubricating compositions
EP3255129A1 (en) 2016-06-06 2017-12-13 The Lubrizol Corporation Thiol-carboxylic adducts as lubricating additives
WO2017218654A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218662A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218664A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218657A2 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Polyisobutylene-substituted phenol, derivatives thereof, and lubricating compositions containing the polyisobutylene-substituted phenol and its derivatives
EP3263678A1 (en) 2016-06-30 2018-01-03 The Lubrizol Corporation Hydroxyaromatic succinimide detergents for lubricating compositions
WO2018013451A1 (en) 2016-07-15 2018-01-18 The Lubrizol Corporation Engine lubricants for siloxane deposit control
WO2018017449A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017454A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017911A1 (en) 2016-07-22 2018-01-25 The Lubrizol Corporation Aliphatic tetrahedral borate compounds for lubricating compositions
US9879202B2 (en) 2014-12-04 2018-01-30 Infineum International Limited Marine engine lubrication
US9914893B2 (en) 2014-01-28 2018-03-13 Basf Se Use of alkoxylated polyethylene glycols in lubricating oil compositions
EP3293246A1 (en) 2016-09-13 2018-03-14 Basf Se Lubricant compositions containing diurea compounds
WO2018048781A1 (en) 2016-09-12 2018-03-15 The Lubrizol Corporation Total base number boosters for marine diesel engine lubricating compositions
WO2018052692A1 (en) 2016-09-14 2018-03-22 The Lubrizol Corporation Lubricating composition and method of lubricating an internal combustion engine
WO2018053098A1 (en) 2016-09-14 2018-03-22 The Lubrizol Corporation Lubricating composition comprising sulfonate detergent and ashless hydrocarbyl phenolic compound
WO2018057678A1 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
WO2018057675A1 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Polyacrylate antifoam components with improved thermal stability
EP3315591A1 (en) 2016-10-28 2018-05-02 Basf Se Energy efficient lubricant compositions
WO2018077621A1 (en) 2016-10-25 2018-05-03 Chevron Oronite Technology B.V. Lubricating oil compositions comprising a biodiesel fuel and a dispersant
US10000720B2 (en) 2014-05-22 2018-06-19 Basf Se Lubricant compositions containing beta-glucans
EP3339404A1 (en) 2006-07-18 2018-06-27 Infineum International Limited Lubricating oil compositions
WO2018118163A1 (en) 2016-12-22 2018-06-28 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
WO2018125569A1 (en) 2016-12-27 2018-07-05 The Lubrizol Corporation Lubricating composition including n-alkylated dianiline
WO2018125567A1 (en) 2016-12-27 2018-07-05 The Lubrizol Corporation Lubricating composition with alkylated naphthylamine
WO2018124070A1 (en) 2016-12-27 2018-07-05 三井化学株式会社 Lubricating oil composition, viscosity modifier for lubricating oil, and additive composition for lubricating oil
WO2018136541A1 (en) 2017-01-17 2018-07-26 The Lubrizol Corporation Engine lubricant containing polyether compounds
EP3369802A1 (en) 2017-03-01 2018-09-05 Infineum International Limited Improvements in and relating to lubricating compositions
EP3392327A1 (en) 2005-12-15 2018-10-24 The Lubrizol Corporation Engine lubricant for improved fuel economy
WO2018197312A1 (en) 2017-04-27 2018-11-01 Shell Internationale Research Maatschappij B.V. Lubricating composition
US10119092B2 (en) 2012-11-19 2018-11-06 Basf Se Use of polyesters as lubricants
US10150928B2 (en) 2013-09-16 2018-12-11 Basf Se Polyester and use of polyester in lubricants
EP3421576A1 (en) 2017-06-30 2019-01-02 Infineum International Limited Refinery antifoulant process
WO2019003173A1 (en) 2017-06-30 2019-01-03 Chevron Oronite Company Llc Marine diesel lubricant oil compositions
WO2019005738A1 (en) 2017-06-27 2019-01-03 The Lubrizol Corporation Lubricating composition for and method of lubricating an internal combustion engine
WO2019003175A1 (en) 2017-06-30 2019-01-03 Chevron Oronite Company Llc Marine diesel lubricant oil compositions having improved low temperature performance
WO2019003174A1 (en) 2017-06-30 2019-01-03 Chevron Oronite Company Llc Marine diesel lubricant oil compositions
WO2019023219A1 (en) 2017-07-24 2019-01-31 Chemtool Incorporated Extreme pressure metal sulfonate grease
WO2019036285A1 (en) 2017-08-16 2019-02-21 The Lubrizol Corporation Lubricating composition for a hybrid electric vehicle transmission
WO2019035905A1 (en) 2017-08-17 2019-02-21 The Lubrizol Company Nitrogen-functionalized olefin polymers for driveline lubricants
WO2019060682A2 (en) 2017-09-21 2019-03-28 The Lubrizol Corporation Polyacrylate antifoam components for use in fuels
EP3461877A1 (en) 2017-09-27 2019-04-03 Infineum International Limited Improvements in and relating to lubricating compositions
WO2019108588A1 (en) 2017-11-28 2019-06-06 The Lubrizol Corporation Lubricant compositions for high efficiency engines
EP3495462A1 (en) 2017-12-11 2019-06-12 Infineum International Limited Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same
WO2019110355A1 (en) 2017-12-04 2019-06-13 Basf Se Branched adipic acid based esters as novel base stocks and lubricants
WO2019112720A1 (en) 2017-12-04 2019-06-13 The Lubrizol Corporation Alkylphenol detergents
WO2019118117A1 (en) 2017-12-15 2019-06-20 The Lubrizol Corporation Alkylphenol detergents
EP3511397A1 (en) * 2018-01-12 2019-07-17 Afton Chemical Corporation Emulsifier for use in lubricating oil
US10364404B2 (en) 2014-12-04 2019-07-30 Infineum International Limited Marine engine lubrication
WO2019162744A1 (en) 2018-02-22 2019-08-29 Chevron Japan Ltd. Lubricating oils for automatic transmissions
US10407641B2 (en) 2009-03-03 2019-09-10 The Lubrizol Corporation Ashless or reduced ash quaternary detergents
WO2019183050A1 (en) 2018-03-21 2019-09-26 The Lubrizol Corporation Polyacrylamide antifoam components for use in diesel fuels
WO2019183365A1 (en) 2018-03-21 2019-09-26 The Lubrizol Corporation NOVEL FLUORINATED POLYACRYLATES ANTIFOAMS IN ULTRA-LOW VISCOSITY (<5 CST) finished fluids
WO2019204141A1 (en) 2018-04-18 2019-10-24 The Lubrizol Corporation Lubricant with high pyrophosphate level
WO2019246192A1 (en) 2018-06-22 2019-12-26 The Lubrizol Corporation Lubricating compositions for heavy duty diesel engines
WO2020003071A1 (en) 2018-06-27 2020-01-02 Chevron Oronite Technology B.V. Lubricating oil composition
US10577556B2 (en) 2015-06-12 2020-03-03 The Lubrizol Corporation Michael adduct amino esters as total base number boosters for marine diesel engine lubricating compositions
WO2020102672A1 (en) 2018-11-16 2020-05-22 The Lubrizol Corporation Alkylbenzene sulfonate detergents
US10669505B2 (en) 2015-03-18 2020-06-02 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2020150123A1 (en) 2019-01-17 2020-07-23 The Lubrizol Corporation Traction fluids
US10781394B2 (en) 2016-10-25 2020-09-22 Chevron Oronite Technology B.V. Lubricating oil compositions comprising a biodiesel fuel and a Mannich condensation product
WO2020263964A1 (en) 2019-06-24 2020-12-30 The Lubrizol Corporation Continuous acoustic mixing for performance additives and compositions including the same
EP3760696A1 (en) 2018-12-20 2021-01-06 Infineum International Limited Oil anti-foulant and/or asphaltene agglomeration process
WO2021003265A1 (en) 2019-07-01 2021-01-07 The Lubrizol Corporation Basic ashless additives and lubricating compositions containing same
WO2021022541A1 (en) * 2019-08-08 2021-02-11 Dow Global Technologies Llc Esterified oil soluble polyalkylene glycols
EP3778841A1 (en) 2019-08-15 2021-02-17 Infineum International Limited Method for reducing piston deposits in a marine diesel engine
WO2021039818A1 (en) 2019-08-29 2021-03-04 三井化学株式会社 Lubricating oil composition
US10975323B2 (en) 2015-12-15 2021-04-13 The Lubrizol Corporation Sulfurized catecholate detergents for lubricating compositions
EP3835392A1 (en) 2018-12-20 2021-06-16 Infineum International Limited Hydrocarbon marine fuel oil
WO2021126338A1 (en) 2019-12-20 2021-06-24 The Lubrizol Corporation Lubricant composition containing a detergent derived from cashew nut shell liquid
WO2021126342A1 (en) 2019-12-19 2021-06-24 The Lubrizol Corporation Wax anti-settling additive composition for use in diesel fuels
WO2021127183A1 (en) 2019-12-18 2021-06-24 The Lubrizol Corporation Polymeric surfactant compound
EP3842508A1 (en) 2013-09-19 2021-06-30 The Lubrizol Corporation Use of lubricant compositions for direct injection engines
EP3878933A1 (en) 2013-09-19 2021-09-15 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2021262988A1 (en) 2020-06-25 2021-12-30 The Lubrizol Corporation Cyclic phosphonate esters for lubricant applications
WO2022040372A1 (en) 2020-08-20 2022-02-24 The Lubrizol Corporation Organic heat transfer system, method and fluid
WO2022150464A1 (en) 2021-01-06 2022-07-14 The Lubrizol Corporation Basic ashless additives and lubricating compositions containing same
WO2022212844A1 (en) 2021-04-01 2022-10-06 The Lubrizol Corporation Zinc free lubricating compositions and methods of using the same
US20220333033A1 (en) * 2019-10-07 2022-10-20 Croda International Plc Corrosion inhibition
US11608478B2 (en) 2015-03-25 2023-03-21 The Lubrizol Corporation Lubricant compositions for direct injection engine
WO2023054440A1 (en) 2021-09-30 2023-04-06 三井化学株式会社 Lubricating oil composition
EP4180505A1 (en) 2021-11-15 2023-05-17 Infineum International Limited Improvements in marine fuels
WO2023144721A1 (en) 2022-01-25 2023-08-03 Chevron Japan Ltd. Lubricating oil composition
WO2024015099A1 (en) 2022-07-14 2024-01-18 Chevron Oronite Company Llc Marine diesel cylinder lubricating oil compositions
WO2024015098A1 (en) 2022-07-14 2024-01-18 Chevron Oronite Company Llc Marine diesel engine lubricating oil compositions
WO2024030592A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing radically-functionalized pibsa product derivatives and compositions comprising same
WO2024030591A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing reaction products including quaternary ammonium salts

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2294259A (en) * 1938-08-05 1942-08-25 Shell Dev Capillary-active agent
US2469371A (en) * 1946-08-14 1949-05-10 Baker Castor Oil Co Process of reacting glyceride oils
US2561232A (en) * 1948-12-30 1951-07-17 Standard Oil Dev Co Dialkylalkenylsuccinates
US2575196A (en) * 1948-10-01 1951-11-13 Standard Oil Dev Co Mixed estirs of polyhydric alcohols and dibasic acids
US2575195A (en) * 1948-10-01 1951-11-13 Standard Oil Dev Co Dibasic acid esters and method for producing them
US2647872A (en) * 1950-01-27 1953-08-04 Shell Dev Grease composition
US2682489A (en) * 1950-11-30 1954-06-29 Fuchs George Hugo Von Rust preventing compositions and process
USRE24287E (en) * 1957-03-12 Dibasic acid esters of glycols
US2825723A (en) * 1954-07-16 1958-03-04 Bayer Ag Process for the production of derivatives of polyethylenes of high molecular weight
GB793070A (en) * 1954-12-16 1958-04-09 Exxon Research Engineering Co Improved hydrocarbon resin
US2883367A (en) * 1954-01-04 1959-04-21 Monsanto Chemicals Adducts of polyethylene and fumarates
US2903382A (en) * 1958-06-23 1959-09-08 Armour & Co Treatment of fabric with alkenylsuccinic acids and anhydrides to impart water repellency
US2933468A (en) * 1956-01-26 1960-04-19 Exxon Research Engineering Co Emulsifiers from hydrocarbon polymer, maleic anhydride, and polyalkylene oxide glycol, emulsion containing same and methods for making thereof
US2944025A (en) * 1957-08-07 1960-07-05 Sinclair Refining Co Lubricating oil composition
US2973344A (en) * 1957-12-11 1961-02-28 Exxon Research Engineering Co Modified polymers
US2999868A (en) * 1958-06-23 1961-09-12 Union Carbide Corp 2,3-epoxyalkylsuccinic acid derivatives and the process of making them
US3037051A (en) * 1958-08-01 1962-05-29 Petrolite Corp Ester-amide-acid compounds
US3047504A (en) * 1959-12-31 1962-07-31 Exxon Research Engineering Co Process for treating complex esters to improve viscosity stability
US3057892A (en) * 1958-04-17 1962-10-09 Petrolite Corp Certain polyoxyalkylene glycol esters
US3062745A (en) * 1958-12-02 1962-11-06 Standard Oil Co Glass grinding process employing a non-foaming oiliness agent
US3086043A (en) * 1959-12-21 1963-04-16 Monsanto Chemicals Alkenylsuccinic anhydride monoesters of sulfoalkyl derivatives
US3117091A (en) * 1957-08-16 1964-01-07 Monsanto Chemicals Rust preventive compositions containing acid polyester succinates
US3155686A (en) * 1960-01-04 1964-11-03 Monsanto Co Poly (ester lactones) and method for preparing the same
US3184474A (en) * 1962-09-05 1965-05-18 Exxon Research Engineering Co Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial
US3197409A (en) * 1963-03-28 1965-07-27 California Research Corp Alkylene glycol ester reaction product
US3219666A (en) * 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3255108A (en) * 1961-08-30 1966-06-07 Lubrizol Corp Water-in-oil emulsions containing succinic esters

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24287E (en) * 1957-03-12 Dibasic acid esters of glycols
US2294259A (en) * 1938-08-05 1942-08-25 Shell Dev Capillary-active agent
US2469371A (en) * 1946-08-14 1949-05-10 Baker Castor Oil Co Process of reacting glyceride oils
US2575196A (en) * 1948-10-01 1951-11-13 Standard Oil Dev Co Mixed estirs of polyhydric alcohols and dibasic acids
US2575195A (en) * 1948-10-01 1951-11-13 Standard Oil Dev Co Dibasic acid esters and method for producing them
US2561232A (en) * 1948-12-30 1951-07-17 Standard Oil Dev Co Dialkylalkenylsuccinates
US2647872A (en) * 1950-01-27 1953-08-04 Shell Dev Grease composition
US2682489A (en) * 1950-11-30 1954-06-29 Fuchs George Hugo Von Rust preventing compositions and process
US2883367A (en) * 1954-01-04 1959-04-21 Monsanto Chemicals Adducts of polyethylene and fumarates
US2825723A (en) * 1954-07-16 1958-03-04 Bayer Ag Process for the production of derivatives of polyethylenes of high molecular weight
GB793070A (en) * 1954-12-16 1958-04-09 Exxon Research Engineering Co Improved hydrocarbon resin
US2933468A (en) * 1956-01-26 1960-04-19 Exxon Research Engineering Co Emulsifiers from hydrocarbon polymer, maleic anhydride, and polyalkylene oxide glycol, emulsion containing same and methods for making thereof
US2944025A (en) * 1957-08-07 1960-07-05 Sinclair Refining Co Lubricating oil composition
US3117091A (en) * 1957-08-16 1964-01-07 Monsanto Chemicals Rust preventive compositions containing acid polyester succinates
US2973344A (en) * 1957-12-11 1961-02-28 Exxon Research Engineering Co Modified polymers
US3057892A (en) * 1958-04-17 1962-10-09 Petrolite Corp Certain polyoxyalkylene glycol esters
US2903382A (en) * 1958-06-23 1959-09-08 Armour & Co Treatment of fabric with alkenylsuccinic acids and anhydrides to impart water repellency
US2999868A (en) * 1958-06-23 1961-09-12 Union Carbide Corp 2,3-epoxyalkylsuccinic acid derivatives and the process of making them
US3037051A (en) * 1958-08-01 1962-05-29 Petrolite Corp Ester-amide-acid compounds
US3062745A (en) * 1958-12-02 1962-11-06 Standard Oil Co Glass grinding process employing a non-foaming oiliness agent
US3219666A (en) * 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3086043A (en) * 1959-12-21 1963-04-16 Monsanto Chemicals Alkenylsuccinic anhydride monoesters of sulfoalkyl derivatives
US3047504A (en) * 1959-12-31 1962-07-31 Exxon Research Engineering Co Process for treating complex esters to improve viscosity stability
US3155686A (en) * 1960-01-04 1964-11-03 Monsanto Co Poly (ester lactones) and method for preparing the same
US3255108A (en) * 1961-08-30 1966-06-07 Lubrizol Corp Water-in-oil emulsions containing succinic esters
US3184474A (en) * 1962-09-05 1965-05-18 Exxon Research Engineering Co Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial
US3197409A (en) * 1963-03-28 1965-07-27 California Research Corp Alkylene glycol ester reaction product

Cited By (625)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451933A (en) * 1967-08-11 1969-06-24 Rohm & Haas Formamido-containing alkenylsuccinates
US3448049A (en) * 1967-09-22 1969-06-03 Rohm & Haas Polyolefinic succinates
US3658495A (en) * 1968-08-05 1972-04-25 Lubrizol Corp Fuel compositions comprising a combination of oxy compounds and ashless dispersants
US3509052A (en) * 1968-09-13 1970-04-28 Lubrizol Corp Lubricating compositions
US3993493A (en) * 1969-01-03 1976-11-23 Petrolite Corporation Inks containing isocyanated imides of hydrocarbon anhydrides and blends thereof
US3658494A (en) * 1969-01-21 1972-04-25 Lubrizol Corp Fuel compositions comprising a combination of monoether and ashless dispersants
US3714042A (en) * 1969-03-27 1973-01-30 Lubrizol Corp Treated overbased complexes
DE2022651A1 (en) * 1969-05-12 1970-11-19 Lubrizol Corp Process for the production of additives for hydrocarbons
JPS5521402A (en) * 1969-05-12 1980-02-15 Lubrizol Corp Ester contained composition
US3720615A (en) * 1969-08-11 1973-03-13 Kao Corp Oil-soluble rust preventive composition
US3933511A (en) * 1970-08-17 1976-01-20 Petrolite Corporation Polishes containing wax-anhydride compounds
US3933512A (en) * 1970-08-17 1976-01-20 Petrolite Corporation Carbon paper inks containing wax-anhydride compounds
US3699154A (en) * 1971-01-18 1972-10-17 Petrolite Corp Reaction products of wax-anhydride compounds and alcohol
US3793203A (en) * 1971-05-17 1974-02-19 Sun Oil Co Lubricant comprising gem-structured organo compound
US3755239A (en) * 1971-05-24 1973-08-28 Phillips Petroleum Co Dispersants for dissolution of elastomers in solvents
US3936480A (en) * 1971-07-08 1976-02-03 Rhone-Progil Additives for improving the dispersing properties of lubricating oil
US4029694A (en) * 1971-09-01 1977-06-14 Basf Wyandotte Corporation Antistatic agents for melt-formed polymers
US3991098A (en) * 1971-11-30 1976-11-09 Toa Nenryo Kogyo Kabushiki Kaisha Lubricating oil additive, process for the synthesis thereof and lubricating oil additive composition
US3819386A (en) * 1971-12-20 1974-06-25 Lubrizol Corp Rheology modifiers for inks
US3920414A (en) * 1972-10-27 1975-11-18 Exxon Research Engineering Co Crude oils containing nitrogen dispersants and alkoxylated ashless surfactants usable as diesel fuels
US4031118A (en) * 1973-09-17 1977-06-21 The Lubrizol Corporation Ester-containing process and compositions
US4072474A (en) * 1974-09-13 1978-02-07 Rohm And Haas Company Motor fuel composition
DE2608971A1 (en) * 1975-03-06 1976-09-09 Shell Int Research RESIDUAL HEATING OIL
US4053426A (en) * 1975-03-17 1977-10-11 Mobil Oil Corporation Lubricant compositions
US4240916A (en) * 1976-07-09 1980-12-23 Exxon Research & Engineering Co. Pour point depressant additive for fuels and lubricants
US4219431A (en) * 1976-07-28 1980-08-26 Mobil Oil Corporation Aroyl derivatives of alkenylsuccinic anhydride as lubricant and fuel additives
US4072618A (en) * 1976-08-27 1978-02-07 Mobil Oil Corporation Metal working lubricant
DE2757767A1 (en) * 1977-02-14 1978-10-19 Exxon Research Engineering Co LAKTONESTER, THE PROCESS FOR THEIR MANUFACTURING AND THEIR USE AS ADDITIVES
US4613679A (en) * 1977-08-01 1986-09-23 Eastman Kodak Company Emulsifiable modified polymers
FR2401218A1 (en) * 1977-08-22 1979-03-23 Exxon Research Engineering Co COMPOSITION BASED ON LUBRICATING OIL STABLE IN STORAGE AND ITS PRODUCTION PROCESS
US4173540A (en) * 1977-10-03 1979-11-06 Exxon Research & Engineering Co. Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound
FR2404668A1 (en) * 1977-10-03 1979-04-27 Exxon Research Engineering Co COMPOSITION OF LUBRICATING OIL ADDITIONED TO A POLYOL ESTER AND AN IMIDE
US4129508A (en) * 1977-10-13 1978-12-12 The Lubrizol Corporation Demulsifier additive compositions for lubricants and fuels and concentrates containing the same
US4159958A (en) * 1978-06-30 1979-07-03 Chevron Research Company Succinate dispersant combination
US4321091A (en) * 1978-09-27 1982-03-23 Sumitomo Electric Industries, Ltd. Method for producing hot forged material from powder
US4277417A (en) * 1978-12-29 1981-07-07 Exxon Research & Engineering Co. Hydrocarbon soluble sulfonated polyols, esters of hydrocarbon substituted C4 -C10 dicarboxylic acids with polyols and sulfonic acid, processes therefor, and lubricating compositions thereof
US4255160A (en) * 1979-03-09 1981-03-10 Standard Oil Company (Indiana) Flow improver for heavy petroleum products comprising alkenyl succinate diester
US4239633A (en) * 1979-06-04 1980-12-16 Exxon Research & Engineering Co. Molybdenum complexes of ashless polyol ester dispersants as friction-reducing antiwear additives for lubricating oils
US4255589A (en) * 1979-06-29 1981-03-10 Exxon Research & Engineering Co. Process for the production of oil-soluble polyol esters of dicarboxylic acid materials in the presence of a metal salt of a hydroxy aromatic compound
US4237020A (en) * 1979-08-20 1980-12-02 Edwin Cooper, Inc. Lubricating and fuel compositions containing succinimide friction reducers
US4292186A (en) * 1979-12-04 1981-09-29 Mobil Oil Corporation Metal complexes of alkylsuccinic compounds as lubricant and fuel additives
US4344853A (en) * 1980-10-06 1982-08-17 Exxon Research & Engineering Co. Functional fluid containing metal salts of esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols as antioxidants
US4702850A (en) * 1980-10-06 1987-10-27 Exxon Research & Engineering Co. Power transmitting fluids containing esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols
US4617134A (en) * 1980-11-10 1986-10-14 Exxon Research And Engineering Company Method and lubricant composition for providing improved friction reduction
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4589993A (en) * 1982-12-27 1986-05-20 Exxon Research & Engineering Co. Power transmission shift fluids containing two-component friction modifier additive
WO1985003504A2 (en) * 1984-02-09 1985-08-15 The Lubrizol Corporation Process for making substituted carboxylic acids and derivatives thereof
WO1985003504A3 (en) * 1984-02-09 1985-10-24 Lubrizol Corp Process for making substituted carboxylic acids and derivatives thereof
AU574156B2 (en) * 1984-02-09 1988-06-30 Lubrizol Corporation, The Process for producing carboxylic acids
JPH0696610B2 (en) * 1984-02-09 1994-11-30 ザ ル−ブリゾル コ−ポレイシヨン Process for producing substituted carboxylic acid and derivative thereof
US4803004A (en) * 1985-02-19 1989-02-07 Mobil Oil Corporation Reaction products of alkenylsuccinic compounds with aromatic amines and hindered alcohols and lubricant compositions thereof
US4760170A (en) * 1985-07-01 1988-07-26 Exxon Research & Engineering Co. Solution process for preparing metal salt esters of hydrocarbyl substituted succinic acid or anhydride and alkanols
EP0207738A1 (en) * 1985-07-01 1987-01-07 Exxon Research And Engineering Company Solution process for preparing metal salt esters of hydrocarbyl substituted succinic acid or anhydride and alkanols
US5380465A (en) * 1985-09-05 1995-01-10 Imperial Chemical Industries Plc Emulsifiers for polymerization process
EP0240327A2 (en) 1986-03-31 1987-10-07 Exxon Chemical Patents Inc. Cyclic phosphate additives and their use in oleaginous compositions
US4776969A (en) * 1986-03-31 1988-10-11 Exxon Chemical Patents Inc. Cyclic phosphate additives and their use in oleaginous compositions
US4784784A (en) * 1986-07-17 1988-11-15 Pennzoil Products Company Succinic acid esters and hydraulic fluids therefrom
US4689166A (en) * 1986-07-17 1987-08-25 Pennzoil Product Company Succinic acid esters and hydraulic fluids thereform
US4720555A (en) * 1986-09-12 1988-01-19 Pennzoil Products Company Hydrocarbyl anhydrides
US4866140A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
US4954276A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
US4866135A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Heterocyclic amine terminated, lactone modified, aminated viscosity modifiers of improved dispersancy
US4866139A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified, esterified dispersant additives useful in oleaginous compositions
US4963275A (en) * 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
US5032320A (en) * 1986-10-07 1991-07-16 Exxon Chemical Patents Inc. Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions
US4906394A (en) * 1986-10-07 1990-03-06 Exxon Chemical Patents Inc. Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions
US4954277A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same
US4866141A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same
US4936866A (en) * 1986-10-07 1990-06-26 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US4866142A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US5756428A (en) * 1986-10-16 1998-05-26 Exxon Chemical Patents Inc. High functionality low molecular weight oil soluble dispersant additives useful in oleaginous composition
US5788722A (en) * 1986-10-16 1998-08-04 Exxon Chemical Patents Inc High functionality low molecular weight oil soluble dispersant additives useful in oleaginous compositions
US4877557A (en) * 1987-02-12 1989-10-31 Mitsui Petrochemical Industries, Ltd. Lubricating oil composition
US5273672A (en) * 1987-03-02 1993-12-28 Idemitsu Kosan Company Limited Lubricating oil composition containing a partial ester of a polyhydric alcohol and a substituted succinic acid ester
US5064546A (en) * 1987-04-11 1991-11-12 Idemitsu Kosan Co., Ltd. Lubricating oil composition
US4820432A (en) * 1987-07-24 1989-04-11 Exxon Chemical Patents Inc. Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions
US4971711A (en) * 1987-07-24 1990-11-20 Exxon Chemical Patents, Inc. Lactone-modified, mannich base dispersant additives useful in oleaginous compositions
US5407591A (en) * 1987-11-19 1995-04-18 Exxon Chemical Patents Inc. Oil soluble dispersant additives comprising the reaction product of a mannich base and a polyepoxide
US5085788A (en) * 1987-11-19 1992-02-04 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5026495A (en) * 1987-11-19 1991-06-25 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US4957645A (en) * 1988-02-29 1990-09-18 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5217634A (en) * 1988-02-29 1993-06-08 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5370810A (en) * 1988-02-29 1994-12-06 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same PT-696
US5053150A (en) * 1988-02-29 1991-10-01 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5385687A (en) * 1988-02-29 1995-01-31 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5030369A (en) * 1988-02-29 1991-07-09 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5275748A (en) * 1988-02-29 1994-01-04 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5482519A (en) * 1988-02-29 1996-01-09 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5256325A (en) * 1988-02-29 1993-10-26 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5124055A (en) * 1988-03-31 1992-06-23 Ethyl Petroleum Additives, Inc. Lubricating oil composition
US4943382A (en) * 1988-04-06 1990-07-24 Exxon Chemical Patents Inc. Lactone modified dispersant additives useful in oleaginous compositions
US4933098A (en) * 1988-04-06 1990-06-12 Exxon Chemical Patents Inc. Lactone modified viscosity modifiers useful in oleaginous compositions
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
AU613128B2 (en) * 1988-05-26 1991-07-25 Lubrizol Corporation, The Polymeric polysuccinate esters and lubricating compositions comprising same
EP0351964A1 (en) 1988-06-24 1990-01-24 Exxon Chemical Patents Inc. Synergistic combination of additives useful in power transmitting compositions
US4957649A (en) * 1988-08-01 1990-09-18 The Lubrizol Corporation Lubricating oil compositions and concentrates
US5205947A (en) * 1988-11-07 1993-04-27 Exxon Chemical Patents Inc. Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products
US5057617A (en) * 1988-11-07 1991-10-15 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy thiols
US4954572A (en) * 1988-11-07 1990-09-04 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy alcohols
US5340487A (en) * 1988-11-07 1994-08-23 Exxon Chemical Patents Inc. Dispersant adducts comprising alcohol adducts of dicarboxylic acid monoepoxy thiol reaction products
US4909952A (en) * 1989-01-03 1990-03-20 The Lubrizol Corporation Sulfur-containing polymeric polyesters and additive concentrates and lubricating oils containing same
US5328622A (en) * 1989-01-30 1994-07-12 Exxon Chemical Patents Inc. Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds
EP0399764A1 (en) 1989-05-22 1990-11-28 Ethyl Petroleum Additives Limited Lubricant compositions
US5176841A (en) * 1989-11-17 1993-01-05 Akzo N.V. Compositions from α,β-unsaturated dicarboxylic acid esters and olefinically unsaturated compounds which are particularly suitable for use as lubricants and lubricant additives and a process for the preparation of such compositions
EP0611818A1 (en) 1990-07-31 1994-08-24 Exxon Chemical Patents Inc. Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing the same
WO1992021736A1 (en) 1991-05-30 1992-12-10 The Lubrizol Corporation Two-cycle lubricant and method of using same
EP0558835A1 (en) 1992-01-30 1993-09-08 Albemarle Corporation Biodegradable lubricants and functional fluids
US5330662A (en) * 1992-03-17 1994-07-19 The Lubrizol Corporation Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
US5620946A (en) * 1992-03-17 1997-04-15 The Lubrizol Corporation Compositions containing combinations of surfactants and derivatives of succininc acylating agent or hydroxyaromatic compounds and methods of using the same
US5637557A (en) * 1992-03-17 1997-06-10 The Lubrizol Corporation Compositions containing derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
US5319030A (en) * 1992-07-23 1994-06-07 Chevron Research And Technology Company One-step process for the preparation of alkenyl succinic anhydride
US5286799A (en) * 1992-07-23 1994-02-15 Chevron Research And Technology Company Two-step free radical catalyzed process for the preparation of alkenyl succinic anhydride
US5625004A (en) * 1992-07-23 1997-04-29 Chevron Research And Technology Company Two-step thermal process for the preparation of alkenyl succinic anhydride
US5717039A (en) * 1992-12-17 1998-02-10 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US6030930A (en) * 1992-12-17 2000-02-29 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives
US5430105A (en) * 1992-12-17 1995-07-04 Exxon Chemical Patents Inc. Low sediment process for forming borated dispersant
US5703256A (en) * 1992-12-17 1997-12-30 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5698722A (en) * 1992-12-17 1997-12-16 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5696064A (en) * 1992-12-17 1997-12-09 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5629394A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Direct synthesis by living cationic polymerization of nitrogen-containing polymers
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
US5663130A (en) * 1992-12-17 1997-09-02 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5444135A (en) * 1992-12-17 1995-08-22 Exxon Chemical Patents Inc. Direct synthesis by living cationic polymerization of nitrogen-containing polymers
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5356552A (en) * 1993-03-09 1994-10-18 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Chlorine-free lubricating oils having modified high molecular weight succinimides
EP0648830A2 (en) * 1993-10-12 1995-04-19 Chevron U.S.A. Inc. Chlorine-free lubricating oils having modified high molecular weight succinmides
EP0648830A3 (en) * 1993-10-12 1996-11-20 Chevron Usa Inc Chlorine-free lubricating oils having modified high molecular weight succinmides.
US5565528A (en) * 1993-12-13 1996-10-15 Chevron Chemical Company Polymeric dispersants having polyalkylene and succinic groups
US5616668A (en) * 1993-12-13 1997-04-01 Chevron Chemical Company Polymeric dispersants having polyalkylene and succinic groups
US5876467A (en) * 1994-02-15 1999-03-02 Basf Aktiengesellschaft Use of carboxylic esters as fuel additives or lubricant additives and their preparation
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
EP0713907A2 (en) 1994-09-26 1996-05-29 Ethyl Petroleum Additives Limited Zinc additives of enhanced performance capabilities
US6306802B1 (en) 1994-09-30 2001-10-23 Exxon Chemical Patents Inc. Mixed antioxidant composition
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
US6478904B1 (en) * 1994-12-20 2002-11-12 Sasol Chemical Industries Ltd. Emulsion explosive
AU710644B2 (en) * 1994-12-20 1999-09-23 Sasol Chemical Industries Limited Emulsifier
US6268439B1 (en) 1995-09-08 2001-07-31 Shell Oil Company Polyolefin-substituted dicarboxylic derivatives
US5900466A (en) * 1995-09-08 1999-05-04 Shell Oil Company Polyolefin-substituted dicarboxylic derivatives
US5558802A (en) * 1995-09-14 1996-09-24 Exxon Chemical Patents Inc Multigrade crankcase lubricants with low temperature pumpability and low volatility
EP0778333A2 (en) 1995-11-09 1997-06-11 The Lubrizol Corporation Carboxylic compositions, derivatives, lubricants, fuels and concentrates
US5849676A (en) * 1995-12-01 1998-12-15 Chevron Chemical Company Post-treated derivatives of polyalkylene succinimides
US5851965A (en) * 1995-12-01 1998-12-22 Chevron Chemical Company Dispersant compositions having polyalkylene succinimides
US5853434A (en) * 1995-12-01 1998-12-29 Chevron Chemical Company Fuel compositions having polyalkylene succinimides and preparation thereof
US6358892B1 (en) * 1995-12-01 2002-03-19 Chevron Chemical Company Polyalkylene succinimides and post-treated derivatives thereof
US5872083A (en) * 1995-12-01 1999-02-16 Chevron Chemical Company Post-treated derivatives of polyalkylene succinimides
US5821205A (en) * 1995-12-01 1998-10-13 Chevron Chemical Company Polyalkylene succinimides and post-treated derivatives thereof
EP0776963A1 (en) 1995-12-01 1997-06-04 Chevron Chemical Company Polyalkylene succinimides and post-treated derivatives thereof
US5716912A (en) * 1996-04-09 1998-02-10 Chevron Chemical Company Polyalkylene succinimides and post-treated derivatives thereof
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6468948B1 (en) 1996-06-17 2002-10-22 Infineum Usa L.P. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US5964907A (en) * 1996-08-14 1999-10-12 Akzo Nobel N.V. Fuel compositions containing esteramines
US6013115A (en) * 1996-08-14 2000-01-11 Akzo N.V. Fuel additive compositions for simultaneously reducing intake valve and combustion chamber deposits
US5880070A (en) * 1996-08-20 1999-03-09 Chevron Chemical Company Cross-linked succinimides from an acid derivative, a polyamine, and a polycarboxylic acid derivative
US5753597A (en) * 1996-08-20 1998-05-19 Chevron Chemical Company Polymeric dispersants
US5792729A (en) * 1996-08-20 1998-08-11 Chevron Chemical Corporation Dispersant terpolymers
EP0831104A2 (en) 1996-08-20 1998-03-25 Chevron Chemical Company Novel dispersant terpolymers
US6624123B2 (en) * 1997-04-11 2003-09-23 Chevron Chemical S.A. Use of surfactants with high molecular weight for improving the filterability in hydraulic lubricants
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
US5861363A (en) * 1998-01-29 1999-01-19 Chevron Chemical Company Llc Polyalkylene succinimide composition useful in internal combustion engines
US6015776A (en) * 1998-09-08 2000-01-18 Chevron Chemical Company Polyalkylene polysuccinimides and post-treated derivatives thereof
US6146431A (en) * 1998-09-08 2000-11-14 Chevron Chemical Company Llc Polyalkylene polysuccinimides and post-treated derivatives thereof
US6107450A (en) * 1998-12-15 2000-08-22 Chevron Chemical Company Llc Polyalkylene succinimides and post-treated derivatives thereof
SG93866A1 (en) * 1999-06-22 2003-01-21 Ethyl Corp Phosphorylated thermal stability additives for distillate fuels
EP1063276A1 (en) * 1999-06-22 2000-12-27 Ethyl Corporation Phosphorylated thermal stability additives for distillate fuels
US6214775B1 (en) 1999-10-13 2001-04-10 Chevron Chemical Company Llc Haze-free post-treated succinimides
WO2002002720A3 (en) * 2000-07-03 2002-10-24 Ass Octel Fuel additives
GB2381789A (en) * 2000-07-03 2003-05-14 Ass Octel Fuel additives
WO2002002720A2 (en) * 2000-07-03 2002-01-10 The Associated Octel Company Limited Fuel additives
GB2381789B (en) * 2000-07-03 2004-06-30 Ass Octel Fuel additives
US20030173251A1 (en) * 2000-12-22 2003-09-18 Antonio Gutierrez Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions
US6855674B2 (en) 2000-12-22 2005-02-15 Infineum International Ltd. Hydroxy aromatic Mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions
US6617287B2 (en) 2001-10-22 2003-09-09 The Lubrizol Corporation Manual transmission lubricants with improved synchromesh performance
US20030130140A1 (en) * 2001-11-09 2003-07-10 Harrison James J. Polymeric dispersants prepared from copolymers of low molecular weight polyisobutene and unsaturated acidic reagent
US6906011B2 (en) 2001-11-09 2005-06-14 Chevron Oronite Company Llc Polymeric dispersants prepared from copolymers of low molecular weight polyisobutene and unsaturated acidic reagent
US6642191B2 (en) 2001-11-29 2003-11-04 Chevron Oronite Company Llc Lubricating oil additive system particularly useful for natural gas fueled engines
US6756348B2 (en) 2001-11-29 2004-06-29 Chevron Oronite Company Llc Lubricating oil having enhanced resistance to oxidation, nitration and viscosity increase
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US20030224948A1 (en) * 2002-02-14 2003-12-04 Dam Willem Van Lubricating oil additive comprising EC-treated succinimide, borated dispersant and corrosion inhibitor
EP2284248A2 (en) 2002-07-16 2011-02-16 The Lubrizol Corporation Slow release lubricant additives gel
EP2436753A1 (en) 2002-10-04 2012-04-04 R.T. Vanderbilt Company Inc. Synergistic organoborate compositions and lubricating compositions containing same
EP2366762A1 (en) 2002-10-04 2011-09-21 R.T. Vanderbilt Company Inc. Synergistic organoborate compositions and lubricating compositions containing same
EP2460870A1 (en) 2002-10-04 2012-06-06 R.T. Vanderbilt Company, Inc. Synergistic organoborate compositions and lubricating compositions containing same
EP2302023A2 (en) 2002-10-04 2011-03-30 R.T. Vanderbilt Company, Inc. Synergistic organoborate compositions and lubricating compositions containing same
US7888299B2 (en) 2003-01-15 2011-02-15 Afton Chemical Japan Corp. Extended drain, thermally stable, gear oil formulations
US20040147410A1 (en) * 2003-01-15 2004-07-29 Milner Jeffrey L Extended drain, thermally stable, gear oil formulations
US20040235682A1 (en) * 2003-05-22 2004-11-25 Chevron Oronite Company Llc Low emission diesel lubricant with improved corrosion protection
US6933351B2 (en) 2003-06-20 2005-08-23 Infineum International Limited Process for forming polyalkenyl acylating agents
US7339007B2 (en) 2003-06-20 2008-03-04 Infineum International Limited Low sediment process for thermally reacting highly reactive polymers and enophiles
US20040260032A1 (en) * 2003-06-20 2004-12-23 Irving Matthew David Low sediment process for thermally reacting highly reactive polymers and enophiles
US20040260027A1 (en) * 2003-06-20 2004-12-23 Michaud Vincent Jean Marie Process for forming polyalkenyl acylating agents
US20050027592A1 (en) * 2003-07-30 2005-02-03 Pettigrew F. Alexander Powered platform fuel consumption economy credits method
EP1503316A1 (en) 2003-07-30 2005-02-02 Ethyl Petroleum Additives, Inc. Fuel consumption economy credits method
US7615521B2 (en) 2003-08-01 2009-11-10 The Lubrizol Corporation Mixed dispersants for lubricants
US20050202981A1 (en) * 2003-08-01 2005-09-15 The Lubrizol Corporation Mixed dispersants for lubricants
US20070066498A1 (en) * 2003-09-17 2007-03-22 Nubar Ozbalik Power transmitting fluids and additive compositions
US20050059561A1 (en) * 2003-09-17 2005-03-17 Nubar Ozbalik Power transmitting fluids and additive compositions
US20050065043A1 (en) * 2003-09-23 2005-03-24 Henly Timothy J. Power transmission fluids having extended durability
US20070054813A1 (en) * 2003-09-25 2007-03-08 Chip Hewette Boron free automotive gear oil
US20050070446A1 (en) * 2003-09-25 2005-03-31 Ethyl Petroleum Additives, Inc. Boron free automotive gear oil
US20050101494A1 (en) * 2003-11-10 2005-05-12 Iyer Ramnath N. Lubricant compositions for power transmitting fluids
US20100279901A1 (en) * 2003-11-10 2010-11-04 Iyer Ramnath N Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
US20080009426A1 (en) * 2003-11-10 2008-01-10 Iyer Ramnath N Lubricant Compositions and Methods Comprising Dispersant and Detergent
EP2230292A1 (en) 2003-11-10 2010-09-22 Afton Chemical Corporation Methods of lubricating transmissions
US9267093B2 (en) 2003-11-10 2016-02-23 Afton Chemical Corporation Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
US20050101497A1 (en) * 2003-11-12 2005-05-12 Saathoff Lee D. Compositions and methods for improved friction durability in power transmission fluids
US20080090744A1 (en) * 2003-11-12 2008-04-17 Saathoff Lee D Compositions and Methods for Improved Friction Durability in Power Transmission Fluids
EP2184338A2 (en) 2003-12-12 2010-05-12 The Lubrizol Corporation Lubricating composition containing metal salixarate as detergent and succinimides as dispersants
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
US20050192185A1 (en) * 2004-02-27 2005-09-01 Saathoff Lee D. Power transmission fluids
US7947636B2 (en) 2004-02-27 2011-05-24 Afton Chemical Corporation Power transmission fluids
US20050202979A1 (en) * 2004-03-10 2005-09-15 Ethyl Petroleum Additives, Inc. Power transmission fluids with enhanced extreme pressure characteristics
US20050209112A1 (en) * 2004-03-16 2005-09-22 The Lubrizol Corporation, A Corporation Of The State Of Ohio Hydraulic composition containing a substantially nitrogen free dispersant
JP2014025080A (en) * 2004-03-16 2014-02-06 Lubrizol Corp:The Hydraulic composition containing substantially nitrogen free dispersant
WO2005090530A1 (en) * 2004-03-16 2005-09-29 The Lubrizol Corporation Hydraulic composition containing a substantially nitrogen free dispersant
JP2007529599A (en) * 2004-03-16 2007-10-25 ザ ルブリゾル コーポレイション Hydraulic composition containing a substantially nitrogen-free dispersant
JP2011219776A (en) * 2004-03-16 2011-11-04 Lubrizol Corp:The Hydraulic composition containing substantially nitrogen-free dispersant
US7635668B2 (en) 2004-03-16 2009-12-22 The Lubrizol Corporation Hydraulic composition containing a substantially nitrogen free dispersant
US20060003905A1 (en) * 2004-07-02 2006-01-05 Devlin Cathy C Additives and lubricant formulations for improved corrosion protection
US20060025314A1 (en) * 2004-07-28 2006-02-02 Afton Chemical Corporation Power transmission fluids with enhanced extreme pressure and antiwear characteristics
US7875576B2 (en) 2004-07-29 2011-01-25 Chevron Oronite Company Llc Lubricating oil composition for internal combustion engines
US20060025313A1 (en) * 2004-07-29 2006-02-02 Chevron Oronite Company Llc Lubricating oil composition for internal combustion engines
US9481841B2 (en) 2004-12-09 2016-11-01 The Lubrizol Corporation Process of preparation of an additive and its use
EP1674557A2 (en) 2004-12-21 2006-06-28 Chevron Oronite Company LLC An anti-shudder additive composition and lubricating oil composition containing the same
US20060135375A1 (en) * 2004-12-21 2006-06-22 Chevron Oronite Company Llc Anti-shudder additive composition and lubricating oil composition containing the same
US20080248980A1 (en) * 2005-02-18 2008-10-09 The Lubrizol Corporation Lubricant Additive Formulation Containing Multifunctional Dispersant
US8183187B2 (en) 2005-02-18 2012-05-22 The Lubrizol Corporation Lubricant additive formulation containing multifunctional dispersant
US7902130B2 (en) 2005-02-18 2011-03-08 The Lubrizol Corporation Multifunctional dispersants
EP2116590A1 (en) 2005-02-18 2009-11-11 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
US20090054278A1 (en) * 2005-02-18 2009-02-26 The Lubrizol Corporation Multifunctional Dispersants
WO2006094011A2 (en) 2005-03-01 2006-09-08 R.T. Vanderbilt Company, Inc. Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
US8557752B2 (en) 2005-03-23 2013-10-15 Afton Chemical Corporation Lubricating compositions
US20060217273A1 (en) * 2005-03-23 2006-09-28 Nubar Ozbalik Lubricating compositions
EP3118286A1 (en) 2005-03-28 2017-01-18 The Lubrizol Corporation Titanium compounds and complexes as additives in lubricants
EP4098724A1 (en) 2005-03-28 2022-12-07 The Lubrizol Corporation Titanium compounds and complexes as additives in lubricants
EP2290044A1 (en) 2005-03-28 2011-03-02 The Lubrizol Corporation Titanium compounds and complexes as additives in lubricants
US20060223716A1 (en) * 2005-04-04 2006-10-05 Milner Jeffrey L Tractor fluids
US20070027267A1 (en) * 2005-04-29 2007-02-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US7745542B2 (en) 2005-04-29 2010-06-29 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
US20060287202A1 (en) * 2005-06-15 2006-12-21 Malcolm Waddoups Low ash or ashless two-cycle lubricating oil with reduced smoke generation
US20070042917A1 (en) * 2005-07-12 2007-02-22 Ramanathan Ravichandran Amine Tungstates and Lubricant Compositions
US7820602B2 (en) 2005-07-12 2010-10-26 King Industries, Inc. Amine tungstates and lubricant compositions
US20090029888A1 (en) * 2005-07-12 2009-01-29 Ramanathan Ravichandran Amine tungstates and lubricant compositions
US8080500B2 (en) 2005-07-12 2011-12-20 King Industries, Inc. Amine tungstates and lubricant compositions
US20080194440A1 (en) * 2005-07-12 2008-08-14 Ramanathan Ravichandran Amine tungstates and lubricant compositions
EP1757673A1 (en) 2005-08-23 2007-02-28 Chevron Oronite Company LLC Lubricating oil composition for internal combustion engines
US20070049503A1 (en) * 2005-08-31 2007-03-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US7618928B2 (en) 2005-08-31 2009-11-17 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20070111906A1 (en) * 2005-11-12 2007-05-17 Milner Jeffrey L Relatively low viscosity transmission fluids
US20070119340A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Ink carriers containing nanoparticles, phase change inks including same and methods for making same
US7563314B2 (en) 2005-11-30 2009-07-21 Xerox Corporation Ink carriers containing nanoparticles, phase change inks including same and methods for making same
US20070131138A1 (en) * 2005-12-12 2007-06-14 Xerox Corporation Carbon black inks and method for making same
US7655084B2 (en) 2005-12-12 2010-02-02 Xerox Corporation Carbon black inks and method for making same
EP3392327A1 (en) 2005-12-15 2018-10-24 The Lubrizol Corporation Engine lubricant for improved fuel economy
EP2371933A1 (en) 2006-02-06 2011-10-05 The Lubrizol Corporation Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
EP3106506A1 (en) 2006-04-24 2016-12-21 The Lubrizol Corporation Star polymer lubricating composition
US20070270317A1 (en) * 2006-05-19 2007-11-22 Milner Jeffrey L Power Transmission Fluids
US20080015124A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant composition
US7879775B2 (en) 2006-07-14 2011-02-01 Afton Chemical Corporation Lubricant compositions
US20080015127A1 (en) * 2006-07-14 2008-01-17 Loper John T Boundary friction reducing lubricating composition
US20080015125A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant compositions
US7902133B2 (en) 2006-07-14 2011-03-08 Afton Chemical Corporation Lubricant composition
EP3339404A1 (en) 2006-07-18 2018-06-27 Infineum International Limited Lubricating oil compositions
US20080051305A1 (en) * 2006-08-28 2008-02-28 Devlin Mark T Lubricant composition
US7833953B2 (en) 2006-08-28 2010-11-16 Afton Chemical Corporation Lubricant composition
EP1916292A1 (en) 2006-10-27 2008-04-30 Chevron Oronite Company LLC A lubricating oil additive composition and method of making the same
US7858566B2 (en) 2006-10-27 2010-12-28 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20080103076A1 (en) * 2006-10-27 2008-05-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20080113889A1 (en) * 2006-10-27 2008-05-15 Chevron Oronite Company Llc lubricating oil additive composition and method of making the same
US20080103250A1 (en) * 2006-10-27 2008-05-01 Xerox Corporation Nanostructed particles, phase change inks including same and methods for making same
US20080103236A1 (en) * 2006-10-27 2008-05-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20080103075A1 (en) * 2006-10-27 2008-05-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US7820605B2 (en) 2006-10-27 2010-10-26 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US7820604B2 (en) 2006-10-27 2010-10-26 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
EP1916293A1 (en) 2006-10-27 2008-04-30 Chevron Oronite Company LLC A lubricating oil additive composition and method of making the same
US7786209B2 (en) 2006-10-27 2010-08-31 Xerox Corporation Nanostructured particles, phase change inks including same and methods for making same
US7816309B2 (en) 2006-10-27 2010-10-19 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US8067347B2 (en) 2006-10-27 2011-11-29 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US7928044B2 (en) 2006-10-27 2011-04-19 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20080113888A1 (en) * 2006-10-27 2008-05-15 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20080098930A1 (en) * 2006-11-01 2008-05-01 Xerox Corporation Colorant dispersant
US20080119377A1 (en) * 2006-11-22 2008-05-22 Devlin Mark T Lubricant compositions
DE102008005330A1 (en) 2007-01-31 2008-08-07 Afton Chemical Corp. Lubricant composition for biodiesel fuel engine uses
US20080182768A1 (en) * 2007-01-31 2008-07-31 Devlin Cathy C Lubricant composition for bio-diesel fuel engine applications
EP1959003A2 (en) 2007-02-08 2008-08-20 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
US20100152078A1 (en) * 2007-05-04 2010-06-17 Ian Macpherson Environmentally-friendly lubricant compositions
US20080274921A1 (en) * 2007-05-04 2008-11-06 Ian Macpherson Environmentally-Friendly Lubricant Compositions
EP2017329A1 (en) 2007-05-04 2009-01-21 Afton Chemical Corporation Environmentally-Friendly Lubricant Compositions
EP2420553A1 (en) 2007-05-04 2012-02-22 Afton Chemical Corporation Environmentally-Friendly Lubricant Compositions
WO2008154334A1 (en) 2007-06-08 2008-12-18 Infineum International Limited Additives and lubricating oil compositions containing same
US20090011963A1 (en) * 2007-07-06 2009-01-08 Afton Chemical Corporation Truck fleet fuel economy by the use of optimized engine oil, transmission fluid, and gear oil
DE102008005346A1 (en) 2007-08-10 2009-02-12 Indian Oil Corp. Ltd., Mumbai New synthetic fuel and method of making same
US20090038211A1 (en) * 2007-08-10 2009-02-12 Indian Oil Corporation Limited Novel synthetic fuel and method of preparation thereof
US8353972B2 (en) 2007-08-10 2013-01-15 Indian Oil Corporation Limited Synthetic fuel and method of preparation thereof
US20090071067A1 (en) * 2007-09-17 2009-03-19 Ian Macpherson Environmentally-Friendly Additives And Additive Compositions For Solid Fuels
US20090093384A1 (en) * 2007-10-03 2009-04-09 The Lubrizol Corporation Lubricants That Decrease Micropitting for Industrial Gears
EP2075264A1 (en) 2007-12-26 2009-07-01 Infineum International Limited Method of forming polyalkene substituted carboxylic acid compositions
EP2083063A1 (en) 2008-01-22 2009-07-29 Infineum International Limited Lubricating oil composition
US8420583B2 (en) 2008-01-24 2013-04-16 Afton Chemical Corporation Olefin copolymer dispersant VI improver and lubricant compositions and uses thereof
EP2083024A1 (en) 2008-01-24 2009-07-29 Afton Chemical Corporation Olefin copolymer dispersant VI improver and lubricant compositions and uses thereof
US20090192061A1 (en) * 2008-01-24 2009-07-30 Boegner Philip J Olefin copolymer dispersant vi improver and lubricant compositions and uses thereof
EP2090642A1 (en) 2008-02-08 2009-08-19 Infineum International Limited Engine lubrication
US20090233823A1 (en) * 2008-03-11 2009-09-17 Volkswagen Aktiengesellschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
US8546311B2 (en) 2008-03-11 2013-10-01 Volkswagen Aktiengesellsschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
US20090233822A1 (en) * 2008-03-11 2009-09-17 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
DE102009001301A1 (en) 2008-03-11 2009-09-24 Volkswagen Ag Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication
DE102009012567A1 (en) 2008-03-11 2009-10-01 Afton Chemical Corp. Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
US8703669B2 (en) 2008-03-11 2014-04-22 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
US8455568B2 (en) 2008-04-25 2013-06-04 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20090270531A1 (en) * 2008-04-25 2009-10-29 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20110065612A1 (en) * 2008-06-09 2011-03-17 Stokes Kristoffer K Low interfacial tension surfactants for petroleum applications
US8389456B2 (en) 2008-06-09 2013-03-05 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US8227383B2 (en) 2008-06-09 2012-07-24 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US20100028537A1 (en) * 2008-08-04 2010-02-04 Xerox Corporation Ink Carriers Containing Surface Modified Nanoparticles, Phase Change Inks Including Same, and Methods for Making Same
US8123344B2 (en) 2008-08-04 2012-02-28 Xerox Corporation Ink carriers containing surface modified nanoparticles, phase change inks including same, and methods for making same
US8029861B2 (en) 2008-09-23 2011-10-04 Xerox Corporation Ink carriers containing low viscosity functionalized waxes, phase change inks including same, and methods for making same
US20100075038A1 (en) * 2008-09-23 2010-03-25 Xerox Corporation Ink Carriers Containing Low Viscosity Functionalized Waxes, Phase Change Inks Including Same, And Methods For Making Same
US20100081588A1 (en) * 2008-09-30 2010-04-01 Chevron Oronite Company Llc Lubricating oil compositions
US8153566B2 (en) 2008-09-30 2012-04-10 Cherron Oronite Company LLC Lubricating oil compositions
WO2010048244A1 (en) 2008-10-23 2010-04-29 The Lubrizol Corporation Lubricating composition containing metal carboxylate
US20100124611A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Phase Change Inks Containing Graphene-Based Carbon Allotrope Colorants
US20100123746A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Ink jet inks containing nanodiamond black colorants
US8177897B2 (en) 2008-11-17 2012-05-15 Xerox Corporation Phase change inks containing graphene-based carbon allotrope colorants
US8348409B2 (en) 2008-11-17 2013-01-08 Xerox Corporation Ink jet inks containing nanodiamond black colorants
WO2010077630A1 (en) 2008-12-09 2010-07-08 The Lubrizol Corporation Lubricating composition containing a compound derived from a hydroxy-carboxylic acid
WO2010099136A1 (en) 2009-02-26 2010-09-02 The Lubrizol Corporation Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant
EP2431448A1 (en) 2009-02-26 2012-03-21 The Lubrizol Corporation Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant
EP3572484A1 (en) 2009-03-03 2019-11-27 The Lubrizol Corporation Ashless or reduced ash quaternary detergents
US10407641B2 (en) 2009-03-03 2019-09-10 The Lubrizol Corporation Ashless or reduced ash quaternary detergents
WO2010107882A1 (en) 2009-03-20 2010-09-23 The Lubrizol Corporation Anthranilic esters as additives in lubricants
EP2236590A1 (en) 2009-04-01 2010-10-06 Infineum International Limited Lubricating oil composition
WO2010115594A1 (en) 2009-04-07 2010-10-14 Infineum International Limited Marine engine lubrication
EP2290040A1 (en) 2009-07-31 2011-03-02 Chevron Japan Ltd. Friction modifier and transmission oil
EP3272840A1 (en) 2009-07-31 2018-01-24 Chevron Japan Ltd. Friction modifier and transmission oil
WO2011022317A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
EP2891700A1 (en) 2009-08-18 2015-07-08 The Lubrizol Corporation Lubricating composition containing an antiwear agent
EP2891701A1 (en) 2009-08-18 2015-07-08 The Lubrizol Corporation Lubricating composition containing a corrosion inhibitor
WO2011022245A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011022266A2 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
EP2290041A2 (en) 2009-08-24 2011-03-02 Infineum International Limited A lubricating oil composition
WO2011034829A1 (en) 2009-09-16 2011-03-24 The Lubrizol Corporation Lubricating composition containing an ester
WO2011038331A1 (en) 2009-09-28 2011-03-31 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
US9045574B2 (en) 2009-09-28 2015-06-02 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
US8415284B2 (en) 2009-11-05 2013-04-09 Afton Chemical Corporation Olefin copolymer VI improvers and lubricant compositions and uses thereof
EP2325291A1 (en) 2009-11-05 2011-05-25 Afton Chemical Corporation Olefin Copolymer VI improvers and lubricant compositions and uses thereof
US20110105371A1 (en) * 2009-11-05 2011-05-05 Afton Chemical Corporation Olefin copolymer vi improvers and lubricant compositions and uses thereof
US8742165B2 (en) 2009-12-10 2014-06-03 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US8969612B2 (en) 2009-12-10 2015-03-03 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
WO2011075401A1 (en) 2009-12-14 2011-06-23 The Lubrizol Corporation Lubricating composition containing a nitrile compound
WO2011075403A1 (en) 2009-12-14 2011-06-23 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011081835A1 (en) 2009-12-14 2011-07-07 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011084657A1 (en) 2009-12-17 2011-07-14 The Lubrizol Corporation Lubricating composition containing an aromatic compound
WO2011085339A1 (en) 2010-01-11 2011-07-14 The Lubrizol Corporation Overbased alkylated arylalkyl sulfonates
EP3636731A1 (en) 2010-03-10 2020-04-15 The Lubrizol Corporation Titanium and molybdenum compounds and complexes as additives in lubricants
WO2011112372A1 (en) 2010-03-10 2011-09-15 The Lubrizol Corporation Titanium and molybdenum compounds and complexes as additives in lubricants
US8933001B2 (en) 2010-03-31 2015-01-13 Chevron Oronite Company Llc Method for improving fluorocarbon elastomer seal compatibility
US8901050B2 (en) 2010-03-31 2014-12-02 Chevron Oronite Company Llc Method for improving copper corrosion performance
WO2011126736A1 (en) 2010-04-06 2011-10-13 The Lubrizol Corporation Zinc salicylates for rust inhibition in lubricants
WO2011130142A1 (en) 2010-04-15 2011-10-20 The Lubrizol Corporation Low-ash lubricating oils for diesel engines
WO2011143051A1 (en) 2010-05-12 2011-11-17 The Lubrizol Corporation Tartaric acid derivatives in hths fluids
WO2011146456A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Low ash lubricants with improved seal and corrosion performance
WO2011146692A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2011146467A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2011149810A1 (en) 2010-05-24 2011-12-01 The Lubrizol Corporation Lubricating composition
WO2012027254A1 (en) 2010-08-23 2012-03-01 The Lubrizol Corporation Lubricants containing aromatic dispersants and titanium
WO2012030616A1 (en) 2010-08-31 2012-03-08 The Lubrizol Corporation Star polymer and lubricating composition thereof
WO2012030590A1 (en) 2010-08-31 2012-03-08 The Lubrizol Corporation Lubricating composition containing an antiwear agent
EP3184615A1 (en) 2010-08-31 2017-06-28 The Lubrizol Corporation Method of lubricating a driveline device
EP2623582A1 (en) 2010-08-31 2013-08-07 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2012040021A1 (en) 2010-09-20 2012-03-29 The Lubrizol Corporation Aminobenzoic acid derivatives
WO2012047949A1 (en) 2010-10-06 2012-04-12 The Lubrizol Corporation Lubricating oil composition with anti-mist additive
WO2012071305A1 (en) 2010-11-23 2012-05-31 The Lubrizol Corporation Polyester quaternary ammonium salts
WO2012071313A1 (en) 2010-11-24 2012-05-31 The Lubrizol Corporation Polyester quaternary ammonium salts
WO2012078572A1 (en) 2010-12-10 2012-06-14 The Lubrizol Corporation Lubricant composition containing viscosity index improver
WO2012087773A1 (en) 2010-12-21 2012-06-28 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2012087775A1 (en) 2010-12-21 2012-06-28 The Lubrizol Corporation Lubricating composition containing a detergent
WO2012094275A1 (en) 2011-01-04 2012-07-12 The Lubrizol Corporation Continuously variable transmission fluid with extended anti-shudder durability
WO2012097026A1 (en) 2011-01-12 2012-07-19 The Lubrizol Corporation Engine lubricants containing a polyether
WO2012106170A1 (en) 2011-01-31 2012-08-09 The Lubrizol Corporation Lubricant composition comprising anti-foam agents
WO2012112648A2 (en) 2011-02-16 2012-08-23 The Lubrizol Corporation Method of lubricating a driveline device
WO2012112658A1 (en) 2011-02-17 2012-08-23 The Lubrzol Corporation Lubricants with good tbn retention
WO2012122202A1 (en) 2011-03-10 2012-09-13 The Lubrizol Corporation Lubricating composition containing a thiocarbamate compound
WO2012141855A1 (en) 2011-04-15 2012-10-18 R.T. Vanderbilt Company, Inc. Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
WO2012151084A1 (en) 2011-05-04 2012-11-08 The Lubrizol Corporation Motorcycle engine lubricant
WO2012166781A1 (en) 2011-05-31 2012-12-06 The Lubrizol Corporation Lubricating composition with improved tbn retention
WO2012174075A1 (en) 2011-06-15 2012-12-20 The Lubrizol Corporation Lubricating composition containing an ester of an aromatic carboxylic acid
WO2012174184A1 (en) 2011-06-15 2012-12-20 The Lubrizol Corporation Lubricating composition containing a salt of a carboxylic acid
WO2012177549A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2012177537A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2012177529A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating compositions containing salts of hydrocarbyl substituted acylating agents
WO2013013026A1 (en) 2011-07-21 2013-01-24 The Lubrizol Corporation Carboxylic pyrrolidinones and methods of use thereof
WO2013012987A1 (en) 2011-07-21 2013-01-24 The Lubrizol Corporation Overbased friction modifiers and methods of use thereof
WO2013043332A1 (en) 2011-09-23 2013-03-28 The Lubrizol Corporation Quaternary ammonium salts in heating oils
WO2013059173A1 (en) 2011-10-20 2013-04-25 The Lubrizol Corporation Bridged alkylphenol compounds
WO2013062924A2 (en) 2011-10-27 2013-05-02 The Lubrizol Corporation Lubricating composition containing an esterified polymer
WO2013066585A1 (en) 2011-10-31 2013-05-10 The Lubrizol Corporation Ashless friction modifiers for lubricating compositions
WO2013070376A2 (en) 2011-11-11 2013-05-16 Vanderbilt Chemicals, Llc Lubricant composition
WO2013101882A1 (en) 2011-12-29 2013-07-04 The Lubrizol Corporation Limited slip friction modifiers for differentials
EP3088498A1 (en) 2011-12-30 2016-11-02 The Lubrizol Corporation Use of star polymers
EP2610332A1 (en) 2011-12-30 2013-07-03 The Lubrizol Corporation Star polymer and lubricating composition thereof
WO2013119623A1 (en) 2012-02-08 2013-08-15 The Lubrizol Corporation Method of preparing a sulfurized alkaline earth metal dodecylphenate
WO2013122898A2 (en) 2012-02-16 2013-08-22 The Lubrizol Corporation Lubricant additive booster system
WO2013148171A1 (en) 2012-03-26 2013-10-03 The Lubrizol Corporation Manual transmission lubricants with improved synchromesh performance
WO2013148146A1 (en) 2012-03-26 2013-10-03 The Lubrizol Corporation Manual transmission lubricants with improved synchromesh performance
EP2698418A1 (en) 2012-08-17 2014-02-19 Afton Chemical Corporation Calcium neutral and overbased mannich and anhydride adducts as detergents for engine oil lubricants
WO2014074197A1 (en) 2012-09-11 2014-05-15 The Lubrizol Corporation Lubricating composition containing an ashless tbn booster
EP2727984A1 (en) 2012-11-02 2014-05-07 Infineum International Limited Marine engine lubrication
WO2014075957A1 (en) 2012-11-19 2014-05-22 Basf Se Use of polyesters as lubricants
DE202013012619U1 (en) 2012-11-19 2018-01-09 Basf Se Lubricant composition comprising polyester
US10119092B2 (en) 2012-11-19 2018-11-06 Basf Se Use of polyesters as lubricants
WO2014078083A1 (en) 2012-11-19 2014-05-22 The Lubrizol Corporation Coupled phenols for use in biodiesel engines
EP2735603A1 (en) 2012-11-21 2014-05-28 Infineum International Limited Marine engine lubrication
WO2014088814A1 (en) 2012-12-07 2014-06-12 The Lubrizol Corporation Pyran dispersants
EP2765179A1 (en) 2013-02-07 2014-08-13 Infineum International Limited Marine engine lubrication
WO2014124187A1 (en) 2013-02-11 2014-08-14 The Lubrizol Corporation Bridged alkaline earth metal alkylphenates
WO2014137580A1 (en) 2013-03-07 2014-09-12 The Lubrizol Corporation Limited slip friction modifiers for differentials
WO2014164087A1 (en) 2013-03-12 2014-10-09 The Lubrizol Corporation Lubricating composition containing lewis acid reaction product
WO2014158435A1 (en) 2013-03-13 2014-10-02 The Lubrizol Corporation Engine lubricants containing a polyether
WO2014184068A1 (en) 2013-05-14 2014-11-20 Basf Se Lubricating oil composition with enhanced energy efficiency
US9708561B2 (en) 2013-05-14 2017-07-18 Basf Se Lubricating oil composition with enhanced energy efficiency
WO2014184062A1 (en) 2013-05-17 2014-11-20 Basf Se The use of polytetrahydrofuranes in lubricating oil compositions
US9938484B2 (en) 2013-05-17 2018-04-10 Basf Se Use of polytetrahydrofuranes in lubricating oil compositions
WO2014193543A1 (en) 2013-05-30 2014-12-04 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
EP3556830A1 (en) 2013-05-30 2019-10-23 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
DE202013006323U1 (en) 2013-07-15 2013-08-13 Basf Se Use of di (2-ethylhexyl) adipate as lubricant
DE202013006324U1 (en) 2013-07-15 2013-08-13 Basf Se Use of polyesters as lubricants
WO2015017172A1 (en) 2013-07-31 2015-02-05 The Lubrizol Corporation Method of lubricating a transmission which includes a synchronizer with a non-metallic surface
WO2015021135A1 (en) 2013-08-09 2015-02-12 The Lubrizol Corporation Reduced engine deposits from dispersant treated with copper
WO2015021129A1 (en) 2013-08-09 2015-02-12 The Lubrizol Corporation Reduced engine deposits from dispersant treated with cobalt
US10150928B2 (en) 2013-09-16 2018-12-11 Basf Se Polyester and use of polyester in lubricants
EP3878933A1 (en) 2013-09-19 2021-09-15 The Lubrizol Corporation Lubricant compositions for direct injection engines
EP3842508A1 (en) 2013-09-19 2021-06-30 The Lubrizol Corporation Use of lubricant compositions for direct injection engines
EP2851413A1 (en) 2013-09-23 2015-03-25 Chevron Japan Ltd. Fuel economy engine oil composition
US10669507B2 (en) 2013-09-23 2020-06-02 Chevron Japan Ltd. Fuel economy engine oil composition
EP2851412A1 (en) 2013-09-24 2015-03-25 Infineum International Limited Marine engine lubrication
WO2015078707A1 (en) 2013-11-26 2015-06-04 Basf Se The use of polyalkylene glycol esters in lubricating oil compositions
WO2015088769A2 (en) 2013-12-10 2015-06-18 The Lubrizol Corporation Method for preparing functionalized graft polymers
WO2015106090A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015106083A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
US9914893B2 (en) 2014-01-28 2018-03-13 Basf Se Use of alkoxylated polyethylene glycols in lubricating oil compositions
WO2015134129A2 (en) 2014-03-05 2015-09-11 The Lubrizol Corporation Emulsifier components and methods of using the same
WO2015138088A1 (en) 2014-03-11 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138108A1 (en) 2014-03-12 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138109A1 (en) 2014-03-12 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015142482A1 (en) 2014-03-19 2015-09-24 The Lubrizol Corporation Lubricants containing blends of polymers
US10077412B2 (en) 2014-03-28 2018-09-18 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
WO2015148889A1 (en) 2014-03-28 2015-10-01 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
WO2015153160A1 (en) 2014-04-04 2015-10-08 The Lubrizol Corporation Method for preparing a sulfurized alkaline earth metal dodecylphenate
EP2937408A1 (en) 2014-04-22 2015-10-28 Basf Se Lubricant composition comprising an ester of a C17 alcohol mixture
WO2015164682A1 (en) 2014-04-25 2015-10-29 The Lubrizol Corporation Multigrade lubricating compositions
EP2940110A1 (en) 2014-04-29 2015-11-04 Infineum International Limited Lubricating oil compositions
EP3415589A1 (en) 2014-04-29 2018-12-19 Infineum International Limited Lubricating oil compositions
WO2015171674A1 (en) 2014-05-06 2015-11-12 The Lubrizol Corporation Lubricant composition containing an antiwear agent
WO2015171364A1 (en) 2014-05-06 2015-11-12 The Lubrizol Corporation Anti-corrosion additives
US10000720B2 (en) 2014-05-22 2018-06-19 Basf Se Lubricant compositions containing beta-glucans
WO2015184254A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation High molecular weight amide/ester containing quaternary ammonium salts
WO2015184251A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Branched amine containing quaternary ammonium salts
WO2015184247A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation High molecular weight imide containing quaternary ammonium salts
WO2015184280A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Imidazole containing quaternary ammonium salts
WO2015183908A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Low molecular weight imide containing quaternary ammonium salts
WO2015183916A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Low molecular weight amide/ester containing quaternary ammonium salts
WO2015184301A2 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Coupled quaternary ammonium salts
WO2015184276A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Epoxide quaternized quaternary ammonium salts
EP3524663A1 (en) 2014-05-30 2019-08-14 The Lubrizol Corporation Imidazole containing quaternary ammonium salts
EP3536766A1 (en) 2014-05-30 2019-09-11 The Lubrizol Corporation Epoxide quaternized quaternary ammonium salts
EP3511396A1 (en) 2014-05-30 2019-07-17 The Lubrizol Corporation Low molecular weight imide containing quaternary ammonium salts
EP3517593A1 (en) 2014-05-30 2019-07-31 The Lubrizol Corporation Low molecular weight amide/ester containing quaternary ammonium salts
EP3514220A1 (en) 2014-05-30 2019-07-24 The Lubrizol Corporation Low molecular weight amide/ester containing quaternary ammonium salts
EP3521404A1 (en) 2014-05-30 2019-08-07 The Lubrizol Corporation Low molecular weight imide containing quaternary ammonium salts
WO2015195614A1 (en) 2014-06-18 2015-12-23 The Lubrizol Corporation Motorcycle engine lubricant
WO2016019216A1 (en) * 2014-08-01 2016-02-04 The Lubrizol Corporation Additive composition for well treatment fluids and methods for their use
WO2016033397A1 (en) 2014-08-28 2016-03-03 The Lubrizol Corporation Lubricating composition with seals compatibility
WO2016044262A1 (en) 2014-09-15 2016-03-24 The Lubrizol Corporation Dispersant viscosity modifiers with sulfonate functionality
WO2016077134A1 (en) 2014-11-12 2016-05-19 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
WO2016089565A1 (en) 2014-11-12 2016-06-09 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
WO2016090121A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated aromatic polyol compound
WO2016090108A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated aromatic polyol compound
WO2016090065A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
US10364404B2 (en) 2014-12-04 2019-07-30 Infineum International Limited Marine engine lubrication
EP3029133A1 (en) 2014-12-04 2016-06-08 Infineum International Limited Marine engine lubrication
US9879202B2 (en) 2014-12-04 2018-01-30 Infineum International Limited Marine engine lubrication
WO2016099490A1 (en) 2014-12-17 2016-06-23 The Lubrizol Corporation Lubricating composition for lead and copper corrosion inhibition
WO2016122911A1 (en) 2015-01-30 2016-08-04 The Lubrizol Corporation Composition for cleaning gasoline engine fuel delivery systems, air intake systems, and combustion chambers
US10781411B2 (en) 2015-01-30 2020-09-22 The Lubrizol Corporation Composition for cleaning gasoline engine fuel delivery systems, air intake systems, and combustion chambers
WO2016138227A1 (en) 2015-02-26 2016-09-01 The Lubrizol Corporation Aromatic detergents and lubricating compositions thereof
WO2016138248A1 (en) 2015-02-26 2016-09-01 The Lubrizol Corporation Aromatic tetrahedral borate compounds for lubricating compositions
US10336963B2 (en) 2015-02-26 2019-07-02 The Lubrizol Corporation Aromatic tetrahedral borate compounds for lubricating compositions
WO2016138939A1 (en) 2015-03-03 2016-09-09 Basf Se Pib as high viscosity lubricant base stock
WO2016144880A1 (en) 2015-03-09 2016-09-15 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2016144639A1 (en) 2015-03-10 2016-09-15 The Lubrizol Corporation Lubricating compositions comprising an anti-wear/friction modifying agent
WO2016148708A1 (en) 2015-03-18 2016-09-22 The Lubrizol Corporation Lubricant compositions for direct injection engines
US10669505B2 (en) 2015-03-18 2020-06-02 The Lubrizol Corporation Lubricant compositions for direct injection engines
EP3072949A1 (en) 2015-03-23 2016-09-28 Chevron Japan Ltd. Lubricating oil composition for construction machines
EP3072948A1 (en) 2015-03-23 2016-09-28 Chevron Japan Ltd. Lubricating oil compositions for construction machines
US11608478B2 (en) 2015-03-25 2023-03-21 The Lubrizol Corporation Lubricant compositions for direct injection engine
EP4194530A1 (en) 2015-03-25 2023-06-14 The Lubrizol Corporation Use of lubricant compositions for direct injection engines
WO2016156313A1 (en) 2015-03-30 2016-10-06 Basf Se Lubricants leading to better equipment cleanliness
WO2016164345A1 (en) 2015-04-09 2016-10-13 The Lubrizol Corporation Lubricants containing quaternary ammonium compounds
EP3085757A1 (en) 2015-04-23 2016-10-26 Basf Se Stabilization of alkoxylated polytetrahydrofuranes with antioxidants
US10577556B2 (en) 2015-06-12 2020-03-03 The Lubrizol Corporation Michael adduct amino esters as total base number boosters for marine diesel engine lubricating compositions
WO2017011152A1 (en) 2015-07-10 2017-01-19 The Lubrizol Corporation Viscosity modifiers for improved fluoroelastomer seal performance
US10988702B2 (en) 2015-07-20 2021-04-27 The Lubrizol Corporation Zinc-free lubricating composition
WO2017039855A2 (en) 2015-07-20 2017-03-09 The Lubrizol Corporation Zinc-free lubricating composition
US11518954B2 (en) 2015-07-20 2022-12-06 The Lubrizol Corporation Zinc-free lubricating composition
WO2017031143A1 (en) 2015-08-20 2017-02-23 The Lubrizol Corporation Azole derivatives as lubricating additives
EP3135750A1 (en) 2015-08-26 2017-03-01 Infineum International Limited Lubricating oil compositions
US11352582B2 (en) 2015-11-06 2022-06-07 The Lubrizol Corporation Lubricant with high pyrophosphate level
WO2017079614A1 (en) 2015-11-06 2017-05-11 The Lubrizol Corporation Method of lubricating a mechanical device
WO2017079016A1 (en) 2015-11-06 2017-05-11 The Lubrizol Corporation Lubricant with high pyrophosphate level
EP3786264A1 (en) 2015-11-06 2021-03-03 The Lubrizol Corporation Low vicosity gear lubricants
WO2017079017A1 (en) 2015-11-06 2017-05-11 The Lubrizol Corporation Low viscosity gear lubricants
EP4119639A1 (en) 2015-11-06 2023-01-18 The Lubrizol Corporation Lubricant with high pyrophosphate level
WO2017082182A1 (en) 2015-11-09 2017-05-18 三井化学株式会社 Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil compositions
WO2017083243A1 (en) 2015-11-11 2017-05-18 The Lubrizol Corporation Lubricating composition comprising thioether-substituted phenolic compound
WO2017096159A1 (en) 2015-12-02 2017-06-08 The Lubrizol Corporation Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails
WO2017096175A1 (en) 2015-12-02 2017-06-08 The Lubrizol Corporation Ultra-low molecular weight imide containing quaternary ammonium salts having short hydrocarbon tails
US10975323B2 (en) 2015-12-15 2021-04-13 The Lubrizol Corporation Sulfurized catecholate detergents for lubricating compositions
WO2017105747A1 (en) 2015-12-18 2017-06-22 The Lubrizol Corporation Nitrogen-functionalized olefin polymers for engine lubricants
EP3778837A1 (en) 2016-02-24 2021-02-17 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2017147380A1 (en) 2016-02-24 2017-08-31 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2017176546A1 (en) 2016-04-07 2017-10-12 The Lubrizol Corporation Mercaptoazole derivatives as lubricating additives
WO2017205270A1 (en) 2016-05-24 2017-11-30 The Lubrizol Corporation Seal swell agents for lubricating compositions
WO2017205274A1 (en) 2016-05-24 2017-11-30 The Lubrizol Corporation Seal swell agents for lubricating compositions
WO2017205271A1 (en) 2016-05-24 2017-11-30 The Lubrizol Corporation Seal swell agents for lubricating compositions
EP3255129A1 (en) 2016-06-06 2017-12-13 The Lubrizol Corporation Thiol-carboxylic adducts as lubricating additives
WO2017218654A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218662A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218657A2 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Polyisobutylene-substituted phenol, derivatives thereof, and lubricating compositions containing the polyisobutylene-substituted phenol and its derivatives
WO2017218664A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
EP3263678A1 (en) 2016-06-30 2018-01-03 The Lubrizol Corporation Hydroxyaromatic succinimide detergents for lubricating compositions
WO2018013451A1 (en) 2016-07-15 2018-01-18 The Lubrizol Corporation Engine lubricants for siloxane deposit control
WO2018017454A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017449A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017913A1 (en) 2016-07-22 2018-01-25 The Lubrizol Corporation Aliphatic tetrahedral borate compounds for fully formulated lubricating compositions
WO2018017911A1 (en) 2016-07-22 2018-01-25 The Lubrizol Corporation Aliphatic tetrahedral borate compounds for lubricating compositions
WO2018048781A1 (en) 2016-09-12 2018-03-15 The Lubrizol Corporation Total base number boosters for marine diesel engine lubricating compositions
US11427780B2 (en) 2016-09-12 2022-08-30 The Lubrizol Corporation Total base number boosters for marine diesel engine lubricating compositions
EP3293246A1 (en) 2016-09-13 2018-03-14 Basf Se Lubricant compositions containing diurea compounds
WO2018050484A1 (en) 2016-09-13 2018-03-22 Basf Se Lubricant compositions containing diurea compounds
WO2018053098A1 (en) 2016-09-14 2018-03-22 The Lubrizol Corporation Lubricating composition comprising sulfonate detergent and ashless hydrocarbyl phenolic compound
EP3851508A1 (en) 2016-09-14 2021-07-21 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2018052692A1 (en) 2016-09-14 2018-03-22 The Lubrizol Corporation Lubricating composition and method of lubricating an internal combustion engine
WO2018057694A2 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Polyacrylate antifoam components for use in diesel fuels
WO2018057675A1 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Polyacrylate antifoam components with improved thermal stability
WO2018057678A1 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
WO2018077621A1 (en) 2016-10-25 2018-05-03 Chevron Oronite Technology B.V. Lubricating oil compositions comprising a biodiesel fuel and a dispersant
US10781394B2 (en) 2016-10-25 2020-09-22 Chevron Oronite Technology B.V. Lubricating oil compositions comprising a biodiesel fuel and a Mannich condensation product
US10344245B2 (en) 2016-10-25 2019-07-09 Chevron Oronite Technology B.V. Lubricating oil compositions comprising a biodiesel fuel and a dispersant
EP3315591A1 (en) 2016-10-28 2018-05-02 Basf Se Energy efficient lubricant compositions
WO2018118163A1 (en) 2016-12-22 2018-06-28 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
US11162050B2 (en) 2016-12-27 2021-11-02 Mitsui Chemicals, Inc. Lubricating oil composition, viscosity modifier for lubricating oil, and additive composition for lubricating oil
US11162048B2 (en) 2016-12-27 2021-11-02 The Lubrizol Corporation Lubricating composition with alkylated naphthylamine
WO2018124070A1 (en) 2016-12-27 2018-07-05 三井化学株式会社 Lubricating oil composition, viscosity modifier for lubricating oil, and additive composition for lubricating oil
WO2018125569A1 (en) 2016-12-27 2018-07-05 The Lubrizol Corporation Lubricating composition including n-alkylated dianiline
WO2018125567A1 (en) 2016-12-27 2018-07-05 The Lubrizol Corporation Lubricating composition with alkylated naphthylamine
WO2018136541A1 (en) 2017-01-17 2018-07-26 The Lubrizol Corporation Engine lubricant containing polyether compounds
EP3369802A1 (en) 2017-03-01 2018-09-05 Infineum International Limited Improvements in and relating to lubricating compositions
WO2018197312A1 (en) 2017-04-27 2018-11-01 Shell Internationale Research Maatschappij B.V. Lubricating composition
EP3896142A1 (en) 2017-06-27 2021-10-20 The Lubrizol Corporation Lubricating composition for and method of lubricating an internal combustion engine
WO2019005738A1 (en) 2017-06-27 2019-01-03 The Lubrizol Corporation Lubricating composition for and method of lubricating an internal combustion engine
EP3421576A1 (en) 2017-06-30 2019-01-02 Infineum International Limited Refinery antifoulant process
WO2019003173A1 (en) 2017-06-30 2019-01-03 Chevron Oronite Company Llc Marine diesel lubricant oil compositions
WO2019003174A1 (en) 2017-06-30 2019-01-03 Chevron Oronite Company Llc Marine diesel lubricant oil compositions
WO2019003175A1 (en) 2017-06-30 2019-01-03 Chevron Oronite Company Llc Marine diesel lubricant oil compositions having improved low temperature performance
WO2019023219A1 (en) 2017-07-24 2019-01-31 Chemtool Incorporated Extreme pressure metal sulfonate grease
WO2019036285A1 (en) 2017-08-16 2019-02-21 The Lubrizol Corporation Lubricating composition for a hybrid electric vehicle transmission
EP3913040A1 (en) 2017-08-17 2021-11-24 The Lubrizol Corporation Driveline lubricants comprising nitrogen-functionalized olefin polymers
WO2019035905A1 (en) 2017-08-17 2019-02-21 The Lubrizol Company Nitrogen-functionalized olefin polymers for driveline lubricants
WO2019060682A2 (en) 2017-09-21 2019-03-28 The Lubrizol Corporation Polyacrylate antifoam components for use in fuels
EP3461877A1 (en) 2017-09-27 2019-04-03 Infineum International Limited Improvements in and relating to lubricating compositions
WO2019108588A1 (en) 2017-11-28 2019-06-06 The Lubrizol Corporation Lubricant compositions for high efficiency engines
WO2019112720A1 (en) 2017-12-04 2019-06-13 The Lubrizol Corporation Alkylphenol detergents
WO2019110355A1 (en) 2017-12-04 2019-06-13 Basf Se Branched adipic acid based esters as novel base stocks and lubricants
US10731103B2 (en) 2017-12-11 2020-08-04 Infineum International Limited Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same
EP3495462A1 (en) 2017-12-11 2019-06-12 Infineum International Limited Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same
WO2019118117A1 (en) 2017-12-15 2019-06-20 The Lubrizol Corporation Alkylphenol detergents
US10479953B2 (en) 2018-01-12 2019-11-19 Afton Chemical Corporation Emulsifier for use in lubricating oil
EP3511397A1 (en) * 2018-01-12 2019-07-17 Afton Chemical Corporation Emulsifier for use in lubricating oil
WO2019162744A1 (en) 2018-02-22 2019-08-29 Chevron Japan Ltd. Lubricating oils for automatic transmissions
US10604719B2 (en) 2018-02-22 2020-03-31 Chevron Japan Ltd. Lubricating oils for automatic transmissions
WO2019183050A1 (en) 2018-03-21 2019-09-26 The Lubrizol Corporation Polyacrylamide antifoam components for use in diesel fuels
WO2019183365A1 (en) 2018-03-21 2019-09-26 The Lubrizol Corporation NOVEL FLUORINATED POLYACRYLATES ANTIFOAMS IN ULTRA-LOW VISCOSITY (<5 CST) finished fluids
WO2019204141A1 (en) 2018-04-18 2019-10-24 The Lubrizol Corporation Lubricant with high pyrophosphate level
WO2019246192A1 (en) 2018-06-22 2019-12-26 The Lubrizol Corporation Lubricating compositions for heavy duty diesel engines
US11702610B2 (en) 2018-06-22 2023-07-18 The Lubrizol Corporation Lubricating compositions
WO2020003071A1 (en) 2018-06-27 2020-01-02 Chevron Oronite Technology B.V. Lubricating oil composition
WO2020102672A1 (en) 2018-11-16 2020-05-22 The Lubrizol Corporation Alkylbenzene sulfonate detergents
EP3760696A1 (en) 2018-12-20 2021-01-06 Infineum International Limited Oil anti-foulant and/or asphaltene agglomeration process
EP3835392A1 (en) 2018-12-20 2021-06-16 Infineum International Limited Hydrocarbon marine fuel oil
WO2020150123A1 (en) 2019-01-17 2020-07-23 The Lubrizol Corporation Traction fluids
WO2020263964A1 (en) 2019-06-24 2020-12-30 The Lubrizol Corporation Continuous acoustic mixing for performance additives and compositions including the same
US11859148B2 (en) 2019-07-01 2024-01-02 The Lubrizol Corporation Basic ashless additives and lubricating compositions containing same
WO2021003265A1 (en) 2019-07-01 2021-01-07 The Lubrizol Corporation Basic ashless additives and lubricating compositions containing same
WO2021022541A1 (en) * 2019-08-08 2021-02-11 Dow Global Technologies Llc Esterified oil soluble polyalkylene glycols
EP3778841A1 (en) 2019-08-15 2021-02-17 Infineum International Limited Method for reducing piston deposits in a marine diesel engine
US11873462B2 (en) 2019-08-29 2024-01-16 Mitsui Chemicals, Inc. Lubricating oil composition
WO2021039818A1 (en) 2019-08-29 2021-03-04 三井化学株式会社 Lubricating oil composition
US11932824B2 (en) * 2019-10-07 2024-03-19 Equus Uk Topco Ltd Corrosion inhibition
US20220333033A1 (en) * 2019-10-07 2022-10-20 Croda International Plc Corrosion inhibition
WO2021127183A1 (en) 2019-12-18 2021-06-24 The Lubrizol Corporation Polymeric surfactant compound
WO2021126342A1 (en) 2019-12-19 2021-06-24 The Lubrizol Corporation Wax anti-settling additive composition for use in diesel fuels
WO2021126338A1 (en) 2019-12-20 2021-06-24 The Lubrizol Corporation Lubricant composition containing a detergent derived from cashew nut shell liquid
WO2021262988A1 (en) 2020-06-25 2021-12-30 The Lubrizol Corporation Cyclic phosphonate esters for lubricant applications
WO2022040372A1 (en) 2020-08-20 2022-02-24 The Lubrizol Corporation Organic heat transfer system, method and fluid
WO2022150464A1 (en) 2021-01-06 2022-07-14 The Lubrizol Corporation Basic ashless additives and lubricating compositions containing same
WO2022212844A1 (en) 2021-04-01 2022-10-06 The Lubrizol Corporation Zinc free lubricating compositions and methods of using the same
WO2023054440A1 (en) 2021-09-30 2023-04-06 三井化学株式会社 Lubricating oil composition
EP4180505A1 (en) 2021-11-15 2023-05-17 Infineum International Limited Improvements in marine fuels
WO2023144721A1 (en) 2022-01-25 2023-08-03 Chevron Japan Ltd. Lubricating oil composition
WO2024015099A1 (en) 2022-07-14 2024-01-18 Chevron Oronite Company Llc Marine diesel cylinder lubricating oil compositions
WO2024015098A1 (en) 2022-07-14 2024-01-18 Chevron Oronite Company Llc Marine diesel engine lubricating oil compositions
WO2024030592A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing radically-functionalized pibsa product derivatives and compositions comprising same
WO2024030591A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing reaction products including quaternary ammonium salts

Similar Documents

Publication Publication Date Title
US3381022A (en) Polymerized olefin substituted succinic acid esters
US3522179A (en) Lubricating composition containing esters of hydrocarbon-substituted succinic acid
US3533945A (en) Lubricating oil composition
US3403102A (en) Lubricant containing phosphorus acid esters
US4034038A (en) Boron-containing esters
US3948800A (en) Dispersant compositions
US4151173A (en) Acylated polyoxyalkylene polyamines
US3281428A (en) Reaction product of certain acylated nitrogen containing intermediates and a boron compound
US3562159A (en) Synthetic lubricants
US3073807A (en) Copolymers of olefins with sulfonyloxy compounds
US3338832A (en) Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound
US3282955A (en) Reaction products of acylated nitrogen intermediates and a boron compound
US3876550A (en) Lubricant compositions
US3513093A (en) Lubricant containing nitrogen-containing and phosphorus-containing succinic derivatives
US3366569A (en) Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide
US3306908A (en) Reaction products of high molecular weight hydrocarbon succinic compounds, amines and heavy metal compounds
US3525693A (en) Alkenyl succinic polyglycol ether
US2892786A (en) Lubricant composition
US2892790A (en) Lubricant composition
US3956149A (en) Nitrogen-containing esters and lubricants containing same
US3325567A (en) Phosphorus esters and process
US2892816A (en) Detergent copolymers
US2892818A (en) Detergent copolymers
US2892792A (en) Lubricant composition
US2892819A (en) Detergent copolymers