US3385367A - Sealing device for perforated well casing - Google Patents

Sealing device for perforated well casing Download PDF

Info

Publication number
US3385367A
US3385367A US609974A US60997466A US3385367A US 3385367 A US3385367 A US 3385367A US 609974 A US609974 A US 609974A US 60997466 A US60997466 A US 60997466A US 3385367 A US3385367 A US 3385367A
Authority
US
United States
Prior art keywords
casing
elastomer
sleeve
valve
valve sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US609974A
Inventor
Kollsman Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US609974A priority Critical patent/US3385367A/en
Application granted granted Critical
Publication of US3385367A publication Critical patent/US3385367A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/134Bridging plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means

Definitions

  • the present improvements provide a sealing element for wells in which a casing is installed.
  • the sealing element comprises a central tubular core and an outer covering of elastomer material of a relaxed diameter larger than the internal diameter of the casing.
  • the covering comprises spaced annular ribs and is inserted, together with its central sleeve, into the casing in compressed condition and after presoaking in a hydrocarbon liquid.
  • the liquid forms a lubricating ilrn during insertion and during subsequent movement of the element relatively to perforations of the casing in order to open and seal Such perforations.
  • the invention deals with the problem of controlling the flow of uids into a perforated well casing.
  • the perforations may be present at a single level or formation or at several different levels or formations. They extend through the casing wall and through the surrounding cement layer or sheath into the adjacent formation, thus opening up the formation by explosion-produced passages leading from the formation into the well casing.
  • the control may involve the temporary or permanent sealing of all the perforations at a certain level, while initiating or maintaining flow at a different level, or it may involve the selective control of the fluid flow at a particular level for the purpose, for example, of reducing gas ilow through the higher perforation of the zone or level, or reducing water flow through the lower perforations of the zone or level by selective closing or restriction of such upper or lower perforations.
  • the invention accomplishes this in a manner in which the inner diameter of the casing is not excessively reduced, so that a production string, including a pump, may extend therethrough, and further in such a manner that the flow may subsequently be adjusted by opening or closing the perforations at one level and independently adjusting the flow through the perforations of a different level above or below the one level.
  • straddle tool comprising essentially a piece of tubing with a mechanically or hydraulically expansible packer at each end, thus straddling the perforations which lie between the packers.
  • the conventional straddle tools have a relatively small central bore which severely restricts treatment of a zone, or production from a zone, below the tool through the bore of the tool.
  • the expansible packers which form a part of the straddle tool exert high specific pressures of the order of 1,500 to 10,000 p.s.i. against the casing well which 3,385,367 Patented May 28, 1968 ice only a sound and noncorroded casing can withstand.
  • the invention employs sealing pressures of a dilferent order of magnitude. Pressures of less than 300 p.s.i. were found to be sutlcient for a reliable seal.
  • the invention involves the installation of a valve sleeve within the casing.
  • the valve sleeve comprises essentially a central tubular metal sleeve body providing a large central passage through which well fluids may flow, through which a production string including a pump may extend, or through which appropriate tools may reach in order to act on and reset a similar valve sleeve installed at a lower zone or level.
  • the metal sleeve body is tubular and rigid in contrast to the known casing patches which are inserted into a damaged well casing in a corrugated state in which their outer diameter is reduced, and which are subsequently mechanically expanded into tubular or near-tubular shape by attening out of the corrugations.
  • the metal sleeve body has an outer covering of elastomer material bonded thereto which, in installed condition, is suciently compressed to produce a seal between sleeve and casing. Even though the specific sealing pressure exerted against the casing is of a low order, a reliable seal against high pressures is readily produced by an elastomer body of appropriate length.
  • the elastomer covering may be composed of solid or of porous elastomer material.
  • Elastomer materials as such, may, for the purpose of the present invention, be divided into those which remain substantially unaffected by contact with hydrophobic liquids and those which, upon exposure to hydrophobic liquids, exhibit an appreciable degree of swelling.
  • the purpose of the elastomer covering is to produce a seal resulting from compressive force exerted by the exterior element, such as the well casing or the well bore, upon the elastomer or, conversely, by the force with which the elastomer expands against the exterior element, the casing or well bore.
  • the elastomer body may be compressed prior or incidental to the installation, such as its insertion into the well casing.
  • the elastomer may be precompressed with or without the simultaneous application of heat to reduce its original relaxed diameter by a set.
  • sealing force may be generated by swelling of the elastomer seal which is then made of a material which upon contact with a hydrophobic liquid causes the sealing body to swell.
  • the elastomer may be manufactured as a porous or spongelike body with or without an exterior skin which is denser than the interior, or may be mechanically reinforced.
  • porous or spongelike elastomer bodies may, again, be made of materials which exhibit little swelling when exposed to hydrophobic liquids or of those which swell appreciably under such conditions, depending on the particular requirements.
  • Elastomer seals may even be made water swellable.
  • a water swellable gel may be introduced into the pores of a porous body which, in itself, may be oil swellable. Drying of the gel produces shrinkage of the gel filled pores. The gel subsequently expands when exposed to water. Such water swellability can therefore be imparted even to an elastomer which by itself is swellable in hydrocarbon liquids, thus superimposing the phenomena of water swelling upon oil swelling.
  • valve sleeve is inserted into the casing and is pushed down, for example by an appropriate cable-suspended weight or tubing string to the desired location at which it either seals, partially seals, or clears the perforated zone.
  • valve sleeve is readily moved either by moving it down further or lifting it to the desired adjusted position in which it clears or seals the perforated zone, or to a zone above or below or in which it uncovers certain perforations lof the same Zone in which the valve sleeve was originally set.
  • valve sleeve forms a sleeve valve with the casing which is preferably suitably prepared by removing any burrs from the perforated zone or zones, for example by a conventional reaming tool.
  • valve sleeve may be moved in compressed condition from the point of insertion at the top of the casing along very substantial lengths of casing without any appreciable wear of the elastomer covering by either the casing wall or the joints of the casing.
  • a swellable valve sleeve lowered to the desired level and maintained suspended for a suliicient time swells and seats itself tightly. This can be accomplished within 6 to l2 hours from the time of insertion of the valve sleeve into the casing or well bore.
  • the invention employs in a well comprising a perforated casing a sealing element comprising a central annular core and an outer core covering of elastomer material shaped to form annular ribs leaving void spaces between such ribs, the sealing element being inserted into the casing in compressed condition and after presoaking in a hydrocarbon liquid which provides a lubricating film during the initial insertion and during subsequent movement of the sealing element with respect to the perforations to seal or open the same.
  • FIG. 1 is an elevational section through a valve sleeve according to this invention
  • FIGS. 2 to 12 illustrate, in elevational section, views of specific forms of elastomer coatingsz
  • FIG. 13 is a diagrammatic and simplified vertical section of a well and casing being prepared for the installation of a valve sleeve;
  • FIGS. 14 and 15 are corresponding illustrations of the well and casing with valve sleeves installed therein in different positions.
  • FIG. 16 is a diagrammatic illustration of a straddle sleeve whose elastomer seals seal against the well bore.
  • the valve sleeve of PIG. l comprises three peripherally rigid tubular sections 11, 12 and 13 connected by threaded couplings 14 and 15.
  • the exterior surface of sections 11 and 13 is roughened by Sandblasting or knurling to provide a secure grip for an elastomer covering generally indicated at 16 and bonded to the surface.
  • the contour of the elastomer covering may vary in form, representative forms being shown in FIGS. 2 to 12.
  • the covering may either consist of solid or of open-pore spongelike elastomer material, 0r solid elastomer material which may be shaped to provide voids into which the material can be deformed when the elastomer material is in a state of compression inside the casing in order to produce the desired seal with respect to the casing.
  • valve sleeve shown in FIG. 1 may be of considerable length of the order of l0 to 30 feet or more, depending on the length of the central section 12 which is chosen to meet the particular local requirement.
  • a representative practical length of the end sections is 4 yfeet.
  • the tubular elastomer covering may be shaped as a series of annular ribs 17 preferably of solid material spaced from one another by annular valleys 18.
  • the outer diameter D of the ribs or rings 17 exceeds the internal diameter d of the casing 20.
  • the elastomer rings 17 may be manufactured as one piece comprising a plurality of annuli 17.
  • This multi-ring piece may either be directly molded on the sleeve, or it may be premanufactured and then bonded to the sleeve.
  • the rings 17 may also be premanufactured as individual rings and then bonded to the outer surface 19 of the rigid tubular sleeve member 11.
  • the elastomer structure shown in FIG. 3 represents the relaxed state of the rings 17 which are substantially of saw-tooth or gable shape appearance in cross section. This structure is then precompressed to a reduced diameter and maintained in the precompressed state under application of heat for a time to produce a set.
  • the elastomer body then has the appearance as shown in the upper portion of FIG. 4, its relaxed but set diameter being D which is subsequently reduced to d by insertion into the casing 20.
  • the elastomer sleeve shown in FIG. 6 may be made from oil or water swellable elastic material capable of swelling within the casing upon contact with a swelling liquid, e.g., crude oil or water, respectively, to form a tight seal as shown in FIG. 7.
  • a swelling liquid e.g., crude oil or water
  • the elastomer sleeve shown in FIG. 5 is constructed from a material containing a substantial proportion of a plasticizer.
  • the relaxed diameter D1 of the rings 17 is reduced to a lesser diameter D2 indicated in FIG. 6 as a result of shrinkage of the elastomer by extraction of the plasticizer.
  • the reduced diameter D2 may be smaller than the diameter d of the casing 20 into which the sleeve 17, 11 is to be inserted.
  • valve sleeve shown in FIG. 8 the elastomer component is essentially a thin walled piece of tubing 23 having integral internal annular ribs 24 which are bonded to the sleeve exterior 11 along their respective base surfaces at 25. This arrangement results in the formation of a series of annular chambers 26 vented to the periphery by vent passages 27.
  • valve sleeve As the valve sleeve is being inserted into the casing 20, the elastomer sleeve or tubing 23 is being compressed, thereby reducing the size of the chambers 26.
  • This particular form of valve sleeve encounters somewhat less resistance at casing joints when it is being moved to its eventual location which may involve travel of the order of a mile.
  • the open-pore sponge body 2S of the elastomer material shown in FIG. 9 has a dense tough outer porous skin 28', the end of which is directly bonded to the ⁇ sleeve 11 at 30. Insertion of the valve sleeve into the casing 20 results in compression of the sponge body 28 which becomes correspondingly denser.
  • the elastomer sleeve 16 of the valve sleeve shown in FIG. l0 consists of open-pored elastomer sponge ma teria] containing in its pores a liquid swellable gel. Substantially radial passages 32 are yformed in the sponge body whose Volume is subsequently reduced by compression of the elastomer body incidental to its insertion into the casing 20 of smaller diameter. If the swellable substance in the pores is a water swellable gel, the swelling force thus produced is superimposed upon the elastic force of the elastomer.
  • the sleeve may be provided with peripheral ridges or flanges 29 which interlock with correspondng grooves of the elastomer body as shown in FIG. l1.
  • the tightness of interengagement increases when the valve sleeve is inserted into the casing, thereby compressing the sleeve.
  • the elastomer body has a certain limited degree of freedom to move axially with respect to the metal sleeve 11.
  • the interior spaces 26 into which the ridges 29 extend are vented by passages 27.
  • the elastomer body is reinforced peripherally by a suitable cord or fabric layer 30.
  • Such reinforcing layers are preferably so constructed as to limit iaxial expansion while permitting radial expansion.
  • FIG. 13 is a diagrammatic representation of a well comprising a casing 20 within the well bore 31 and a layer 32 of cement between bore and casing. The bottom of the casing is sealed by a cement plug 33.
  • Perforations 34 extend through the casing wall 20 and the cement 32 into the surrounding oil bearing formations 35 and 36.
  • the perforating procedure produces burrs 37 which are removable in a known manner by a casing scraper or reamer diagrammatically indicated at 38.
  • the upper formation 35 is temporarily, although not necessarily permanently, sealed by a st-raddle sleeve of the type shown in FIG. l.
  • One elastomer body seals the valve sleeve relatively to the casing 20 above the formation 35 and another elastomer body seals the valve sleeve relatively to the casing 20 below the formation 35.
  • This form of seal permits substantial tolerances in the placement of t-he valve sleeve with respect 'to the perforations.
  • a production string extends through the upper valve sleeve in formation 35 ⁇ and through a lower valve'sleeve in yformation 36, the pump 40 being at the end of the string.
  • valve sleeve thickness In this diagrammati-c illustration wall thicknesses, elastomer thickness and valve sleeve thickness are exaggerated for the sake of clarity. Correspondingly the diameter of the central passage through the valve sleeves appears too small. It is considerably larger in actual construction. For example, a casing having an internal diameter of 4 accommodates a valve sleeve having an internal passage diameter of 3%".
  • the lower valve sleeve of FIG. 14 is set to close the lower zone of the perforations of the formation 36 to reduce the flow of liquid, for example water, therethrough.
  • the lower valve sleeve may be raised to seal t-he lower form-ation 36 to a greater degree, or completely, while the upper valve sleeve may -be moved wto expose a portion, or all, of the perforations within formation 35.
  • valve sleeves 111, 211 and 311 are so set that the central perforations within the lower formation 36 are exposed, while the upper Iand lower zones of the same formation are sealed by valve sleeves 211 and 111, respectively.
  • the lower formation may be sealed completely by moving the valve sleeves 111 and 211 into contact with each other.
  • valve sleeve 311 is so set with respect to the perforations -of the upper formation 35 as to restrict production through the 'upper portion of the perforated zone only.
  • Each one of the these valve sleeves may readily be moved by gripping it by means of a conventional tubing anchor.
  • This type of tool is in essence an expansible mandrel or core which is lowered into the well and expanded by rotation in one direction, generally counterclockwise or left-handed rotation, and is contracted by rotation in the opposite sense, usually clockwise or righthanded rotation.
  • the for-ce exerted by such gripping tools is sufficient to permit exertion of great force, either pulling or pushing, -on the valve sleeve in order to move it to the desired new location.
  • bumping tools may also be employed to move the valve sleeve -by impact rather than static force.
  • the use of bumping tools is particularly advantageous where the desired displacement of -the valve sleeve is relatively small, but where accurate positioning is required.
  • Valve sleeves were constructed of steel tubing having an louter diameter of 3%" and an internal diameter of 3%" and a total length lof 48". Elastomer layers were bonded or vulcanized to the sandblasted outer surface of the tubing. The valve sleeves were then inserted for test- :ing in standard 41/2 casing having an internal diameter of 4".
  • T est 1. The elastomer covering had the shape shown in FIG. 2 composed of individual rings of t Width and an external diameter of 4% of neoprene rubber cured with benzoyl peroxide land having a hardness of 40 -durome-ter un-its.
  • valve sleeve was soaked in cru-de oil, pressed into the casing and subjected to a differential pressure of 3000 p.s.i. across the entire length of the sleeve. There was no leakage.
  • Test 2 An elastomer covering was applied to the valve sleeve core in the form shown in FIG. 5 composed of individual rings of a width of 1/z and an outer diameter of 45716.
  • the rings consisted of Nordel rubber cured with lbenzoyl peroxide and containing 25 percent plasticizer by volume, Nordel rubber, as hereinafter specified, is an ethylene propylene hydrocarbon -rubber cured with benzoyl peroxide.
  • valve sleeve was then pressed into casing tubing and maintained at a temperature Iof 240 F. for 48 hours. After removal of the valve sleeve from the 4" tubing the elastomer coating had acquired a set, its external diameter -being 4%".
  • valve sleeve was then soaked in crude ⁇ oil and inserted into the easing. Subjected t-o a differential pressure of 3000 p.s.i. it main-tained a tight seal.
  • a sub-assembly of six rings maintained a tight seal up to a differential pressure of 5S 0 p.s.i.
  • Test 3 A neoprene sleeve was bonded to the valve sleeve core.
  • the neoprene sleeve had the shape shown in FIG. 8, the outer layer 23 being 1/16 thick and the annular ribs 24 being ls thick and spaced 1A center to center. Eight vent holes of /lG" diameter were provided for each chamber 26.
  • the outer layer 23 was reinforced by thin peripherally stretchable and axially stretch resistant nylon fabric immediately below the outer surface. In its relaxed state the neoprene sleeve had an outer diameter of 4%".
  • valve sleeve was wetted with crude oil and then pushed into the casing and produced a tight seal against a differential pressure of 3000 p.s.i.
  • the force required for insertion of the valve sleeve into, and movement of the valve sleeve within, the casing was less than in Test l. This appears to be due to the near cylindrical shape of the elastomer body which promotes maintenance of a lm of lubricant over its surface.
  • Test 4 an elastomer sleeve of the shape shown in FIG. 9 was applied to the sleeve valve core.
  • the elastomer sleeve consisted of open-pore polyurethane sponge material of a density of ll lb. per cubic foot and an extremely tine pore structure. In its relaxed condition the sleeve had an outer diameter of 41/2" which after aging in 4 tubing at a temperature of 212 was reduced to 45/16".
  • the outer skin of the elastomer was tough and denser than the interior, but porous.
  • valve sleeve was inserted into the casing and showed traces of leakage at a differential pressure of 1900 p.s.i.
  • the elastomer sleeve was composed of polyurethane open-pore sponge material of a density of ll lb. per cubic foot and extremely tine pore size. The material had Mr perforatons, as shown at 32 in FIG. l0, the perforations being spaced One inch, center to center. The outer diameter of the sponge body was 4%".
  • the sponge body was impregnated with ANI-9 gel forming aqueous solution containing l0 percent of NaCl and then heated to 160 F. for 5 minutes to insure complete gelling of the solution. The resulting elastomer was then dried to dehydrate the gel Within the pores.
  • valve sleeve was inserted into the casing in dehydrated condition and the casing was then filled with water. After 6 hours the valve sleeve was subjected to a differential pressure test and was found to resist 4000 p.s.i. pressure without leaking.
  • the superior sealing ability of the elastomer is due to the swelling of the gel component within the pores.
  • Test 6 A valve sleeve was constructed according to FIGS. 6 and 7 with an elastomer body of Nordel rubber (ethylene propylene hydrocarbon rubber cured with benzoyl peroxide) composed of rings having a diameter of 41/6, a width of l of the shape shown in FIG. 5.
  • the rubber contained a thin hydrocarbon oil (commercially available as Flexon 765) in an amount equal to 50 percent of the total elastomer volume.
  • the sleeve was immersed in benzene for 48 hours for the purpose of extracting the plasticizer and then air dried for 48 hours to extract the benzene, at which time the rubber rings had shrunk to an outer diameter of 3%" as shown in FIG. 6.
  • the sleeve was then inserted into the casing filled with crude oil which caused the elastomer body to swell. After 24 hours of swelling the valve sleeve withstood a differential pressure of 4000 p.s.i.
  • Test 7 A packer comprising an elastomer layer of 3" length and 3%" outer diameter composed of Nordel rubber was placed in a 4 casing and then wetted by hydrocarbon plasticizer oil having a boiling point of 380 C. The elastomer swelled into contact with the casing and produced a seal capable of withstanding 280 p.s.i. differential pressure. The amount of oil used was about 20 percent greater than the amount absorbed by the elastomer during swelling.
  • the test indicates that by swelling the elastomer seal with a swelling liquid of high boiling point, such as plasticizers compatible with the elastomer material, the seal may even be exposed to air after swelling or exposed to a gaseous atmosphere in ywhich swelling liquids of low boiling points, such as gasoline or water, would evaporate too fast to be practical.
  • a swelling liquid of high boiling point such as plasticizers compatible with the elastomer material
  • valve sleeves were removed from the casing by forceful extraction against the sealing force of the elastomer to demonstrate the axial displacement of the valve sleeves.
  • the outer diameters after withdrawal were as follows: Test l 4" ⁇ ;g; Test 2-4/s; Test 3 4" ⁇ 2; Test 4-4-/UW; Test 5 iii/10W; Test 6-4343.
  • the elastomers employed in the practice of this invention are preferably of the highly exible type such as rubber, polyesters7 polyurethanes with elongations in excess Of 200 percent and a low tendency to set after compression, i.e., materials having high elastic recovery after release from compression over long periods of time, such as 24 months, and temperatures of the order of 160 F.
  • the elastomers should be chemically resistant to crude oil and salt water at temperatures of the order of 160 F. in the sense that their physical strength should remain substantial even though the material may swell appreciably. Indeed swellability is a desirable characteristic in most instances.
  • polychloroprene a substance commercially known as "neoprene rubber. It exhibts lov. crude oil swellability.
  • Butadicne acrylonitriie copolymer is commercially known as Buna N rubber'. It has low crude oil swellability and exhibits low compression set.
  • Polyurethane rubber known commercially as Adiprene and Cyanaprene Fluoroelastomer rubber commercially known as Viton and Hydelon.
  • Ethylene propylene hydrocarbon rubber is commercially known as Nordel rubber. It represents an example of a highly swellable substance. The degree of swelling may be amplified.
  • Oil swellable rubbers are preferably cured in a highly plasticized form. Extraction of the plasticizer by leaching in a volatile solvent, such as benzene, followed by evaporation of the solvent leads to appreciable shrinkage. If the shrunk condition is taken as the starting condition a great increase in volume by subsequent swelling can be produced.
  • a volatile solvent such as benzene
  • the volume of the plasticizer may range between 25 and 75 percent of the total volume.
  • the commercially available elastomcrs of this type contain as plasticizers hydrocarbon oils of high boiling point. Such oils are commercially available under a wide range of trade designations, such as Flexon 765 or Flexon 865, Conoco H-35.
  • a particularly advantageous form of rubber is cured with a volatile plasticizer such as benzene under conditions preventing loss of the plasticizer during the curing process. In that case subsequent extraction of the plasticizer involves no more than simple evaporation.
  • a volatile plasticizer such as benzene
  • Open-pore sponge type elastomers may be of the rubber or the polyurethane type.
  • Impregnating solutions for producing water swellable gels are mad-e from materials known in the well drilling art as grouting materials.
  • One such grouting material known by its trade designation AM-9, is composed of parts of acrilamide, parts of methylene bisacrilamide, 900 parts of water and a small amount of a catalyst, such as ammonium persulfate. After mixing with the water the resulting liquid sets to form a stiff gel.
  • Gels made with pure water in the gel forming solution shrink upon contact with saline underground water such as occur in oil wells.
  • Solution concentrations of .1 N up to saturation of the inert solute or salt, such as NaCl, is generally satisfactory.
  • Example 1 In a well tted with a cemented casing three potentially productive zones were perforated. The
  • top zone had a vertical spread of the perforations of 14- feet, the intermediate zone 19 feet, and the lowest zone 46 feet.
  • the casing was reamed to remove perforation burrs and otherwise provide a smooth surface.
  • the zones were then individually tested and treated with the aid of straddle test tools with hydraulically operated packers at each end. It was determined that the upper zone produced salt water only, that the intermediate zone produced oil from the upper 6 feet and water from the lower 13 feet. The lowest zone was found to produce oil and gas from its upper perforations and water from the bottom 17 feet of perforations.
  • Valve sleeves were then installed to seal the upper zone permanently and to control the ow from the lower two zones.
  • the casing was first filled with crude oil by circulation and swabbing through tubing extending to the bottom of the well.
  • the friction gripper was attached to the end of a wire line, lowered into the casing with the gripped sleeve and maintained at the proper level to shut olf the lower 17 feet of the bottom zone.
  • the upper ll foot portion of the bottom zone was closed next by a 24 foot valve sleeve with a 4 foot elastomer covering at each end.
  • the entire intermediate zone was sealed by a 31 foot valve sleeve with 4 foot elastomer portions at each end, and finally the entire top zone was sealed by a valve sleeve of a total length of 25 feet having 4 foot elastomer portions at each end.
  • a production string with pump was then installed extending to a point below the bottom zone.
  • the gripper grasped the respective sleeve in the manner of an internal chuck, and the sleeve was then moved by Iapplication of sufficient force to make it slide.
  • Example 2 Three valve sleeves with oil swellable elastomer seals were assembled with the required spacing from one another on a tubing string iitted with mechanically expansible line packers or anch-ors. The line packers or anchors were expanded by counterclockwise rotation until they gripped the respective valve sleeves securely.
  • the tubing string was then lowered into the Water lilled casing of the well.
  • crude oil was circulated down the casing and up through lthe tubing string until all water was displaced from the casing.
  • the valve sleeves were set sufficiently firmly for removal of the string and of the packers or anchors thereon by clockwise rotation of the string, thereby contracting the packers and anchors to free them from the cylindrical center passage of the valve sleeves and permit withdrawal of the string.
  • the tubing string was then replaced 'by a pro-duction string.
  • valve sleeves by bu-mping by means of a wire line or cable tool.
  • Regular cable drilling equipment is well suitable for this purpose.
  • Example 3 -Valve sleeves with elastomer seals according to FIG. 2 and composed of neoprene ⁇ rubber of low swellability compressed by insertion into the casing from an original relaxed diameter of 45/32 to a compresed diameter of 4" were moved a total distance of 4200 feet in a reamed casing containing crude oil and were subsequently tested for sealing ability.
  • Example 4 A well of 7%" diameter was drilled and it was determined that a formation of 7 foot thickness was oil bearing.
  • the well bore was checked by caliper @logging and was found to be a smooth-Walled bore of 7% diameter over a distance of 22 feet above the oil bearing formation and 19 feet below the formation.
  • the straddle tool is diagrammatically shown in FIG. 16 and consisted of a steel sleeve 411 of 6" outer diameter and 21 feet length with elastomer seals of Nordel rubber at cach end extending over a distance yof 5 feet from the end of the sleeve.
  • Each seal consisted of :a series of individual rings having an outer diameter of 71A", a width lof 4 and a thickness of 1/2. V-shaped valleys are formed between successive rings.
  • the rings are built up from strips of rubber 1/16 in thickness and reinforced with nylon fabric resisting ⁇ axial elongation but permitting radial expansion. About 8 turns of the strip material forms the 1/ thickness of the ring which after winding are cured to assume their final unexpanded shape.
  • the sleeve 411 was connected to the tubing 39 by spiders 41 and 42 permitting passage of liquid through spider apertures 43 from the space above the straddle tool -to the space below and vice versa.
  • Passages 44 temporarily sealed by aluminum plugs 45 were provided to establish communication between the interior of the tubing string 39 and the annular space 46 defined by the elastomer seals 16, the well bore 31 and the sleeve 11.
  • T he tubing string was lowered into the we'll to a position in which the sleeve straddled the formation, the bottom end of the string extending 50 feet below the straddle tool.
  • the well bore was then filled with crude oil containing about 40 percent gasoline by volume by circulating the oil down the tubing and up the tubing by swabbing.
  • the oil in the annular space above and below the sleeve was replaced by a slurry of Bentonite and gel particles made by grinding AM-9 gel.
  • the slurry effects a seal of porous portions which tend to form a passage for leakage liquid.
  • the tubing was then sealed below the straddle tool with a packer and the plugs 45 were dissolved by 1 N NaOH in water solution, whereafter the installation was ready for production.
  • Example 5 was constructed according to FIG. 6.
  • the sleeve was 18 feet in length and cornprised water swellable elastomer seals of 4 feet length at each end.
  • the sleeve was installed in a well casing of 4 inner diameter to straddle perforations in the casing and in the oil bearing Zone about it, the perforations being within a vertical spread of 6 feet.
  • the elastomer layers were bonded to the valve tubing and consisted of cellulose sponge cloth of V2. thickness impregnated with a gel formed of AM-9 gel compound and 8 percent aqueous NaCl solution, subsequently dried and shrunk to an outer diameter of 3%.
  • valve sleeve was then lowered into the waterfilled casing by wire line and gripper. After 6 ⁇ hours the elastomers had swelled to seat tightly in the casing and seal the perforations. The packer was tested and did not leak at 3000 p.s.i. of external overpressure. The well was then tested below the sealed zone and after 18 days the packer was pulled upwards in the casing for a distance of 20 feet by wire line and gripper to uncover the perforations. The well was then produced from this Zone.
  • the sleeve comprising (I) a central tubular rigid metal core providing a central passageway for fluid axially through the sleeve,
  • said outer covering in its relaxed condition has an external diameter larger than the internal diameter of the casing, the outer covering being inserted into the casing (a) in radially compressed condition, thereby displacing a portion of the elastomer annuli into said void portions, and
  • the covering of elastomer material comprises an inner sleeve portion from which annular rib portions extend outwardly forming annular void spaces of substantially V-shaped cross section between successive ribs.
  • the covering of elastomer material comprises a common outer sleeve portion for bearing against said casing, and annular rib portions integral with said sleeve portion, said rib portion extending inwardly towards said metal core.

Description

May 28, 1968U P. KOLLSMAN SEALING DEVICE FOR PERFORATED WELL CASING 4 Sheets-Sheet 1 Original Filed Aprli 21, 1964 Pfg. 5
Pfg. z
,valla/#5512,52
INVENTOR. Paul KO//Sman P. KOLLSMAN May 28, 1968 SEALING DEVICE FOR PERFORATED WELL CASING 4 Sheets-Sheet Original Filed April 2l, 1964 Fly. /2
Pfg. 1/
Fig. l0
Fl'g. 9
INVENTOR. Pau/ KO//Sman "M ATTORNEY May 28, 1968 P. KOLLSMAN SEALING DEVICE FOR PERFORATED WELL CASING 4 VSheets--Slfleet 5 Original Filed April 21, 1964 wf T INVENTOR. Paal/(a//sman QM A TTOR/vfy May 28, 1968 P. KOLLSMAN SEALING DEVICE FOR PERFORATED WELL CASING 4 Sheets-Sheet 4 iff/lll. I
Original Filed April 2l, 1964 INVENTOR Paa/ Ko//sman ATTORNEY United States Patent C l 3 Claims. (Cl. 16o-191) ABSTRACT F THE DISCLUSURE The present improvements provide a sealing element for wells in which a casing is installed. The sealing element comprises a central tubular core and an outer covering of elastomer material of a relaxed diameter larger than the internal diameter of the casing. The covering comprises spaced annular ribs and is inserted, together with its central sleeve, into the casing in compressed condition and after presoaking in a hydrocarbon liquid. The liquid forms a lubricating ilrn during insertion and during subsequent movement of the element relatively to perforations of the casing in order to open and seal Such perforations.
This application is a continuation of my copending application Ser. No. 361,327, filed Apr. 21, 1964, now abandoned.
The invention deals with the problem of controlling the flow of uids into a perforated well casing. The perforations may be present at a single level or formation or at several different levels or formations. They extend through the casing wall and through the surrounding cement layer or sheath into the adjacent formation, thus opening up the formation by explosion-produced passages leading from the formation into the well casing.
The control may involve the temporary or permanent sealing of all the perforations at a certain level, while initiating or maintaining flow at a different level, or it may involve the selective control of the fluid flow at a particular level for the purpose, for example, of reducing gas ilow through the higher perforation of the zone or level, or reducing water flow through the lower perforations of the zone or level by selective closing or restriction of such upper or lower perforations.
The invention accomplishes this in a manner in which the inner diameter of the casing is not excessively reduced, so that a production string, including a pump, may extend therethrough, and further in such a manner that the flow may subsequently be adjusted by opening or closing the perforations at one level and independently adjusting the flow through the perforations of a different level above or below the one level.
It is known to seal the perforations of a zone by a procedure called squeeze cementing. This involves the installation of packers below and above the zone to be cemented, the injection of cement through the perforations into the formation, followed by removal of the packers and of cement remm'ning in the casing. The result is the permanent closure of the perforations.
Another known practice involves the installation of a straddle tool comprising essentially a piece of tubing with a mechanically or hydraulically expansible packer at each end, thus straddling the perforations which lie between the packers. The conventional straddle tools have a relatively small central bore which severely restricts treatment of a zone, or production from a zone, below the tool through the bore of the tool.
Further, the expansible packers which form a part of the straddle tool exert high specific pressures of the order of 1,500 to 10,000 p.s.i. against the casing well which 3,385,367 Patented May 28, 1968 ice only a sound and noncorroded casing can withstand. By way of contrast the invention employs sealing pressures of a dilferent order of magnitude. Pressures of less than 300 p.s.i. were found to be sutlcient for a reliable seal.
The invention involves the installation of a valve sleeve within the casing. The valve sleeve comprises essentially a central tubular metal sleeve body providing a large central passage through which well fluids may flow, through which a production string including a pump may extend, or through which appropriate tools may reach in order to act on and reset a similar valve sleeve installed at a lower zone or level.
The metal sleeve body is tubular and rigid in contrast to the known casing patches which are inserted into a damaged well casing in a corrugated state in which their outer diameter is reduced, and which are subsequently mechanically expanded into tubular or near-tubular shape by attening out of the corrugations.
The metal sleeve body has an outer covering of elastomer material bonded thereto which, in installed condition, is suciently compressed to produce a seal between sleeve and casing. Even though the specific sealing pressure exerted against the casing is of a low order, a reliable seal against high pressures is readily produced by an elastomer body of appropriate length.
The elastomer covering may be composed of solid or of porous elastomer material. Elastomer materials, as such, may, for the purpose of the present invention, be divided into those which remain substantially unaffected by contact with hydrophobic liquids and those which, upon exposure to hydrophobic liquids, exhibit an appreciable degree of swelling.
In all applications according to the invention the purpose of the elastomer covering is to produce a seal resulting from compressive force exerted by the exterior element, such as the well casing or the well bore, upon the elastomer or, conversely, by the force with which the elastomer expands against the exterior element, the casing or well bore.
For this purpose the elastomer body may be compressed prior or incidental to the installation, such as its insertion into the well casing. In order to facilitate insertion or produce a tighter seal, the elastomer may be precompressed with or without the simultaneous application of heat to reduce its original relaxed diameter by a set.
In place of, or in addition to, such compression or precompression, sealing force may be generated by swelling of the elastomer seal which is then made of a material which upon contact with a hydrophobic liquid causes the sealing body to swell.
Experiments conducted in connection with the invention showed that particularly high degrees of swelling can be produced if the elastomer orignally contains a substantial amount of a plasticizer which is then extractable, for example by leaching in a solvent and subsequent evaporation of the solvent. The elastomer shrinks under such treatment and exhibits a remarkable degree of swelling in relation to its shrunken dimensions when exposed to a hydrophobic liquid. At the same time a remarkable degree of its original tensile strength is retained.
Instead of being of solid composition or construction the elastomer may be manufactured as a porous or spongelike body with or without an exterior skin which is denser than the interior, or may be mechanically reinforced.
Such porous or spongelike elastomer bodies may, again, be made of materials which exhibit little swelling when exposed to hydrophobic liquids or of those which swell appreciably under such conditions, depending on the particular requirements.
Elastomer seals may even be made water swellable.
For this purpose a water swellable gel may be introduced into the pores of a porous body which, in itself, may be oil swellable. Drying of the gel produces shrinkage of the gel filled pores. The gel subsequently expands when exposed to water. Such water swellability can therefore be imparted even to an elastomer which by itself is swellable in hydrocarbon liquids, thus superimposing the phenomena of water swelling upon oil swelling.
The valve sleeve is inserted into the casing and is pushed down, for example by an appropriate cable-suspended weight or tubing string to the desired location at which it either seals, partially seals, or clears the perforated zone.
Subsequently the valve sleeve is readily moved either by moving it down further or lifting it to the desired adjusted position in which it clears or seals the perforated zone, or to a zone above or below or in which it uncovers certain perforations lof the same Zone in which the valve sleeve was originally set.
In all instances the valve sleeve forms a sleeve valve with the casing which is preferably suitably prepared by removing any burrs from the perforated zone or zones, for example by a conventional reaming tool.
Tests have shown that the valve sleeve may be moved in compressed condition from the point of insertion at the top of the casing along very substantial lengths of casing without any appreciable wear of the elastomer covering by either the casing wall or the joints of the casing.
A swellable valve sleeve lowered to the desired level and maintained suspended for a suliicient time swells and seats itself tightly. This can be accomplished within 6 to l2 hours from the time of insertion of the valve sleeve into the casing or well bore.
Summary of the invention The invention employs in a well comprising a perforated casing a sealing element comprising a central annular core and an outer core covering of elastomer material shaped to form annular ribs leaving void spaces between such ribs, the sealing element being inserted into the casing in compressed condition and after presoaking in a hydrocarbon liquid which provides a lubricating film during the initial insertion and during subsequent movement of the sealing element with respect to the perforations to seal or open the same.
The various features and advantages of this invention will appear more fully from the detailed description which follows accompanied by drawings showing, for the purpose of illustration, preferred embodiments of the invention. The invention also resides in certain new and original features of construction and combination of elements, as well as steps and sequences of steps hereinafter set forth and claimed.
Although the characteristic features of the invention which are believed to be novel will be particularly pointed out in the claims appended hereto, the invention itself, and the manner in which it may be carried out may be better understood by referring to the following description taken in connection with the accompanying drawings forming a part of it in which:
FIG. 1 is an elevational section through a valve sleeve according to this invention;
FIGS. 2 to 12 illustrate, in elevational section, views of specific forms of elastomer coatingsz FIG. 13 is a diagrammatic and simplified vertical section of a well and casing being prepared for the installation of a valve sleeve;
FIGS. 14 and 15 are corresponding illustrations of the well and casing with valve sleeves installed therein in different positions; and
FIG. 16 is a diagrammatic illustration of a straddle sleeve whose elastomer seals seal against the well bore.
In the following description and in the claims various details will be identified by specilic names for convenience. The names, however, are intended to be generic in their application. Corresponding reference numerals refer to corresponding parts in the several figures of the drawings.
The drawings accompanying, and forming part of, this specification disclose certain specific details of the invention for the purpose of explanation of broader aspects of the invention, but it is understood that details may be nodilied in various respects without departure from the principles of the invention and that the invention may be applied to other structures than specifically shown.
The valve sleeve of PIG. l comprises three peripherally rigid tubular sections 11, 12 and 13 connected by threaded couplings 14 and 15. The exterior surface of sections 11 and 13 is roughened by Sandblasting or knurling to provide a secure grip for an elastomer covering generally indicated at 16 and bonded to the surface. The contour of the elastomer covering may vary in form, representative forms being shown in FIGS. 2 to 12.
There are different elastomer materials in existence and commercially available. These will be described collectively further below. At this point it is suflicient to state that the covering may either consist of solid or of open-pore spongelike elastomer material, 0r solid elastomer material which may be shaped to provide voids into which the material can be deformed when the elastomer material is in a state of compression inside the casing in order to produce the desired seal with respect to the casing.
The valve sleeve shown in FIG. 1 may be of considerable length of the order of l0 to 30 feet or more, depending on the length of the central section 12 which is chosen to meet the particular local requirement. A representative practical length of the end sections is 4 yfeet.
As shown in FIG. 2, the tubular elastomer covering may be shaped as a series of annular ribs 17 preferably of solid material spaced from one another by annular valleys 18. The outer diameter D of the ribs or rings 17 exceeds the internal diameter d of the casing 20. By the act of insertion the annular ribs are deformed in profile, as a result of which the space or volume of the annular valleys 18 is reduced. The elastomer rings 17 may be manufactured as one piece comprising a plurality of annuli 17.
This multi-ring piece may either be directly molded on the sleeve, or it may be premanufactured and then bonded to the sleeve. The rings 17 may also be premanufactured as individual rings and then bonded to the outer surface 19 of the rigid tubular sleeve member 11.
The elastomer structure shown in FIG. 3 represents the relaxed state of the rings 17 which are substantially of saw-tooth or gable shape appearance in cross section. This structure is then precompressed to a reduced diameter and maintained in the precompressed state under application of heat for a time to produce a set. The elastomer body then has the appearance as shown in the upper portion of FIG. 4, its relaxed but set diameter being D which is subsequently reduced to d by insertion into the casing 20.
The elastomer sleeve shown in FIG. 6 may be made from oil or water swellable elastic material capable of swelling within the casing upon contact with a swelling liquid, e.g., crude oil or water, respectively, to form a tight seal as shown in FIG. 7.
The elastomer sleeve shown in FIG. 5 is constructed from a material containing a substantial proportion of a plasticizer. The relaxed diameter D1 of the rings 17 is reduced to a lesser diameter D2 indicated in FIG. 6 as a result of shrinkage of the elastomer by extraction of the plasticizer. The reduced diameter D2 may be smaller than the diameter d of the casing 20 into which the sleeve 17, 11 is to be inserted.
After insertion into the casing the elastomer seal is exposed to a swelling liquid, for example crude oil to which gasoline may be added, causing the sleeve to expand to such a degree that the required sealing pressure is developed. The expanded sleeve 11, 17 is shown in its swelled, expanded condition in FIG. 7.
In the form of valve sleeve shown in FIG. 8 the elastomer component is essentially a thin walled piece of tubing 23 having integral internal annular ribs 24 which are bonded to the sleeve exterior 11 along their respective base surfaces at 25. This arrangement results in the formation of a series of annular chambers 26 vented to the periphery by vent passages 27.
As the valve sleeve is being inserted into the casing 20, the elastomer sleeve or tubing 23 is being compressed, thereby reducing the size of the chambers 26. This particular form of valve sleeve encounters somewhat less resistance at casing joints when it is being moved to its eventual location which may involve travel of the order of a mile.
The open-pore sponge body 2S of the elastomer material shown in FIG. 9 has a dense tough outer porous skin 28', the end of which is directly bonded to the `sleeve 11 at 30. Insertion of the valve sleeve into the casing 20 results in compression of the sponge body 28 which becomes correspondingly denser.
The elastomer sleeve 16 of the valve sleeve shown in FIG. l0 consists of open-pored elastomer sponge ma teria] containing in its pores a liquid swellable gel. Substantially radial passages 32 are yformed in the sponge body whose Volume is subsequently reduced by compression of the elastomer body incidental to its insertion into the casing 20 of smaller diameter. If the swellable substance in the pores is a water swellable gel, the swelling force thus produced is superimposed upon the elastic force of the elastomer.
Instead of bonding the elastomer layer to the sleeve 11 the sleeve may be provided with peripheral ridges or flanges 29 which interlock with correspondng grooves of the elastomer body as shown in FIG. l1. The tightness of interengagement increases when the valve sleeve is inserted into the casing, thereby compressing the sleeve.
In the form shown in FIG. l2 the elastomer body has a certain limited degree of freedom to move axially with respect to the metal sleeve 11. The interior spaces 26 into which the ridges 29 extend are vented by passages 27. The elastomer body is reinforced peripherally by a suitable cord or fabric layer 30. Such reinforcing layers are preferably so constructed as to limit iaxial expansion while permitting radial expansion.
FIG. 13 is a diagrammatic representation of a well comprising a casing 20 within the well bore 31 and a layer 32 of cement between bore and casing. The bottom of the casing is sealed by a cement plug 33.
Perforations 34 extend through the casing wall 20 and the cement 32 into the surrounding oil bearing formations 35 and 36. The perforating procedure produces burrs 37 which are removable in a known manner by a casing scraper or reamer diagrammatically indicated at 38.
In the arrangement illustrated in FIG. `l4 the upper formation 35 is temporarily, although not necessarily permanently, sealed by a st-raddle sleeve of the type shown in FIG. l. One elastomer body seals the valve sleeve relatively to the casing 20 above the formation 35 and another elastomer body seals the valve sleeve relatively to the casing 20 below the formation 35. This form of seal permits substantial tolerances in the placement of t-he valve sleeve with respect 'to the perforations.
A production string extends through the upper valve sleeve in formation 35 `and through a lower valve'sleeve in yformation 36, the pump 40 being at the end of the string.
In this diagrammati-c illustration wall thicknesses, elastomer thickness and valve sleeve thickness are exaggerated for the sake of clarity. Correspondingly the diameter of the central passage through the valve sleeves appears too small. It is considerably larger in actual construction. For example, a casing having an internal diameter of 4 accommodates a valve sleeve having an internal passage diameter of 3%".
The lower valve sleeve of FIG. 14 is set to close the lower zone of the perforations of the formation 36 to reduce the flow of liquid, for example water, therethrough.
Subsequently the lower valve sleeve may be raised to seal t-he lower form-ation 36 to a greater degree, or completely, while the upper valve sleeve may -be moved wto expose a portion, or all, of the perforations within formation 35.
In the arrangement shown in FIG. l5 three relatively short valve sleeves, 111, 211 and 311 are so set that the central perforations within the lower formation 36 are exposed, while the upper Iand lower zones of the same formation are sealed by valve sleeves 211 and 111, respectively. At a later period the lower formation may be sealed completely by moving the valve sleeves 111 and 211 into contact with each other.
The valve sleeve 311 is so set with respect to the perforations -of the upper formation 35 as to restrict production through the 'upper portion of the perforated zone only.
Each one of the these valve sleeves may readily be moved by gripping it by means of a conventional tubing anchor. This type of tool is in essence an expansible mandrel or core which is lowered into the well and expanded by rotation in one direction, generally counterclockwise or left-handed rotation, and is contracted by rotation in the opposite sense, usually clockwise or righthanded rotation.
The for-ce exerted by such gripping tools is sufficient to permit exertion of great force, either pulling or pushing, -on the valve sleeve in order to move it to the desired new location.
For the purpose -of adjusting valve sleeves conventional bumping tools may also be employed to move the valve sleeve -by impact rather than static force. The use of bumping tools is particularly advantageous where the desired displacement of -the valve sleeve is relatively small, but where accurate positioning is required.
Valve sleeves were constructed of steel tubing having an louter diameter of 3%" and an internal diameter of 3%" and a total length lof 48". Elastomer layers were bonded or vulcanized to the sandblasted outer surface of the tubing. The valve sleeves were then inserted for test- :ing in standard 41/2 casing having an internal diameter of 4".
T est 1.-The elastomer covering had the shape shown in FIG. 2 composed of individual rings of t Width and an external diameter of 4% of neoprene rubber cured with benzoyl peroxide land having a hardness of 40 -durome-ter un-its.
The valve sleeve was soaked in cru-de oil, pressed into the casing and subjected to a differential pressure of 3000 p.s.i. across the entire length of the sleeve. There was no leakage.
Thereafter a sub-assembly of only six rings was subjected to differential pressure. This latter test established that six rings provided a tight seal up to 520 p.s.i.
Test 2,-An elastomer covering was applied to the valve sleeve core in the form shown in FIG. 5 composed of individual rings of a width of 1/z and an outer diameter of 45716. The rings consisted of Nordel rubber cured with lbenzoyl peroxide and containing 25 percent plasticizer by volume, Nordel rubber, as hereinafter specified, is an ethylene propylene hydrocarbon -rubber cured with benzoyl peroxide.
The valve sleeve was then pressed into casing tubing and maintained at a temperature Iof 240 F. for 48 hours. After removal of the valve sleeve from the 4" tubing the elastomer coating had acquired a set, its external diameter -being 4%".
The valve sleeve was then soaked in crude `oil and inserted into the easing. Subjected t-o a differential pressure of 3000 p.s.i. it main-tained a tight seal.
A sub-assembly of six rings maintained a tight seal up to a differential pressure of 5S 0 p.s.i.
The force required to insert the valve sleeve into the casing and to move the valve sleeve axially within the casing was considerably less than in Test l. This appears to be due to limited absorption of crude oil by the rubber rings, which oil then acts as a lubricant,
Test 3.-A neoprene sleeve was bonded to the valve sleeve core. The neoprene sleeve had the shape shown in FIG. 8, the outer layer 23 being 1/16 thick and the annular ribs 24 being ls thick and spaced 1A center to center. Eight vent holes of /lG" diameter were provided for each chamber 26. The outer layer 23 was reinforced by thin peripherally stretchable and axially stretch resistant nylon fabric immediately below the outer surface. In its relaxed state the neoprene sleeve had an outer diameter of 4%".
The valve sleeve was wetted with crude oil and then pushed into the casing and produced a tight seal against a differential pressure of 3000 p.s.i. The force required for insertion of the valve sleeve into, and movement of the valve sleeve within, the casing was less than in Test l. This appears to be due to the near cylindrical shape of the elastomer body which promotes maintenance of a lm of lubricant over its surface.
Test 4.-For this test an elastomer sleeve of the shape shown in FIG. 9 was applied to the sleeve valve core. The elastomer sleeve consisted of open-pore polyurethane sponge material of a density of ll lb. per cubic foot and an extremely tine pore structure. In its relaxed condition the sleeve had an outer diameter of 41/2" which after aging in 4 tubing at a temperature of 212 was reduced to 45/16". The outer skin of the elastomer was tough and denser than the interior, but porous.
The valve sleeve was inserted into the casing and showed traces of leakage at a differential pressure of 1900 p.s.i.
Test 5.-An elastomer sleeve of t-he type shown in FIG. l was applied to the sleeve valve core. The elastomer sleeve was composed of polyurethane open-pore sponge material of a density of ll lb. per cubic foot and extremely tine pore size. The material had Mr perforatons, as shown at 32 in FIG. l0, the perforations being spaced One inch, center to center. The outer diameter of the sponge body was 4%". The sponge body was impregnated with ANI-9 gel forming aqueous solution containing l0 percent of NaCl and then heated to 160 F. for 5 minutes to insure complete gelling of the solution. The resulting elastomer was then dried to dehydrate the gel Within the pores.
The valve sleeve was inserted into the casing in dehydrated condition and the casing was then filled with water. After 6 hours the valve sleeve was subjected to a differential pressure test and was found to resist 4000 p.s.i. pressure without leaking.
Insertion of the dehydrated valve sleeve into the casing required the least force of all of the tests.
Apparently the superior sealing ability of the elastomer is due to the swelling of the gel component within the pores.
Test 6.-A valve sleeve was constructed according to FIGS. 6 and 7 with an elastomer body of Nordel rubber (ethylene propylene hydrocarbon rubber cured with benzoyl peroxide) composed of rings having a diameter of 41/6, a width of l of the shape shown in FIG. 5. The rubber contained a thin hydrocarbon oil (commercially available as Flexon 765) in an amount equal to 50 percent of the total elastomer volume. The sleeve was immersed in benzene for 48 hours for the purpose of extracting the plasticizer and then air dried for 48 hours to extract the benzene, at which time the rubber rings had shrunk to an outer diameter of 3%" as shown in FIG. 6. The sleeve was then inserted into the casing filled with crude oil which caused the elastomer body to swell. After 24 hours of swelling the valve sleeve withstood a differential pressure of 4000 p.s.i.
Test 7.-A packer comprising an elastomer layer of 3" length and 3%" outer diameter composed of Nordel rubber was placed in a 4 casing and then wetted by hydrocarbon plasticizer oil having a boiling point of 380 C. The elastomer swelled into contact with the casing and produced a seal capable of withstanding 280 p.s.i. differential pressure. The amount of oil used was about 20 percent greater than the amount absorbed by the elastomer during swelling.
After exposure to air for days the seal withstood the same test pressure without leakage.
The test indicates that by swelling the elastomer seal with a swelling liquid of high boiling point, such as plasticizers compatible with the elastomer material, the seal may even be exposed to air after swelling or exposed to a gaseous atmosphere in ywhich swelling liquids of low boiling points, such as gasoline or water, would evaporate too fast to be practical.
This property makes swelled elastomer seals as represented by this test highly useful not only for underground installations but also for above ground use, for example as a seal in water drain ducts.
In all instances the valve sleeves were removed from the casing by forceful extraction against the sealing force of the elastomer to demonstrate the axial displacement of the valve sleeves. The outer diameters after withdrawal were as follows: Test l 4"};g; Test 2-4/s; Test 3 4"}2; Test 4-4-/UW; Test 5 iii/10W; Test 6-4343.
The elastomers employed in the practice of this invention are preferably of the highly exible type such as rubber, polyesters7 polyurethanes with elongations in excess Of 200 percent and a low tendency to set after compression, i.e., materials having high elastic recovery after release from compression over long periods of time, such as 24 months, and temperatures of the order of 160 F.
The elastomers should be chemically resistant to crude oil and salt water at temperatures of the order of 160 F. in the sense that their physical strength should remain substantial even though the material may swell appreciably. Indeed swellability is a desirable characteristic in most instances.
The following were found to be satisfactory: polychloroprene, a substance commercially known as "neoprene rubber. It exhibts lov. crude oil swellability. Butadicne acrylonitriie copolymer is commercially known as Buna N rubber'. It has low crude oil swellability and exhibits low compression set. Polyurethane rubber known commercially as Adiprene and Cyanaprene Fluoroelastomer rubber commercially known as Viton and Hydelon. Ethylene propylene hydrocarbon rubber is commercially known as Nordel rubber. It represents an example of a highly swellable substance. The degree of swelling may be amplified. Oil swellable rubbers are preferably cured in a highly plasticized form. Extraction of the plasticizer by leaching in a volatile solvent, such as benzene, followed by evaporation of the solvent leads to appreciable shrinkage. If the shrunk condition is taken as the starting condition a great increase in volume by subsequent swelling can be produced.
The volume of the plasticizer may range between 25 and 75 percent of the total volume.
The commercially available elastomcrs of this type contain as plasticizers hydrocarbon oils of high boiling point. Such oils are commercially available under a wide range of trade designations, such as Flexon 765 or Flexon 865, Conoco H-35.
A particularly advantageous form of rubber is cured with a volatile plasticizer such as benzene under conditions preventing loss of the plasticizer during the curing process. In that case subsequent extraction of the plasticizer involves no more than simple evaporation.
Open-pore sponge type elastomers may be of the rubber or the polyurethane type.
Impregnating solutions for producing water swellable gels are mad-e from materials known in the well drilling art as grouting materials. One such grouting material, known by its trade designation AM-9, is composed of parts of acrilamide, parts of methylene bisacrilamide, 900 parts of water and a small amount of a catalyst, such as ammonium persulfate. After mixing with the water the resulting liquid sets to form a stiff gel.
Gels made with pure water in the gel forming solution shrink upon contact with saline underground water such as occur in oil wells. To eliminate such shrinkage I prefer to make gel bodies for underground use from a gel forming aqueous solution containing an inert salt or solute of a concentration at least of the order of that of the saline water to be encountered underground.
Additional swelling results if the solution concentration is made higher than that of the underground saline water. In that case the gel bodies actually swell beyond their normal gel setting volumes upon contact with the underground water of lower concentration.
Solution concentrations of .1 N up to saturation of the inert solute or salt, such as NaCl, is generally satisfactory.
In view of the commercial availability of a wide variety of oil swellable and nonswellable elastomers in solid or porous form, other materials than herein specifically mentioned may be employed. A practical test is conducted by cutting a test strip of about 10 x 20 x 100 mm. which is then subjected to test to determine its tensile strength before and after contact with hydrocarbons, its swellability and the degree to which it may be preshrunk by plasticizer extraction. Plasticized elastomers are commercially available and can be made with different plasticizer contents, such as 25, 50, and 75 percent of total volume.
In conducting tests materials were used which their manufacturer, who was not aware of the intended use, described as not suitable or not recommended for use in contact with hydrocarbons because of the high degree of swelling experienced in such use. These materials proved very well suited for the practice of the invention, as swellability is a feature, not a disadvantage.
Example 1.-In a well tted with a cemented casing three potentially productive zones were perforated. The
top zone had a vertical spread of the perforations of 14- feet, the intermediate zone 19 feet, and the lowest zone 46 feet. The casing was reamed to remove perforation burrs and otherwise provide a smooth surface.
The zones were then individually tested and treated with the aid of straddle test tools with hydraulically operated packers at each end. It was determined that the upper zone produced salt water only, that the intermediate zone produced oil from the upper 6 feet and water from the lower 13 feet. The lowest zone was found to produce oil and gas from its upper perforations and water from the bottom 17 feet of perforations.
Valve sleeves were then installed to seal the upper zone permanently and to control the ow from the lower two zones. For this purpose the casing was first filled with crude oil by circulation and swabbing through tubing extending to the bottom of the well.
IAfter withdrawal of the tubing a valve sleeve 30 feet in length with Nordel rubber sleeves at each end and extending for a length of 4 feet each was gripped by an adjustable internal friction gripper, adjusted to sustain 21/2 times the weight of the sleeve. The friction gripper was attached to the end of a wire line, lowered into the casing with the gripped sleeve and maintained at the proper level to shut olf the lower 17 feet of the bottom zone. After six hours the swellable elastomer sleeve had swelled suicientlyto seat the sleeve in the casing against the pull of the gripper which slipped out of the sleeve when a pull in excess of 21/2 times the sleeve weight was exerted.
The upper ll foot portion of the bottom zone was closed next by a 24 foot valve sleeve with a 4 foot elastomer covering at each end.
The entire intermediate zone was sealed by a 31 foot valve sleeve with 4 foot elastomer portions at each end, and finally the entire top zone was sealed by a valve sleeve of a total length of 25 feet having 4 foot elastomer portions at each end.
A production string with pump was then installed extending to a point below the bottom zone.
Production was obtained from the uncovered 18 foot portion of the bottom zone. When, after a period of production, the gas/oil ratio and the water/oil ratio increased to an undesired degree, the lower 3() foot valve sleeve was raised and the upper 24 foot valve sleeve was lowered by means of a string of weighted tubing with a gripper or anchor at its lower end.
The gripper grasped the respective sleeve in the manner of an internal chuck, and the sleeve was then moved by Iapplication of sufficient force to make it slide.
Eventually the two sleevs within the bottom zone were moved to abut, thereby sealing the lbottom zone, and the 31 foot sleeve valve within the intermediate zone was depressed to produce from the upper 6 foot portion thereof.
It is of course also feasa'ble to install several valve sleeves at their desired levels simultaneously by means of a wireline with several gripping .tools arranged in series, and sleeves engaged by the gripping tools, properly spaced from one another. When all sleeves are lowered into the casing which is filled with crude oil, they expand simultaneously at their respective positions, whereafter the wire line and the gripping tools are withdrawn.
Example 2.-Three valve sleeves with oil swellable elastomer seals were assembled with the required spacing from one another on a tubing string iitted with mechanically expansible line packers or anch-ors. The line packers or anchors were expanded by counterclockwise rotation until they gripped the respective valve sleeves securely.
The tubing string was then lowered into the Water lilled casing of the well. After placement of the sleeves at the desired location crude oil was circulated down the casing and up through lthe tubing string until all water was displaced from the casing. After 24 hours of immersion of the sleeves in crude oil the valve sleeves were set sufficiently firmly for removal of the string and of the packers or anchors thereon by clockwise rotation of the string, thereby contracting the packers and anchors to free them from the cylindrical center passage of the valve sleeves and permit withdrawal of the string.
The tubing string was then replaced 'by a pro-duction string.
Subsequent axial adjustment was accomplished by reinsertion and tightening of a packer or anchor. For this purpose the tubing was loaded with drill collars as closely to the valve sleeve to be depressed as possible. It was also found possible to move the valve sleeves in relatively small increments up or down by bumping involving impacts on the gripped valve sleeve.
It is possible also to adjust valve sleeves by bu-mping by means of a wire line or cable tool. Regular cable drilling equipment is well suitable for this purpose.
In all instances the static force for moving a valve sleeve with two f-our foot elastomer seals ranged between 1 Ito 4 tons.
Example 3.-Valve sleeves with elastomer seals according to FIG. 2 and composed of neoprene `rubber of low swellability compressed by insertion into the casing from an original relaxed diameter of 45/32 to a compresed diameter of 4" were moved a total distance of 4200 feet in a reamed casing containing crude oil and were subsequently tested for sealing ability. The sleeves before the 4200 foot travel sealed securely against a differential pressure of 3200 p.s.i. After withdrawal they were found to be effective against a differential pressure of 2800 p.s.i.
Example 4.--A well of 7%" diameter was drilled and it was determined that a formation of 7 foot thickness was oil bearing.
The well bore was checked by caliper @logging and was found to be a smooth-Walled bore of 7% diameter over a distance of 22 feet above the oil bearing formation and 19 feet below the formation.
In lieu of installation of a casing, a 2%" tubing string was installed carrying near its lower end a straddle tool capable of establishing a hydraulically tight connection between the tubing interior and the oil bearing zone as follows:
The straddle tool is diagrammatically shown in FIG. 16 and consisted of a steel sleeve 411 of 6" outer diameter and 21 feet length with elastomer seals of Nordel rubber at cach end extending over a distance yof 5 feet from the end of the sleeve. Each seal consisted of :a series of individual rings having an outer diameter of 71A", a width lof 4 and a thickness of 1/2. V-shaped valleys are formed between successive rings.
The rings are built up from strips of rubber 1/16 in thickness and reinforced with nylon fabric resisting `axial elongation but permitting radial expansion. About 8 turns of the strip material forms the 1/ thickness of the ring which after winding are cured to assume their final unexpanded shape.
The sleeve 411 was connected to the tubing 39 by spiders 41 and 42 permitting passage of liquid through spider apertures 43 from the space above the straddle tool -to the space below and vice versa.
Passages 44 temporarily sealed by aluminum plugs 45 were provided to establish communication between the interior of the tubing string 39 and the annular space 46 defined by the elastomer seals 16, the well bore 31 and the sleeve 11.
T he tubing string was lowered into the we'll to a position in which the sleeve straddled the formation, the bottom end of the string extending 50 feet below the straddle tool. The well bore was then filled with crude oil containing about 40 percent gasoline by volume by circulating the oil down the tubing and up the tubing by swabbing.
After 48 hours the elastomer seals had expanded to form a lluid and pressure tight seal.
In order to prevent or reduce leakage from the spaces above and below the straddle seal through fractures or porous portions of the formation, the oil in the annular space above and below the sleeve was replaced by a slurry of Bentonite and gel particles made by grinding AM-9 gel. The slurry effects a seal of porous portions which tend to form a passage for leakage liquid.
The tubing was then sealed below the straddle tool with a packer and the plugs 45 were dissolved by 1 N NaOH in water solution, whereafter the installation was ready for production.
Example 5.--A valve sleeve was constructed according to FIG. 6. The sleeve was 18 feet in length and cornprised water swellable elastomer seals of 4 feet length at each end. The sleeve was installed in a well casing of 4 inner diameter to straddle perforations in the casing and in the oil bearing Zone about it, the perforations being within a vertical spread of 6 feet. The elastomer layers were bonded to the valve tubing and consisted of cellulose sponge cloth of V2. thickness impregnated with a gel formed of AM-9 gel compound and 8 percent aqueous NaCl solution, subsequently dried and shrunk to an outer diameter of 3%.
The valve sleeve was then lowered into the waterfilled casing by wire line and gripper. After 6` hours the elastomers had swelled to seat tightly in the casing and seal the perforations. The packer was tested and did not leak at 3000 p.s.i. of external overpressure. The well was then tested below the sealed zone and after 18 days the packer was pulled upwards in the casing for a distance of 20 feet by wire line and gripper to uncover the perforations. The well was then produced from this Zone.
What is claimed is:
1. In the combination of (a) a well casing,
('b) a cement layer between said casing and its surrounding formation, there being (c) perforations extending through said casing and said cement layer into the formation;
and a valve sleeve within said casing, the sleeve comprising (I) a central tubular rigid metal core providing a central passageway for fluid axially through the sleeve,
(II) and an outer covering of elastomer material secured to said tubular core, said covering comprising, in alternating sequence, substantially annular elastomer portions and substantially annular void portions,
the improvement according to which said outer covering in its relaxed condition has an external diameter larger than the internal diameter of the casing, the outer covering being inserted into the casing (a) in radially compressed condition, thereby displacing a portion of the elastomer annuli into said void portions, and
(b) presoaked in a hydrocarbon liquid before insertion into the casing, thereby providing a lubricating film between said covering and said casing.
2. The combination as claimed in claim 1 in which the covering of elastomer material comprises an inner sleeve portion from which annular rib portions extend outwardly forming annular void spaces of substantially V-shaped cross section between successive ribs.
3. The combination as claimcd in claim 1 in which the covering of elastomer material comprises a common outer sleeve portion for bearing against said casing, and annular rib portions integral with said sleeve portion, said rib portion extending inwardly towards said metal core.
References Cited UNITED STATES PATENTS 500,558 10/1895 Fraser et al. 166-23 672,255 4/1901 Boberg 277-123 2,094,691 10/1937 Williams 277--1 2,452,466 10/1948 Jaswell 166-179 2,849,070 8/1958 Maly 277--11 2,945,541 7/1960 Maly et al 166-187 3,067,819 12/1962 Gore 166-179 3,134,442l 4/ 1964 Jennings 166-207 JAMES A. LEPPINK, Primary Examiner.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 ,38S ,367 May Z8 1968 Paul Kollsman It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
Column 10, line 15, ,Isleevs" should read sleeves Column l2, line 51, "500,558" should read 50,558
Signed and sealed this 16th day of December 1969.
ISEAL) Afteat:Y
WILLIAM E. SCHUYLER, JR
Edward M. Fletcher, Jr.
Commissioner of Patents Attesting Officer
US609974A 1966-12-07 1966-12-07 Sealing device for perforated well casing Expired - Lifetime US3385367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US609974A US3385367A (en) 1966-12-07 1966-12-07 Sealing device for perforated well casing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US609974A US3385367A (en) 1966-12-07 1966-12-07 Sealing device for perforated well casing

Publications (1)

Publication Number Publication Date
US3385367A true US3385367A (en) 1968-05-28

Family

ID=24443101

Family Applications (1)

Application Number Title Priority Date Filing Date
US609974A Expired - Lifetime US3385367A (en) 1966-12-07 1966-12-07 Sealing device for perforated well casing

Country Status (1)

Country Link
US (1) US3385367A (en)

Cited By (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137970A (en) * 1977-04-20 1979-02-06 The Dow Chemical Company Packer with chemically activated sealing member and method of use thereof
US4193105A (en) * 1976-05-21 1980-03-11 Wavin B.V. Pipe with an external sealing body
US4936386A (en) * 1989-04-10 1990-06-26 American Colloid Company Method for sealing well casings in the earth
US5078211A (en) * 1989-12-19 1992-01-07 Swineford Richard A Plastic packer
US5219028A (en) * 1992-02-25 1993-06-15 Conoco Inc. Well casing and well casing method
WO1996037682A1 (en) * 1995-05-22 1996-11-28 Baker Hughes Incorporated Method and apparatus for sealing and transferring force in a wellbore
WO2002059452A1 (en) * 2001-01-26 2002-08-01 E2 Tech Limited Device and method to seal boreholes
US20030146003A1 (en) * 2001-12-27 2003-08-07 Duggan Andrew Michael Bore isolation
US20040020662A1 (en) * 2000-09-08 2004-02-05 Jan Freyer Well packing
US20040055760A1 (en) * 2002-09-20 2004-03-25 Nguyen Philip D. Method and apparatus for forming an annular barrier in a wellbore
US20040112609A1 (en) * 2002-12-12 2004-06-17 Whanger James K. Reinforced swelling elastomer seal element on expandable tubular
US20040118572A1 (en) * 2002-12-23 2004-06-24 Ken Whanger Expandable sealing apparatus
US20040144538A1 (en) * 2003-01-29 2004-07-29 Richard Bennett M. Alternative method to cementing casing and liners
US20040194959A1 (en) * 2003-04-07 2004-10-07 Chang Benjamin Tai-An Downhole polymer plug and liner and methods employing same
US6840325B2 (en) 2002-09-26 2005-01-11 Weatherford/Lamb, Inc. Expandable connection for use with a swelling elastomer
US20050016740A1 (en) * 2003-02-12 2005-01-27 Walter Aldaz Seal
WO2005012686A1 (en) * 2003-07-29 2005-02-10 Shell Internationale Research Maatschappij B.V. System for sealing a space in a wellbore
US20050110217A1 (en) * 2003-11-25 2005-05-26 Baker Hughes Incorporated Swelling layer inflatable
US20050173130A1 (en) * 2002-08-23 2005-08-11 Baker Hughes Incorporated Self-conforming screen
US20050199401A1 (en) * 2004-03-12 2005-09-15 Schlumberger Technology Corporation System and Method to Seal Using a Swellable Material
US20050211445A1 (en) * 2004-03-24 2005-09-29 Ravi Krishna M Casing comprising stress-absorbing materials and associated methods of use
WO2005090741A1 (en) * 2004-03-11 2005-09-29 Shell Internationale Research Maatschappij B.V. System for sealing an annular space in a wellbore
US20050252651A1 (en) * 2002-09-06 2005-11-17 Shell Oil Company Wellbore device for selective transfer of fluid
US6988557B2 (en) 2003-05-22 2006-01-24 Weatherford/Lamb, Inc. Self sealing expandable inflatable packers
US20060076150A1 (en) * 2004-07-30 2006-04-13 Baker Hughes Incorporated Inflow control device with passive shut-off feature
WO2006045794A1 (en) * 2004-10-27 2006-05-04 Shell Internationale Research Maatschappij B.V. Sealing of a wellbore device in a tubular element
US20060113089A1 (en) * 2004-07-30 2006-06-01 Baker Hughes Incorporated Downhole inflow control device with shut-off feature
US20060175065A1 (en) * 2004-12-21 2006-08-10 Schlumberger Technology Corporation Water shut off method and apparatus
US20060272806A1 (en) * 2005-01-31 2006-12-07 Wilkie Arnold E Swelling packer with overlapping petals
US20070012436A1 (en) * 2002-12-10 2007-01-18 Rune Freyer Cable duct device in a swelling packer
US20070027245A1 (en) * 2005-07-18 2007-02-01 Schlumberger Technology Corporation Swellable Elastomer-Based Apparatus, Oilfield Elements Comprising Same, and Methods of Using Same in Oilfield Applications
US20070044962A1 (en) * 2005-08-26 2007-03-01 Schlumberger Technology Corporation System and Method for Isolating Flow In A Shunt Tube
US20070044963A1 (en) * 2005-09-01 2007-03-01 Schlumberger Technology Corporation System and Method for Controlling Undesirable Fluid Incursion During Hydrocarbon Production
US20070108575A1 (en) * 2005-11-03 2007-05-17 Robert Montgomery Semiconductor package that includes stacked semiconductor die
US20070114016A1 (en) * 2002-09-23 2007-05-24 Halliburton Energy Services, Inc. Annular Isolators for Expandable Tubulars in Wellbores
EP1825099A1 (en) * 2004-12-16 2007-08-29 Easy Well Solutions AS A method and a device for sealing a void incompletely filled with a cast material
US20070221387A1 (en) * 2006-03-21 2007-09-27 Warren Michael Levy Expandable downhole tools and methods of using and manufacturing same
US20070246225A1 (en) * 2006-04-20 2007-10-25 Hailey Travis T Jr Well tools with actuators utilizing swellable materials
US20080006413A1 (en) * 2006-07-06 2008-01-10 Schlumberger Technology Corporation Well Servicing Methods and Systems Employing a Triggerable Filter Medium Sealing Composition
US20080066912A1 (en) * 2006-09-12 2008-03-20 Rune Freyer Method and Apparatus for Perforating and Isolating Perforations in a Wellbore
US20080078561A1 (en) * 2006-09-11 2008-04-03 Chalker Christopher J Swellable Packer Construction
US20080093086A1 (en) * 2006-10-20 2008-04-24 Courville Perry W Swellable packer construction for continuous or segmented tubing
US20080156502A1 (en) * 2005-03-15 2008-07-03 Rune Freyer Method and Device for Setting a Bottom Packer
US7407165B1 (en) * 2000-04-04 2008-08-05 Hutchinson Fts, Inc. Composite sleeve for sealing a tubular coupling
US20080185158A1 (en) * 2007-02-06 2008-08-07 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US20080220991A1 (en) * 2007-03-06 2008-09-11 Halliburton Energy Services, Inc. - Dallas Contacting surfaces using swellable elements
US20080290603A1 (en) * 2007-05-24 2008-11-27 Baker Hughes Incorporated Swellable material and method
WO2008154384A2 (en) * 2007-06-06 2008-12-18 Baker Hughes Incorporated Wrap on reactive element barrier packer and method of creating same
US20090095487A1 (en) * 2007-10-12 2009-04-16 Baker Hughes Incorporated Flow restriction device
US20090095484A1 (en) * 2007-10-12 2009-04-16 Baker Hughes Incorporated In-Flow Control Device Utilizing A Water Sensitive Media
US20090101353A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Absorbing Materials Used as an In-flow Control Device
US20090101357A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20090101342A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Permeable Medium Flow Control Devices for Use in Hydrocarbon Production
US20090101360A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20090101341A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Control Device Using Electromagnetics
US20090101329A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Adaptable Inflow Control Device Using a Powered System
US20090101352A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Dissolvable Materials for Activating Inflow Control Devices That Control Flow of Subsurface Fluids
US20090101355A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Adaptable In-Flow Control Device and Method of Use
US20090130938A1 (en) * 2007-05-31 2009-05-21 Baker Hughes Incorporated Swellable material and method
WO2009073531A1 (en) * 2007-11-30 2009-06-11 Baker Hughes Incorporated An improved swellable material and method
US20090179383A1 (en) * 2008-01-07 2009-07-16 Halliburton Energy Services, Inc. Swellable packer with composite material end rings
US20090194289A1 (en) * 2008-02-01 2009-08-06 Baker Hughes Incorporated Water sensitive adaptive inflow control using cavitations to actuate a valve
US20090236102A1 (en) * 2008-03-18 2009-09-24 Baker Hughes Incorporated Water sensitive variable counterweight device driven by osmosis
GB2458751A (en) * 2008-02-27 2009-10-07 Swelltec Ltd A method of forming a swellable downhole apparatus
US20090250227A1 (en) * 2008-04-02 2009-10-08 Halliburton Energy Services, Inc. A System And Method For Plugging A Side Pocket Mandrel Using A Swelling Plug
US20090250222A1 (en) * 2008-04-02 2009-10-08 Baker Hughes Incorporated Reverse flow in-flow control device
US20090255687A1 (en) * 2008-04-10 2009-10-15 Halliburton Energy Services, Inc. Sealing Between Alignable Windows for Lateral Wellbore Drilling
US20090277650A1 (en) * 2008-05-08 2009-11-12 Baker Hughes Incorporated Reactive in-flow control device for subterranean wellbores
US20090283275A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Flow Control Device Utilizing a Reactive Media
US20090283267A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US20090283278A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Strokable liner hanger
US20090283272A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Pipeless sagd system and method
US20090301726A1 (en) * 2007-10-12 2009-12-10 Baker Hughes Incorporated Apparatus and Method for Controlling Water In-Flow Into Wellbores
US20090308619A1 (en) * 2008-06-12 2009-12-17 Schlumberger Technology Corporation Method and apparatus for modifying flow
WO2010020826A1 (en) * 2007-03-27 2010-02-25 Warren Michael Levy Expandable downhole tools and methods of using and manufacturing same
WO2010048077A1 (en) 2008-10-22 2010-04-29 Halliburton Energy Services, Inc. Shunt tube flowpaths extending through swellable packers
US20100163252A1 (en) * 2007-04-06 2010-07-01 Loic Regnault De La Mothe Method and composition for zonal isolation of a well
US7775271B2 (en) 2007-10-19 2010-08-17 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20100206589A1 (en) * 2007-08-20 2010-08-19 Erik Kerst Cornelissen Method of creating an annular seal around a tubular element
US7789152B2 (en) 2008-05-13 2010-09-07 Baker Hughes Incorporated Plug protection system and method
US7789139B2 (en) 2007-10-19 2010-09-07 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7793714B2 (en) 2007-10-19 2010-09-14 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
EP2232006A1 (en) * 2008-01-18 2010-09-29 Swellfix B.V. Improved seal
US20100243276A1 (en) * 2009-03-27 2010-09-30 Baker Hughes Incorporated Downhole swellable sealing system and method
WO2010111076A2 (en) 2009-03-24 2010-09-30 Halliburton Energy Services, Inc. Well tools utilizing swellable materials activated on demand
US20100263880A1 (en) * 2009-04-20 2010-10-21 Swellfix B.V. Downhole seal
US20100263858A1 (en) * 2009-04-17 2010-10-21 Swellfix B.V. Swelling seal
US20100300675A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US20100300194A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US20100300676A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US20100300689A1 (en) * 2007-08-25 2010-12-02 Swellfix B.V. Sealing assembly
US20100300691A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US20100300674A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US20100307771A1 (en) * 2007-08-25 2010-12-09 Swellfix B.V. Sealing assembly
US20100307748A1 (en) * 2009-06-09 2010-12-09 Dario Casciaro Control Line Patch
US20110000684A1 (en) * 2009-07-02 2011-01-06 Baker Hughes Incorporated Flow control device with one or more retrievable elements
US7866408B2 (en) 2006-11-15 2011-01-11 Halliburton Energy Services, Inc. Well tool including swellable material and integrated fluid for initiating swelling
US20110017470A1 (en) * 2009-07-21 2011-01-27 Baker Hughes Incorporated Self-adjusting in-flow control device
US20110036573A1 (en) * 2009-08-11 2011-02-17 Weaver Jimmie D Methods for Swelling Swellable Elements in a Portion of a Well Using a Water-in-Oil Emulsion
US20110036572A1 (en) * 2009-08-11 2011-02-17 Weaver Jimmie D Methods for Swelling Swellable Elements in a Portion of a Well Using an Oil-in-Water Emulsion
US20110056686A1 (en) * 2009-09-04 2011-03-10 Baker Hughes Incorporated Flow Rate Dependent Flow Control Device
US20110056688A1 (en) * 2007-10-19 2011-03-10 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7918275B2 (en) 2007-11-27 2011-04-05 Baker Hughes Incorporated Water sensitive adaptive inflow control using couette flow to actuate a valve
US20110094746A1 (en) * 2009-10-27 2011-04-28 Allison David B Swellable Spacer Fluids and Associated Methods
WO2011061502A2 (en) 2009-11-20 2011-05-26 Halliburton Energy Services, Inc Swellable connection system and method of using the same
US20110220359A1 (en) * 2010-03-10 2011-09-15 Soliman Mohamed Y Methods Relating to Modifying Flow Patterns Using In-Situ Barriers
US20110259611A1 (en) * 2010-04-26 2011-10-27 Zafer Erkol Mechanically deployable well isolation mechanism
US8069921B2 (en) 2007-10-19 2011-12-06 Baker Hughes Incorporated Adjustable flow control devices for use in hydrocarbon production
US20110303421A1 (en) * 2010-06-11 2011-12-15 Baker Hughes Incorporated Apparatus and method for sealing portions of a wellbore
US8110099B2 (en) 2007-05-09 2012-02-07 Contech Stormwater Solutions Inc. Stormwater filter assembly
WO2012028848A2 (en) 2010-09-02 2012-03-08 Halliburton Energy Services, Inc. Systems and methods for monitoring a parameter of a subterranean formation using swellable materials
US20120103634A1 (en) * 2008-04-22 2012-05-03 Swelltec Limited Ring Member for a Swellable Downhole Packer
WO2012078468A2 (en) 2010-12-10 2012-06-14 Halliburton Energy Services, Inc. Extending lines through, and preventing extrusion of, seal elements of packer assemblies
US20120227986A1 (en) * 2011-03-08 2012-09-13 Halliburton Energy Services, Inc. Temperature dependent swelling of a swellable material
NL2007810C2 (en) * 2011-11-18 2013-05-23 Ruma Products Holding B V Seal sleeve and assembly including such a seal sleeve.
WO2013096127A2 (en) 2011-12-19 2013-06-27 Halliburton Energy Services, Inc. Plug and abandonment system
US8490707B2 (en) 2011-01-11 2013-07-23 Schlumberger Technology Corporation Oilfield apparatus and method comprising swellable elastomers
US8499844B2 (en) * 2008-02-19 2013-08-06 Weatherford/Lamb, Inc. Expandable packer
WO2013184147A1 (en) 2012-06-08 2013-12-12 Halliburton Energy Services, Inc. Swellable packer with enhanced anchoring and/or sealing capability
WO2014046676A1 (en) 2012-09-21 2014-03-27 Halliburton Energy Services, Inc. Swellable packer having reinforcement plate
US20140091533A1 (en) * 2012-09-28 2014-04-03 Carl Freudenberg Kg Plug-In Piece
CN103711754A (en) * 2012-09-28 2014-04-09 科德宝两合公司 Plug-in piece
US20140224497A1 (en) * 2008-02-27 2014-08-14 Swelltec Limited Elongated sealing member for downhole tool
EP2719857A3 (en) * 2012-10-12 2014-09-10 Weatherford/Lamb, Inc. Packer cup for sealing in multiple wellbore sizes eccentrically
US20140306406A1 (en) * 2011-11-18 2014-10-16 Ruma Products Holding B.V. Seal sleeve and assembly including such a seal sleeve
US20150108722A1 (en) * 2013-10-17 2015-04-23 KACO GmbH + Co., KG Combustion chamber gasket seal for combustion engines of vehicles, preferably of motor vehicles
US9038740B2 (en) 2011-11-07 2015-05-26 Halliburton Energy Services, Inc. Apparatus and method of forming a plug in a wellbore
US20150167419A1 (en) * 2013-02-06 2015-06-18 Halliburton Energy Services, Inc. High flow area swellable cementing packer
WO2015171530A2 (en) 2014-05-05 2015-11-12 Ferg Thomas Eugene Swellable elastomer plug and abandonment sealing plugs
US20160102526A1 (en) * 2014-10-08 2016-04-14 Weatherford Technology Holdings, Llc Stage tool
US9464500B2 (en) 2010-08-27 2016-10-11 Halliburton Energy Services, Inc. Rapid swelling and un-swelling materials in well tools
US9506320B2 (en) 2011-11-07 2016-11-29 Halliburton Energy Services, Inc. Variable flow resistance for use with a subterranean well
US9551201B2 (en) 2008-02-19 2017-01-24 Weatherford Technology Holdings, Llc Apparatus and method of zonal isolation
EP3025013A4 (en) * 2013-07-22 2017-03-22 Tam International Inc. Grooved swellable packer
RU2617815C2 (en) * 2012-10-05 2017-04-27 Бэйкер Хьюз Инкорпорейтед System for swelling efficiency increasing
US9869152B2 (en) 2012-10-16 2018-01-16 Halliburton Energy Services, Inc. Controlled swell-rate swellable packer and method
EP3375975A1 (en) 2011-11-07 2018-09-19 Halliburton Energy Services, Inc. Variable flow resistance for use with a subterranean well
US10082000B2 (en) * 2012-12-27 2018-09-25 Exxonmobil Upstream Research Company Apparatus and method for isolating fluid flow in an open hole completion
US10093770B2 (en) 2012-09-21 2018-10-09 Schlumberger Technology Corporation Supramolecular initiator for latent cationic epoxy polymerization
US10119361B2 (en) 2013-11-14 2018-11-06 Halliburton Energy Services, Inc. Window assembly with bypass restrictor
US10174558B2 (en) 2013-10-28 2019-01-08 Halliburton Energy Services, Inc. Downhole communication between wellbores utilizing swellable materials
US10364636B2 (en) 2013-07-22 2019-07-30 Tam International, Inc. Swellable casing anchor
CN110892133A (en) * 2017-07-27 2020-03-17 韦尔泰克油田解决方案股份公司 Annular barrier for small diameter wells
US10787880B2 (en) 2017-06-26 2020-09-29 Steve Wehrenberg Method for sealing perforation tunnels with swelling elastomer material
WO2020201474A1 (en) 2019-04-05 2020-10-08 Sogefi Air & Cooling Device for assembling two pipes, fluid circulation line and vehicle comprising such a device
EP3851631A1 (en) 2009-02-20 2021-07-21 Halliburton Energy Services, Inc. Swellable material activation and monitoring in a subterranean well
US11365599B2 (en) * 2019-02-11 2022-06-21 Halliburton Energy Services, Inc. Energizing seals with swellable materials
US11499399B2 (en) 2019-12-18 2022-11-15 Halliburton Energy Services, Inc. Pressure reducing metal elements for liner hangers
US11512561B2 (en) 2019-02-22 2022-11-29 Halliburton Energy Services, Inc. Expanding metal sealant for use with multilateral completion systems
US11519239B2 (en) 2019-10-29 2022-12-06 Halliburton Energy Services, Inc. Running lines through expandable metal sealing elements
US11560768B2 (en) 2019-10-16 2023-01-24 Halliburton Energy Services, Inc. Washout prevention element for expandable metal sealing elements
US11572749B2 (en) 2020-12-16 2023-02-07 Halliburton Energy Services, Inc. Non-expanding liner hanger
US11578498B2 (en) 2021-04-12 2023-02-14 Halliburton Energy Services, Inc. Expandable metal for anchoring posts
US11761290B2 (en) 2019-12-18 2023-09-19 Halliburton Energy Services, Inc. Reactive metal sealing elements for a liner hanger
US11761293B2 (en) 2020-12-14 2023-09-19 Halliburton Energy Services, Inc. Swellable packer assemblies, downhole packer systems, and methods to seal a wellbore
US11879304B2 (en) 2021-05-17 2024-01-23 Halliburton Energy Services, Inc. Reactive metal for cement assurance
US11898438B2 (en) 2019-07-31 2024-02-13 Halliburton Energy Services, Inc. Methods to monitor a metallic sealant deployed in a wellbore, methods to monitor fluid displacement, and downhole metallic sealant measurement systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US500558A (en) * 1893-07-04 Printing aniline-black
US672255A (en) * 1900-05-14 1901-04-16 Christian Johannes Lorenz Boberg Stuffing-box packing.
US2094691A (en) * 1933-05-31 1937-10-05 United Gas Improvement Co Packed joint and method of leakproofing the same
US2452466A (en) * 1944-07-19 1948-10-26 Jaswell Roy Sealing tip for well casings
US2849070A (en) * 1956-04-02 1958-08-26 Union Oil Co Well packer
US2945541A (en) * 1955-10-17 1960-07-19 Union Oil Co Well packer
US3067819A (en) * 1958-06-02 1962-12-11 George L Gore Casing interliner
US3134442A (en) * 1958-10-27 1964-05-26 Pan American Petroleum Corp Apparatus for lining wells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US500558A (en) * 1893-07-04 Printing aniline-black
US672255A (en) * 1900-05-14 1901-04-16 Christian Johannes Lorenz Boberg Stuffing-box packing.
US2094691A (en) * 1933-05-31 1937-10-05 United Gas Improvement Co Packed joint and method of leakproofing the same
US2452466A (en) * 1944-07-19 1948-10-26 Jaswell Roy Sealing tip for well casings
US2945541A (en) * 1955-10-17 1960-07-19 Union Oil Co Well packer
US2849070A (en) * 1956-04-02 1958-08-26 Union Oil Co Well packer
US3067819A (en) * 1958-06-02 1962-12-11 George L Gore Casing interliner
US3134442A (en) * 1958-10-27 1964-05-26 Pan American Petroleum Corp Apparatus for lining wells

Cited By (348)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193105A (en) * 1976-05-21 1980-03-11 Wavin B.V. Pipe with an external sealing body
US4137970A (en) * 1977-04-20 1979-02-06 The Dow Chemical Company Packer with chemically activated sealing member and method of use thereof
US4936386A (en) * 1989-04-10 1990-06-26 American Colloid Company Method for sealing well casings in the earth
US5078211A (en) * 1989-12-19 1992-01-07 Swineford Richard A Plastic packer
US5219028A (en) * 1992-02-25 1993-06-15 Conoco Inc. Well casing and well casing method
WO1996037682A1 (en) * 1995-05-22 1996-11-28 Baker Hughes Incorporated Method and apparatus for sealing and transferring force in a wellbore
GB2305684A (en) * 1995-05-22 1997-04-16 Baker Hughes Inc Method and apparatus for sealing and transferring force in a wellbore
GB2305684B (en) * 1995-05-22 2000-02-02 Baker Hughes Inc Apparatus for sealing and transferring force in a wellbore
US7407165B1 (en) * 2000-04-04 2008-08-05 Hutchinson Fts, Inc. Composite sleeve for sealing a tubular coupling
US7472757B2 (en) 2000-09-08 2009-01-06 Halliburton Energy Services, Inc. Well packing
EP1672166A1 (en) * 2000-09-08 2006-06-21 Halliburton Energy Services, Inc. Well packing
US20040020662A1 (en) * 2000-09-08 2004-02-05 Jan Freyer Well packing
US20070151723A1 (en) * 2000-09-08 2007-07-05 Jan Freyer Well Packing
US7143832B2 (en) 2000-09-08 2006-12-05 Halliburton Energy Services, Inc. Well packing
US20100288514A1 (en) * 2000-09-08 2010-11-18 Halliburton Energy Services, Inc. Well packing
US7832491B2 (en) 2000-09-08 2010-11-16 Halliburton Energy Services, Inc. Well packing
US20090084559A1 (en) * 2000-09-08 2009-04-02 Halliburton Energy Services, Inc. Well packing
US8051914B2 (en) 2000-09-08 2011-11-08 Halliburton Energy Services, Inc. Well packing
WO2002059452A1 (en) * 2001-01-26 2002-08-01 E2 Tech Limited Device and method to seal boreholes
US20040194971A1 (en) * 2001-01-26 2004-10-07 Neil Thomson Device and method to seal boreholes
GB2388136A (en) * 2001-01-26 2003-11-05 E2Tech Ltd Device and method to seal boreholes
US7228915B2 (en) 2001-01-26 2007-06-12 E2Tech Limited Device and method to seal boreholes
US20080000646A1 (en) * 2001-01-26 2008-01-03 Neil Thomson Device and method to seal boreholes
US7578354B2 (en) * 2001-01-26 2009-08-25 E2Tech Limited Device and method to seal boreholes
GB2388136B (en) * 2001-01-26 2005-05-18 E2Tech Ltd Device and method to seal boreholes
US7066259B2 (en) 2001-12-27 2006-06-27 Weatherford/Lamb, Inc. Bore isolation
US7798223B2 (en) 2001-12-27 2010-09-21 Weatherford/Lamb, Inc. Bore isolation
US20060283607A1 (en) * 2001-12-27 2006-12-21 Duggan Andrew M Bore isolation
US20030146003A1 (en) * 2001-12-27 2003-08-07 Duggan Andrew Michael Bore isolation
US7013979B2 (en) * 2002-08-23 2006-03-21 Baker Hughes Incorporated Self-conforming screen
US20050173130A1 (en) * 2002-08-23 2005-08-11 Baker Hughes Incorporated Self-conforming screen
US20050252651A1 (en) * 2002-09-06 2005-11-17 Shell Oil Company Wellbore device for selective transfer of fluid
WO2004027209A1 (en) * 2002-09-20 2004-04-01 Halliburton Energy Services, Inc. Method and apparatus for forming an annular barrier in a wellbore
US6935432B2 (en) 2002-09-20 2005-08-30 Halliburton Energy Services, Inc. Method and apparatus for forming an annular barrier in a wellbore
US20040055760A1 (en) * 2002-09-20 2004-03-25 Nguyen Philip D. Method and apparatus for forming an annular barrier in a wellbore
US7363986B2 (en) 2002-09-23 2008-04-29 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
US7320367B2 (en) * 2002-09-23 2008-01-22 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
US20070114017A1 (en) * 2002-09-23 2007-05-24 Halliburton Energy Services, Inc. Annular Isolators for Expandable Tubulars in Wellbores
US20080251250A1 (en) * 2002-09-23 2008-10-16 Halliburton Energy Services, Inc. Annular Isolators for Expandable Tubulars in Wellbores
US7404437B2 (en) 2002-09-23 2008-07-29 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
US20070114044A1 (en) * 2002-09-23 2007-05-24 Halliburton Energy Services, Inc. Annular Isolators for Expandable Tubulars in Wellbores
USRE41118E1 (en) 2002-09-23 2010-02-16 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
US20070114018A1 (en) * 2002-09-23 2007-05-24 Halliburton Energy Services, Inc. Annular Isolators for Expandable Tubulars in Wellbores
US7299882B2 (en) * 2002-09-23 2007-11-27 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
US20070267201A1 (en) * 2002-09-23 2007-11-22 Halliburton Energy Services, Inc. Annular Isolators for Expandable Tubulars in Wellbores
US20070114016A1 (en) * 2002-09-23 2007-05-24 Halliburton Energy Services, Inc. Annular Isolators for Expandable Tubulars in Wellbores
US6840325B2 (en) 2002-09-26 2005-01-11 Weatherford/Lamb, Inc. Expandable connection for use with a swelling elastomer
US20070012436A1 (en) * 2002-12-10 2007-01-18 Rune Freyer Cable duct device in a swelling packer
US9540893B2 (en) 2002-12-10 2017-01-10 Halliburton Energy Services, Inc. Cable duct device in a swelling packer
US9546528B2 (en) 2002-12-10 2017-01-17 Halliburton Energy Services, Inc. Cable duct device in a swelling packer
US20100065284A1 (en) * 2002-12-10 2010-03-18 Halliburton Energy Services, Inc. Cable duct device in a swelling packer
US6834725B2 (en) 2002-12-12 2004-12-28 Weatherford/Lamb, Inc. Reinforced swelling elastomer seal element on expandable tubular
US20040112609A1 (en) * 2002-12-12 2004-06-17 Whanger James K. Reinforced swelling elastomer seal element on expandable tubular
US7070001B2 (en) 2002-12-23 2006-07-04 Weatherford/Lamb, Inc. Expandable sealing apparatus
GB2396635B (en) * 2002-12-23 2006-03-01 Weatherford Lamb Expandable sealing apparatus
US20040118572A1 (en) * 2002-12-23 2004-06-24 Ken Whanger Expandable sealing apparatus
US20050269108A1 (en) * 2002-12-23 2005-12-08 Weatherford/Lamb, Inc. Expandable sealing apparatus
US6907937B2 (en) 2002-12-23 2005-06-21 Weatherford/Lamb, Inc. Expandable sealing apparatus
AU2004208145B2 (en) * 2003-01-29 2009-06-04 Baker Hughes Incorporated Alternative method to cementing casing and liners
US20040144538A1 (en) * 2003-01-29 2004-07-29 Richard Bennett M. Alternative method to cementing casing and liners
WO2004067906A1 (en) * 2003-01-29 2004-08-12 Baker Hughes Incorporated Alternative method to cementing casing and liners
GB2414259B (en) * 2003-01-29 2006-08-09 Baker Hughes Inc Alternative method to cementing casing and liners
GB2414259A (en) * 2003-01-29 2005-11-23 Baker Hughes Inc Alternative method to cementing casing and liners
US6848505B2 (en) 2003-01-29 2005-02-01 Baker Hughes Incorporated Alternative method to cementing casing and liners
US20050016740A1 (en) * 2003-02-12 2005-01-27 Walter Aldaz Seal
US7357189B2 (en) 2003-02-12 2008-04-15 Weatherford/Lamb, Inc. Seal
US6896063B2 (en) * 2003-04-07 2005-05-24 Shell Oil Company Methods of using downhole polymer plug
US20040194959A1 (en) * 2003-04-07 2004-10-07 Chang Benjamin Tai-An Downhole polymer plug and liner and methods employing same
US6988557B2 (en) 2003-05-22 2006-01-24 Weatherford/Lamb, Inc. Self sealing expandable inflatable packers
US7527099B2 (en) 2003-07-29 2009-05-05 Shell Oil Company System for sealing a space in a wellbore
WO2005012686A1 (en) * 2003-07-29 2005-02-10 Shell Internationale Research Maatschappij B.V. System for sealing a space in a wellbore
NO343768B1 (en) * 2003-07-29 2019-06-03 Swellfix Uk Ltd System and method for sealing a space in a wellbore
EA008390B1 (en) * 2003-07-29 2007-04-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. System of sealing a space in a wellbore
US20070056735A1 (en) * 2003-07-29 2007-03-15 Bosma Martin Gerard R System for sealing a space in a wellbore
NO20060937L (en) * 2003-07-29 2006-02-27 Shell Int Research System for sealing a room in a wellbore
AU2004260885B2 (en) * 2003-07-29 2007-11-08 Swellfix Uk Limited System for sealing a space in a wellbore
CN100449111C (en) * 2003-07-29 2009-01-07 国际壳牌研究有限公司 System for sealing a space in a wellbore
US20050110217A1 (en) * 2003-11-25 2005-05-26 Baker Hughes Incorporated Swelling layer inflatable
GB2424020A (en) * 2003-11-25 2006-09-13 Baker Hughes Inc Swelling layer inflatable
WO2005052308A1 (en) * 2003-11-25 2005-06-09 Baker Hughes Incorporated Swelling layer inflatable
GB2424020B (en) * 2003-11-25 2008-05-28 Baker Hughes Inc Swelling layer inflatable
US7597152B2 (en) 2003-11-25 2009-10-06 Baker Hughes Incorporated Swelling layer inflatable
EA008563B1 (en) * 2004-03-11 2007-06-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. System for sealing an annular space in a wellbore
US7699115B2 (en) 2004-03-11 2010-04-20 Shell Oil Company Method for applying an annular seal to a tubular element
AU2005224377B2 (en) * 2004-03-11 2008-02-28 Swellfix Uk Limited System for sealing an annular space in a wellbore
WO2005090741A1 (en) * 2004-03-11 2005-09-29 Shell Internationale Research Maatschappij B.V. System for sealing an annular space in a wellbore
US20070205002A1 (en) * 2004-03-11 2007-09-06 Baaijens Matheus N System for Sealing an Annular Space in a Wellbore
US20100139930A1 (en) * 2004-03-12 2010-06-10 Schlumberger Technology Corporation System and method to seal using a swellable material
US8499843B2 (en) 2004-03-12 2013-08-06 Schlumberger Technology Corporation System and method to seal using a swellable material
US7665537B2 (en) 2004-03-12 2010-02-23 Schlumbeger Technology Corporation System and method to seal using a swellable material
US20050199401A1 (en) * 2004-03-12 2005-09-15 Schlumberger Technology Corporation System and Method to Seal Using a Swellable Material
US7337841B2 (en) 2004-03-24 2008-03-04 Halliburton Energy Services, Inc. Casing comprising stress-absorbing materials and associated methods of use
US20050211445A1 (en) * 2004-03-24 2005-09-29 Ravi Krishna M Casing comprising stress-absorbing materials and associated methods of use
US7409999B2 (en) 2004-07-30 2008-08-12 Baker Hughes Incorporated Downhole inflow control device with shut-off feature
US20060076150A1 (en) * 2004-07-30 2006-04-13 Baker Hughes Incorporated Inflow control device with passive shut-off feature
US7823645B2 (en) 2004-07-30 2010-11-02 Baker Hughes Incorporated Downhole inflow control device with shut-off feature
US7290606B2 (en) * 2004-07-30 2007-11-06 Baker Hughes Incorporated Inflow control device with passive shut-off feature
US20080035350A1 (en) * 2004-07-30 2008-02-14 Baker Hughes Incorporated Downhole Inflow Control Device with Shut-Off Feature
US20060113089A1 (en) * 2004-07-30 2006-06-01 Baker Hughes Incorporated Downhole inflow control device with shut-off feature
NO337536B1 (en) * 2004-10-27 2016-05-02 Shell Int Research Sealing of a wellbore device in a pipe element.
US20070257441A1 (en) * 2004-10-27 2007-11-08 Baaijens Matheus N Sealing of a Wellbore Device in a Tubular Element
AU2005298687B2 (en) * 2004-10-27 2010-05-27 Swellfix Uk Limited Sealing of a wellbore device in a tubular element
EA011131B1 (en) * 2004-10-27 2008-12-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Wellbore swellable seal
WO2006045794A1 (en) * 2004-10-27 2006-05-04 Shell Internationale Research Maatschappij B.V. Sealing of a wellbore device in a tubular element
AU2005298687C1 (en) * 2004-10-27 2010-11-25 Swellfix Uk Limited Sealing of a wellbore device in a tubular element
EP1825099A4 (en) * 2004-12-16 2010-09-22 Easy Well Solutions As A method and a device for sealing a void incompletely filled with a cast material
US8726992B2 (en) 2004-12-16 2014-05-20 Halliburton Energy Services, Inc. Method and device for filling a void incompletely filled by a cast material
AU2005317308B2 (en) * 2004-12-16 2010-04-01 Halliburton Energy Services, Inc. A method and a device for sealing a void incompletely filled with a cast material
US20110180264A1 (en) * 2004-12-16 2011-07-28 Halliburton Energy Services, Inc. Method and device for filling a void incompletely filled by a cast material
EP1825099A1 (en) * 2004-12-16 2007-08-29 Easy Well Solutions AS A method and a device for sealing a void incompletely filled with a cast material
US7946351B2 (en) * 2004-12-16 2011-05-24 Halliburton Energy Services, Inc. Method and device for sealing a void incompletely filled with a cast material
US20070227734A1 (en) * 2004-12-16 2007-10-04 Rune Freyer Method and Device for Sealing a Void Incompletely Filled with a Cast Material
CN101080548B (en) * 2004-12-16 2012-06-27 哈利伯顿能源服务公司 A method and a device for sealing a void incompletely filled with a cast material
US7493947B2 (en) 2004-12-21 2009-02-24 Schlumberger Technology Corporation Water shut off method and apparatus
US20060175065A1 (en) * 2004-12-21 2006-08-10 Schlumberger Technology Corporation Water shut off method and apparatus
US7422071B2 (en) * 2005-01-31 2008-09-09 Hills, Inc. Swelling packer with overlapping petals
US20060272806A1 (en) * 2005-01-31 2006-12-07 Wilkie Arnold E Swelling packer with overlapping petals
US7971640B2 (en) * 2005-03-15 2011-07-05 Halliburton Energy Services, Inc. Method and device for setting a bottom packer
US20080156502A1 (en) * 2005-03-15 2008-07-03 Rune Freyer Method and Device for Setting a Bottom Packer
US20070027245A1 (en) * 2005-07-18 2007-02-01 Schlumberger Technology Corporation Swellable Elastomer-Based Apparatus, Oilfield Elements Comprising Same, and Methods of Using Same in Oilfield Applications
US7373991B2 (en) 2005-07-18 2008-05-20 Schlumberger Technology Corporation Swellable elastomer-based apparatus, oilfield elements comprising same, and methods of using same in oilfield applications
US20070044962A1 (en) * 2005-08-26 2007-03-01 Schlumberger Technology Corporation System and Method for Isolating Flow In A Shunt Tube
US7407007B2 (en) 2005-08-26 2008-08-05 Schlumberger Technology Corporation System and method for isolating flow in a shunt tube
US7543640B2 (en) 2005-09-01 2009-06-09 Schlumberger Technology Corporation System and method for controlling undesirable fluid incursion during hydrocarbon production
US20070044963A1 (en) * 2005-09-01 2007-03-01 Schlumberger Technology Corporation System and Method for Controlling Undesirable Fluid Incursion During Hydrocarbon Production
US20070108575A1 (en) * 2005-11-03 2007-05-17 Robert Montgomery Semiconductor package that includes stacked semiconductor die
US20070221387A1 (en) * 2006-03-21 2007-09-27 Warren Michael Levy Expandable downhole tools and methods of using and manufacturing same
US20100181080A1 (en) * 2006-03-21 2010-07-22 Warren Michael Levy Expandable downhole tools and methods of using and manufacturing same
US7703539B2 (en) 2006-03-21 2010-04-27 Warren Michael Levy Expandable downhole tools and methods of using and manufacturing same
US20070246225A1 (en) * 2006-04-20 2007-10-25 Hailey Travis T Jr Well tools with actuators utilizing swellable materials
US8453746B2 (en) 2006-04-20 2013-06-04 Halliburton Energy Services, Inc. Well tools with actuators utilizing swellable materials
US20080006413A1 (en) * 2006-07-06 2008-01-10 Schlumberger Technology Corporation Well Servicing Methods and Systems Employing a Triggerable Filter Medium Sealing Composition
US7510011B2 (en) 2006-07-06 2009-03-31 Schlumberger Technology Corporation Well servicing methods and systems employing a triggerable filter medium sealing composition
US20080078561A1 (en) * 2006-09-11 2008-04-03 Chalker Christopher J Swellable Packer Construction
US7849930B2 (en) 2006-09-11 2010-12-14 Halliburton Energy Services, Inc. Swellable packer construction
WO2008033120A3 (en) * 2006-09-12 2009-04-30 Halliburton Energy Serv Inc Method and apparatus for perforating and isolating perforations in a wellbore
US20080066912A1 (en) * 2006-09-12 2008-03-20 Rune Freyer Method and Apparatus for Perforating and Isolating Perforations in a Wellbore
US7624793B2 (en) 2006-09-12 2009-12-01 Halliburton Energy Services, Inc. Method and apparatus for perforating and isolating perforations in a wellbore
US20100051295A1 (en) * 2006-10-20 2010-03-04 Halliburton Energy Services, Inc. Swellable packer construction for continuous or segmented tubing
US7762344B2 (en) 2006-10-20 2010-07-27 Halliburton Energy Services, Inc. Swellable packer construction for continuous or segmented tubing
US8006773B2 (en) 2006-10-20 2011-08-30 Halliburton Energy Services, Inc. Swellable packer construction for continuous or segmented tubing
US20080093086A1 (en) * 2006-10-20 2008-04-24 Courville Perry W Swellable packer construction for continuous or segmented tubing
US20110083861A1 (en) * 2006-11-15 2011-04-14 Halliburton Energy Services, Inc. Well tool including swellable material and integrated fluid for initiating swelling
US7866408B2 (en) 2006-11-15 2011-01-11 Halliburton Energy Services, Inc. Well tool including swellable material and integrated fluid for initiating swelling
US9273533B2 (en) 2006-11-15 2016-03-01 Halliburton Energy Services, Inc. Well tool including swellable material and integrated fluid for initiating swelling
US9303483B2 (en) * 2007-02-06 2016-04-05 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US9488029B2 (en) 2007-02-06 2016-11-08 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US20080185158A1 (en) * 2007-02-06 2008-08-07 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US20080220991A1 (en) * 2007-03-06 2008-09-11 Halliburton Energy Services, Inc. - Dallas Contacting surfaces using swellable elements
WO2010020826A1 (en) * 2007-03-27 2010-02-25 Warren Michael Levy Expandable downhole tools and methods of using and manufacturing same
US20100163252A1 (en) * 2007-04-06 2010-07-01 Loic Regnault De La Mothe Method and composition for zonal isolation of a well
US8689894B2 (en) 2007-04-06 2014-04-08 Schlumberger Technology Corporation Method and composition for zonal isolation of a well
US8110099B2 (en) 2007-05-09 2012-02-07 Contech Stormwater Solutions Inc. Stormwater filter assembly
US20080290603A1 (en) * 2007-05-24 2008-11-27 Baker Hughes Incorporated Swellable material and method
US20110101628A1 (en) * 2007-05-31 2011-05-05 Baker Hughes Incorporated Swellable material and method
US20090130938A1 (en) * 2007-05-31 2009-05-21 Baker Hughes Incorporated Swellable material and method
US8807209B2 (en) * 2007-05-31 2014-08-19 Baker Hughes Incorporated Swellable material and method
WO2008154384A2 (en) * 2007-06-06 2008-12-18 Baker Hughes Incorporated Wrap on reactive element barrier packer and method of creating same
WO2008154384A3 (en) * 2007-06-06 2009-02-05 Baker Hughes Inc Wrap on reactive element barrier packer and method of creating same
US20100206589A1 (en) * 2007-08-20 2010-08-19 Erik Kerst Cornelissen Method of creating an annular seal around a tubular element
US7819200B2 (en) 2007-08-20 2010-10-26 Shell Oil Company Method of creating an annular seal around a tubular element
US9732578B2 (en) 2007-08-25 2017-08-15 Swellfix B.V. Downhole sealing assembly with swellable seal
US20100300689A1 (en) * 2007-08-25 2010-12-02 Swellfix B.V. Sealing assembly
US20100307771A1 (en) * 2007-08-25 2010-12-09 Swellfix B.V. Sealing assembly
US8833473B2 (en) 2007-08-25 2014-09-16 Swellfix B.V. Sealing assembly
US8312931B2 (en) 2007-10-12 2012-11-20 Baker Hughes Incorporated Flow restriction device
US7942206B2 (en) 2007-10-12 2011-05-17 Baker Hughes Incorporated In-flow control device utilizing a water sensitive media
US20090095487A1 (en) * 2007-10-12 2009-04-16 Baker Hughes Incorporated Flow restriction device
US8646535B2 (en) 2007-10-12 2014-02-11 Baker Hughes Incorporated Flow restriction devices
US20090095484A1 (en) * 2007-10-12 2009-04-16 Baker Hughes Incorporated In-Flow Control Device Utilizing A Water Sensitive Media
US20090301726A1 (en) * 2007-10-12 2009-12-10 Baker Hughes Incorporated Apparatus and Method for Controlling Water In-Flow Into Wellbores
US20090101355A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Adaptable In-Flow Control Device and Method of Use
US20090101341A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Control Device Using Electromagnetics
US7784543B2 (en) 2007-10-19 2010-08-31 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20090101342A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Permeable Medium Flow Control Devices for Use in Hydrocarbon Production
US20090101329A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Adaptable Inflow Control Device Using a Powered System
US8151875B2 (en) 2007-10-19 2012-04-10 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US8096351B2 (en) 2007-10-19 2012-01-17 Baker Hughes Incorporated Water sensing adaptable in-flow control device and method of use
US20090101360A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20090101357A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7793714B2 (en) 2007-10-19 2010-09-14 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20090101353A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Absorbing Materials Used as an In-flow Control Device
US8069921B2 (en) 2007-10-19 2011-12-06 Baker Hughes Incorporated Adjustable flow control devices for use in hydrocarbon production
US7789139B2 (en) 2007-10-19 2010-09-07 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7775271B2 (en) 2007-10-19 2010-08-17 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7918272B2 (en) 2007-10-19 2011-04-05 Baker Hughes Incorporated Permeable medium flow control devices for use in hydrocarbon production
US8544548B2 (en) 2007-10-19 2013-10-01 Baker Hughes Incorporated Water dissolvable materials for activating inflow control devices that control flow of subsurface fluids
US7775277B2 (en) 2007-10-19 2010-08-17 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20090101352A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Dissolvable Materials for Activating Inflow Control Devices That Control Flow of Subsurface Fluids
US7891430B2 (en) 2007-10-19 2011-02-22 Baker Hughes Incorporated Water control device using electromagnetics
US7913765B2 (en) 2007-10-19 2011-03-29 Baker Hughes Incorporated Water absorbing or dissolving materials used as an in-flow control device and method of use
US7913755B2 (en) 2007-10-19 2011-03-29 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20110056688A1 (en) * 2007-10-19 2011-03-10 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7918275B2 (en) 2007-11-27 2011-04-05 Baker Hughes Incorporated Water sensitive adaptive inflow control using couette flow to actuate a valve
WO2009073531A1 (en) * 2007-11-30 2009-06-11 Baker Hughes Incorporated An improved swellable material and method
US8555961B2 (en) 2008-01-07 2013-10-15 Halliburton Energy Services, Inc. Swellable packer with composite material end rings
US20090179383A1 (en) * 2008-01-07 2009-07-16 Halliburton Energy Services, Inc. Swellable packer with composite material end rings
EP2232006A1 (en) * 2008-01-18 2010-09-29 Swellfix B.V. Improved seal
US20110101613A1 (en) * 2008-01-18 2011-05-05 Mcrobb Graeme Improved seal
US7597150B2 (en) 2008-02-01 2009-10-06 Baker Hughes Incorporated Water sensitive adaptive inflow control using cavitations to actuate a valve
US20090194289A1 (en) * 2008-02-01 2009-08-06 Baker Hughes Incorporated Water sensitive adaptive inflow control using cavitations to actuate a valve
US9903176B2 (en) 2008-02-19 2018-02-27 Weatherford Technology Holdings, Llc Expandable packer
US9551201B2 (en) 2008-02-19 2017-01-24 Weatherford Technology Holdings, Llc Apparatus and method of zonal isolation
US8967281B2 (en) 2008-02-19 2015-03-03 Weatherford/Lamb, Inc. Expandable packer
US8499844B2 (en) * 2008-02-19 2013-08-06 Weatherford/Lamb, Inc. Expandable packer
GB2458751A (en) * 2008-02-27 2009-10-07 Swelltec Ltd A method of forming a swellable downhole apparatus
GB2458751B (en) * 2008-02-27 2011-05-18 Swelltec Ltd Method of forming a downhole apparatus
US9512691B2 (en) * 2008-02-27 2016-12-06 Swelltec Limited Elongated sealing member for downhole tool
US20140224497A1 (en) * 2008-02-27 2014-08-14 Swelltec Limited Elongated sealing member for downhole tool
GB2472328A (en) * 2008-02-27 2011-02-02 Swelltec Ltd A method of forming a swellable downhole apparatus
US20090236102A1 (en) * 2008-03-18 2009-09-24 Baker Hughes Incorporated Water sensitive variable counterweight device driven by osmosis
US8839849B2 (en) 2008-03-18 2014-09-23 Baker Hughes Incorporated Water sensitive variable counterweight device driven by osmosis
US7992637B2 (en) 2008-04-02 2011-08-09 Baker Hughes Incorporated Reverse flow in-flow control device
US20090250222A1 (en) * 2008-04-02 2009-10-08 Baker Hughes Incorporated Reverse flow in-flow control device
US7823649B2 (en) 2008-04-02 2010-11-02 Halliburton Energy Services, Inc. System and method for plugging a side pocket mandrel using a swelling plug
US20090250227A1 (en) * 2008-04-02 2009-10-08 Halliburton Energy Services, Inc. A System And Method For Plugging A Side Pocket Mandrel Using A Swelling Plug
US20090255687A1 (en) * 2008-04-10 2009-10-15 Halliburton Energy Services, Inc. Sealing Between Alignable Windows for Lateral Wellbore Drilling
US8627894B2 (en) * 2008-04-22 2014-01-14 Swelltec Limited Ring member for a swellable downhole packer
US20120103634A1 (en) * 2008-04-22 2012-05-03 Swelltec Limited Ring Member for a Swellable Downhole Packer
US20090277650A1 (en) * 2008-05-08 2009-11-12 Baker Hughes Incorporated Reactive in-flow control device for subterranean wellbores
US8931570B2 (en) 2008-05-08 2015-01-13 Baker Hughes Incorporated Reactive in-flow control device for subterranean wellbores
US7814974B2 (en) 2008-05-13 2010-10-19 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US8113292B2 (en) 2008-05-13 2012-02-14 Baker Hughes Incorporated Strokable liner hanger and method
US20090283267A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US20090283275A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Flow Control Device Utilizing a Reactive Media
US7819190B2 (en) 2008-05-13 2010-10-26 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US8776881B2 (en) 2008-05-13 2014-07-15 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US20090283268A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US8171999B2 (en) 2008-05-13 2012-05-08 Baker Huges Incorporated Downhole flow control device and method
US20090283278A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Strokable liner hanger
US20110056680A1 (en) * 2008-05-13 2011-03-10 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US20090284260A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US7931081B2 (en) 2008-05-13 2011-04-26 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US20090283272A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Pipeless sagd system and method
US7789151B2 (en) 2008-05-13 2010-09-07 Baker Hughes Incorporated Plug protection system and method
US8069919B2 (en) 2008-05-13 2011-12-06 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US8555958B2 (en) 2008-05-13 2013-10-15 Baker Hughes Incorporated Pipeless steam assisted gravity drainage system and method
US7789152B2 (en) 2008-05-13 2010-09-07 Baker Hughes Incorporated Plug protection system and method
US20090283264A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US7762341B2 (en) 2008-05-13 2010-07-27 Baker Hughes Incorporated Flow control device utilizing a reactive media
US20090283263A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US9085953B2 (en) 2008-05-13 2015-07-21 Baker Hughes Incorporated Downhole flow control device and method
US20090283255A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Strokable liner hanger
US8159226B2 (en) 2008-05-13 2012-04-17 Baker Hughes Incorporated Systems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US20090283262A1 (en) * 2008-05-13 2009-11-19 Baker Hughes Incorporated Downhole flow control device and method
US20090308619A1 (en) * 2008-06-12 2009-12-17 Schlumberger Technology Corporation Method and apparatus for modifying flow
WO2010048077A1 (en) 2008-10-22 2010-04-29 Halliburton Energy Services, Inc. Shunt tube flowpaths extending through swellable packers
EP3730735A1 (en) 2008-10-22 2020-10-28 Halliburton Energy Services, Inc. Shunt tube flowpaths extending through swellable packers
EP3851631A1 (en) 2009-02-20 2021-07-21 Halliburton Energy Services, Inc. Swellable material activation and monitoring in a subterranean well
WO2010111076A2 (en) 2009-03-24 2010-09-30 Halliburton Energy Services, Inc. Well tools utilizing swellable materials activated on demand
US20100243269A1 (en) * 2009-03-24 2010-09-30 Halliburton Energy Services, Inc. Well Tools Utilizing Swellable Materials Activated on Demand
EP3556991A1 (en) 2009-03-24 2019-10-23 Halliburton Energy Services, Inc. Well tools utilizing swellable materials activated on demand
US8047298B2 (en) 2009-03-24 2011-11-01 Halliburton Energy Services, Inc. Well tools utilizing swellable materials activated on demand
US8453750B2 (en) 2009-03-24 2013-06-04 Halliburton Energy Services, Inc. Well tools utilizing swellable materials activated on demand
US8157019B2 (en) 2009-03-27 2012-04-17 Baker Hughes Incorporated Downhole swellable sealing system and method
US20100243276A1 (en) * 2009-03-27 2010-09-30 Baker Hughes Incorporated Downhole swellable sealing system and method
US20100263858A1 (en) * 2009-04-17 2010-10-21 Swellfix B.V. Swelling seal
GB2469723B (en) * 2009-04-20 2013-02-13 Swellfix Bv A swellable downhole seal incorporating at least one reamer element
US20100263880A1 (en) * 2009-04-20 2010-10-21 Swellfix B.V. Downhole seal
GB2469723A (en) * 2009-04-20 2010-10-27 Swellfix Bv A swellable seal incorporating a reamer
US20100300675A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US20100300674A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US20100300676A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US8132624B2 (en) 2009-06-02 2012-03-13 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US20100300691A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US8151881B2 (en) 2009-06-02 2012-04-10 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US8056627B2 (en) 2009-06-02 2011-11-15 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US20100300194A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US20100307748A1 (en) * 2009-06-09 2010-12-09 Dario Casciaro Control Line Patch
US8215394B2 (en) * 2009-06-09 2012-07-10 Baker Hughes Incorporated Control line patch
US8893809B2 (en) 2009-07-02 2014-11-25 Baker Hughes Incorporated Flow control device with one or more retrievable elements and related methods
US20110000684A1 (en) * 2009-07-02 2011-01-06 Baker Hughes Incorporated Flow control device with one or more retrievable elements
US8550166B2 (en) 2009-07-21 2013-10-08 Baker Hughes Incorporated Self-adjusting in-flow control device
US20110017470A1 (en) * 2009-07-21 2011-01-27 Baker Hughes Incorporated Self-adjusting in-flow control device
US8100190B2 (en) * 2009-08-11 2012-01-24 Halliburton Energy Services, Inc. Methods for swelling swellable elements in a portion of a well using a water-in-oil emulsion
US20110036573A1 (en) * 2009-08-11 2011-02-17 Weaver Jimmie D Methods for Swelling Swellable Elements in a Portion of a Well Using a Water-in-Oil Emulsion
US8042618B2 (en) * 2009-08-11 2011-10-25 Halliburton Energy Services, Inc. Methods for swelling swellable elements in a portion of a well using an oil-in-water emulsion
US20110036572A1 (en) * 2009-08-11 2011-02-17 Weaver Jimmie D Methods for Swelling Swellable Elements in a Portion of a Well Using an Oil-in-Water Emulsion
US20110056686A1 (en) * 2009-09-04 2011-03-10 Baker Hughes Incorporated Flow Rate Dependent Flow Control Device
US9016371B2 (en) 2009-09-04 2015-04-28 Baker Hughes Incorporated Flow rate dependent flow control device and methods for using same in a wellbore
US20110094746A1 (en) * 2009-10-27 2011-04-28 Allison David B Swellable Spacer Fluids and Associated Methods
US9708523B2 (en) 2009-10-27 2017-07-18 Halliburton Energy Services, Inc. Swellable spacer fluids and associated methods
US20110121568A1 (en) * 2009-11-20 2011-05-26 Halliburton Energy Services, Inc. Swellable connection system and method of using the same
WO2011061502A2 (en) 2009-11-20 2011-05-26 Halliburton Energy Services, Inc Swellable connection system and method of using the same
WO2011061502A3 (en) * 2009-11-20 2011-09-22 Halliburton Energy Services, Inc Swellable connection system and method of using the same
WO2011110802A1 (en) 2010-03-10 2011-09-15 Halliburton Energy Services, Inc Methods relating to modifying flow patterns using in-situ barriers
US20110220359A1 (en) * 2010-03-10 2011-09-15 Soliman Mohamed Y Methods Relating to Modifying Flow Patterns Using In-Situ Barriers
US8857526B2 (en) * 2010-04-26 2014-10-14 Schlumberger Technology Corporation Mechanically deployable well isolation mechanism
US20110259611A1 (en) * 2010-04-26 2011-10-27 Zafer Erkol Mechanically deployable well isolation mechanism
US20110303421A1 (en) * 2010-06-11 2011-12-15 Baker Hughes Incorporated Apparatus and method for sealing portions of a wellbore
US8443907B2 (en) * 2010-06-11 2013-05-21 Baker Hughes Incorporated Apparatus and method for sealing portions of a wellbore
US9464500B2 (en) 2010-08-27 2016-10-11 Halliburton Energy Services, Inc. Rapid swelling and un-swelling materials in well tools
WO2012028848A2 (en) 2010-09-02 2012-03-08 Halliburton Energy Services, Inc. Systems and methods for monitoring a parameter of a subterranean formation using swellable materials
WO2012078468A2 (en) 2010-12-10 2012-06-14 Halliburton Energy Services, Inc. Extending lines through, and preventing extrusion of, seal elements of packer assemblies
US8490707B2 (en) 2011-01-11 2013-07-23 Schlumberger Technology Corporation Oilfield apparatus and method comprising swellable elastomers
US8459366B2 (en) * 2011-03-08 2013-06-11 Halliburton Energy Services, Inc. Temperature dependent swelling of a swellable material
US20120227986A1 (en) * 2011-03-08 2012-09-13 Halliburton Energy Services, Inc. Temperature dependent swelling of a swellable material
US9506320B2 (en) 2011-11-07 2016-11-29 Halliburton Energy Services, Inc. Variable flow resistance for use with a subterranean well
EP3375975A1 (en) 2011-11-07 2018-09-19 Halliburton Energy Services, Inc. Variable flow resistance for use with a subterranean well
US9038740B2 (en) 2011-11-07 2015-05-26 Halliburton Energy Services, Inc. Apparatus and method of forming a plug in a wellbore
WO2013095093A1 (en) * 2011-11-18 2013-06-27 Ruma Products Holding B.V. Seal sleeve and assembly including such a seal sleeve
US20140306406A1 (en) * 2011-11-18 2014-10-16 Ruma Products Holding B.V. Seal sleeve and assembly including such a seal sleeve
US9845657B2 (en) * 2011-11-18 2017-12-19 Ruma Products Holding B.V. Seal sleeve and assembly including such a seal sleeve
NL2007810C2 (en) * 2011-11-18 2013-05-23 Ruma Products Holding B V Seal sleeve and assembly including such a seal sleeve.
WO2013096127A2 (en) 2011-12-19 2013-06-27 Halliburton Energy Services, Inc. Plug and abandonment system
EP2859176A4 (en) * 2012-06-08 2016-04-06 Halliburton Energy Services Inc Swellable packer with enhanced anchoring and/or sealing capability
WO2013184147A1 (en) 2012-06-08 2013-12-12 Halliburton Energy Services, Inc. Swellable packer with enhanced anchoring and/or sealing capability
US9708880B2 (en) 2012-06-08 2017-07-18 Halliburton Energy Services, Inc. Swellable packer with enhanced anchoring and/or sealing capability
WO2014046676A1 (en) 2012-09-21 2014-03-27 Halliburton Energy Services, Inc. Swellable packer having reinforcement plate
US10093770B2 (en) 2012-09-21 2018-10-09 Schlumberger Technology Corporation Supramolecular initiator for latent cationic epoxy polymerization
US20140091533A1 (en) * 2012-09-28 2014-04-03 Carl Freudenberg Kg Plug-In Piece
US9388921B2 (en) * 2012-09-28 2016-07-12 Carl Freudenberg Kg Plug-in piece
CN103711754A (en) * 2012-09-28 2014-04-09 科德宝两合公司 Plug-in piece
RU2617815C2 (en) * 2012-10-05 2017-04-27 Бэйкер Хьюз Инкорпорейтед System for swelling efficiency increasing
US9140095B2 (en) 2012-10-12 2015-09-22 Weatherford Technology Holdings, Llc Packer cup for sealing in multiple wellbore sizes eccentrically
EP2719857A3 (en) * 2012-10-12 2014-09-10 Weatherford/Lamb, Inc. Packer cup for sealing in multiple wellbore sizes eccentrically
US10443340B2 (en) 2012-10-16 2019-10-15 Halliburton Energy Services, Inc. Method for making controlled swell-rate swellable packer
US10012051B2 (en) 2012-10-16 2018-07-03 Halliburton Energy Services, Inc. Controlled swell-rate swellable packer and method
US9869152B2 (en) 2012-10-16 2018-01-16 Halliburton Energy Services, Inc. Controlled swell-rate swellable packer and method
US10082000B2 (en) * 2012-12-27 2018-09-25 Exxonmobil Upstream Research Company Apparatus and method for isolating fluid flow in an open hole completion
US10415342B2 (en) * 2013-02-06 2019-09-17 Halliburton Energy Services, Inc. High flow area swellable cementing packer
US20150167419A1 (en) * 2013-02-06 2015-06-18 Halliburton Energy Services, Inc. High flow area swellable cementing packer
US10364636B2 (en) 2013-07-22 2019-07-30 Tam International, Inc. Swellable casing anchor
EP3025013A4 (en) * 2013-07-22 2017-03-22 Tam International Inc. Grooved swellable packer
US9976380B2 (en) 2013-07-22 2018-05-22 Tam International, Inc. Grooved swellable packer
US20150108722A1 (en) * 2013-10-17 2015-04-23 KACO GmbH + Co., KG Combustion chamber gasket seal for combustion engines of vehicles, preferably of motor vehicles
US10174558B2 (en) 2013-10-28 2019-01-08 Halliburton Energy Services, Inc. Downhole communication between wellbores utilizing swellable materials
US10119361B2 (en) 2013-11-14 2018-11-06 Halliburton Energy Services, Inc. Window assembly with bypass restrictor
WO2015171530A2 (en) 2014-05-05 2015-11-12 Ferg Thomas Eugene Swellable elastomer plug and abandonment sealing plugs
US9765591B2 (en) 2014-05-05 2017-09-19 Thomas Eugene FERG Swellable elastomer plug and abandonment swellable plugs
US20160102526A1 (en) * 2014-10-08 2016-04-14 Weatherford Technology Holdings, Llc Stage tool
US11840905B2 (en) * 2014-10-08 2023-12-12 Weatherford Technology Holdings, Llc Stage tool
US10787880B2 (en) 2017-06-26 2020-09-29 Steve Wehrenberg Method for sealing perforation tunnels with swelling elastomer material
CN110892133A (en) * 2017-07-27 2020-03-17 韦尔泰克油田解决方案股份公司 Annular barrier for small diameter wells
US10731435B2 (en) * 2017-07-27 2020-08-04 Welltec Oilfield Solutions Ag Annular barrier for small diameter wells
US11365599B2 (en) * 2019-02-11 2022-06-21 Halliburton Energy Services, Inc. Energizing seals with swellable materials
US11512561B2 (en) 2019-02-22 2022-11-29 Halliburton Energy Services, Inc. Expanding metal sealant for use with multilateral completion systems
WO2020201474A1 (en) 2019-04-05 2020-10-08 Sogefi Air & Cooling Device for assembling two pipes, fluid circulation line and vehicle comprising such a device
FR3094772A1 (en) 2019-04-05 2020-10-09 Sogefi Air & Cooling Device for assembling two conduits, fluid circulation line and vehicle comprising such a device
US11898438B2 (en) 2019-07-31 2024-02-13 Halliburton Energy Services, Inc. Methods to monitor a metallic sealant deployed in a wellbore, methods to monitor fluid displacement, and downhole metallic sealant measurement systems
US11560768B2 (en) 2019-10-16 2023-01-24 Halliburton Energy Services, Inc. Washout prevention element for expandable metal sealing elements
US11519239B2 (en) 2019-10-29 2022-12-06 Halliburton Energy Services, Inc. Running lines through expandable metal sealing elements
US11761290B2 (en) 2019-12-18 2023-09-19 Halliburton Energy Services, Inc. Reactive metal sealing elements for a liner hanger
US11499399B2 (en) 2019-12-18 2022-11-15 Halliburton Energy Services, Inc. Pressure reducing metal elements for liner hangers
US11761293B2 (en) 2020-12-14 2023-09-19 Halliburton Energy Services, Inc. Swellable packer assemblies, downhole packer systems, and methods to seal a wellbore
US11572749B2 (en) 2020-12-16 2023-02-07 Halliburton Energy Services, Inc. Non-expanding liner hanger
US11578498B2 (en) 2021-04-12 2023-02-14 Halliburton Energy Services, Inc. Expandable metal for anchoring posts
US11879304B2 (en) 2021-05-17 2024-01-23 Halliburton Energy Services, Inc. Reactive metal for cement assurance

Similar Documents

Publication Publication Date Title
US3385367A (en) Sealing device for perforated well casing
US3179168A (en) Metallic casing liner
US3028915A (en) Method and apparatus for lining wells
US7228915B2 (en) Device and method to seal boreholes
US3203483A (en) Apparatus for forming metallic casing liner
US3203451A (en) Corrugated tube for lining wells
CA2567842C (en) A method and a device for expanding a body under overpressure
US4158388A (en) Method of and apparatus for squeeze cementing in boreholes
US3067819A (en) Casing interliner
US2942666A (en) Wireline plugging device
US3460625A (en) Methods and apparatus for bridging a well conduit
US2804148A (en) Method and apparatus for providing a rigid tube in a well bore
US7913770B2 (en) Controlled pressure equalization of atmospheric chambers
AU2002225233A1 (en) Device and method to seal boreholes
US5261492A (en) Well casing apparatus and method
US3918522A (en) Well completion method and system
JPS58207479A (en) Expansible packer
US3042116A (en) Expendable sealing plug
US3386251A (en) Method of strengthening and stabilizing compressible soils
CA2027967A1 (en) Method of and apparatus for protecting downhole equipment
CA2205728C (en) Inflatable packer with port collar valving
US2144026A (en) Packer
US20070012437A1 (en) Inflatable packer
US3429387A (en) Pump out drill bit
US3134442A (en) Apparatus for lining wells