US3388868A - Foam producing nozzle - Google Patents

Foam producing nozzle Download PDF

Info

Publication number
US3388868A
US3388868A US505705A US50570565A US3388868A US 3388868 A US3388868 A US 3388868A US 505705 A US505705 A US 505705A US 50570565 A US50570565 A US 50570565A US 3388868 A US3388868 A US 3388868A
Authority
US
United States
Prior art keywords
nozzle
foam
zone
nozzles
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US505705A
Inventor
William R Watson
Donald R Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ChampionX LLC
Original Assignee
Nalco Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalco Chemical Co filed Critical Nalco Chemical Co
Priority to US505705A priority Critical patent/US3388868A/en
Application granted granted Critical
Publication of US3388868A publication Critical patent/US3388868A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/005Delivery of fire-extinguishing material using nozzles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B19/00Treatment of textile materials by liquids, gases or vapours, not provided for in groups D06B1/00 - D06B17/00
    • D06B19/0088Treatment of textile materials by liquids, gases or vapours, not provided for in groups D06B1/00 - D06B17/00 using a short bath ratio liquor
    • D06B19/0094Treatment of textile materials by liquids, gases or vapours, not provided for in groups D06B1/00 - D06B17/00 using a short bath ratio liquor as a foam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/26Foam

Definitions

  • This invention is directed to a foam-producing nozzle comprising a series of continuous fluid-conducting zones. These zones comprise an aspirating zone, a mixing zone, a foam-forming zone and a foam-shaping zone. These zones are in sequential relationship t each other.
  • This invention relates to a nozzle useful in spraying liquids as foams.
  • foam producing nozzles have been used for many years in combating fires, they have not been utilized to any extent in the spraying of pesticides such as herbicides or insecticides.
  • foam producing nozzles are of value is the application of herbicidal materials to railroad right-of-ways. They are particularly beneficial when spraying brush control chemicals, which application often requires spraying liquids for distances as great as 50-75 feet from the top of specially designed moving railway cars.
  • herbicidally active chemicals may be applied by means of a special foam producing nozzle which provides several advantages heretofore not achieved by conventional spraying techniques.
  • the nozzles are also useful in providing a maximum quantity of fluid to a predetermined location thereby making them extremely valuable for fighting various types of fires.
  • the nozzles of the invention are capable of adaptation to produce a variety of spray patterns which are substantially drift free under most atmospheric conditions and which are capable of being simply modified to produce an applied fluid whose finished character from a standpoint of foam density and fluid Wetability is capable of giving optimum results under a wide variety of conditions.
  • Another object of the invention is to provide an improved re-figbting and prevention nozzle.
  • Still another object of the invention is to provide a foam formin7 nozzle capable of being readily adapted for use in a variety of applications, where it is desirable to apply fluids in the form of foams.
  • a further object of the invention is to provide a foam forming nozzle which is so designed as to prevent flooding conditions from occurring.
  • Yet another object of the invention is to provide a foam forming nozzle which is capable of producing a foam of substantially uniform particle size which is projected as a uniform, steady stream.
  • FlG. l is a horizontal plan view broken away in part to show the detailed construction of a typical nozzle of the invention.
  • FIG. 2 is a sectional view taken across lines 2 2 of FIG. 1.
  • FIG. 3 is a horizontal plan view of the foraminous members used in the foam forming zone of the nozzle.
  • FIG. 4 is a horizontal plan view of the nozzle of the invention used in conjunction with an aspirator which allows chemicals to be fed into fluids being introduced into the nozzles.
  • FlG. 5 is a plan view showing the end of the nozzle fitted with a stream-diverting attachment.
  • FIG. 1 a nozzle 1li having an inlet 12 and an outlet i4.
  • the sequential arrangements of the components form several zones or functional areas which are designated generally by the letters A, B, C and D respectively with the end of one zone being the begining of the next.
  • Zone A which may -be considered as an aspirating zone, is composed of duct i6 which may be in the form of a conventional threaded pipe nipple for allowing the nozzle to lbe connected to a source of fluid (not shown).
  • the inlet 12 of the nozzle which forms the inlet of the duct 16 contains an end-plate 18 which is fitted in sealing relationship.
  • the end-pl-ate fitted to lthe duct is shown to best advantage in FIG. 2.
  • the end-plate is provided with a plurality of spaced apart circular openings 20 into which are flange fitted fluid conducting tubes 22.
  • the endplate 1S acts as a spacer and as a mounting support for fluid conducting tubes, that may be cemented into the end-plate by means of an epoxy resin or similar adhesive.
  • the fluid conducting tubes 22 extend horizontally in spaced apart relationship throughout substantially the length of duct 16 and terminate near screen 24.
  • the tubes may touch the screen Zd although they may be slightly above the screen with good operational results being achieved in either case.
  • the duct 16 has positioned about its circumference near inlet 12 a plurality of air-inlet 3 openings 26.
  • the outlet end 27 of duct 16 is fitted with a bushing 28 which connects the duct to au outer housing such as pipe 30.
  • the outlet 32 Iis also tted with a packing collar 34 which, for purposes of sealing, is additionally fitted with an O-ring 36.
  • Sleeve 38 Within tluid conductor 30 is a sleeve 38.
  • Sleeve 38 has mounted on its one end screen 24 and on its other end screen 44.
  • Sleeve 38 therefore acts as a spacer for screens 24 and 44.
  • Adjacent to screen 44 are two additional spacers 46 and 48 which hold in spaced apart relationship screens Si) and 52. This arrangement of spacers and screens is shown in detail in FIG. 3.
  • Engaging screen 52 against spacer 48 is barrel 54 which fits in sliding relationship with respect to the fluid conductor 30.
  • the barrel 54 is prevented from moving with respect to the screens 44, Sit and 52 by set screws 56.
  • the end 14 of the nozzle 10 has its outer edge 58 back beveled to provide a smooth, sharp line of release for the emerging foam and thereby provide a substantially distortion free uniform solid foam stream.
  • the nozzle is constructed to form a series of zones in which occur a number of sequential functional steps with respect to the overall operational etliciency in the nozzle.
  • the zone areas are generally indicated as Zones A through D inclusive. These letter designations are not intended to be precise but merely indicate general regions within the nozzle.
  • Zone A may be considered as an aspirating zone with Zone B being a mixing zone.
  • ZonesC and D respective 1y, are foam forming and foam shaping zones.
  • Illustrative of the operation of the nozzle would be the injection of water into inlet 12 of the nozzle 10. This water is conveyed by fluid conducting tubes 22 to screen 24. In an area around screen 24 a strong aspiration effect is achieve. The air is drawn through air-inlet openings 26.
  • An important concept of the invention is that aeration which occurs near screen 24 is substantially uniform and thorough. The air mixes throughout the entire crosssection of the lluid. This elfect is achieved since the air which enters the air-inlet openings 26 is transported uniformly throughout duct 16.
  • the water then moves against screens 44, S and 52 which comprise the beginning of foam forming Zone C.
  • the foamed tluid is then passed into foam shaping Zone D where it is ejected from end 14 of nozzle 10 in a substantially distortion free iluid dispersion pattern.
  • foam forming zone which contains foam forming screens 44, 50 and 52. It is possible to create foams of Varying uniformity and cohesiveness by changing the size, arrangement and number of the screens. Experimental evidence indicates that when large mesh screens are used, a coarse structured foam is formed. Therefore, a single large mesh screen will provide a coarse structured foam. Fine mesh screens produce tine structured foams. When a number of screens are used, a greater uniformity of the Afoam and iinished spray is achieved as well as the effect of producing foam particles having the desired size.
  • the foam forming screens are particularly elective in producing useful foams when the liquids passing through the nozzle have been treated with suitable toam forming and foam stabilizing chemicals.
  • FIG. 4 In this embodiment inlet 12 is tted with an eductor 6i) which has an inlet 62 and a suction port 64. This port is connected to a suitable source of foam producing chemicals (not shown). It will be obvious to those skilled in the art that instead of using eductor 60 ⁇ other means for introducing chemicals such as metering pumps may be used.
  • the outlet 14 of the nozzle 10 may be fitted with an adjustable duck-billed shaper which will produce a fan-shaped spray where such a spray pattern is desired.
  • the duck-billed spray shaper axed to the end of the nozzle is shown in FIG. 5.
  • the duck-billed spray shaper is composed of alternately opposed lips 66 and 63.
  • the leading edges 70 are of greater linear dimension than back edges 72.
  • the lips are titled with sides 74 to form inverted scoops.
  • Aixed near back edges 72 are mounting lugs 76 and 78 which are pivotally mounted to the end of the nozzle by means of rivets 80.
  • slidable collar 82 Positioned behind the duck-billed shaper is slidable collar 82 which may be locked by means of wing nut 84, onto the end of the nozzle.
  • a suitable conical shaper may be placed inside the end 54 of the nozzle 10.
  • a variety of spray patterns can be achieved by using other types of known spraying pattern shapers.
  • the nozzles may be constructed of a variety of materials such as standard iron, steel or plastic piping. When .corrosive liquids are to be applied through the nozzles such materials of construction as stainless steel and plastics are preferred so as to minimize the destructive :action of these chemicals on the nozzles.
  • a nozzle useful for applying uids in the form of a foam which is composed of a plurality of uid conducting continuous zones, said zones being in sequential relationship to each other and comprising:
  • An aspirating zone said aspirating zone being further characterized as having:
  • a mixing zone comprising a chamber having an inlet adapted to receive air and iluid from the aspirating zone and an outlet which comprises the inlet of
  • a foam forming zone which comprises a lluid conducting chamber having positioned therein in the path of said uin a foraminous foam forming member and an outlet which comprises the namelyt of the (1V) Foam shaping zone, said foam shaping zone comprising a uid conductor.
  • the nozzle of claim 1 where the foraminous foam forming member positioned in the foam forming zone comprises at least two screens positioned in perpendicular relationship to the fluid ow through said foam forming zone.
  • the nozzle of claim 4 where the outlet is an adjustable duck-billed shaper capable of forming a substantially fan-shaped pattern.
  • a nozzle useful for the dispersion of aqueous iluids in the form of a foam which comprises a substantially tubular conductor having an inlet and outlet, said inlet being composed of a tubular duct having near its entrance end a plurality of air-inlet openings and a foraminous outlet, a support located Within the entrance of the duct to hold in spaced apart relationship a plurality of tubular fluid conductors whose ends terminate near the end of the foraminous outlet of the tubular duct, and a pipe positioned at the foraminous outlet of the duct which has contained therein foam forming screens which are in substantially spaced apart relationship to each other with the end of said pipe being the outlet of said nozzle.

Description

.June 18, 1968 w. R. WATSON E'r Al. 3,388,868
FOAM PRODUCING NOZZLE Filed Oct. 29, 1965 Inventors 'william RfWalSorL- .DonaldR-Ander'sorz .B m d-l/ Mmmraub" Ma Marne@ United States Patent Oflice Patented .lune i8, i9@
3,383,868 FOAM PRODUCING NOZZLE William R. Watson, Oak Lawn, and Donald R. Anderson, Oswego, lll., assignors to Nalco Chemical Company, Chicago, lll., a corporation of Delaware Filed Oct. 29, 1965, Ser. No. 505,705 8 Claims. (El. 239-427) ABSTRACT OF THE DISCLOSURE This invention is directed to a foam-producing nozzle comprising a series of continuous fluid-conducting zones. These zones comprise an aspirating zone, a mixing zone, a foam-forming zone and a foam-shaping zone. These zones are in sequential relationship t each other.
This invention relates to a nozzle useful in spraying liquids as foams.
Over the past several decades, numerous foam spraying nozzles have been used as a regular part of large scale fire-lighting procedures. These nozzles have been designed to produce foams by either the simple expedient of aerating water, by the introduction of chemical foaming agents and by the combination use of both aeration and foam producing chemicals. Various nozzles have produced useful effects but in many cases they are subject to limitations from a mechanical design standpoint and with respect to the type of spray pattern produced.
While foam producing nozzles have been used for many years in combating fires, they have not been utilized to any extent in the spraying of pesticides such as herbicides or insecticides. One example of where foam producing nozzles are of value is the application of herbicidal materials to railroad right-of-ways. They are particularly beneficial when spraying brush control chemicals, which application often requires spraying liquids for distances as great as 50-75 feet from the top of specially designed moving railway cars.
While high pressure nozzles have been utilized in applying herbicidally active chemicals along railroad rightof-ways7 on the shoulders of highways and along utility routes, such applications using conventional nozzles have one major deficiency. Conventional nozzles, when used to apply herbicidally active chemicals at high pressures, eg. in excess of 2() p.s.i., under certain conditions of windage, shape and height of the pattern, and the like, produce excessive amounts of mist or fog which can drift from the intended pattern. These undesirable mists transmit the herbicidally active chemicals to areas which frequently contain valuable vegetation such as agriculturaltural crops and ornamental plantings such as shrubbery and trees, thereby causing injury to these desirable plants.
To overcome the drift problem, it has been discovered that herbicidally active chemicals may be applied by means of a special foam producing nozzle which provides several advantages heretofore not achieved by conventional spraying techniques. The nozzles are also useful in providing a maximum quantity of fluid to a predetermined location thereby making them extremely valuable for fighting various types of fires.
The nozzles of the invention are capable of adaptation to produce a variety of spray patterns which are substantially drift free under most atmospheric conditions and which are capable of being simply modified to produce an applied fluid whose finished character from a standpoint of foam density and fluid Wetability is capable of giving optimum results under a wide variety of conditions.
One of the problems encountered in using some existing foam producing nozzles is that in cases 0f excessive fluid pressures these nozzles are frequently flooded This flooding phenomena is manifested by the fluid applied being discharged from the nozzle through air inlet ports which are oftentimes used in the construction of these nozzles. This flooding, when it ocurs, oftentimes creates a spray which wets the operator. Such operator wetting due to flooding is not dangerous in the case of spraying water, but when extremely toxic chemicals are released by flooding the condition is serious and should be avoided.
lt therefore becomes an object of the invention to provide an improved foam forming nozzle capable of use in the application of herbicidally active chemicals.
Another object of the invention is to provide an improved re-figbting and prevention nozzle.
Still another object of the invention is to provide a foam formin7 nozzle capable of being readily adapted for use in a variety of applications, where it is desirable to apply fluids in the form of foams.
A further object of the invention is to provide a foam forming nozzle which is so designed as to prevent flooding conditions from occurring.
Yet another object of the invention is to provide a foam forming nozzle which is capable of producing a foam of substantially uniform particle size which is projected as a uniform, steady stream.
Other objects will appear hereinafter.
For a more comprehensive understanding of the invention, reference may be had to the drawings of which:
FlG. l is a horizontal plan view broken away in part to show the detailed construction of a typical nozzle of the invention.
FIG. 2 is a sectional view taken across lines 2 2 of FIG. 1.
FIG. 3 is a horizontal plan view of the foraminous members used in the foam forming zone of the nozzle.
FIG. 4 is a horizontal plan view of the nozzle of the invention used in conjunction with an aspirator which allows chemicals to be fed into fluids being introduced into the nozzles.
FlG. 5 is a plan view showing the end of the nozzle fitted with a stream-diverting attachment.
With specific reference to the drawings, there is shown in FIG. 1 a nozzle 1li having an inlet 12 and an outlet i4. The sequential arrangements of the components form several zones or functional areas which are designated generally by the letters A, B, C and D respectively with the end of one zone being the begining of the next.
Zone A, which may -be considered as an aspirating zone, is composed of duct i6 which may be in the form of a conventional threaded pipe nipple for allowing the nozzle to lbe connected to a source of fluid (not shown). The inlet 12 of the nozzle which forms the inlet of the duct 16 contains an end-plate 18 which is fitted in sealing relationship. The end-pl-ate fitted to lthe duct is shown to best advantage in FIG. 2. The end-plate is provided with a plurality of spaced apart circular openings 20 into which are flange fitted fluid conducting tubes 22. The endplate 1S acts as a spacer and as a mounting support for fluid conducting tubes, that may be cemented into the end-plate by means of an epoxy resin or similar adhesive.
The fluid conducting tubes 22 extend horizontally in spaced apart relationship throughout substantially the length of duct 16 and terminate near screen 24. The tubes may touch the screen Zd although they may be slightly above the screen with good operational results being achieved in either case. The duct 16 has positioned about its circumference near inlet 12 a plurality of air-inlet 3 openings 26. The outlet end 27 of duct 16 is fitted with a bushing 28 which connects the duct to au outer housing such as pipe 30. The outlet 32 Iis also tted with a packing collar 34 which, for purposes of sealing, is additionally fitted with an O-ring 36.
Within tluid conductor 30 is a sleeve 38. Sleeve 38 has mounted on its one end screen 24 and on its other end screen 44. Sleeve 38 therefore acts as a spacer for screens 24 and 44. Adjacent to screen 44 are two additional spacers 46 and 48 which hold in spaced apart relationship screens Si) and 52. This arrangement of spacers and screens is shown in detail in FIG. 3.
Engaging screen 52 against spacer 48 is barrel 54 which fits in sliding relationship with respect to the fluid conductor 30. The barrel 54 is prevented from moving with respect to the screens 44, Sit and 52 by set screws 56.
The end 14 of the nozzle 10 has its outer edge 58 back beveled to provide a smooth, sharp line of release for the emerging foam and thereby provide a substantially distortion free uniform solid foam stream.
As indicated, the nozzle is constructed to form a series of zones in which occur a number of sequential functional steps with respect to the overall operational etliciency in the nozzle. The zone areas are generally indicated as Zones A through D inclusive. These letter designations are not intended to be precise but merely indicate general regions within the nozzle.
Zone A may be considered as an aspirating zone with Zone B being a mixing zone. ZonesC and D, respective 1y, are foam forming and foam shaping zones.
Illustrative of the operation of the nozzle would be the injection of water into inlet 12 of the nozzle 10. This water is conveyed by fluid conducting tubes 22 to screen 24. In an area around screen 24 a strong aspiration effect is achieve. The air is drawn through air-inlet openings 26.
An important concept of the invention is that aeration which occurs near screen 24 is substantially uniform and thorough. The air mixes throughout the entire crosssection of the lluid. This elfect is achieved since the air which enters the air-inlet openings 26 is transported uniformly throughout duct 16.
Due to the uniformity of aspiration, better foaming elects at greater pressures can be achieved. The aspiration etfect which was just described occurs in Zone A. Concurrently with the water being aspirated, rapid mixing of the two media occurs in mixing Zone B.
With the aeration and mixing having taken place, the water then moves against screens 44, S and 52 which comprise the beginning of foam forming Zone C. After being formed in Zone C the foamed tluid is then passed into foam shaping Zone D where it is ejected from end 14 of nozzle 10 in a substantially distortion free iluid dispersion pattern.
Another important advance in the art made by this invention is the concept of the foam forming zone which contains foam forming screens 44, 50 and 52. It is possible to create foams of Varying uniformity and cohesiveness by changing the size, arrangement and number of the screens. Experimental evidence indicates that when large mesh screens are used, a coarse structured foam is formed. Therefore, a single large mesh screen will provide a coarse structured foam. Fine mesh screens produce tine structured foams. When a number of screens are used, a greater uniformity of the Afoam and iinished spray is achieved as well as the effect of producing foam particles having the desired size.
By providing a variety of different mesh size screens, it is possible to quickly determine optimum conditions for a particular application. The foam forming screens are particularly elective in producing useful foams when the liquids passing through the nozzle have been treated with suitable toam forming and foam stabilizing chemicals.
Experimentation has shown that the back-beveled outer edge 58 of outlet 14 is important from the standpoint of creating a uniform fluid applicational pattern. Without the back beveling it was found that stream distortion occurred.
When the nozzles of the invention are used as firefighting nozzles, it is sometimes advantageous that they be equipped with means for allowing the introduction of foam forming and fire suppressing chemicals. One simple method for adapting the nozzles for such purpose is shown in FIG. 4. In this embodiment inlet 12 is tted with an eductor 6i) which has an inlet 62 and a suction port 64. This port is connected to a suitable source of foam producing chemicals (not shown). It will be obvious to those skilled in the art that instead of using eductor 60` other means for introducing chemicals such as metering pumps may be used.
When the nozzles are used for applying herbicidally active chemicals, the outlet 14 of the nozzle 10 may be fitted with an adjustable duck-billed shaper which will produce a fan-shaped spray where such a spray pattern is desired. The duck-billed spray shaper axed to the end of the nozzle is shown in FIG. 5.
The duck-billed spray shaper is composed of alternately opposed lips 66 and 63. The leading edges 70 are of greater linear dimension than back edges 72. The lips are titled with sides 74 to form inverted scoops. Aixed near back edges 72 are mounting lugs 76 and 78 which are pivotally mounted to the end of the nozzle by means of rivets 80. Positioned behind the duck-billed shaper is slidable collar 82 which may be locked by means of wing nut 84, onto the end of the nozzle.
By pivoting the lips of the duck-billed shaper and forcing the collar 82 thereagainst it, it is possible to lock the shaper into any desired position. This shaper allows a drift-free foam to be applied by the nozzle in a fan-shaped pattern which is valuable in applying herbicidal materials.
Instead of using the duck-billed shaper in FIG. 5, other pattern shaping devices may be used. For instance, if a conical spray is desired, a suitable conical shaper may be placed inside the end 54 of the nozzle 10. A variety of spray patterns can be achieved by using other types of known spraying pattern shapers.
Comparative testing of the nozzles described against other so-called foam forming nozzles has shown them under conditions of high windage and humidity to reduce spray drift as much as L90% based on visual inspection.
The nozzles may be constructed of a variety of materials such as standard iron, steel or plastic piping. When .corrosive liquids are to be applied through the nozzles such materials of construction as stainless steel and plastics are preferred so as to minimize the destructive :action of these chemicals on the nozzles.
We claim:
1. A nozzle useful for applying uids in the form of a foam, which is composed of a plurality of uid conducting continuous zones, said zones being in sequential relationship to each other and comprising:
(I) An aspirating zone, said aspirating zone being further characterized as having:
(A) an inlet and a foraminous outlet,
(B) a plurality of lluid conductors extending substantially throughout said aspirating zone, and
(C) air conducting means for conveying air to a point near said foraminous outlet, comprising a duct substantially `enclosing the fluid conductors, said duct having at least one inlet open to the atmosphere;
(II) A mixing zone, said mixing zone comprising a chamber having an inlet adapted to receive air and iluid from the aspirating zone and an outlet which comprises the inlet of (III) A foam forming zone, which comprises a lluid conducting chamber having positioned therein in the path of said uin a foraminous foam forming member and an outlet which comprises the iilet of the (1V) Foam shaping zone, said foam shaping zone comprising a uid conductor.
2. The nozzle of claim 1 where the foraminous foam forming member positioned in the foam forming zone comprises at least two screens positioned in perpendicular relationship to the fluid ow through said foam forming zone.
3. The nozzle of claim Z Where the outlet of the foam shaping zone is substantially circular in cross-section and is back-beveled.
4. The nozzle of claim 2 where the outlet of the foam shaping zone is adjustable to provide variance in the type of fluid dispersion pattern.
5. The nozzle of claim 4 where the outlet is an adjustable duck-billed shaper capable of forming a substantially fan-shaped pattern.
6. The nozzle of claim 1 where the inlet of the aspirating zone is associated with mechanical means adapted to introduce foam forming chemicals into the nozzle.
7. The nozzle of claim 6 where the mechanical means adapted for the introduction of foam forming chemicals is an aspirator.
8. A nozzle useful for the dispersion of aqueous iluids in the form of a foam which comprises a substantially tubular conductor having an inlet and outlet, said inlet being composed of a tubular duct having near its entrance end a plurality of air-inlet openings and a foraminous outlet, a support located Within the entrance of the duct to hold in spaced apart relationship a plurality of tubular fluid conductors whose ends terminate near the end of the foraminous outlet of the tubular duct, and a pipe positioned at the foraminous outlet of the duct which has contained therein foam forming screens which are in substantially spaced apart relationship to each other with the end of said pipe being the outlet of said nozzle.
References Cited UNITED STATES PATENTS 2,408,588 10/1946 Watts Z39-553.5 X 2,609,240 9/1952 Faulkner et al. Z39-590.5 X 3,094,171 6/1963 Gagliardo 169-15 3,138,332 6/1964 Hinderer 239-427 ALLEN N. KNOWLES, Primary Examiner.
M. HENSON WOOD, JR., Examiner.
H. NAT'TER, Assistant Examiner.
US505705A 1965-10-29 1965-10-29 Foam producing nozzle Expired - Lifetime US3388868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US505705A US3388868A (en) 1965-10-29 1965-10-29 Foam producing nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US505705A US3388868A (en) 1965-10-29 1965-10-29 Foam producing nozzle

Publications (1)

Publication Number Publication Date
US3388868A true US3388868A (en) 1968-06-18

Family

ID=24011482

Family Applications (1)

Application Number Title Priority Date Filing Date
US505705A Expired - Lifetime US3388868A (en) 1965-10-29 1965-10-29 Foam producing nozzle

Country Status (1)

Country Link
US (1) US3388868A (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576234A (en) * 1968-07-22 1971-04-27 Robert L Batchelor Method and apparatus for lubricating conveyor systems and the like
US3618713A (en) * 1969-12-12 1971-11-09 Robert L Batchelor Foam lubricating system and method
US3667687A (en) * 1970-08-10 1972-06-06 Mearl Corp Apparatus for producing high expansion foam
US3712512A (en) * 1971-04-26 1973-01-23 J Snider Lather producing machine
US3730439A (en) * 1971-09-20 1973-05-01 R Parkison Single nozzle fluid device
US3749378A (en) * 1971-05-28 1973-07-31 Gen Foods Ltd Producing a foamed liquid
US3761066A (en) * 1971-09-08 1973-09-25 C Wheeler Inline water carbonator
US3811619A (en) * 1972-06-26 1974-05-21 E Aghnides Spray producing device
US3827636A (en) * 1973-02-15 1974-08-06 American Standard Inc Substantially leakless aerator
US3851825A (en) * 1973-02-15 1974-12-03 American Standard Inc Leak-proof laminar flow device
US3918647A (en) * 1974-01-14 1975-11-11 Chemtrust Ind Corp Foam generating apparatus
DE1967072A1 (en) * 1968-06-06 1976-11-11 American Standard Inc WATER OUTLET MOUTHPIECE
US4061082A (en) * 1975-10-20 1977-12-06 American Air Filter Company, Inc. Ventilating air filtering and distributing device
US4067696A (en) * 1976-02-03 1978-01-10 Swiley Laboratories, Inc. Blood oxygenator
US4070302A (en) * 1976-04-01 1978-01-24 Chatterton James L Foam producing equipment
DE2925528A1 (en) * 1978-06-27 1980-01-03 Dow Chemical Co FOAM PRODUCTION DEVICE
US4182739A (en) * 1976-02-03 1980-01-08 Shiley Incorporated Blood oxygenator
US4207202A (en) * 1978-06-05 1980-06-10 Cole Howard W Jr Apparatus for making small bubble foam
US4219159A (en) * 1979-01-05 1980-08-26 The Afa Corporation Foam device
EP0077652A1 (en) * 1981-10-15 1983-04-27 West Point-Pepperell, Inc. Foam generating apparatus
WO1983001968A1 (en) * 1981-12-03 1983-06-09 Van Wersch, Kurt Device for transforming into foam a treatment liquid
US4463905A (en) * 1978-06-27 1984-08-07 The Dow Chemical Company Foam-generating pump sprayer
US4566632A (en) * 1983-05-05 1986-01-28 Nelson Irrigation Corporation Step-by-step rotary sprinkler head with improved stream diffusing assembly
US4603812A (en) * 1978-06-27 1986-08-05 The Dow Chemical Company Foam-generating pump sprayer
US4802630A (en) * 1985-11-19 1989-02-07 Ecolab Inc. Aspirating foamer
US4869849A (en) * 1987-04-10 1989-09-26 Chugoku Kayaku Kabushiki Kaisha Fluid mixing apparatus
US4925109A (en) * 1988-02-24 1990-05-15 Pandion Haliaetus Limited Foaming apparatus
US4986667A (en) * 1989-06-23 1991-01-22 Minnesota Mining And Manufacturing Company Self cleaning apparatus for preparing aqueous air foams
US5031834A (en) * 1988-12-02 1991-07-16 Virgil Simpson Marking foam system for agricultural equipment
US5054688A (en) * 1989-12-20 1991-10-08 Robwen, Inc. Foam producing nozzle
US5085371A (en) * 1990-06-15 1992-02-04 Shop-Vac Corporation Foam creating nozzle system
US5127552A (en) * 1989-08-24 1992-07-07 Dow Corning Corporation Foam mixer-applicator with foaming chamber and method of using
US5275763A (en) * 1992-10-26 1994-01-04 Toshiharu Fukai Nozzle for generating bubbles
US5356565A (en) * 1992-08-26 1994-10-18 Marathon Oil Company In-line foam generator for hydrocarbon recovery applications and its use
US5520337A (en) * 1990-03-14 1996-05-28 Ing. Erich Pfeiffer Gmbh & Co. Kg Controllable discharge head for controlling the flow media delivered therethrough
US5611490A (en) * 1994-12-19 1997-03-18 Calmar Inc. Foamer assembly for fluid dispenser
US5635469A (en) * 1993-06-10 1997-06-03 The Procter & Gamble Company Foaming cleansing products
US5647539A (en) * 1994-12-01 1997-07-15 Calmar Inc. Foamer nozzle assembly for trigger sprayer
US5775596A (en) * 1996-04-18 1998-07-07 Premier Farnell Corp. Foam generating nozzle
US5820027A (en) * 1996-05-14 1998-10-13 Szczurek; Norbert Foam fire nozzle
US5820030A (en) * 1995-08-25 1998-10-13 Littrell; John B. Soap marker foaming drop tube
US5857627A (en) * 1994-10-24 1999-01-12 Warnstar Ltd Foam-forming nozzle
US5881493A (en) * 1995-09-14 1999-03-16 D. B. Smith & Co. Inc. Methods for applying foam
US5934568A (en) * 1998-01-16 1999-08-10 Brown; C. Coy Nozzle apparatus for delivering fire retardant foam
US6010083A (en) * 1998-10-16 2000-01-04 Betzdearborn Inc. Apparatus and method for generating high quality foam using an air eductor
US6173908B1 (en) * 1996-11-27 2001-01-16 Her Majesty The Queen In Right Of Canada, As Represented By The Solicitor General Actions Through The Commissions Rcmp Air aspirating foam nozzle
US6276927B1 (en) * 2000-05-08 2001-08-21 Arlo H. T. Lin Nozzle assembly for a gas burner
US6736376B1 (en) * 2002-03-19 2004-05-18 Delisle Gilles L. Anti-detonation fuel delivery system
US20040201120A1 (en) * 2003-01-31 2004-10-14 Lafarge North America, Inc. Gypsum wallboard process
US20060022358A1 (en) * 2004-07-30 2006-02-02 Cho Yong M Distributed bubble generating system
US20060175719A1 (en) * 2003-03-19 2006-08-10 Delisle Gilles L Anti-detonation fuel delivery system
US20070023933A1 (en) * 2003-02-10 2007-02-01 Rinjector Ag. Foam forming unit
US20070125881A1 (en) * 2005-12-05 2007-06-07 Neil Gansebom Foam-dispensing nozzle for pressurized fluid delivery apparatus
US20070181715A1 (en) * 2006-02-09 2007-08-09 Ansul, Inc. Expansion nozzle assembly to produce inert gas bubbles
EP1927380A1 (en) * 2006-11-30 2008-06-04 Nohmi Bosai Ltd. High expansion foam fire-extinguishing system
US20100200675A1 (en) * 2009-02-11 2010-08-12 Xufeng Tu Foam Spray Gun
DE102009048572A1 (en) * 2009-10-07 2011-04-28 Markus Kress Pressure sprayer
US20120306108A1 (en) * 2011-06-06 2012-12-06 Wu-Chiao Chou Bubble generating device
CN102869453A (en) * 2010-04-14 2013-01-09 陶氏环球技术有限责任公司 Dispensing device for both froth and non-froth coatings
GB2498088A (en) * 2011-12-23 2013-07-03 Cambridge Res And Dev Ltd Weed control apparatus and nozzle
CN103195464A (en) * 2013-04-16 2013-07-10 天津理工大学 Application equipment of foam-sol technology for controlling coal dust on working faces of coal mines
WO2014194967A1 (en) * 2013-06-07 2014-12-11 Alfred Kärcher Gmbh & Co. Kg Foam generation device
WO2014172547A3 (en) * 2013-04-18 2015-02-26 Ross Michael James Device for mixing chemicals and air to form a foam & method for forming a chemical foam
US20190118199A1 (en) * 2016-05-06 2019-04-25 S O L O Kleinmotoren Gesellschaft mit beschraenkter Haftung Foaming unit for producing foam from a mixture of gas and liquid and a sprayer for producing and dispensing foam
US10364699B2 (en) 2013-10-02 2019-07-30 Aerocore Technologies Llc Cleaning method for jet engine
US20210316258A1 (en) * 2020-04-10 2021-10-14 Hydra-Flex, Inc. Insert assembly for foaming device
US11219907B1 (en) 2017-12-29 2022-01-11 He-Products Llc Foam producing and dispensing apparatus and method
US11643946B2 (en) 2013-10-02 2023-05-09 Aerocore Technologies Llc Cleaning method for jet engine
EP4249084A1 (en) 2022-03-25 2023-09-27 Usines Desautel Lance for fire extinguisher and fire extinguisher comprising such a lance
US11919014B2 (en) 2020-02-13 2024-03-05 Sonny's HFI Holdings, LLC. Nozzle assembly
US11925953B2 (en) 2021-03-15 2024-03-12 Sonny's Hfi Holdings, Llc Foam generating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2408588A (en) * 1940-09-20 1946-10-01 British Oxygen Co Ltd Apparatus for dividing or desurfacing metal by use of oxidizing sets
US2609240A (en) * 1949-12-13 1952-09-02 Pyrene Mfg Co Controlled discharge foam nozzle
US3094171A (en) * 1958-03-24 1963-06-18 Gamewell Co Foam nozzle
US3138332A (en) * 1962-05-14 1964-06-23 Price Pfister Brass Mfg Compan Aerator for faucets or the like

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2408588A (en) * 1940-09-20 1946-10-01 British Oxygen Co Ltd Apparatus for dividing or desurfacing metal by use of oxidizing sets
US2609240A (en) * 1949-12-13 1952-09-02 Pyrene Mfg Co Controlled discharge foam nozzle
US3094171A (en) * 1958-03-24 1963-06-18 Gamewell Co Foam nozzle
US3138332A (en) * 1962-05-14 1964-06-23 Price Pfister Brass Mfg Compan Aerator for faucets or the like

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1967072A1 (en) * 1968-06-06 1976-11-11 American Standard Inc WATER OUTLET MOUTHPIECE
US3576234A (en) * 1968-07-22 1971-04-27 Robert L Batchelor Method and apparatus for lubricating conveyor systems and the like
US3618713A (en) * 1969-12-12 1971-11-09 Robert L Batchelor Foam lubricating system and method
US3667687A (en) * 1970-08-10 1972-06-06 Mearl Corp Apparatus for producing high expansion foam
US3712512A (en) * 1971-04-26 1973-01-23 J Snider Lather producing machine
US3749378A (en) * 1971-05-28 1973-07-31 Gen Foods Ltd Producing a foamed liquid
US3761066A (en) * 1971-09-08 1973-09-25 C Wheeler Inline water carbonator
US3730439A (en) * 1971-09-20 1973-05-01 R Parkison Single nozzle fluid device
US3811619A (en) * 1972-06-26 1974-05-21 E Aghnides Spray producing device
US3827636A (en) * 1973-02-15 1974-08-06 American Standard Inc Substantially leakless aerator
US3851825A (en) * 1973-02-15 1974-12-03 American Standard Inc Leak-proof laminar flow device
US3918647A (en) * 1974-01-14 1975-11-11 Chemtrust Ind Corp Foam generating apparatus
US4061082A (en) * 1975-10-20 1977-12-06 American Air Filter Company, Inc. Ventilating air filtering and distributing device
US4067696A (en) * 1976-02-03 1978-01-10 Swiley Laboratories, Inc. Blood oxygenator
US4182739A (en) * 1976-02-03 1980-01-08 Shiley Incorporated Blood oxygenator
US4070302A (en) * 1976-04-01 1978-01-24 Chatterton James L Foam producing equipment
US4207202A (en) * 1978-06-05 1980-06-10 Cole Howard W Jr Apparatus for making small bubble foam
DE2925528A1 (en) * 1978-06-27 1980-01-03 Dow Chemical Co FOAM PRODUCTION DEVICE
US4463905A (en) * 1978-06-27 1984-08-07 The Dow Chemical Company Foam-generating pump sprayer
US4603812A (en) * 1978-06-27 1986-08-05 The Dow Chemical Company Foam-generating pump sprayer
US4219159A (en) * 1979-01-05 1980-08-26 The Afa Corporation Foam device
EP0077652A1 (en) * 1981-10-15 1983-04-27 West Point-Pepperell, Inc. Foam generating apparatus
WO1983001968A1 (en) * 1981-12-03 1983-06-09 Van Wersch, Kurt Device for transforming into foam a treatment liquid
US4566632A (en) * 1983-05-05 1986-01-28 Nelson Irrigation Corporation Step-by-step rotary sprinkler head with improved stream diffusing assembly
US4802630A (en) * 1985-11-19 1989-02-07 Ecolab Inc. Aspirating foamer
US4869849A (en) * 1987-04-10 1989-09-26 Chugoku Kayaku Kabushiki Kaisha Fluid mixing apparatus
US4925109A (en) * 1988-02-24 1990-05-15 Pandion Haliaetus Limited Foaming apparatus
US5031834A (en) * 1988-12-02 1991-07-16 Virgil Simpson Marking foam system for agricultural equipment
US4986667A (en) * 1989-06-23 1991-01-22 Minnesota Mining And Manufacturing Company Self cleaning apparatus for preparing aqueous air foams
US5127552A (en) * 1989-08-24 1992-07-07 Dow Corning Corporation Foam mixer-applicator with foaming chamber and method of using
US5054688A (en) * 1989-12-20 1991-10-08 Robwen, Inc. Foam producing nozzle
US5520337A (en) * 1990-03-14 1996-05-28 Ing. Erich Pfeiffer Gmbh & Co. Kg Controllable discharge head for controlling the flow media delivered therethrough
US5085371A (en) * 1990-06-15 1992-02-04 Shop-Vac Corporation Foam creating nozzle system
US5356565A (en) * 1992-08-26 1994-10-18 Marathon Oil Company In-line foam generator for hydrocarbon recovery applications and its use
US5275763A (en) * 1992-10-26 1994-01-04 Toshiharu Fukai Nozzle for generating bubbles
US5635469A (en) * 1993-06-10 1997-06-03 The Procter & Gamble Company Foaming cleansing products
US5857627A (en) * 1994-10-24 1999-01-12 Warnstar Ltd Foam-forming nozzle
US5647539A (en) * 1994-12-01 1997-07-15 Calmar Inc. Foamer nozzle assembly for trigger sprayer
US5611490A (en) * 1994-12-19 1997-03-18 Calmar Inc. Foamer assembly for fluid dispenser
AU691056B2 (en) * 1994-12-19 1998-05-07 Calmar Inc. Foamer assembly for fluid dispenser
US5820030A (en) * 1995-08-25 1998-10-13 Littrell; John B. Soap marker foaming drop tube
US5881493A (en) * 1995-09-14 1999-03-16 D. B. Smith & Co. Inc. Methods for applying foam
US5775596A (en) * 1996-04-18 1998-07-07 Premier Farnell Corp. Foam generating nozzle
US5820027A (en) * 1996-05-14 1998-10-13 Szczurek; Norbert Foam fire nozzle
US6173908B1 (en) * 1996-11-27 2001-01-16 Her Majesty The Queen In Right Of Canada, As Represented By The Solicitor General Actions Through The Commissions Rcmp Air aspirating foam nozzle
US5934568A (en) * 1998-01-16 1999-08-10 Brown; C. Coy Nozzle apparatus for delivering fire retardant foam
US6010083A (en) * 1998-10-16 2000-01-04 Betzdearborn Inc. Apparatus and method for generating high quality foam using an air eductor
US6276927B1 (en) * 2000-05-08 2001-08-21 Arlo H. T. Lin Nozzle assembly for a gas burner
US6736376B1 (en) * 2002-03-19 2004-05-18 Delisle Gilles L. Anti-detonation fuel delivery system
US20040211389A1 (en) * 2002-03-19 2004-10-28 Delisle Gilles L. Anti-detonation fuel delivery system
US20050006797A1 (en) * 2002-03-19 2005-01-13 Delisle Gilles L. Anti-detonation fuel delivery system
US20050230854A1 (en) * 2002-03-19 2005-10-20 Delisle Gilles L Anti-detonation fuel delivery system
US7093826B2 (en) 2002-03-19 2006-08-22 Better Burn, Llc Anti-detonation fuel delivery system
US7111829B2 (en) 2002-03-19 2006-09-26 Better Burn, Llc Anti-detonation fuel delivery system
US7111830B2 (en) 2002-03-19 2006-09-26 Better Burn, Llc Anti-detonation fuel delivery system
US20040201120A1 (en) * 2003-01-31 2004-10-14 Lafarge North America, Inc. Gypsum wallboard process
US7673854B2 (en) * 2003-02-10 2010-03-09 Meadwestvaco Calmar Netherlands B.V. Foam forming unit
US20070023933A1 (en) * 2003-02-10 2007-02-01 Rinjector Ag. Foam forming unit
US7513489B2 (en) * 2003-03-19 2009-04-07 Delisle Gilles L Anti-detonation fuel delivery system
US20060175719A1 (en) * 2003-03-19 2006-08-10 Delisle Gilles L Anti-detonation fuel delivery system
US20060022361A1 (en) * 2004-07-30 2006-02-02 Cho Yong M Bubble generating arrangement, system & method
US20060022358A1 (en) * 2004-07-30 2006-02-02 Cho Yong M Distributed bubble generating system
US20070125881A1 (en) * 2005-12-05 2007-06-07 Neil Gansebom Foam-dispensing nozzle for pressurized fluid delivery apparatus
US20070181715A1 (en) * 2006-02-09 2007-08-09 Ansul, Inc. Expansion nozzle assembly to produce inert gas bubbles
US8720592B2 (en) 2006-02-09 2014-05-13 Tyco Fire Products Lp Expansion nozzle assembly to produce inert gas bubbles
US8322633B2 (en) * 2006-02-09 2012-12-04 Tyco Fire Products Lp Expansion nozzle assembly to produce inert gas bubbles
EP1927380A1 (en) * 2006-11-30 2008-06-04 Nohmi Bosai Ltd. High expansion foam fire-extinguishing system
EP2078540A3 (en) * 2006-11-30 2009-07-22 Nohmi Bosai Ltd. High expansion foam fire-extinguishing system
EP2082783A1 (en) * 2006-11-30 2009-07-29 Nohmi Bosai Ltd. High expansion foam fire-extinguishing system
TWI458515B (en) * 2006-11-30 2014-11-01 Nohmi Bosai Ltd High expansion foam firefighting equipment
US20100200675A1 (en) * 2009-02-11 2010-08-12 Xufeng Tu Foam Spray Gun
DE102009048572A1 (en) * 2009-10-07 2011-04-28 Markus Kress Pressure sprayer
CN102869453A (en) * 2010-04-14 2013-01-09 陶氏环球技术有限责任公司 Dispensing device for both froth and non-froth coatings
US9283578B2 (en) 2010-04-14 2016-03-15 Dow Global Technologies Llc Dispensing device for both froth and non-froth coatings
CN102869453B (en) * 2010-04-14 2016-11-09 陶氏环球技术有限责任公司 Foam and the distributor of non-foam coating
US8794600B2 (en) * 2011-06-06 2014-08-05 Wu-Chiao Chou Bubble generating device
US20120306108A1 (en) * 2011-06-06 2012-12-06 Wu-Chiao Chou Bubble generating device
GB2498088A (en) * 2011-12-23 2013-07-03 Cambridge Res And Dev Ltd Weed control apparatus and nozzle
GB2498088B (en) * 2011-12-23 2016-07-27 Weeding Tech Ltd Weed control
US9132393B1 (en) * 2012-04-28 2015-09-15 Michael Ross Foam generator for mixing air and washing chemicals to create foam
CN103195464A (en) * 2013-04-16 2013-07-10 天津理工大学 Application equipment of foam-sol technology for controlling coal dust on working faces of coal mines
WO2014172547A3 (en) * 2013-04-18 2015-02-26 Ross Michael James Device for mixing chemicals and air to form a foam & method for forming a chemical foam
WO2014194967A1 (en) * 2013-06-07 2014-12-11 Alfred Kärcher Gmbh & Co. Kg Foam generation device
EP4129502A1 (en) * 2013-10-02 2023-02-08 Aerocore Technologies LLC Apparatus and method for producing foam
US10364699B2 (en) 2013-10-02 2019-07-30 Aerocore Technologies Llc Cleaning method for jet engine
US11643946B2 (en) 2013-10-02 2023-05-09 Aerocore Technologies Llc Cleaning method for jet engine
US10835906B2 (en) * 2016-05-06 2020-11-17 S O L O Kleinmotoren Gesellschaft mit beschraenkter Haftung Foaming unit for producing foam from a mixture of gas and liquid and a sprayer for producing and dispensing foam
US20190118199A1 (en) * 2016-05-06 2019-04-25 S O L O Kleinmotoren Gesellschaft mit beschraenkter Haftung Foaming unit for producing foam from a mixture of gas and liquid and a sprayer for producing and dispensing foam
US11219907B1 (en) 2017-12-29 2022-01-11 He-Products Llc Foam producing and dispensing apparatus and method
US11919014B2 (en) 2020-02-13 2024-03-05 Sonny's HFI Holdings, LLC. Nozzle assembly
US20210316258A1 (en) * 2020-04-10 2021-10-14 Hydra-Flex, Inc. Insert assembly for foaming device
US11633703B2 (en) * 2020-04-10 2023-04-25 Sonny's Hfi Holdings, Llc Insert assembly for foaming device
US11896941B2 (en) 2020-04-10 2024-02-13 Sonny's Hfi Holdings, Llc Insert assembly for foaming device
US11925953B2 (en) 2021-03-15 2024-03-12 Sonny's Hfi Holdings, Llc Foam generating device
EP4249084A1 (en) 2022-03-25 2023-09-27 Usines Desautel Lance for fire extinguisher and fire extinguisher comprising such a lance
FR3133763A1 (en) * 2022-03-25 2023-09-29 Usines Desautel Lance for fire extinguisher and fire extinguisher comprising such a lance

Similar Documents

Publication Publication Date Title
US3388868A (en) Foam producing nozzle
US5595345A (en) Double barrel sprayer for selective spraying of water or diluted product and use thereof
US3701482A (en) Foam generating nozzle
US3381899A (en) Spray gun
WO1996037261A9 (en) Double barrel sprayer
US2829874A (en) Foam generating apparatus
US2860856A (en) Installation for spraying foam materials
CA2106526A1 (en) Foam producing venturi
US4993495A (en) Apparatus for applying firefighting chemicals
US2705171A (en) Fog spray applicator
US3923253A (en) Spraying nozzle
US6581856B1 (en) Fluid mixer
US6015100A (en) Foam generating nozzle assembly with interchangeable nozzle tip
US4473186A (en) Method and apparatus for spraying
US3335956A (en) Spray process
US3604509A (en) Airplane foam generator
KR101965427B1 (en) Two-fluid fog forming device
US3608829A (en) Mixing apparatus
US4033509A (en) Lawn sprinkler and fertilizer dispenser
US4414184A (en) Apparatus for mixing chemical components
US967450A (en) Combined mixer and sprinkler.
US2767022A (en) Sprayer nozzle assembly
US3533553A (en) Aerating fountain device
DE1559653B1 (en) Device for producing highly foamy physical fire-extinguishing foam
US3522911A (en) Pressurized fogger