US3390453A - Method of making a sandwich resistor - Google Patents

Method of making a sandwich resistor Download PDF

Info

Publication number
US3390453A
US3390453A US489897A US48989765A US3390453A US 3390453 A US3390453 A US 3390453A US 489897 A US489897 A US 489897A US 48989765 A US48989765 A US 48989765A US 3390453 A US3390453 A US 3390453A
Authority
US
United States
Prior art keywords
film
resistor
area
resistancy
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US489897A
Inventor
Grant C Riddle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
ITT Inc
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to US489897A priority Critical patent/US3390453A/en
Application granted granted Critical
Publication of US3390453A publication Critical patent/US3390453A/en
Assigned to ITT CORPORATION reassignment ITT CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

July 2, 1958 G. c. RIDDLE 3,390,453
` METHOD 0F MAKING: A SANDWICH RlsIsToRl Filed Sept. 24, 1965 AT TORNEYS United States Patent O 3,390,453 METHUD F MAKING A SANDWICH RESIS'IQR Grant C. Riddle, Mountain View, Calif., assigner to International Telephone and Telegraph Corporation, Nutley, NJ., a corporation of Maryland Filed Sept. 24, 1965, Ser. No. 489,897 2 Claims. (Cl. 29-620) ABSTRACT OF THE DISCLOSURE This invention provides a method for obtaining improved high resistance film type resistors in which the desired resistance can be obtained by closely controlling the resistivity and thickness of the thin film resistive material and the area of the for-med resistor.
The present invention is directed to a resistor and more particularly to a sandwich resistor for use with semiconductor integrated circuits and a method of making such resistor.
At the present time, the use of high valued resistors in integrated circuits is limited by the available surface area upon which to deposit a long meandered thin-film resistor. The area of the resistor is proportional to its ohmic value for a given width and, therefore, where it is desired to use a very high valued resistor, for example in the vicinity of hundreds of thousands of' ohms, in order to reduce current .and the amount of dissipated power, the space required for such a resistor is excessive.
Another problem in this field is that with the use of conventional thin film resistors, the thinness of the film, which is directly proportional to the resistance value, is limited by oxidation and the fact that as the film is made thinner, its thickness becomes comparable to the mean free path of conductive electrons in the metal to cause anomalous effects in the resistivity of the material.
Accordingly, it is a general object of the invention to provide an improved resistor for use in semiconductor integrated circuits.
It is another object of the invention to provide a resistor of the type laid down on a semiconductor substrate as a film which requires less area as compared to the prior art.
It is still another object of the invention to provide a film type resistor which is protected against surface contamination.
It is yet another object of the invention to provide a resistor of the above type which eliminates the problem of the thin film resistance effect.
It is yet still another object to provide a film type resistor which is economical in construction.
Itis another object of the invention to provide a method of making a film type resistor in which the value of resistance can be closely controlled.
These and other objects of the invention will become more clearly apparent from the following description when taken in conjunction with the accompanying drawings:
Referring to the drawings:
FIGURE l is a plan view of a resistor constructed in accordance with the present invention;
FIGURE 2 is a cross-section taken along lines 2-2 of FIGURE 1;
FIGURE 3 is an enlarged diagrammatic view of a portion of FIGURES l and 2; and
FIGURE 4 is a block diagram useful in explaining the novel process of the invention.
Referring now to FIGURES 1-3, there is shown the sandwich resistor structure of the present invention. A semiconductor substrate s provided on which is 3,390,453 Patented July 2,1968
ice
deposited a first conductive strip 11 (such as aluminum). This may be done by any convenient process well known in the art and will, therefore, not be discussed in detail. However, in some applications, the aluminum conductive strip will be deposited on a thin oxide film (not shown) which usually provides protection for the semiconductor substrate 10. Strip 11 has two major surfaces, 11a and 1lb, the first surface 11a being affixed to the substrate 10. A iilm 12 having a predetermined resistivity is in contact with a portion of surface 11b of conductive strip 11. As illustrated, the film is not limited to the strip area but may extend over other portions of substrate 10.
A second conductive strip 13 also having major surfaces 13a and 13b has its surface 13a in contact with film l2, and is juxtaposed over a portion of strip 11 with a predetermined common area 1S of the film between them. This area is delineated by FIGURE 3 and has a length designated l and width designated w, and a thickness t, as shown in FIGURE 3. Conductor 13 is in electrical contact with the top face 15a of the common area, and likewise the other conductor 11 is in contact with the bottom face 15b of the area.
As will be discussed in greater detail below, the resistance between conductors 11 and. 13 is determined by the common area, A, which is the product of l and w, the resistivity p of the film, and its thickness t. In equation form, total resistance between conductors 11 and 13 is It is noted that the common area A is relatively independent of the accuracy of registration of the two conductive strips as long as the strips completely overlap at nearly right angles. The area is, however, highly dependent upon the width of the two strips.
With the above type of resistor, high values of resistance are easily achieved using a minimum area and at the same time having a film of suiicient thickness to eliminate anomalous thin lm effects. Moreover, the electrodes 11 and 13 provide a form of encapsulation for the active part of the film that is serving as a resistor, an action which provides stability and protection. Finally, as is apparent from the above discussion, that since the film resistivity is of such a high value, the resistive film can be deposited as a general area and several pairs of electrode contacts can use portions of the area as needed.
In constructing the device, it is impractical to directly measure the value of the resistor during its deposition because the covering electrode 13 will not be present. Thus, monitoring and computing means are provided for use during the deposition of the film to indicate when to terminate such deposition when the proper value of resistance is reached.
More particularly, there are means provided for monitoring the resistancy of the film, and also its thickness which means are schematically shown in FIGURE 1. These are well known in the art and will not be discussed further. The particular resistancy of the film which is being monitored in this case will be termed the Llateral resistancy. This is the resistance per unit square from the edges of the material (as opposed to its faces 15a and 15b) and is given by Formula 2, resistancy being designated as R;
RI=Q (2) Since this value is measured from the edges of the film being deposited, a value can be monitored almost from the initiation of deposition since the area of the film 12 is unchanging and only its thickness is being varied. The lateral resistancy, R', and thickness, t, values are coupled into a computation circuit or analog computer, illustrated in block diagram in FIGURE 4, which acts on the data to produce a final value of resistance, R, between the conductive strips 11 and 13.
Specifically, the value of p is determined as illustrated in block 16 and Equation 2 by finding the product of lateral resistancy and thickness. The unit area resistancy, R", as illustrated in FIGURE 3, is computed by block 17 according to the relation R"=pt (3) Resistivity p 150 ohm-cm.
Thickness t -5 cm.
Lateral resistance R l5 megohms per square. Unit area resistance R" l.5 1()5 ohm 1.2. Resistor area A it 25n=625n2- Resistor value R 240 ohms.
The resistance value of the silicon of 240 ohms is relatively low for many applications, but other materials, especially the semi-insulating compounds may be utilized, depending on the specific application.
I claim:
1. A process for making a resistor for an integrated circuit comprising the steps of: providing a first conductive strip having a major face; depositing on at least a portion of said major face a film of resistive material; concurrently with said last mentioned step, monitoring the lateral resistancy and thickness of said film and converting said values thereof into electrical signals; feeding said signals into a computer to determine the unit area resistancy between said first strip and the exposed surface of said deposited film; terminating said film deposition when said unit area resistancy reaches a predetermined value; and depositing on said exposed surface of said film a second conductive strip in juxtaposition with said first strip with a predetermined common area of said film therebetween, the total resistance between said strips being determined by the computer by the quotient of said unit area resistancy and said common area.
2. A process for making a resistor for an integrated circuit comprising the steps of: providing a semiconductive substrate; depositing a first conductive strip on said substrate such strip having two major faces one of which is in contact with said substrate; depositing on at least a portion of the other major face of said strip a film of resistive material; concurrently with said last mentioned step, monitoring the lateral resistancy and the thickness of said film and converting said values thereof into electrical signals; feeding said signals into a computer to determine the unit area resistancy between the said other major face of said first strip and the exposed surface of said deposited film; terminating said film deposition when said unit area resstancy reaches a predetermined value; and depositing on said exposed surface of said film a second conductive strip in juxtaposition with said first strip with a predetermined common area of said film therebetween, the total resistance between said strips being determined by the computer by the quotient of said unit area resistancy and said common area.
References Cited UNITED STATES PATENTS 3,050,420 8/1962 Wasserman 29--155.7 X 3,169,892 2/ 1965 Lemelson.
3,220,938 1l/l965 McLean et al.
3,304,471 2/1967 Zuleeg 117--217 X JOHN F. CAMPBELL, Primary Examiner.
I. CLINE, Assistant Examiner.
US489897A 1965-09-24 1965-09-24 Method of making a sandwich resistor Expired - Lifetime US3390453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US489897A US3390453A (en) 1965-09-24 1965-09-24 Method of making a sandwich resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US489897A US3390453A (en) 1965-09-24 1965-09-24 Method of making a sandwich resistor

Publications (1)

Publication Number Publication Date
US3390453A true US3390453A (en) 1968-07-02

Family

ID=23945738

Family Applications (1)

Application Number Title Priority Date Filing Date
US489897A Expired - Lifetime US3390453A (en) 1965-09-24 1965-09-24 Method of making a sandwich resistor

Country Status (1)

Country Link
US (1) US3390453A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432922A (en) * 1967-04-05 1969-03-18 Nippon Kogaku Kk Method for producing resistances of the multi-layer type
US3771095A (en) * 1972-12-21 1973-11-06 Ibm Monolithic integrated circuit resistor design for optimum resistor tracking
US3864825A (en) * 1972-06-12 1975-02-11 Microsystems Int Ltd Method of making thin-film microelectronic resistors
JPS51105778A (en) * 1975-03-14 1976-09-18 Nippon Telegraph & Telephone FUKUGO HANDOTAISOCHI
JPS5235988A (en) * 1975-09-16 1977-03-18 Nippon Telegr & Teleph Corp <Ntt> Composite semiconductor device
JPS5237779A (en) * 1975-09-19 1977-03-23 Nippon Telegr & Teleph Corp <Ntt> Integrated composite semiconductor device
FR2508242A1 (en) * 1981-06-19 1982-12-24 Thomson Csf Resistive load mfg. method for HF transmission line - using thin metallised semiconductor disc with powdered glass layer to support large number of localised loads with minimal standing waves
US4503418A (en) * 1983-11-07 1985-03-05 Northern Telecom Limited Thick film resistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050420A (en) * 1959-02-27 1962-08-21 Sylvania Electric Prod Resistor
US3169892A (en) * 1959-04-08 1965-02-16 Jerome H Lemelson Method of making a multi-layer electrical circuit
US3220938A (en) * 1961-03-09 1965-11-30 Bell Telephone Labor Inc Oxide underlay for printed circuit components
US3304471A (en) * 1963-01-28 1967-02-14 Hughes Aircraft Co Thin film diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050420A (en) * 1959-02-27 1962-08-21 Sylvania Electric Prod Resistor
US3169892A (en) * 1959-04-08 1965-02-16 Jerome H Lemelson Method of making a multi-layer electrical circuit
US3220938A (en) * 1961-03-09 1965-11-30 Bell Telephone Labor Inc Oxide underlay for printed circuit components
US3304471A (en) * 1963-01-28 1967-02-14 Hughes Aircraft Co Thin film diode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432922A (en) * 1967-04-05 1969-03-18 Nippon Kogaku Kk Method for producing resistances of the multi-layer type
US3864825A (en) * 1972-06-12 1975-02-11 Microsystems Int Ltd Method of making thin-film microelectronic resistors
US3771095A (en) * 1972-12-21 1973-11-06 Ibm Monolithic integrated circuit resistor design for optimum resistor tracking
JPS51105778A (en) * 1975-03-14 1976-09-18 Nippon Telegraph & Telephone FUKUGO HANDOTAISOCHI
JPS5753982B2 (en) * 1975-03-14 1982-11-16
JPS5235988A (en) * 1975-09-16 1977-03-18 Nippon Telegr & Teleph Corp <Ntt> Composite semiconductor device
JPS5753986B2 (en) * 1975-09-16 1982-11-16
JPS5237779A (en) * 1975-09-19 1977-03-23 Nippon Telegr & Teleph Corp <Ntt> Integrated composite semiconductor device
JPS5753987B2 (en) * 1975-09-19 1982-11-16
FR2508242A1 (en) * 1981-06-19 1982-12-24 Thomson Csf Resistive load mfg. method for HF transmission line - using thin metallised semiconductor disc with powdered glass layer to support large number of localised loads with minimal standing waves
US4503418A (en) * 1983-11-07 1985-03-05 Northern Telecom Limited Thick film resistor

Similar Documents

Publication Publication Date Title
Mott The theory of crystal rectifiers
US3385731A (en) Method of fabricating thin film device having close spaced electrodes
US4251795A (en) Semiconductor magnetoresistive element having a differential effect
Berger Contact resistance on diffused resistors
US3973106A (en) Thin film thermal print head
EP0408572B1 (en) Thermogenerator
Rudman et al. Oxidized amorphous‐silicon superconducting tunnel junction barriers
US3390453A (en) Method of making a sandwich resistor
US3680028A (en) Vertical resistor
US3898359A (en) Thin film magneto-resistors and methods of making same
US3222531A (en) Solid state junction photopotentiometer
US3097336A (en) Semiconductor voltage divider devices
DE1283978B (en) Electronic solid-state component with electrical resistance controllable by charge carrier injection
US3622410A (en) Method of fabricating film resistors
US3042887A (en) Magnetic-field responsive resistance device
US3474305A (en) Discontinuous thin film multistable state resistors
GB1469008A (en) Electrical relay devices
JPS6165124A (en) Temperature sensor
US4001677A (en) Device for the electrical determination of two-dimensional co-ordinates of a point
US3056938A (en) Micro-molecular resistor
EP0284909B1 (en) Sensor for measuring the current or the voltage of electric conductive layers on a reference chip
US3258608A (en) Thin film signal translating device
GB1206850A (en) Adaptive electronic circuit element and method of manufacture
EP0328398A2 (en) Superconductive logic device
GB935209A (en) Thin film superconductor circuits

Legal Events

Date Code Title Description
AS Assignment

Owner name: ITT CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION;REEL/FRAME:004389/0606

Effective date: 19831122