US3396286A - Transducer assembly for producing ultrasonic vibrations - Google Patents

Transducer assembly for producing ultrasonic vibrations Download PDF

Info

Publication number
US3396286A
US3396286A US426985A US42698565A US3396286A US 3396286 A US3396286 A US 3396286A US 426985 A US426985 A US 426985A US 42698565 A US42698565 A US 42698565A US 3396286 A US3396286 A US 3396286A
Authority
US
United States
Prior art keywords
assembly
well
ultrasonic vibrations
transducer assembly
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US426985A
Inventor
James W Anderson
Heny Steve
Bobby L Joyner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDWARD G COOK
LINDEN LAB Inc
LINDEN LABORATORIES Inc
Ultrasonic Power Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US426985A priority Critical patent/US3396286A/en
Application granted granted Critical
Publication of US3396286A publication Critical patent/US3396286A/en
Assigned to ULTRASONIC POWER CORPORATION reassignment ULTRASONIC POWER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: COOK, EDWARD G.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Definitions

  • a transducer assembly for producing ultrasonic vibrations comprising a metal housing having at least one well therein, a polycrystalline piezoelectric element in said well having one face against the bottom of the well and in electrically conductive relationship with said housing, a first electric conductor electrically coupled to said housing, a second electrical conductor electrically coupled to a face of said element opposite said one face, a coating of insulation material on said element, and a high shear strength potting compound around said element in said well and filling said well and covering said well where it opens out of said housing.
  • This invention relates to a transducer assembly containing a piezoelectric element for producing ultrasonic vibrations.
  • transducer assemblies for producing ultrasonic vibrations. These assemblies have one or more piezoelectric members mounted on a base and across which an alternating electric voltage is impressed for vibrating the piezoelectric members together with the base at an ultrasonic frequency. It has heretofore been the practice to mount the piezoelectric members directly on the outside surface of the metal base by bonding them to the base by an adhesive. Such transducer assemblies are now available on the market, and have been found to be particularly useful as means for producing ultrasonic vibrations in a tank of liquid for cleaning articles immersed in the liquid.
  • transducer assemblies have serious limitations, however, when they are placed in ordinary everyday commercial use. Because the piezoelectric elements are of ceramic materials, they are not robust, and if the assembly is dropped while being handled during installation or repair, or is accidentally struck by a foreign object, there is a ready tendency for it to break, thereby rendering the assembly substantially useless. Also, if a cleaning apparatus having such an assembly therein is accidentally run without liquid in it, the heat produced by the ultrasonic vibrations of the elements quickly destroys them.
  • the assembly can, by careful handling and caution when engaging in activities in the vicinity of the assembly, be protected against physical blows from outside the assembly, it cannot easily be kept insulated from temperature changes in the atmosphere in which it is located, and by its very nature it is subject to ultrasonic vibrations during its normal use.
  • the effect of temperature changes and repeated periods of ultrasonic vibrations is to weaken seriously the ceramic elements and greatly shorten their life, The tendency of these elements is to crack and then rupture, thereby ending their usefulness in producing ultrasonic vibrations.
  • the transducer assembly of the present invention has the ceramic piezoelectric element or elements positioned in wells in a metallic base or housing and held in place by a metal cover plate and a high shear strength potting compound surrounding the element and covering the cover plate. It has been found that with this construction, the assemblies can be subjected to treatment many times as rough as they will encounter in any normal service, and yet will continue to operate with practically undiminished output.
  • FIG. 1 is a schematic representation of the transducer assembly according to the present invention in a conventional circuit for subjecting it to alternating frequency voltages;
  • FIG. 2 is a cross-sectional elevation view of one embodiment of the transducer assembly according to the present invention.
  • FIG. 3 is a top plan view of the transducer assembly of FIG. 2 with the covering of potting compound removed.
  • the transducer assembly has two polycrystalline piezoelectric elements 10 therein which are connected in parallel with a source of alternating voltage 11, the circuit being completed through the metal housing 12. Activation of the source of voltage 11 excites the piezoelectric elements 10, causing them to vibrate at an ultrasonic frequency and thus causing the metallic housing 12 to vibrate at the same frequency.
  • the actual frequency at which vibrations will take place depends primarily on frequency of the alternating voltage and to some extent on the specific type of ceramic elements, the type of metal of which the housing is made, and the dimensions of the assembly. For example, when an alternating voltage alternating at 40 kc. is used, the assembly will vibrate at a frequency close to a frequency of 40 kc.
  • piezoelectric elements are shown as being coupled in parallel, it is not necessary that there be two such elements.
  • a single element can be used, and likewise three or more elements coupled in parallel can be used. Changing the number of elements acts primarily to increase the power output of the assembly.
  • the housing 12 has one or more wells 13 therein, which wells in the preferred embodiment of the assembly have an inwardly projecting lip 14 extending around the upper edge of the Well.
  • a ceramic polycrystalline piezoelectric element 10 Positioned within well 13 is a ceramic polycrystalline piezoelectric element 10.
  • the wells 13 and elements 10 are shown as being rectangular, but any other convenient shape can be used.
  • Each element 10 has an electrode 16 on the bottom thereof and an electrode 17 on the top thereof, these electrodes acting as contacts for passing the alternating voltage through the ceramic element 10. The thickness of these electrodes has been exaggerated in the drawing for illustrative purposes.
  • the electrode 16 on the bottom of the element 10 is in electrical contact with the metal of the housing 12.
  • the dimensions of the ceramic 3 element 10 are such that it will just fit through the opening defined by the inner edge of the lip 14.
  • a contact plate 18 such as a brass plate, and secured to the plate 18 by brazing, soldering or the like is an electrical conductor 19 covered by insulation 20.
  • an electrical conductor 19 covered by insulation 20.
  • an electrical conductor 19 secured to the metal housing 12 is also a ground wire 21 covered by insulation 22.
  • each ceramic element 10 Around the peripheral surface of each ceramic element 10 is a coating 23 of insulating material for electrically insulating the ceramic element to insure that the voltage is impressed directly across the element.
  • a coating 23 of insulating material Surrounding each insulated ceramic element 10 and filling the remainder of the space in the well 13 and forming a layer over the top of the contact plate 18 and over the well 13 is a potting compound 24 of a high shear strength material.
  • the layer covers the entire top of the housing 12 and covers the ends of the insulation 20' and 22 on the wires 19 and 21, thereby sealing the entire unit.
  • the lip 14 insures that the block of material 24 will be held in the well.
  • the housing 12 is preferably metal, and can be of aluminum, brass or stainless steel, for example.
  • the polycrystalline piezoelectric ceramic elements 10 can be lead-zirconate-titanate ceramic, as disclosed in U.S. Patent 2,708,244, or can be barium titanate ceramic as disclosed in U.S. Patent 2,486,560, for example.
  • Various insulating materials can be used for the insulating coating 23, the material sold by E. I. DuPont de Nemours and Co., under the trademark Teflon, a plastic consisting of tetrafiuoroethylene polymer, being preferred.
  • Teflon a plastic consisting of tetrafiuoroethylene polymer
  • thin coatings of silver are preferred. It has been found that a particularly satisfactory potting compound is a high shear strength epoxy resin compound known as Shell Epon 28, an epoxy resin sold by Shell Oil Co.
  • the assembly as described above has been found to be especially rugged in service. As a test of its ability to withstand impacts, it has been thrown against a brick wall, and thereafter its operating characteristics have been found to be substantially unimpaired. It has been used in a cleaning apparatus in which it is mounted on the outside of a tank, and the apparatus has been run without any cleaning liquid in the tank without damaging the assembly. The assembly has also been operated for long periods of time and under conditions of changing ambient temperature without showing signs of failure.
  • transducer assembly of the present invention has been described in a form in which it is particularly adapted to be mounted on the outside of a tank of a cleaning apparatus, it will be appreciated that it can also be 7 used as a transducer element to be placed directly into the liquid in a cleaning apparatus, and can also be used where a high power output air and underwater sonic sound projector is needed. In fact, any application that requires high power driving transducer can utilize this tnansducer as sembly.
  • a transducer assembly for producing ultrasonic vibrations comprising a housing having at least one well therein, a lip extending into the opening of said well from the housing around the periphery of the well, a single piece polycrystalline piezoelectric element in said well, said element having a first electrode on one face thereof in electrical contact with the bottom of the well and having an opposite face with a second electrode thereon, a contact plate over the second electrode and in electrical contact therewith, a first electrical conductor in electrical contact with said contact plate, a high shear strength vibration transmitting potting compound around said element in said well and filling said well and covering said contact plate, and a further conductor electrically coupled to said first electrode.
  • a transducer assembly as claimed in claim 1 in which said housing is metal, and in which said further conductor is electrically connected to said housing, and said assembly further comprising a coating of insulation around the surface of said element on which there are no electrodes.
  • a transducer assembly for producing ultrasonic vibrations comprising a housing having a plurality of wells therein, a single piece polycrystalline piezoelectric element in each well, a plurality of first electrical conductors each coupled to one of said elements and in turn connected in parallel, a plurality of second electrical conductors each electrically coupled to one of said elements to a face opposite the face to which the said one electrical conductor is coupled to the respective element, and a high shear strength vibration transmitting potting compound around each element in each well and filling each well and covering the well where it opens out of the housing.

Description

Aug. 5, 1953 J. w. ANDERSON ET AL 3,396,286
TRANSDUCER ASSEMBLY FOR PRODUCING ULTRASONIC VIBRATIONS Filed Jan. 21, 1965 FIG I FIGZ FIG 3 n s O R O m W M m Aw w S ee M 6! J35 WWW, M yi am' ATTORNEYS United States Patent 3,396,286 TRANSDUCER ASSEMBLY FOR PRODUCING ULTRASONIC VIBRATIONS James W. Anderson, State College, Steve Heuy, Hublersburg, and Bobby L. Joyner, State College, Pa., assignors of one-half to Linden Laboratories Inc., State College, Pa., and one-half to Edward G. Cook, Yardley, Pa.
Filed Jan. 21, 1965, Ser. No. 426,985 4 Claims. (Cl. 310-9.1)
ABSTRACT OF THE DISCLOSURE A transducer assembly for producing ultrasonic vibrations, comprising a metal housing having at least one well therein, a polycrystalline piezoelectric element in said well having one face against the bottom of the well and in electrically conductive relationship with said housing, a first electric conductor electrically coupled to said housing, a second electrical conductor electrically coupled to a face of said element opposite said one face, a coating of insulation material on said element, and a high shear strength potting compound around said element in said well and filling said well and covering said well where it opens out of said housing.
This invention relates to a transducer assembly containing a piezoelectric element for producing ultrasonic vibrations.
There are known in the art transducer assemblies for producing ultrasonic vibrations. These assemblies have one or more piezoelectric members mounted on a base and across which an alternating electric voltage is impressed for vibrating the piezoelectric members together with the base at an ultrasonic frequency. It has heretofore been the practice to mount the piezoelectric members directly on the outside surface of the metal base by bonding them to the base by an adhesive. Such transducer assemblies are now available on the market, and have been found to be particularly useful as means for producing ultrasonic vibrations in a tank of liquid for cleaning articles immersed in the liquid.
These transducer assemblies have serious limitations, however, when they are placed in ordinary everyday commercial use. Because the piezoelectric elements are of ceramic materials, they are not robust, and if the assembly is dropped while being handled during installation or repair, or is accidentally struck by a foreign object, there is a ready tendency for it to break, thereby rendering the assembly substantially useless. Also, if a cleaning apparatus having such an assembly therein is accidentally run without liquid in it, the heat produced by the ultrasonic vibrations of the elements quickly destroys them. More important, however, even if the assembly can, by careful handling and caution when engaging in activities in the vicinity of the assembly, be protected against physical blows from outside the assembly, it cannot easily be kept insulated from temperature changes in the atmosphere in which it is located, and by its very nature it is subject to ultrasonic vibrations during its normal use. The effect of temperature changes and repeated periods of ultrasonic vibrations is to weaken seriously the ceramic elements and greatly shorten their life, The tendency of these elements is to crack and then rupture, thereby ending their usefulness in producing ultrasonic vibrations.
Numerous efforts have been made to overcome these limitations, by taking more care in making the ceramic elements, by more precisely dimensioning them, and by bonding them more strongly to the metal base. While some improvement has been made, the assemblies are still inherently subject to self destruction, and as a result ice they have not come into very wide use, particularly in connection with the home appliance field.
It is an object of the present invention to provide a transducer assembly which overcomes the limitations of the prior art assemblies, and which is robust in its construction, yet which is fully as effective in producing ultrasonic vibrations as the prior art assemblies.
It is a further object of the present invention to provide a transducer assembly which is as easy, if not easier, to produce than the prior art assemblies, and which can be produced for little or no more than prior art assemblies.
The transducer assembly of the present invention has the ceramic piezoelectric element or elements positioned in wells in a metallic base or housing and held in place by a metal cover plate and a high shear strength potting compound surrounding the element and covering the cover plate. It has been found that with this construction, the assemblies can be subjected to treatment many times as rough as they will encounter in any normal service, and yet will continue to operate with practically undiminished output.
The invention will now be described in connection with the accompanying drawings, in which:
FIG. 1 is a schematic representation of the transducer assembly according to the present invention in a conventional circuit for subjecting it to alternating frequency voltages;
FIG. 2 is a cross-sectional elevation view of one embodiment of the transducer assembly according to the present invention; and
FIG. 3 is a top plan view of the transducer assembly of FIG. 2 with the covering of potting compound removed.
As seen in FIG. 1, the transducer assembly has two polycrystalline piezoelectric elements 10 therein which are connected in parallel with a source of alternating voltage 11, the circuit being completed through the metal housing 12. Activation of the source of voltage 11 excites the piezoelectric elements 10, causing them to vibrate at an ultrasonic frequency and thus causing the metallic housing 12 to vibrate at the same frequency. The actual frequency at which vibrations will take place depends primarily on frequency of the alternating voltage and to some extent on the specific type of ceramic elements, the type of metal of which the housing is made, and the dimensions of the assembly. For example, when an alternating voltage alternating at 40 kc. is used, the assembly will vibrate at a frequency close to a frequency of 40 kc.
It should be noted that although two piezoelectric elements are shown as being coupled in parallel, it is not necessary that there be two such elements. A single element can be used, and likewise three or more elements coupled in parallel can be used. Changing the number of elements acts primarily to increase the power output of the assembly.
Referring to FIGS. 2 and 3, in which the specific structure of the assembly is shown in greater detail, the housing 12 has one or more wells 13 therein, which wells in the preferred embodiment of the assembly have an inwardly projecting lip 14 extending around the upper edge of the Well. Positioned within well 13 is a ceramic polycrystalline piezoelectric element 10. The wells 13 and elements 10 are shown as being rectangular, but any other convenient shape can be used. Each element 10 has an electrode 16 on the bottom thereof and an electrode 17 on the top thereof, these electrodes acting as contacts for passing the alternating voltage through the ceramic element 10. The thickness of these electrodes has been exaggerated in the drawing for illustrative purposes. The electrode 16 on the bottom of the element 10 is in electrical contact with the metal of the housing 12. In the preferred form of the assembly, the dimensions of the ceramic 3 element 10 are such that it will just fit through the opening defined by the inner edge of the lip 14.
On top of the electrode 17 is a contact plate 18, such as a brass plate, and secured to the plate 18 by brazing, soldering or the like is an electrical conductor 19 covered by insulation 20. Secured to the metal housing 12 is also a ground wire 21 covered by insulation 22.
Around the peripheral surface of each ceramic element 10 is a coating 23 of insulating material for electrically insulating the ceramic element to insure that the voltage is impressed directly across the element. Surrounding each insulated ceramic element 10 and filling the remainder of the space in the well 13 and forming a layer over the top of the contact plate 18 and over the well 13 is a potting compound 24 of a high shear strength material. In the preferred embodiment, the layer covers the entire top of the housing 12 and covers the ends of the insulation 20' and 22 on the wires 19 and 21, thereby sealing the entire unit. The lip 14 insures that the block of material 24 will be held in the well.
The specific materials of which the assembly is made are not critical. The housing 12 is preferably metal, and can be of aluminum, brass or stainless steel, for example. The polycrystalline piezoelectric ceramic elements 10 can be lead-zirconate-titanate ceramic, as disclosed in U.S. Patent 2,708,244, or can be barium titanate ceramic as disclosed in U.S. Patent 2,486,560, for example. Various insulating materials can be used for the insulating coating 23, the material sold by E. I. DuPont de Nemours and Co., under the trademark Teflon, a plastic consisting of tetrafiuoroethylene polymer, being preferred. For the electrodes, thin coatings of silver are preferred. It has been found that a particularly satisfactory potting compound is a high shear strength epoxy resin compound known as Shell Epon 28, an epoxy resin sold by Shell Oil Co.
The assembly as described above has been found to be especially rugged in service. As a test of its ability to withstand impacts, it has been thrown against a brick wall, and thereafter its operating characteristics have been found to be substantially unimpaired. It has been used in a cleaning apparatus in which it is mounted on the outside of a tank, and the apparatus has been run without any cleaning liquid in the tank without damaging the assembly. The assembly has also been operated for long periods of time and under conditions of changing ambient temperature without showing signs of failure.
While the transducer assembly of the present invention has been described in a form in which it is particularly adapted to be mounted on the outside of a tank of a cleaning apparatus, it will be appreciated that it can also be 7 used as a transducer element to be placed directly into the liquid in a cleaning apparatus, and can also be used where a high power output air and underwater sonic sound projector is needed. In fact, any application that requires high power driving transducer can utilize this tnansducer as sembly.
It is thought that the invention and its advantages will be understood from the foregoing description and it is apparent that various changes may be made in the form, construction and arrangement of the parts without departing from the spirit and scope of the invention or sacrificing its material advantages, the form hereinbefore described and illustrated in the drawings being merely a preferred embodiment thereof.
What is claimed is:
1. A transducer assembly for producing ultrasonic vibrations, comprising a housing having at least one well therein, a lip extending into the opening of said well from the housing around the periphery of the well, a single piece polycrystalline piezoelectric element in said well, said element having a first electrode on one face thereof in electrical contact with the bottom of the well and having an opposite face with a second electrode thereon, a contact plate over the second electrode and in electrical contact therewith, a first electrical conductor in electrical contact with said contact plate, a high shear strength vibration transmitting potting compound around said element in said well and filling said well and covering said contact plate, and a further conductor electrically coupled to said first electrode.
2. A transducer assembly as claimed in claim 1 in which said high shear strength potting compound is an epoxy resin.
3. A transducer assembly as claimed in claim 1 in which said housing is metal, and in which said further conductor is electrically connected to said housing, and said assembly further comprising a coating of insulation around the surface of said element on which there are no electrodes.
4. A transducer assembly for producing ultrasonic vibrations, comprising a housing having a plurality of wells therein, a single piece polycrystalline piezoelectric element in each well, a plurality of first electrical conductors each coupled to one of said elements and in turn connected in parallel, a plurality of second electrical conductors each electrically coupled to one of said elements to a face opposite the face to which the said one electrical conductor is coupled to the respective element, and a high shear strength vibration transmitting potting compound around each element in each well and filling each well and covering the well where it opens out of the housing.
References Cited UNITED STATES PATENTS 2,914,686 11/1959 Clements 3109.1 2,972,068 2/1961 Howry 3109.1 3,209,176 8/1965 Paley 310-91 2,565,159 8/ 1951 Williams 340-10 2,748,369 5/1956 Smyth 34010 2,891,176 6/1959 Branson 310-8.1
J. D. MILLER, Primary Examiner.
US426985A 1965-01-21 1965-01-21 Transducer assembly for producing ultrasonic vibrations Expired - Lifetime US3396286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US426985A US3396286A (en) 1965-01-21 1965-01-21 Transducer assembly for producing ultrasonic vibrations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US426985A US3396286A (en) 1965-01-21 1965-01-21 Transducer assembly for producing ultrasonic vibrations

Publications (1)

Publication Number Publication Date
US3396286A true US3396286A (en) 1968-08-06

Family

ID=23693009

Family Applications (1)

Application Number Title Priority Date Filing Date
US426985A Expired - Lifetime US3396286A (en) 1965-01-21 1965-01-21 Transducer assembly for producing ultrasonic vibrations

Country Status (1)

Country Link
US (1) US3396286A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480906A (en) * 1968-03-13 1969-11-25 Westinghouse Electric Corp Transducer having a backing mass spaced a quarter wavelength therefrom
US3593048A (en) * 1969-12-04 1971-07-13 Harold L Dunegan Differential transducer
US4004266A (en) * 1975-12-05 1977-01-18 The United States Of America As Represented By The Secretary Of The Navy Transducer array having low cross-coupling
US4118649A (en) * 1977-05-25 1978-10-03 Rca Corporation Transducer assembly for megasonic cleaning
US4233477A (en) * 1979-01-31 1980-11-11 The United States Of America As Represented By The Secretary Of The Navy Flexible, shapeable, composite acoustic transducer
US4240002A (en) * 1979-04-02 1980-12-16 Motorola, Inc. Piezoelectric transducer arrangement with integral terminals and housing
US4527901A (en) * 1983-11-21 1985-07-09 Ultrasonic Power Corporation Ultrasonic cleaning tank
US4804007A (en) * 1987-04-29 1989-02-14 Verteq, Inc. Cleaning apparatus
US4869278A (en) * 1987-04-29 1989-09-26 Bran Mario E Megasonic cleaning apparatus
US4998549A (en) * 1987-04-29 1991-03-12 Verteq, Inc. Megasonic cleaning apparatus
US5037481A (en) * 1987-04-29 1991-08-06 Verteq, Inc. Megasonic cleaning method
US5446332A (en) * 1990-08-04 1995-08-29 Robert Bosch Gmbh Ultrasonic transducer
US5541468A (en) * 1994-11-21 1996-07-30 General Electric Company Monolithic transducer array case and method for its manufacture
US5598051A (en) * 1994-11-21 1997-01-28 General Electric Company Bilayer ultrasonic transducer having reduced total electrical impedance
WO1997008761A1 (en) * 1995-08-28 1997-03-06 Accuweb, Inc. Ultrasonic transducer units for web edge detection
US20020009015A1 (en) * 1998-10-28 2002-01-24 Laugharn James A. Method and apparatus for acoustically controlling liquid solutions in microfluidic devices
US20040066703A1 (en) * 2002-10-03 2004-04-08 Protasis Corporation Fluid-handling apparatus and methods
US6719449B1 (en) 1998-10-28 2004-04-13 Covaris, Inc. Apparatus and method for controlling sonic treatment
US20060158956A1 (en) * 1998-10-28 2006-07-20 Covaris, Inc. Methods and systems for modulating acoustic energy delivery
US20070053795A1 (en) * 2005-08-01 2007-03-08 Covaris, Inc. Methods and systems for compound management and sample preparation
US20080031094A1 (en) * 2006-08-01 2008-02-07 Covaris, Inc. Methods and apparatus for treating samples with acoustic energy
US20080105063A1 (en) * 2003-12-08 2008-05-08 Covaris, Inc. Apparatus for sample preparation
US20080178911A1 (en) * 2006-07-21 2008-07-31 Christopher Hahn Apparatus for ejecting fluid onto a substrate and system and method incorporating the same
US7518288B2 (en) 1996-09-30 2009-04-14 Akrion Technologies, Inc. System for megasonic processing of an article
US7981368B2 (en) 1998-10-28 2011-07-19 Covaris, Inc. Method and apparatus for acoustically controlling liquid solutions in microfluidic devices
US8459121B2 (en) 2010-10-28 2013-06-11 Covaris, Inc. Method and system for acoustically treating material
US20140039693A1 (en) * 2012-08-02 2014-02-06 Honeywell Scanning & Mobility Input/output connector contact cleaning
US8702836B2 (en) 2006-11-22 2014-04-22 Covaris, Inc. Methods and apparatus for treating samples with acoustic energy to form particles and particulates
US8709359B2 (en) 2011-01-05 2014-04-29 Covaris, Inc. Sample holder and method for treating sample material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2565159A (en) * 1949-04-21 1951-08-21 Brush Dev Co Focused electromechanical device
US2748369A (en) * 1951-12-07 1956-05-29 Birmingham Small Arms Co Ltd Transducer
US2891176A (en) * 1955-07-13 1959-06-16 Branson Instr Compressional wave generating apparatus
US2914686A (en) * 1953-10-06 1959-11-24 Texaco Inc Crystal microphone
US2972068A (en) * 1956-07-06 1961-02-14 Automation Instr Inc Uni-directional ultrasonic transducer
US3209176A (en) * 1961-06-16 1965-09-28 Bosch Arma Corp Piezoelectric vibration transducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2565159A (en) * 1949-04-21 1951-08-21 Brush Dev Co Focused electromechanical device
US2748369A (en) * 1951-12-07 1956-05-29 Birmingham Small Arms Co Ltd Transducer
US2914686A (en) * 1953-10-06 1959-11-24 Texaco Inc Crystal microphone
US2891176A (en) * 1955-07-13 1959-06-16 Branson Instr Compressional wave generating apparatus
US2972068A (en) * 1956-07-06 1961-02-14 Automation Instr Inc Uni-directional ultrasonic transducer
US3209176A (en) * 1961-06-16 1965-09-28 Bosch Arma Corp Piezoelectric vibration transducer

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480906A (en) * 1968-03-13 1969-11-25 Westinghouse Electric Corp Transducer having a backing mass spaced a quarter wavelength therefrom
US3593048A (en) * 1969-12-04 1971-07-13 Harold L Dunegan Differential transducer
US4004266A (en) * 1975-12-05 1977-01-18 The United States Of America As Represented By The Secretary Of The Navy Transducer array having low cross-coupling
US4118649A (en) * 1977-05-25 1978-10-03 Rca Corporation Transducer assembly for megasonic cleaning
US4233477A (en) * 1979-01-31 1980-11-11 The United States Of America As Represented By The Secretary Of The Navy Flexible, shapeable, composite acoustic transducer
US4240002A (en) * 1979-04-02 1980-12-16 Motorola, Inc. Piezoelectric transducer arrangement with integral terminals and housing
US4527901A (en) * 1983-11-21 1985-07-09 Ultrasonic Power Corporation Ultrasonic cleaning tank
US4869278A (en) * 1987-04-29 1989-09-26 Bran Mario E Megasonic cleaning apparatus
US4804007A (en) * 1987-04-29 1989-02-14 Verteq, Inc. Cleaning apparatus
US4998549A (en) * 1987-04-29 1991-03-12 Verteq, Inc. Megasonic cleaning apparatus
US5037481A (en) * 1987-04-29 1991-08-06 Verteq, Inc. Megasonic cleaning method
US5446332A (en) * 1990-08-04 1995-08-29 Robert Bosch Gmbh Ultrasonic transducer
US5541468A (en) * 1994-11-21 1996-07-30 General Electric Company Monolithic transducer array case and method for its manufacture
US5598051A (en) * 1994-11-21 1997-01-28 General Electric Company Bilayer ultrasonic transducer having reduced total electrical impedance
WO1997008761A1 (en) * 1995-08-28 1997-03-06 Accuweb, Inc. Ultrasonic transducer units for web edge detection
US5834877A (en) * 1995-08-28 1998-11-10 Accuweb, Inc. Ultrasonic transducer units for web detection and the like
US8257505B2 (en) 1996-09-30 2012-09-04 Akrion Systems, Llc Method for megasonic processing of an article
US7518288B2 (en) 1996-09-30 2009-04-14 Akrion Technologies, Inc. System for megasonic processing of an article
US8771427B2 (en) 1996-09-30 2014-07-08 Akrion Systems, Llc Method of manufacturing integrated circuit devices
US6719449B1 (en) 1998-10-28 2004-04-13 Covaris, Inc. Apparatus and method for controlling sonic treatment
US20080050289A1 (en) * 1998-10-28 2008-02-28 Laugharn James A Jr Apparatus and methods for controlling sonic treatment
US6948843B2 (en) * 1998-10-28 2005-09-27 Covaris, Inc. Method and apparatus for acoustically controlling liquid solutions in microfluidic devices
US20060158956A1 (en) * 1998-10-28 2006-07-20 Covaris, Inc. Methods and systems for modulating acoustic energy delivery
US20040264293A1 (en) * 1998-10-28 2004-12-30 Covaris, Inc. Apparatus and methods for controlling sonic treatment
US7981368B2 (en) 1998-10-28 2011-07-19 Covaris, Inc. Method and apparatus for acoustically controlling liquid solutions in microfluidic devices
US7329039B2 (en) 1998-10-28 2008-02-12 Covaris, Inc. Systems and methods for determining a state of fluidization and/or a state of mixing
US20020009015A1 (en) * 1998-10-28 2002-01-24 Laugharn James A. Method and apparatus for acoustically controlling liquid solutions in microfluidic devices
US20080056960A1 (en) * 1998-10-28 2008-03-06 Laugharn James A Jr Methods and systems for modulating acoustic energy delivery
US20050150830A1 (en) * 1998-10-28 2005-07-14 Covaris, Inc. Systems and methods for determining a state of fluidization and/or a state of mixing
US8263005B2 (en) 1998-10-28 2012-09-11 Covaris, Inc. Methods and systems for modulating acoustic energy delivery
US7687026B2 (en) 1998-10-28 2010-03-30 Covaris, Inc. Apparatus and methods for controlling sonic treatment
US7521023B2 (en) 1998-10-28 2009-04-21 Covaris, Inc. Apparatus and methods for controlling sonic treatment
US7811525B2 (en) 1998-10-28 2010-10-12 Covaris, Inc. Methods and systems for modulating acoustic energy delivery
US7687039B2 (en) 1998-10-28 2010-03-30 Covaris, Inc. Methods and systems for modulating acoustic energy delivery
US20040066703A1 (en) * 2002-10-03 2004-04-08 Protasis Corporation Fluid-handling apparatus and methods
US20080105063A1 (en) * 2003-12-08 2008-05-08 Covaris, Inc. Apparatus for sample preparation
US7677120B2 (en) 2003-12-08 2010-03-16 Covaris, Inc. Apparatus for sample preparation
US20070053795A1 (en) * 2005-08-01 2007-03-08 Covaris, Inc. Methods and systems for compound management and sample preparation
US7757561B2 (en) 2005-08-01 2010-07-20 Covaris, Inc. Methods and systems for processing samples using acoustic energy
US20110214700A1 (en) * 2006-07-21 2011-09-08 Christopher Hahn Apparatus for ejecting fluid onto a substrate and system and method of incorporating the same
US20080178911A1 (en) * 2006-07-21 2008-07-31 Christopher Hahn Apparatus for ejecting fluid onto a substrate and system and method incorporating the same
US8343287B2 (en) 2006-07-21 2013-01-01 Akrion Systems Llc Apparatus for ejecting fluid onto a substrate and system and method incorporating the same
US7938131B2 (en) 2006-07-21 2011-05-10 Akrion Systems, Llc Apparatus for ejecting fluid onto a substrate and system and method incorporating the same
US8353619B2 (en) 2006-08-01 2013-01-15 Covaris, Inc. Methods and apparatus for treating samples with acoustic energy
US20080031094A1 (en) * 2006-08-01 2008-02-07 Covaris, Inc. Methods and apparatus for treating samples with acoustic energy
US8702836B2 (en) 2006-11-22 2014-04-22 Covaris, Inc. Methods and apparatus for treating samples with acoustic energy to form particles and particulates
US8459121B2 (en) 2010-10-28 2013-06-11 Covaris, Inc. Method and system for acoustically treating material
US8991259B2 (en) 2010-10-28 2015-03-31 Covaris, Inc. Method and system for acoustically treating material
US9126177B2 (en) 2010-10-28 2015-09-08 Covaris, Inc. Method and system for acoustically treating material
US8709359B2 (en) 2011-01-05 2014-04-29 Covaris, Inc. Sample holder and method for treating sample material
US20140039693A1 (en) * 2012-08-02 2014-02-06 Honeywell Scanning & Mobility Input/output connector contact cleaning

Similar Documents

Publication Publication Date Title
US3396286A (en) Transducer assembly for producing ultrasonic vibrations
US3142035A (en) Ring-shaped transducer
US3510698A (en) Electroacoustical transducer
US3198489A (en) Compound ultrasonic transducer and mounting means therefor
US3140859A (en) Electroacoustic sandwich transducers
US3066232A (en) Ultrasonic transducer
KR100355364B1 (en) Electroacoustic Transducer
US4999819A (en) Transformed stress direction acoustic transducer
US5748566A (en) Ultrasonic transducer
US3167668A (en) Piezoelectric transducers
US2875354A (en) Piezoelectric transducer
US3928777A (en) Directional ultrasonic transducer with reduced secondary lobes
US3735159A (en) Method and apparatus for translating ultrasonic energy
US3222462A (en) Electroacoustic transducer
US3518460A (en) Ultrasonic transducer employing suspended piezoelectric plate
US4433399A (en) Ultrasonic transducers
US3460061A (en) Electroacoustic transducer with improved shock resistance
US3183378A (en) Sandwich transducer
US3321189A (en) High-frequency ultrasonic generators
US2937292A (en) Supporting structure for piezoelectric transducer
US2797399A (en) Underwater transducer
US3153156A (en) Pressure-proof ceramic transducer
US3199071A (en) Electroacoustic transducer construction suitable for operation in deep water
US2966656A (en) Spherical electro-acoustic transducer with internal heater
US3739327A (en) Electroacoustic transducers of the mass loaded vibratile piston type

Legal Events

Date Code Title Description
AS Assignment

Owner name: ULTRASONIC POWER CORPORATION, 2 GOLF LANE, WINNETK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:COOK, EDWARD G.;REEL/FRAME:004288/0232

Effective date: 19840417

Owner name: ULTRASONIC POWER CORPORATION,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COOK, EDWARD G.;REEL/FRAME:004288/0232

Effective date: 19840417