US3400252A - Electrical heating device - Google Patents

Electrical heating device Download PDF

Info

Publication number
US3400252A
US3400252A US498548A US49854865A US3400252A US 3400252 A US3400252 A US 3400252A US 498548 A US498548 A US 498548A US 49854865 A US49854865 A US 49854865A US 3400252 A US3400252 A US 3400252A
Authority
US
United States
Prior art keywords
temperature
thermistor
current
range
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US498548A
Inventor
Hayakawa Shigeru
Iguchi Takashi
Kasahara Yukio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US498548A priority Critical patent/US3400252A/en
Application granted granted Critical
Publication of US3400252A publication Critical patent/US3400252A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/24Warming devices
    • A47J36/2411Baby bottle warmers; Devices for warming baby food in jars
    • A47J36/2433Baby bottle warmers; Devices for warming baby food in jars with electrical heating means
    • A47J36/2438Baby bottle warmers; Devices for warming baby food in jars with electrical heating means for warming a water-bath or -jacket
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • G05D23/2401Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor using a heating element as a sensing element

Definitions

  • ABSTRACT OF THE DISCLOSURE A temperature responsive resistance device which is responsive to change the flow of current therethrough at the ends of the range of temperatures, so that it can be used as a self controlled heating device, as part of a temperature control system, or as a temperaturecurrent switch.
  • the device has a thermistor which has a positive temperature coeflicient of electrical resistance connected in series of an external impedance, the series connected elements being adapted to be coupled to a source of current and having a combined temperatureresistance characteristic which causes the current therethrough to drop abruptly when the temperature of the thermistor rises above the upper limit of the temperature range and to increase abruptly when the temperature of the thermistor drops below the lower limit of the temperature range.
  • This invention relates to electric heating devices and the like, such as a Warming device, and particularly to an improved self-controllable device including a heating element which is temperature sensitive.
  • This thermistor is a ceramic body consisting essentially of barium titanate.
  • a heating element made from this ceramic has a characteristic such that an electric current flowing through the element decreases with increasing ambient temperature and vice versa. Therefore, said heating element is responsive to overheating.
  • theam bient temperature controlled by the heating device varies with the heat capacity of the object or material to be heated when the heating device comprises only heating elements of the aforesaid ceramics.
  • the range of controllable temperature also varies with the heat capacity of the heated object or material.
  • the object of the present invention is to provide a heating device which eliminates these drawbacks and which controls the ambient temperature of the object or material being heated within a given range of appropriate temperatures while using no additional switch.
  • FIG. 1 is a circuit diagram of the temperature sensitive control system of the present invention
  • FIG. 2 is a graph showing the characteristic current vs. voltage curves of the heating element operating at several ambient temperatures and the voltage-current load line of the external impedance consisting of reactance and resistance;
  • FIG. 3 is a graph showing variation in the current with the ambient temperature for the heating element
  • FIG. 4 is a circuit diagram of a temperature responsive control system incorporating the temperature sensitive control of FIG. 1.
  • FIG. 5 is a cross sectional view of a milk warming device incorporating the temperature sensitive control system of the present invention
  • FIG. 6 is a graph showing the temperature dependence of the electrical resistance of the thermistor.
  • FIG. 7 is a graph showing the relation of current and temperature for the device of FIG. 5.
  • terminals adapted to be coupled to an alternating current source are connected to a heating element 1, which is a thermistor with a positive temperature coefiicient of electrical resistance, and to an external impedance such as a reactance 2 and a resistance 3, the thermistor 1, reactance 2 and resistance 3 being in series relation to each other.
  • the controlled temperature and its range are determined by the voltage-current characteristics of the thermistor and the load line of the external impedance comprised of the reactance and the resistance.
  • reference characters 4, 5, 6, and 7 designate the characteristic curves of said thermistor with regard to various ambient temperatures there-of, respectively, and 8 represents the load line of said external impedance.
  • a current flowing through the thermistor at a certain temperature increases with an increase in the applied voltage and at the same time the temperature of the thermistor itself goes up. Since the thermistor has a positive temperature coefficient of electrical resistance, the current flowing through the thermistor decreases with increasing applied voltage where the temperature of thermistor exceeds a specified temperature which depends upon the ambient temperature and the temperature-resistance characteristics of the thermistor.
  • the characteristic voltage-current curves for the temperatures of the thermistor are curved upwardly and then downwardly as shown in FIG. 2.
  • An upper limit of a controllable temperature range can be a temperature at which the characteristic curve of the thermistor is tangent to the load line of the external im pedance at the peak of the characteristic curve as shown in FIG. 2.
  • a lower limit of a controllable temperature range can be a temperature at which the characteristic curve is tangent to the load line at a downward curvature of the characteristic curve.
  • the load line intersects the characteristic curve for the temperature between the upper limit and lower limit temperature at three points.
  • the external impedance has little temperature sensitivity and the load line thereof is nearly independent of the temperature.
  • Operating points represented by intersecting points of the characteristic curves of said thermistor and the load line of the external impedance vary successively in the order 9, 10, 11, 12 with increasing temperature, and at the same time the current flow decreases as shown in the FIG. 2. Since the characteristic curve 7 for the upper limit temperature is tangent to the load line at the peak 12, the operating point immediately moves to a point 13 from a point 12 as soon as the temperature exceeds the upper limit temperature. Consequently, the current flow drops abruptly.
  • the operating points move successively in the order 13, 14, 15, 16 along the load line 8, and at the same time the current flow increases. Since the characteristic curve 4 is tangent to the load line at the point 16 as shown in FIG. 2, the operating point immediately moves from a point 16 to another operating point 9 with a further decrease in the temperature. Thus, the current flow increases abruptly.
  • This combined thermistor and impedance can be used to make a novel self controllable heating device wherein both the thermistor and external impedance are used as heating elements.
  • FIG. 3 shows the temperature-current characteristics of a combined thermistor and external impedance.
  • the operating points on the curve in FIG. 3 correspond to the operating points in FIG. 2 and they are designated by the same numbers.
  • the temperature range 17 between the upper limit 18 and the lower limit 19 can be predetermined by a selection of charatceristics of said thermistor and the load line of the external impedance, such as a reactance and a resistance, because, the upper limit and the lower limit of the temperature range can be determined by a combination of the charatceristic voltagecurrent curve for the temperature of the thermistor and the load line of the external impedance as explained in the preceding description.
  • FIG. 4 shows a circuit diagram of a temperature responsive control system wherein reference characters 22, 23 and 24 represent a thermistor having a positive temperature coeflicient of electrical resistance and consisting essentially of barium titanate, an external impedance and a current actuated means, such as a solenoid coil and a solenoid switch, respectively.
  • the control action of the control system is brought about by an abrupt change in current flow responsive to change of temperatures to temperatures outside a range of temperatures.
  • the said range of temperature can be determined by a combination of the characteristic voltage-current curves for the temperature of the thermistor 22 and the load line of both the external impedance 23 and the current actuated means 24 in a similar way to that explained above in connection with FIGS. 2 and 3.
  • a temperature sensitive electric switch can be easily prepared by employing the aforesaid temperature responsive control system.
  • the temperature sensitive electric switch comprises a thermistor having a positive temperature coefficient of electrical resistance and consisting essentially of barium titanate and an external impedance connected in series with said thermistor.
  • the said series connected thermistor and impedance are adapted to be coupled to a source of current.
  • the current flow indicated by point 12 is a critical point at the upper limit 18 of the temperature range and the current flow indicated by point 16 is another critical point according to the lower limit 19 of the temperature range.
  • FIG. 5 is a cross sectional view of a milk warming device which maintains a substantially constant temperature by using the temperature sensitive control system of the present invention. It is preferred to have the temperature of the milk about 50 C. for a baby.
  • reference character 25 is a nursing bottle
  • water 26 is used as a heating medium in container 31 having cover 32
  • a coating 27 of electrically insulating material such as polytetrafluoroethylene is positioned over the heating ele ment 28, which element is mounted in the bottom of the container 31 and is prepared by the following procedure.
  • An equimolar mixture of barium carbonate and titanium oxide is Wet-milled with the addition of 2 percent by weight of silver oxide and 3 percent by weight of an excess of titanium oxide.
  • the resultant mixture is pressed into a disk 15 cm. in diameter and 0.5 cm. in thickness and fired in flowing nitrogen gas at 1350 C. for 2 hours.
  • a semiconductive sintered body black in color results, and is heated in air at 1100 C. for 1 hour to increase the positive temperature coefficient of electrical resistance.
  • the sin- J tered ceramic disk 8 cm. in diameter and 0.3 cm. in thick- 0 ance 30 is connected in series to the termistor 28 by an electric lead.
  • the external impedance comprises a coil 30 having a reactance of IS/Lh.
  • FIG. 6 shows the temperature-current curve for the warming device illustrated in FIG. 5, and indicates that the center temperature and range of controlled temperature are 50 C. and :5 C., respectively in accordance with the present invention. These characteristics are, of course, independent of the amount of heated milk.
  • a temperature responsive resistance device responsive to change flow of current therethrough at the ends of a range of temperatures, said device comprising a thermistor having a positive temperature coefficient of electrical resistance and consisting essentially of barium titanate, the characteristic voltage-current curves for the temperatures of the thermistor at the ends of the range of temperatures being curved upwardly and then downwardly, and an external impedance connected in series with said thermistor, the voltage-current load line of said impedance intersecting the characteristic curve for the lower temperature of the range adjacent the origin end of the curve and being tangent to the other end of said last-mentioned characteristic curve, and said load line being tangent to the peak of the characteristic curve for the higher temperature of the range adjacent the origin end of the curve and intersecting the other end of said last-mentioned curve, said series connected thermistor and impedance being adapted to be coupled to a source of current, whereby the current fiow drops abruptly when the temperature of the thermistor rises above the upper limit of the temperature range and the current flow

Description

P 1968 SHIGERU HAYAKAWA ETAL 3,400,252
ELECTRICAL HEATING DEVICE Filed Oct. 20, 1965 4 Sheets-Sheet 1 FlG.l
APPLIED VOUAGE CURRENT FLOW 3mm INVENTORS I SHIGERU HAYAKAWA TAKASHI l 6U CHI YUKI O KASAHA RA WWWVM P 1968 SHIGERU HAYAKAWA ETAL 3,400,252
ELECTRICAL HEATING DEVICE 4 Sheets-Sheet 2 Filed Oct. 20, 1965 FIG.3
304m .hzmmmzu I? T EMPERATURE 3mm INVENTORS SHIGERU HAYAKAWA TAKAS'II YUKIO IGUCHI KASAHMA A I M M P 1968 SHIGERU HAVYAKAWA ETAL 3,400,252
ELECTRICAL HEATING DEVICE Filed Oct. 20, 1965 4 SheetsSheet 5 F l G. 5
3mm INVENTQRS SH] GERU HAYAKNIA TAKASHI l6 UCHI YUKIO KASAHARA United States Patent Oifice 3,400,252 Patented Sept. 3, 1968 3,400,252 ELECTRICAL HEATING DEVICE Sliigeru Hayakawa, Hirakata-shi, Osaka-fu, Takashi Iguchi, Kyoto-shi, Kyoto-fu, and Yukio Kasahara, Kadoma-shi, Osaka-fa, Japan, assignors t Matsushita Electric Industrial (30., Ltd., Osaka, Japan Filed Oct. 20, 1965, Ser. No. 498,548 1 Claim. (Cl. 219-504) ABSTRACT OF THE DISCLOSURE A temperature responsive resistance device which is responsive to change the flow of current therethrough at the ends of the range of temperatures, so that it can be used as a self controlled heating device, as part of a temperature control system, or as a temperaturecurrent switch. The device has a thermistor which has a positive temperature coeflicient of electrical resistance connected in series of an external impedance, the series connected elements being adapted to be coupled to a source of current and having a combined temperatureresistance characteristic which causes the current therethrough to drop abruptly when the temperature of the thermistor rises above the upper limit of the temperature range and to increase abruptly when the temperature of the thermistor drops below the lower limit of the temperature range.
This invention relates to electric heating devices and the like, such as a Warming device, and particularly to an improved self-controllable device including a heating element which is temperature sensitive.
Prior art heating elements by themselves are difficult to control as to the ambient temperature thereof and it is necessary to have additional equipment for such control, such as a switch having a contact. However, such a contact, which turns electric current on or off depending upon the ambient temperature, is apt to become oxidized, contaminated and welded together over a long period of operating time and finally ceases working.
Recently, a thermistor with a positive temperature ooeflicient of electrical resistance has been discovered. This thermistor is a ceramic body consisting essentially of barium titanate. A heating element made from this ceramic has a characteristic such that an electric current flowing through the element decreases with increasing ambient temperature and vice versa. Therefore, said heating element is responsive to overheating. However, theam bient temperature controlled by the heating device varies with the heat capacity of the object or material to be heated when the heating device comprises only heating elements of the aforesaid ceramics. Furthermore, the range of controllable temperature also varies with the heat capacity of the heated object or material.
The object of the present invention is to provide a heating device which eliminates these drawbacks and which controls the ambient temperature of the object or material being heated within a given range of appropriate temperatures while using no additional switch.
It is another object of the present invention to provide a temperature responsive control system which no longer requires an additional circuit opening and closing device.
It is a further object of the present invention to provide a novel temperature current switch responsive to a temperature change to a temperature outside a range of temperatures.
For a better understanding of our invention reference may be had to the following description taken in connection with the accompanying drawings, in which:
FIG. 1 is a circuit diagram of the temperature sensitive control system of the present invention;
FIG. 2 is a graph showing the characteristic current vs. voltage curves of the heating element operating at several ambient temperatures and the voltage-current load line of the external impedance consisting of reactance and resistance;
FIG. 3 is a graph showing variation in the current with the ambient temperature for the heating element;
FIG. 4 is a circuit diagram of a temperature responsive control system incorporating the temperature sensitive control of FIG. 1.
FIG. 5 is a cross sectional view of a milk warming device incorporating the temperature sensitive control system of the present invention;
FIG. 6 is a graph showing the temperature dependence of the electrical resistance of the thermistor; and
FIG. 7 is a graph showing the relation of current and temperature for the device of FIG. 5.
Referring to FIG. 1, terminals adapted to be coupled to an alternating current source are connected to a heating element 1, which is a thermistor with a positive temperature coefiicient of electrical resistance, and to an external impedance such as a reactance 2 and a resistance 3, the thermistor 1, reactance 2 and resistance 3 being in series relation to each other. The controlled temperature and its range are determined by the voltage-current characteristics of the thermistor and the load line of the external impedance comprised of the reactance and the resistance.
Referring to FIG. 2, reference characters 4, 5, 6, and 7 designate the characteristic curves of said thermistor with regard to various ambient temperatures there-of, respectively, and 8 represents the load line of said external impedance. A current flowing through the thermistor at a certain temperature increases with an increase in the applied voltage and at the same time the temperature of the thermistor itself goes up. Since the thermistor has a positive temperature coefficient of electrical resistance, the current flowing through the thermistor decreases with increasing applied voltage where the temperature of thermistor exceeds a specified temperature which depends upon the ambient temperature and the temperature-resistance characteristics of the thermistor. The characteristic voltage-current curves for the temperatures of the thermistor are curved upwardly and then downwardly as shown in FIG. 2. When the ambient temperature is higher, the specified temperature is achieved by a lower current flowing through the thermistor. Therefore, the characteristic curves for the temperature of thermistor shift down with an increase in the ambient temperature as shown in FIG. 2 where the curve 4 is for a lower limit of the temperature and the curve 7 is for an upper limit of the temperature. An upper limit of a controllable temperature range can be a temperature at which the characteristic curve of the thermistor is tangent to the load line of the external im pedance at the peak of the characteristic curve as shown in FIG. 2. A lower limit of a controllable temperature range can be a temperature at which the characteristic curve is tangent to the load line at a downward curvature of the characteristic curve. The load line intersects the characteristic curve for the temperature between the upper limit and lower limit temperature at three points. Of course, the external impedance has little temperature sensitivity and the load line thereof is nearly independent of the temperature. Operating points represented by intersecting points of the characteristic curves of said thermistor and the load line of the external impedance vary successively in the order 9, 10, 11, 12 with increasing temperature, and at the same time the current flow decreases as shown in the FIG. 2. Since the characteristic curve 7 for the upper limit temperature is tangent to the load line at the peak 12, the operating point immediately moves to a point 13 from a point 12 as soon as the temperature exceeds the upper limit temperature. Consequently, the current flow drops abruptly. On the other hand, as the temperature goes down from the upper limit of the temperature range, the operating points move successively in the order 13, 14, 15, 16 along the load line 8, and at the same time the current flow increases. Since the characteristic curve 4 is tangent to the load line at the point 16 as shown in FIG. 2, the operating point immediately moves from a point 16 to another operating point 9 with a further decrease in the temperature. Thus, the current flow increases abruptly.
This combined thermistor and impedance can be used to make a novel self controllable heating device wherein both the thermistor and external impedance are used as heating elements.
FIG. 3 shows the temperature-current characteristics of a combined thermistor and external impedance. In order to clarify the operation, the operating points on the curve in FIG. 3 correspond to the operating points in FIG. 2 and they are designated by the same numbers. As the temperature rises from the lower limit 19 of the temperature range, the flowing current decreases gradually in the order 9, 10, 11 and 12. When the temperature of the thermistor rises above the upper limit 18 of the temperature range, the current flow drops abruptly from point 12 to point 13. This abrupt decrease in the current flow lowers the temperature. As the temperature goes down the current flow gradually increases in the order 13, 14, 15 and 16 with the up-shift of characteristic voltage-current curves for the temperature of the thermistor. When the temperature of the thermistor drops below the lower limit 19 of the temperature range, the current flow increases abruptly. Thus, the heating device according to the present invention can control an ambient temperature.
Referring to FIG. 3, the temperature range 17 between the upper limit 18 and the lower limit 19 can be predetermined by a selection of charatceristics of said thermistor and the load line of the external impedance, such as a reactance and a resistance, because, the upper limit and the lower limit of the temperature range can be determined by a combination of the charatceristic voltagecurrent curve for the temperature of the thermistor and the load line of the external impedance as explained in the preceding description.
FIG. 4 shows a circuit diagram of a temperature responsive control system wherein reference characters 22, 23 and 24 represent a thermistor having a positive temperature coeflicient of electrical resistance and consisting essentially of barium titanate, an external impedance and a current actuated means, such as a solenoid coil and a solenoid switch, respectively. The control action of the control system is brought about by an abrupt change in current flow responsive to change of temperatures to temperatures outside a range of temperatures. The said range of temperature can be determined by a combination of the characteristic voltage-current curves for the temperature of the thermistor 22 and the load line of both the external impedance 23 and the current actuated means 24 in a similar way to that explained above in connection with FIGS. 2 and 3.
Furthermore, a temperature sensitive electric switch can be easily prepared by employing the aforesaid temperature responsive control system.
The temperature sensitive electric switch comprises a thermistor having a positive temperature coefficient of electrical resistance and consisting essentially of barium titanate and an external impedance connected in series with said thermistor. The said series connected thermistor and impedance are adapted to be coupled to a source of current. Referring to FIG. 3, the current flow indicated by point 12 is a critical point at the upper limit 18 of the temperature range and the current flow indicated by point 16 is another critical point according to the lower limit 19 of the temperature range. When the temperature slight- 1y exceeds the upper limit 18 of the temperature range, the current flow decreases immediately to a point indicated by 20 in accordance with the novel control action of the present invention, and then the temperature decreases to the lower limit 19 of the temperature range. When the temperature drops slightly down below the lower limit 19 of the temperature range, the current flow suddenly increases up to a point 21 and then the temperature increases. Repeated cycles of this type actuate the current actuated means which can in turn be used to control current flow to and from an apparatus. The control system thus acts as a stable and sensitive thermal switch. This thermal switch is operable even when there exists a great variation in the applied voltage, because a variation in the applied voltage results in a variation in the temperature of thermistor.
The following examples of specific new devices are given by way of illustration and should not be construed as limitative.
FIG. 5 is a cross sectional view of a milk warming device which maintains a substantially constant temperature by using the temperature sensitive control system of the present invention. It is preferred to have the temperature of the milk about 50 C. for a baby. In FIG. 5, reference character 25 is a nursing bottle, water 26 is used as a heating medium in container 31 having cover 32, and a coating 27 of electrically insulating material such as polytetrafluoroethylene is positioned over the heating ele ment 28, which element is mounted in the bottom of the container 31 and is prepared by the following procedure.
An equimolar mixture of barium carbonate and titanium oxide is Wet-milled with the addition of 2 percent by weight of silver oxide and 3 percent by weight of an excess of titanium oxide. The resultant mixture is pressed into a disk 15 cm. in diameter and 0.5 cm. in thickness and fired in flowing nitrogen gas at 1350 C. for 2 hours. A semiconductive sintered body black in color results, and is heated in air at 1100 C. for 1 hour to increase the positive temperature coefficient of electrical resistance. The sin- J tered ceramic disk 8 cm. in diameter and 0.3 cm. in thick- 0 ance 30 is connected in series to the termistor 28 by an electric lead. The external impedance comprises a coil 30 having a reactance of IS/Lh. and a resistor having a resistance of 35 ohm. FIG. 6 shows the temperature-current curve for the warming device illustrated in FIG. 5, and indicates that the center temperature and range of controlled temperature are 50 C. and :5 C., respectively in accordance with the present invention. These characteristics are, of course, independent of the amount of heated milk.
It will be understood by those skilled in the art that systems according to the invention can be modified in various respects without departing from the essence of the invention and within the essential features of the invention as set forth in the claim annexed hereto.
What is claimed is:
1. A temperature responsive resistance device responsive to change flow of current therethrough at the ends of a range of temperatures, said device comprising a thermistor having a positive temperature coefficient of electrical resistance and consisting essentially of barium titanate, the characteristic voltage-current curves for the temperatures of the thermistor at the ends of the range of temperatures being curved upwardly and then downwardly, and an external impedance connected in series with said thermistor, the voltage-current load line of said impedance intersecting the characteristic curve for the lower temperature of the range adjacent the origin end of the curve and being tangent to the other end of said last-mentioned characteristic curve, and said load line being tangent to the peak of the characteristic curve for the higher temperature of the range adjacent the origin end of the curve and intersecting the other end of said last-mentioned curve, said series connected thermistor and impedance being adapted to be coupled to a source of current, whereby the current fiow drops abruptly when the temperature of the thermistor rises above the upper limit of the temperature range and the current flow to increase abruptly when the 9/1962 Swanson 2l9505 6/1965 Andrich 219--504 RICHARD M. WOOD, Primary Examiner.
L. H. BENDER, Assistant Examiner.
US498548A 1965-10-20 1965-10-20 Electrical heating device Expired - Lifetime US3400252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US498548A US3400252A (en) 1965-10-20 1965-10-20 Electrical heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US498548A US3400252A (en) 1965-10-20 1965-10-20 Electrical heating device
JP20566 1965-12-29

Publications (1)

Publication Number Publication Date
US3400252A true US3400252A (en) 1968-09-03

Family

ID=31948111

Family Applications (1)

Application Number Title Priority Date Filing Date
US498548A Expired - Lifetime US3400252A (en) 1965-10-20 1965-10-20 Electrical heating device

Country Status (1)

Country Link
US (1) US3400252A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3474963A (en) * 1967-05-24 1969-10-28 Texas Instruments Inc Thermistor temperature control system
US3564199A (en) * 1968-12-30 1971-02-16 Texas Instruments Inc Self-regulating electric fluid-sump heater
US3696611A (en) * 1969-09-17 1972-10-10 Scovill Manufacturing Co Thermal motors
US3748439A (en) * 1971-12-27 1973-07-24 Texas Instruments Inc Heating apparatus
US4302664A (en) * 1980-01-16 1981-11-24 Ryder International Corporation Contact lens aseptor
US4307688A (en) * 1980-02-07 1981-12-29 General Motors Corporation Diesel engine glow plug energization control system
US4329568A (en) * 1978-11-09 1982-05-11 Rocher Pierre M Apparatus for heat treatment, particularly the asepticization, of contact lenses
US4477715A (en) * 1982-07-19 1984-10-16 Technar Incorporated PTC thermistor controlled electric diesel fuel heater
US4759189A (en) * 1985-12-02 1988-07-26 Design & Manufacturing Corporation Self-limiting thermal fluid displacement actuator
US5601742A (en) * 1993-09-03 1997-02-11 Texas Instruments Incorporated Heating device for an internal combustion engine with PTC elements having different curie temperatures
US6222989B1 (en) 1996-10-31 2001-04-24 Kyong Woo Lee Fumigation type control device for scattering agricultural chemicals
US6240248B1 (en) * 1999-03-09 2001-05-29 John Fore Game attractant heating device
US6661967B2 (en) * 2000-02-25 2003-12-09 The Dial Corporation Variable temperature vaporizer
US20040071456A1 (en) * 2000-02-25 2004-04-15 Levine Lawrence T. Variable temperature vaporizer
US6726683B1 (en) * 1967-11-09 2004-04-27 Robert F. Shaw Electrically heated surgical cutting instrument
US8292879B2 (en) 2009-04-17 2012-10-23 Domain Surgical, Inc. Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060298A (en) * 1959-11-02 1962-10-23 Bendix Corp Electric heater systems
US3187164A (en) * 1962-09-27 1965-06-01 Philips Corp Device for the protection of electrical apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060298A (en) * 1959-11-02 1962-10-23 Bendix Corp Electric heater systems
US3187164A (en) * 1962-09-27 1965-06-01 Philips Corp Device for the protection of electrical apparatus

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3474963A (en) * 1967-05-24 1969-10-28 Texas Instruments Inc Thermistor temperature control system
US6726683B1 (en) * 1967-11-09 2004-04-27 Robert F. Shaw Electrically heated surgical cutting instrument
US3564199A (en) * 1968-12-30 1971-02-16 Texas Instruments Inc Self-regulating electric fluid-sump heater
US3696611A (en) * 1969-09-17 1972-10-10 Scovill Manufacturing Co Thermal motors
US3748439A (en) * 1971-12-27 1973-07-24 Texas Instruments Inc Heating apparatus
US4329568A (en) * 1978-11-09 1982-05-11 Rocher Pierre M Apparatus for heat treatment, particularly the asepticization, of contact lenses
US4302664A (en) * 1980-01-16 1981-11-24 Ryder International Corporation Contact lens aseptor
US4307688A (en) * 1980-02-07 1981-12-29 General Motors Corporation Diesel engine glow plug energization control system
US4477715A (en) * 1982-07-19 1984-10-16 Technar Incorporated PTC thermistor controlled electric diesel fuel heater
US4759189A (en) * 1985-12-02 1988-07-26 Design & Manufacturing Corporation Self-limiting thermal fluid displacement actuator
US5601742A (en) * 1993-09-03 1997-02-11 Texas Instruments Incorporated Heating device for an internal combustion engine with PTC elements having different curie temperatures
US6222989B1 (en) 1996-10-31 2001-04-24 Kyong Woo Lee Fumigation type control device for scattering agricultural chemicals
US6240248B1 (en) * 1999-03-09 2001-05-29 John Fore Game attractant heating device
US6661967B2 (en) * 2000-02-25 2003-12-09 The Dial Corporation Variable temperature vaporizer
US20040071456A1 (en) * 2000-02-25 2004-04-15 Levine Lawrence T. Variable temperature vaporizer
US6792199B2 (en) 2000-02-25 2004-09-14 The Dial Corporation Variable temperature vaporizer
US8523852B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Thermally adjustable surgical tool system
US9730749B2 (en) 2009-04-17 2017-08-15 Domain Surgical, Inc. Surgical scalpel with inductively heated regions
US8377052B2 (en) 2009-04-17 2013-02-19 Domain Surgical, Inc. Surgical tool with inductively heated regions
US8414569B2 (en) 2009-04-17 2013-04-09 Domain Surgical, Inc. Method of treatment with multi-mode surgical tool
US8419724B2 (en) 2009-04-17 2013-04-16 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US8425503B2 (en) 2009-04-17 2013-04-23 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US8430870B2 (en) 2009-04-17 2013-04-30 Domain Surgical, Inc. Inductively heated snare
US8491578B2 (en) 2009-04-17 2013-07-23 Domain Surgical, Inc. Inductively heated multi-mode bipolar surgical tool
US8506561B2 (en) 2009-04-17 2013-08-13 Domain Surgical, Inc. Catheter with inductively heated regions
US8523850B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Method for heating a surgical implement
US8292879B2 (en) 2009-04-17 2012-10-23 Domain Surgical, Inc. Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US8523851B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Inductively heated multi-mode ultrasonic surgical tool
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US11123127B2 (en) 2009-04-17 2021-09-21 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US10639089B2 (en) 2009-04-17 2020-05-05 Domain Surgical, Inc. Thermal surgical tool
US10441342B2 (en) 2009-04-17 2019-10-15 Domain Surgical, Inc. Multi-mode surgical tool
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US10405914B2 (en) 2009-04-17 2019-09-10 Domain Surgical, Inc. Thermally adjustable surgical system and method
US9220557B2 (en) 2009-04-17 2015-12-29 Domain Surgical, Inc. Thermal surgical tool
US9265554B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical system and method
US9265555B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Multi-mode surgical tool
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9265553B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US9320560B2 (en) 2009-04-17 2016-04-26 Domain Surgical, Inc. Method for treating tissue with a ferromagnetic thermal surgical tool
US10213247B2 (en) 2009-04-17 2019-02-26 Domain Surgical, Inc. Thermal resecting loop
US9549774B2 (en) 2009-04-17 2017-01-24 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8372066B2 (en) 2009-04-17 2013-02-12 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US10149712B2 (en) 2009-04-17 2018-12-11 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9149321B2 (en) 2011-04-08 2015-10-06 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US11266459B2 (en) 2011-09-13 2022-03-08 Domain Surgical, Inc. Sealing and/or cutting instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US11701160B2 (en) 2014-05-14 2023-07-18 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making

Similar Documents

Publication Publication Date Title
US3400252A (en) Electrical heating device
US3375774A (en) Fully automatic electric coffee pot
US3364338A (en) Oven temperature control
US3584196A (en) Automatic electric cooking appliance
US3551644A (en) Automatic electric rice cooker
US3805022A (en) Semiconducting threshold heaters
US3644864A (en) Composite thermistor temperature sensor having step-function response
US3414704A (en) Self-regulating heating device
GB1389497A (en) Temperature responsive switches
US5039843A (en) Safety cutout device
US3651308A (en) Automatic electric cooker
US3564203A (en) Automatic temperature control device for electric blanket
US3400250A (en) Heating apparatus
US3896289A (en) Aquarium water heater
US3600650A (en) Protected semiconductor device having sensor thermally coupled to electrode
US3715563A (en) Contact heaters for quartz crystals in evacuated enclosures
US4134005A (en) Method and device for controlling the temperature variation in a potter's oven
US2862093A (en) Thermostatically controlled heating apparatus
US3114812A (en) Dual action thermostat having plural adjustment means
US1696684A (en) Heater controller
US2955185A (en) Constant temperature apparatus
US3038056A (en) Electrical heating and temperature regulating apparatus
US2765391A (en) Quick heat electric heating unit
US3277280A (en) Condition responsive circuit
US3828292A (en) Temperature compensating thermal relay