US3402087A - Coating non-planar surfaces - Google Patents

Coating non-planar surfaces Download PDF

Info

Publication number
US3402087A
US3402087A US420634A US42063464A US3402087A US 3402087 A US3402087 A US 3402087A US 420634 A US420634 A US 420634A US 42063464 A US42063464 A US 42063464A US 3402087 A US3402087 A US 3402087A
Authority
US
United States
Prior art keywords
coating
sensitive
planar
photosensitive
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US420634A
Inventor
Edward C Yackel
Donald P Foster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US420634A priority Critical patent/US3402087A/en
Priority to DE19651472868 priority patent/DE1472868A1/en
Priority to FR42934A priority patent/FR1460410A/en
Priority to GB54326/65A priority patent/GB1135780A/en
Application granted granted Critical
Publication of US3402087A publication Critical patent/US3402087A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/74Applying photosensitive compositions to the base; Drying processes therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/815Photosensitive materials characterised by the base or auxiliary layers characterised by means for filtering or absorbing ultraviolet light, e.g. optical bleaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture

Definitions

  • This invention is primarily concerned with the application of uniform photosensitive coatings to non-planar surfaces wherein the coating is preformed on a planar support, stripped from the support, floated on a liquid medium capable of swelling the coating, and finally contacted with the non-planar surface.
  • the present invention is related to a method for the preparation of coatings on non-planar, and more particularly convex or concave surfaces having a high degree of uniformity.
  • the film may be stretched during the molding operation and thus cause a variation in the thickness of the photosensitive coating.
  • the resulting surface of the photosensitive coating is only as smooth as the surface of the mold. Highly polished molds are not only expensive, but, are easily marred when frequently used.
  • an object of the present invention to provide a method for the coating of non-planar surfaces and particularly convex surfaces with radiation-sensitive materials. It is another object of the present invention to provide a method for obtaining uniform and smooth radiation-sensitive coatings on non-planar surfaces. Other objects will become apparent hereinafter.
  • uniform and smooth coatings of radiation-sensitive compositions are obtained on non-planar, and particularly convex surfaces by a process which comprises depositing a radiationsensitive composition of the desired thickness on a temporary support, stripping the resulting coating from the temporary support, floating the stripped coating on a liquid medium capable of swelling the coating, the stripped surface of the coating being in contact with the liquid medium, over the submerged surface to be coated, contacting the non-planar surface with the radiation-sensitive coating at a temperature below the break temperature preferably in the range from about 1 to about F. below the break temperature, and thereafter, if desired, hardening the radiation-sensitive composition on the non-planar surface.
  • break temperature is meant, that temperature at which a film of the radiation-sensitive composition, heated in contact with the said liquid medium breaks when applied to the non-planar surface.
  • radiation-sensitive composition a composition containing a material which has inherent radationsensitivity or a radiation-sensitive agent dispersed in a carrier capable of swelling in a suitable liquid medium.
  • a photosensitive element comprising at least one hydrophilic layer and at least one light-sensitive layer is coated on the temporary support and then stripped from the temporary support and transferred to the non-planar surface by the steps described above.
  • a wide variety of radiation-sensitive compositions are used to advantage according to our invention, including any of the known hydrophilic colloid silver halide emulsions of the developing-out type or of the print-out type; nonsilver print-out compositions (such as are described by Poznan Towarz, Pryjaciol, Nauk, Wydzial Mat- Przyrod, Prace Komis, Mat-Przyrod 7, No. 9, 7996 (1959), Sagura et al., U.S. Ser. No. 227,561, filed Oct. 1, 1962, Rauner et al., U.S. Ser. No. 266,691, filed Feb.
  • photoresist compositions e.g., light sensitive polymers such as polymers containing an a,fi-unsaturated carbonyl group including those described in patents such as Minsk et al., U.S. 2,610,120 issued Sept. 9, 1952, Robertson et al., U.S. 2,732,301 issued Jan. 24, 1956, etc., polymers containing an azide group, such as those described by Merrill et al. in U.S. 3,002,003 issued Sept. 26, 1961, and others; polymers containing a quaternized pyridine group having an unsaturated group attached to the carbon atom in the two position, such as are described by Leubner et al., U.S. 2,811,510 issued Oct. 29, 1957, etc.) xerographic compositions (such as those described by Middleton, U.S. 3,120,006 issued Feb. 11, 1964, Greig 3,052,539 issued Sept. 4, 1962, etc.); etc.
  • light sensitive polymers such as poly
  • hydrophilic radiation-sensitive compositions of our invention are advantageously coated directly on the temporary support or base.
  • Hydrophobic radiation-sensitive compositions can be coated directly on the temporary support provided that an appropriate liquid swelling agent for the composition such as a non-polar solvent or other organic solvent is utilized.
  • a non-polar solvent or other organic solvent is utilized.
  • non-polar solvents used to advantages as swelling agents for hydrophobic colloids are, acetone, 2-ethoxyethanol, benzene, toluene, etc.
  • the non-polar solvent selected will be dependent upon the particular hydrophobic colloid used in the radiation-sensitive layer.
  • the sensitive compositions most generally employed in the process of the present invention comprise a watersoluble or water-permeable colloid, such as gelatin, albumin, gum arabic, hydrolyzed cellulose acetate, or polyvinyl alcohol in which there is dispersed a sensitive component, such as a silver halide, a light sensitive iron salt, diazonium compound, or any of the other light-sensitive materials used in photography.
  • a sensitive component such as a silver halide, a light sensitive iron salt, diazonium compound, or any of the other light-sensitive materials used in photography.
  • Addenda known to those skilled in the art such as color formers, dye intermediates, filter dyes, sensitizing dyes, etc., may be present in the photo-sensitive composition.
  • the preferred compositions of the present invention are, however, silver halide dispersions in gelatin coated as a single layer or as a multilayer element, such as is used for color photography.
  • coatings of these compositions are applied to the non-planar and particularly convex surfaces using water as the liquid medium at temperatures of about 65 to F. and preferably at temperatures of 79 to 82 F.
  • the temperature at which the stripped coating of the photosensitive composition is applied to the non-planar, convex or concave surface is extremely important. If the break temperature is exceeded, obviously the coating will break or at least contain tears. If the temperature employed is too far below the break temperature, the photosensitive coating will not drape properly over the non-planar surface and result in folds and overlaps. The optimum coating temperature is readily established by experimentally determining the break temperature.
  • the coating is preferably applied so that the stripped surface of the coating, i.e., the surface which had contacted the temporary support from which the coating was stripped, contacts the liquid medium on which the coating floats. It is also advantageous to cut the coating either before or after stripping to dimensions that will result in covering the desired area of the non-planar surface, since this minimizes any overlaps and folds in the finished coating.
  • the photosensitive composition is first applied to a temporary fiat support to achieve the desired uniform thickness.
  • a temporary fiat support to achieve the desired uniform thickness.
  • the coating is applied to a flexible film support, such as an unsubbed cellulose ester film, terephthalate film, polyester film, etc., from which the composition can be readily stripped.
  • EXAMPLE I An unhardened photosensitive silver halide emulsion was coated on the unsubbed side of cellulose triacetate film base to result in a coating containing 100 mg./ft. of silver chloride, 1,000 mg./ft. of gelatin and 100 rug/ft. of glycerol. Portions of the dry film were stripped from the base and placed on a still water surface, maintained at a temperature of 80 F. The coating was placed on the Water with the stripped surface in contact with the water. The gelatin film swelled rapidly in one to two minutes. A glass sphere was placed under the surface of the swollen gelatin film and slowly elevated so that the gelatin film draped itself over the surface of the sphere. A uniform coating over the convex portion of the sphere was obtained.
  • Example II Following the procedure of Example I, a coating of the photosensitive composition was prepared. The resulting coated film base was then cut to cover the outer side of a glass hemisphere. The photosensitive coating was then placed on the water surface in the manner indicated in Example I, the water being maintained at a temperature of 80 F. and containing submerged therein the glass hemisphere corresponding to the size of the cut coating. The water was then drained from the container such that the photosensitive coating was draped over the outer side of the hemisphere. The coating uniformly covered the hemisphere without the formation of any folds.
  • the dried coating was flashed to light and brush developed with a composition comprising:
  • FIG. 1 shows a cross sectional view of temporary support 10 coated with radiation-sensitive stripping layer 11.
  • FIG. 2 shows a cross sectional view of stripped radiation-sensitive layer 11 being coated on permanent hemispherical support 12 by draining the liquid medium 13 on which layer 11 was floated in tank 14 through drain 15.
  • FIG. 3 shows hemispherical support 12 coated with radiation-sensitive layer 11.
  • concave surfaces are coated to advantage with a radiation-sensitive layer.
  • a means for removing the liquid medium from the concave surface such as for example by providing a small opening at the bottom of the concave surface for the liquid medium to drain when the tank is drained.
  • Our invention provides a technical advance in the coating of uniform and smooth radiation-sensitive layers on non-planar surfaces.
  • a process for coating non-planar surfaces with a radiation-sensitive composition which comprises depositing a radiation-sensitive composition of the desired thickness on a temporary planar support, stripping the resulting coating from the said temporary support, floating the stripped coating on a liquid medium capable of swelling the coating over a submerged non-planar surface, and contacting the non-planar surface with the the photosensitive coating at a temperature below the break temperature of the coating.
  • a process for coating non-planar surfaces with a photosensitive composition containing a light-sensitive agent dispersed in a hydrophilic colloid which comprises depositing the photosensitive composition on a temporary planar support to the desired thickness, stripping the resulting coating in its unhardened state from the said support, floating the stripped coating on water over a submerged non-planar surface, and contacting the non-planar surface with the photosensitive coating at a temperature below the break temperature of the coating.
  • a process for coating non-planar surfaces with a photo-sensitive element comprising at least one hydrophilic colloid layer and at least one light-sensitive layer, said process comprising the steps:
  • a process for coating non-planar surfaces with a photosensitive element comprising at least one unhardened hydrophilic colloid layer and at least one lightsensitive layer, said process comprising the steps:

Description

Sept. 17, 1968 E. c. YACKEL ET AL 3,402,087
COATING NON-PLANAR SURFACES Filed Dec. 25, 1964 F/GJ STRIPPED RADIATION- SENSITIVE LAYER BEING COATED 0N PERMANENT SUPPORT HE M/S PHE I?! CA L SUPPORT L IOU/D MED/UM RAD/A T/D/V-SE/VS/ T/ V5 1.4 YER FIG, 3
HE M15 PHE RICA L SUPPDR T EDWARD 6. YACKEL DONALD P. FOSTER INVENTORS BY %M/M ATT'DEWEYD AGENT United States ABSTRACT OF THE DISCLOSURE This invention is primarily concerned with the application of uniform photosensitive coatings to non-planar surfaces wherein the coating is preformed on a planar support, stripped from the support, floated on a liquid medium capable of swelling the coating, and finally contacted with the non-planar surface.
The present invention is related to a method for the preparation of coatings on non-planar, and more particularly convex or concave surfaces having a high degree of uniformity.
A variety of ways have been proposed for the coating of non-planar surfaces with photosensitive compositions. Thus, coatings on non-planar surfaces have been produced by dipping a chilled non-planar support into a melted photosensitive emulsion or 'by spraying the photosensitive composition in liquid form onto the non-planar surface. These techniques have not found use in applications which require a high degree of photographic quality since they result in variations in the thickness of the coating, contain air bubbles in the coating and have other deficiencies. The method of coating a thermoplastic film with a photosensitive material and then moldin the film to the desired shape is also known in the art. However, this method has the disadvantage of having to subject the photosensitive material to the high temperatures and pressures of the molding steps, which may adversely affect the photosensitive composition. Furthermore, the film may be stretched during the molding operation and thus cause a variation in the thickness of the photosensitive coating. Additionally, the resulting surface of the photosensitive coating is only as smooth as the surface of the mold. Highly polished molds are not only expensive, but, are easily marred when frequently used.
It is, therefore, an object of the present invention to provide a method for the coating of non-planar surfaces and particularly convex surfaces with radiation-sensitive materials. It is another object of the present invention to provide a method for obtaining uniform and smooth radiation-sensitive coatings on non-planar surfaces. Other objects will become apparent hereinafter.
In accordance with the present invention, uniform and smooth coatings of radiation-sensitive compositions are obtained on non-planar, and particularly convex surfaces by a process which comprises depositing a radiationsensitive composition of the desired thickness on a temporary support, stripping the resulting coating from the temporary support, floating the stripped coating on a liquid medium capable of swelling the coating, the stripped surface of the coating being in contact with the liquid medium, over the submerged surface to be coated, contacting the non-planar surface with the radiation-sensitive coating at a temperature below the break temperature preferably in the range from about 1 to about F. below the break temperature, and thereafter, if desired, hardening the radiation-sensitive composition on the non-planar surface. By break temperature is meant, that temperature at which a film of the radiation-sensitive composition, heated in contact with the said liquid medium breaks when applied to the non-planar surface.
atent ice By radiation-sensitive composition is meant, a composition containing a material which has inherent radationsensitivity or a radiation-sensitive agent dispersed in a carrier capable of swelling in a suitable liquid medium. In another embodiment of our invention, a photosensitive element comprising at least one hydrophilic layer and at least one light-sensitive layer is coated on the temporary support and then stripped from the temporary support and transferred to the non-planar surface by the steps described above.
A wide variety of radiation-sensitive compositions are used to advantage according to our invention, including any of the known hydrophilic colloid silver halide emulsions of the developing-out type or of the print-out type; nonsilver print-out compositions (such as are described by Poznan Towarz, Pryjaciol, Nauk, Wydzial Mat- Przyrod, Prace Komis, Mat-Przyrod 7, No. 9, 7996 (1959), Sagura et al., U.S. Ser. No. 227,561, filed Oct. 1, 1962, Rauner et al., U.S. Ser. No. 266,691, filed Feb. 1, 1963, etc.); photoresist compositions (e.g., light sensitive polymers such as polymers containing an a,fi-unsaturated carbonyl group including those described in patents such as Minsk et al., U.S. 2,610,120 issued Sept. 9, 1952, Robertson et al., U.S. 2,732,301 issued Jan. 24, 1956, etc., polymers containing an azide group, such as those described by Merrill et al. in U.S. 3,002,003 issued Sept. 26, 1961, and others; polymers containing a quaternized pyridine group having an unsaturated group attached to the carbon atom in the two position, such as are described by Leubner et al., U.S. 2,811,510 issued Oct. 29, 1957, etc.) xerographic compositions (such as those described by Middleton, U.S. 3,120,006 issued Feb. 11, 1964, Greig 3,052,539 issued Sept. 4, 1962, etc.); etc.
The hydrophilic radiation-sensitive compositions of our invention are advantageously coated directly on the temporary support or base. Hydrophobic radiation-sensitive compositions can be coated directly on the temporary support provided that an appropriate liquid swelling agent for the composition such as a non-polar solvent or other organic solvent is utilized. Examples of non-polar solvents used to advantages as swelling agents for hydrophobic colloids are, acetone, 2-ethoxyethanol, benzene, toluene, etc. The non-polar solvent selected will be dependent upon the particular hydrophobic colloid used in the radiation-sensitive layer.
The sensitive compositions most generally employed in the process of the present invention comprise a watersoluble or water-permeable colloid, such as gelatin, albumin, gum arabic, hydrolyzed cellulose acetate, or polyvinyl alcohol in which there is dispersed a sensitive component, such as a silver halide, a light sensitive iron salt, diazonium compound, or any of the other light-sensitive materials used in photography. Addenda known to those skilled in the art such as color formers, dye intermediates, filter dyes, sensitizing dyes, etc., may be present in the photo-sensitive composition. The preferred compositions of the present invention are, however, silver halide dispersions in gelatin coated as a single layer or as a multilayer element, such as is used for color photography. Depending on the specific nature of the gelatin employed in these composiitons, coatings of these compositions are applied to the non-planar and particularly convex surfaces using water as the liquid medium at temperatures of about 65 to F. and preferably at temperatures of 79 to 82 F.
The temperature at which the stripped coating of the photosensitive composition is applied to the non-planar, convex or concave surface is extremely important. If the break temperature is exceeded, obviously the coating will break or at least contain tears. If the temperature employed is too far below the break temperature, the photosensitive coating will not drape properly over the non-planar surface and result in folds and overlaps. The optimum coating temperature is readily established by experimentally determining the break temperature.
The coating is preferably applied so that the stripped surface of the coating, i.e., the surface which had contacted the temporary support from which the coating was stripped, contacts the liquid medium on which the coating floats. It is also advantageous to cut the coating either before or after stripping to dimensions that will result in covering the desired area of the non-planar surface, since this minimizes any overlaps and folds in the finished coating.
As indicated above, the photosensitive composition is first applied to a temporary fiat support to achieve the desired uniform thickness. Processes developed in the prior art for applying uniform photosensitive coatings to flat supports are well known and therefore need not be described here. Preferably, the coating is applied to a flexible film support, such as an unsubbed cellulose ester film, terephthalate film, polyester film, etc., from which the composition can be readily stripped.
The invention is further illustrated by the following examples.
EXAMPLE I An unhardened photosensitive silver halide emulsion was coated on the unsubbed side of cellulose triacetate film base to result in a coating containing 100 mg./ft. of silver chloride, 1,000 mg./ft. of gelatin and 100 rug/ft. of glycerol. Portions of the dry film were stripped from the base and placed on a still water surface, maintained at a temperature of 80 F. The coating was placed on the Water with the stripped surface in contact with the water. The gelatin film swelled rapidly in one to two minutes. A glass sphere was placed under the surface of the swollen gelatin film and slowly elevated so that the gelatin film draped itself over the surface of the sphere. A uniform coating over the convex portion of the sphere was obtained.
EXAMPLE II Following the procedure of Example I, a coating of the photosensitive composition was prepared. The resulting coated film base was then cut to cover the outer side of a glass hemisphere. The photosensitive coating was then placed on the water surface in the manner indicated in Example I, the water being maintained at a temperature of 80 F. and containing submerged therein the glass hemisphere corresponding to the size of the cut coating. The water was then drained from the container such that the photosensitive coating was draped over the outer side of the hemisphere. The coating uniformly covered the hemisphere without the formation of any folds.
The dried coating was flashed to light and brush developed with a composition comprising:
'Para-methylaminophenol sulfate g 3.0 Sodium sulfite, desiccated g 45.0 Hydroquinone g 12.0 Sodium carbonate H O g 80.0 Potassium bromide g 2.0 Water liter 1.
FIG. 1 shows a cross sectional view of temporary support 10 coated with radiation-sensitive stripping layer 11.
FIG. 2 shows a cross sectional view of stripped radiation-sensitive layer 11 being coated on permanent hemispherical support 12 by draining the liquid medium 13 on which layer 11 was floated in tank 14 through drain 15.
FIG. 3 shows hemispherical support 12 coated with radiation-sensitive layer 11.
In a similar manner concave surfaces are coated to advantage with a radiation-sensitive layer. For this purpose it is advantageous to provide a means for removing the liquid medium from the concave surface, such as for example by providing a small opening at the bottom of the concave surface for the liquid medium to drain when the tank is drained.
The techniques described above for coating single layers on non-planar surfaces are used to advantage in coating multilayer radiation-sensitive elements such as are used for color photography. As mentioned previously an unsubbed temporary support is used to advantage for these coatings so they can be readily stripped as a unit from the temporary support.
Our invention provides a technical advance in the coating of uniform and smooth radiation-sensitive layers on non-planar surfaces.
The invention has been described in detail with par ticular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention as described hereinabove and as defined the appended claims.
We claim:
1. A process for coating non-planar surfaces with a radiation-sensitive composition which comprises depositing a radiation-sensitive composition of the desired thickness on a temporary planar support, stripping the resulting coating from the said temporary support, floating the stripped coating on a liquid medium capable of swelling the coating over a submerged non-planar surface, and contacting the non-planar surface with the the photosensitive coating at a temperature below the break temperature of the coating.
2. A process for coating non-planar surfaces with a photosensitive composition containing a light-sensitive agent dispersed in a hydrophilic colloid, which comprises depositing the photosensitive composition on a temporary planar support to the desired thickness, stripping the resulting coating in its unhardened state from the said support, floating the stripped coating on water over a submerged non-planar surface, and contacting the non-planar surface with the photosensitive coating at a temperature below the break temperature of the coating.
3. The process of claim 2, wherein the hydrophilic colloid is gelatin.
4. The process of claim 2, wherein the light-sensitive agent is a silver halide composition.
5. The process of claim 2, wherein the non-planar surface is contacted with the coating at a temperature of 65 to F.
6. The process of claim 2, wherein the photosensitive composition is deposited on a flexible support from which the coating is strippable.
7. The process of claim 2, wherein a sliver halide gelatin emulsion layer is contacted with a non-planar surface at a temperature of 79 to 82 F.
8. The process of claim 2, wherein the stripped coating is floated on water at a temperature of about 1 to about 20 F. below the break temperature of the said coating and then the floating coating is contacted with a submerged non-planar surface.
9. A process for coating non-planar surfaces with a photo-sensitive element comprising at least one hydrophilic colloid layer and at least one light-sensitive layer, said process comprising the steps:
(1) coating on a temporary planar support the hydrophilic colloid layer and at least one light-sensitive layer,
(2) stripping the said photosensitive element from the said temporary planar support,
(3) floating the stripped element on a liquid medium capable of swelling the said hydrophilic colloid layer of said element over a non-planar surface submerged in said liquid, and
(4) contacting the said non-planar surface with the said hydrophilic colloid layer of said element at a temperature below the break temperature of the said element.
10. A process for coating non-planar surfaces with a photosensitive element comprising at least one unhardened hydrophilic colloid layer and at least one lightsensitive layer, said process comprising the steps:
(1) coating on a temporary planar support the unhardened hydrophilic colloid layer and at least one light-sensitive layer,
(2) stripping the said photosensitive element from the said temporary planar support,
(3) floating the stripped element on a liquid medium capable of swelling the said unhardened hydrophilic colloid layer of said element over a non-planar surface submerged in said liquid,
(4) contacting the said non-planar surface with the said unhardened hydrophilic colloid layer of said element at a temperature below the break temperature of the said element, and
(5) hardening the said element on the said non-planar support.
References Cited UNITED STATES PATENTS 5/1961 Kerstetter et al. 313-34.6 4/1962 McKeirnan et a1. 156-307 X
US420634A 1964-12-23 1964-12-23 Coating non-planar surfaces Expired - Lifetime US3402087A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US420634A US3402087A (en) 1964-12-23 1964-12-23 Coating non-planar surfaces
DE19651472868 DE1472868A1 (en) 1964-12-23 1965-11-12 Process for covering non-planar surfaces
FR42934A FR1460410A (en) 1964-12-23 1965-12-20 Process for applying photosensitive layers to non-planar surfaces
GB54326/65A GB1135780A (en) 1964-12-23 1965-12-22 Coating surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US420634A US3402087A (en) 1964-12-23 1964-12-23 Coating non-planar surfaces

Publications (1)

Publication Number Publication Date
US3402087A true US3402087A (en) 1968-09-17

Family

ID=23667244

Family Applications (1)

Application Number Title Priority Date Filing Date
US420634A Expired - Lifetime US3402087A (en) 1964-12-23 1964-12-23 Coating non-planar surfaces

Country Status (4)

Country Link
US (1) US3402087A (en)
DE (1) DE1472868A1 (en)
FR (1) FR1460410A (en)
GB (1) GB1135780A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928108A (en) * 1974-08-12 1975-12-23 Us Navy Method of making a poly(methyl methacrylate) pre-holographic element
US4047999A (en) * 1974-09-19 1977-09-13 Francis John Salgo Method of making a mobile ion film memory
US4069076A (en) * 1976-11-29 1978-01-17 E. I. Du Pont De Nemours And Company Liquid lamination process
US4405394A (en) * 1980-05-27 1983-09-20 E. I. Du Pont De Nemours And Company Laminating process
US20050238996A1 (en) * 2001-10-24 2005-10-27 Toyo Boseki Kabushiki Kaisha Photosensitive resin laminate
US20060292485A1 (en) * 2005-06-23 2006-12-28 Hiroshi Ito Topcoat compositions and methods of use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986671A (en) * 1954-08-31 1961-05-30 Sylvania Electric Prod Application of strip coating to cathode
US3028288A (en) * 1959-09-30 1962-04-03 Sylvania Electric Prod Film coating for electron device envelopes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986671A (en) * 1954-08-31 1961-05-30 Sylvania Electric Prod Application of strip coating to cathode
US3028288A (en) * 1959-09-30 1962-04-03 Sylvania Electric Prod Film coating for electron device envelopes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928108A (en) * 1974-08-12 1975-12-23 Us Navy Method of making a poly(methyl methacrylate) pre-holographic element
US4047999A (en) * 1974-09-19 1977-09-13 Francis John Salgo Method of making a mobile ion film memory
US4069076A (en) * 1976-11-29 1978-01-17 E. I. Du Pont De Nemours And Company Liquid lamination process
US4405394A (en) * 1980-05-27 1983-09-20 E. I. Du Pont De Nemours And Company Laminating process
US20050238996A1 (en) * 2001-10-24 2005-10-27 Toyo Boseki Kabushiki Kaisha Photosensitive resin laminate
US20060292485A1 (en) * 2005-06-23 2006-12-28 Hiroshi Ito Topcoat compositions and methods of use thereof
US7358035B2 (en) * 2005-06-23 2008-04-15 International Business Machines Corporation Topcoat compositions and methods of use thereof
US20080145787A1 (en) * 2005-06-23 2008-06-19 Hiroshi Ito Topcoat compositions and methods of use thereof
US7728089B2 (en) 2005-06-23 2010-06-01 International Business Machines Corporation Topcoat compositions and methods of use thereof

Also Published As

Publication number Publication date
FR1460410A (en) 1966-11-25
DE1472868A1 (en) 1968-12-05
GB1135780A (en) 1968-12-04

Similar Documents

Publication Publication Date Title
US3697277A (en) Nonglare photographic prints
US2588765A (en) Lubricated photographic element containing a mixture of higher fatty alcohols and higher fatty acids
US2391181A (en) Protective overcoating
US3402087A (en) Coating non-planar surfaces
US2805173A (en) Photographic film base and process for the manufacture thereof
US3837886A (en) Process for producing photographic materials
JPS57642A (en) Improvement of adhesion resistance of photographic sensitive silver halide material for printing
US4076535A (en) Method of preparing screens for screen printing
US3466172A (en) Method of using photographic vesicular and diazo films having diazo antihalation layers
US2357913A (en) Photographic process for etching figures on glass
US2685510A (en) Sensitive photographic element for use in the silk screen process
GB1389333A (en) Process for treating gelating reliefs and for forming dye images from the treated reliefs
US2311888A (en) Light-sensitive element
US3507653A (en) Stencil screen and method
US3704154A (en) Process for producing photographic materials
US2950194A (en) Material for use in a photographic reproduction system
US3057722A (en) Photographic stripping film
US3168402A (en) Photographic stripping film
US3510303A (en) Thin emulsion deposition stencil screen and method
US3607346A (en) Layers method of wet transferring unexposed photographic emulsion
US3507654A (en) Stencil screen and method
US3282698A (en) Photographic stripping films
US3369903A (en) Light sensitive element for preparing etching resist for gravure purposes
GB1477409A (en) Surface treatment of photographic elements
US2131747A (en) Antihalation backing for photographic film