US3405424A - Device and process for the manufacture of hollow synthetic fibers - Google Patents

Device and process for the manufacture of hollow synthetic fibers Download PDF

Info

Publication number
US3405424A
US3405424A US589979A US58997966A US3405424A US 3405424 A US3405424 A US 3405424A US 589979 A US589979 A US 589979A US 58997966 A US58997966 A US 58997966A US 3405424 A US3405424 A US 3405424A
Authority
US
United States
Prior art keywords
spinneret
hollow
slits
manufacture
synthetic fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US589979A
Inventor
Imobersteg Ulrich
Schulze Walter-Joachim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventa AG fuer Forschung und Patentverwertung
Original Assignee
Inventa AG fuer Forschung und Patentverwertung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventa AG fuer Forschung und Patentverwertung filed Critical Inventa AG fuer Forschung und Patentverwertung
Priority to US589979A priority Critical patent/US3405424A/en
Application granted granted Critical
Publication of US3405424A publication Critical patent/US3405424A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor

Definitions

  • ABSTRACT OF THE DISCLOSURE A spinneret for the manufacture of hollow synthetic fibers which has at least one -bore group with at least two opposing openings which are star-shaped. Different star configurations are feasible, such as X and Y shapes whose respective slits must be at given angles and locations relative to each other and to opposing bore openings, respectively. Y
  • the invention relates to a novel process for the melt spinning of synthetic fibers to produce hollow profiles therein and to a device facilitating this manufacture, more particularly to a spinneret or spinning plate.
  • Profiled spun fibers have attained increased technological and economical significance in the recent past, They are used increasingly for such end products as upholstery and rugs. These profiled spun synthetic fibers have high stability and bending strength and impart to the finished product high gloss and bulk. However, the heat retaining properties of synthetic spun materials is inferior to those made from natural fibers. A profiled fiber which not only is hollow but in addition has closed ends is most advantageous with respect to heat retainability. The incorporation of a hollow space in a synthetic fiber, moreover, imparts increased stability and bending strength thereto.
  • FIGS. 1-8 are spinneret profiles according to prior art
  • FIGS. 9-10 are profiles according to the invention.
  • Known plates may contain suitable spinning openings provided with a pin as a core,and the molten mass is forced through the openings under air pressure or by the pressure of another gas.
  • Spinnerets of this kind generally consist of several plates, usually three plates, and are quite intricate. When a plurality of openings is present, great precision is required in the manufacture and installation.
  • FIG. 2 illustrates the version wherein slits are provided each of which is straight; and FIG. 3 shows ernbodiments which use bent slits.
  • spinnerets are of great value for the production of hollow, closed-end synthetic fibers which have star-shaped profiles in a given configuration.
  • a spinning plate When several bores in a spinning plate are disposed in a group so that the individual melt streams leaving the spinneret come to adhere to each other to form a fiber at a distance of substantially 10-40 cm. below the plate, a distance at which these streams still are sufficiently liquid, a very constant cross section is obtained without the use of a gas.
  • the hollow space in the fiber thus formed and the wall thickness remain uniform thereby.
  • Well-profiled fibers or filaments are obteined by the combination of not more than 3 star profiles per bore group. More than three single bores per group produce less pronounced profiles and are applicable only in very special instances.
  • the spinneret according to the invention thus is characterized by 2-3 spinning openings with star-like profile per bore group.
  • FIGS. 9 and l0 A mirror-image disposition of 2 star profiles is shown in FIGS. 9 and l0 and is of great advantage.
  • a plurality of bore groups may be distributed at will over the plate.
  • the wall thickness of the hollow space, i.e., the cross section of the fiber produced can be varied in dependence on the operational conditions, such as the viscosity of the melt, its temperature, cooling and draw-ofi ⁇ conditions.
  • the size of the hollow space to be formed is readily controlled during the manufacture of the fiber.
  • the time of adhesion during cooling of the melt which had passed the nozzle in the spinneret can be regulated exactly so that the hollow space is of any desired size but remains constant.
  • Preferred is a cross section which amounts to approximately l0'-30% of the total area. Fibers thus spun not only retain their form but also the area proportions named during stretching and stretch twisting. Moreover, they are suited for such further processing wherein profiles of very slender cross sections generally meet with difficulties.
  • each individual star opening may have a bore hole; the holes of correlated star-spin nozzles may overlap; or a single bore hole may be present per nozzle pair.
  • the plate may contain any desired number of nozzle openings. Itis recommended to keep the distances between the individual bore groups sufficiently large and to adapt the total number of bore holes to the cooling conditions so that undesirable adhesion of several single hollow fiber fibrils is averted.
  • the star-shaped bores can be disposed on the plate either in parallel or in concentric circles.
  • a particularly advantageous embodiment of a spinning plate is obtained by disposing 2 spin openings of 3- or 4- cornered star profile in mirror image relative to each other, i.e., in Y- or X-form, as shown in FIGS. 9 and 10.
  • the lengths A, B and C of the Shanks of the slit may be alike or different, however, they should be at least twice the width of the slit.
  • Angles a, and 'y may be alike or different, but the most advantageous relation is attained with one of the following:
  • Spinnerets of the kind described are eminently suited for the melt spinning of synthetic hollow fibers made from high-polymers, such as polyamides, polyesters or polyalkylenes.
  • the spinneret according to the invention enables the manufacture of a large number of hollow profile brils per spinning plate, whereby these fibrils have very uniform and constant cross section. This cannot be accomplished with spinnerets such as shown in FIGS. 3 and 5, wherein several correlated slits are used, because of the instability of the individual spun components. Moreover, the manufacturing costs of a spinneret having, e.g., a YY-bore are approximately 30% of those of the simplest spinning plate shown in FIGS. 7 and 8, and this is significant for the manufacture of synthetic bers considering the number of nozzles in a plate which amounts to 100-300.
  • Example 1a A spinneret having two Y-profile bores according to FIG. 9 was used which had the following dimensions:
  • Length of slits A and B mm 1.0 Length of slit C mm 0.5 Width of slits (b) mm 0.2 Distance Y--Y (a) mm 0.2 Angles of a, ,B and 'y degrees 120
  • Polycaprolactam shavings having a relative solution viscosity as a 1% sulfuric acid solution of 3.10 were spun from a melt at 260 C. to an endless hollow profile yarn whose hollow space amounted to 28% of the total cross section.
  • the yarn stretched 1:4.39 had a strength of 4.6 g./den. and an elongation at break of 23.8%.
  • Example I b Under otherwise like conditions as in the preceding example, a yarn was spun at a melt temperature of 270 C. having a hollow space of 15% of the cross section. The yarn was stretched in proportions of 1:4.15 and had a strength of 4.9 g./den. and an elongation at break of 23.0%.
  • Example 2 The spinneret used was like the one described in Example la except that the distance a was 0.4 mm. This increase required an advance of the melt temperature to 275 C. in order to attain a yarn of the cross section as named in Example 1b. The yarn thus produced was stretched in proportions of 1:4.15 and had a strength of 5.9 g./den. and an elongation at break of 20.0%.
  • Example 3 The spinning plate used had XX-bores (see FIG. 10) of the following dimensions:
  • a spinneret for the manufacture of hollow profiled synthetic fibers comprising a plate containing at least one bore group having at least two spinning openings of starshaped profile.
  • a spinneret for the manufacture of hollow profiled synthetic fibers which comprises a plate provided with at least one bore group having at least two spinning openings of star-shaped profile, the stars being disposed in mirror image relative to each other; the slits defining said stars being of equal length, and the distance between said stars lbeing at least as large as the width of said slits.

Description

OC- 15, 1968 u. IMoBERsTEG ETAL 3,405,424
DEVICE AND PROCESS FOR THE MANUFACTURE OF HOLLOW SYNTHETIC FIBERS Filed Oct. 2T, 1966 2 Sheets-Sheet 2 FIG. IO
I N VEN TORS ULRICH IMOBERSTEG JOACHIM WALTER SCHULZE United States Patent O 3,405,424 DEVICE AND PROCESS FOR THE MANUFACTURE OF HOLLOW SYNTHETIC FIBERS Ulrich Imobersteg and Walter-Joachim Schulze, Chur,
Switzerland, assignors to Inventa A.G. fur Forschung und Patentverwertung, Zurich, Switzerland Filed Oct. 27` 1966, Ser. No. 589,979 8 Claims. (Cl. 18-8) ABSTRACT OF THE DISCLOSURE A spinneret for the manufacture of hollow synthetic fibers which has at least one -bore group with at least two opposing openings which are star-shaped. Different star configurations are feasible, such as X and Y shapes whose respective slits must be at given angles and locations relative to each other and to opposing bore openings, respectively. Y
The invention relates to a novel process for the melt spinning of synthetic fibers to produce hollow profiles therein and to a device facilitating this manufacture, more particularly to a spinneret or spinning plate.
Profiled spun fibers have attained increased technological and economical significance in the recent past, They are used increasingly for such end products as upholstery and rugs. These profiled spun synthetic fibers have high stability and bending strength and impart to the finished product high gloss and bulk. However, the heat retaining properties of synthetic spun materials is inferior to those made from natural fibers. A profiled fiber which not only is hollow but in addition has closed ends is most advantageous with respect to heat retainability. The incorporation of a hollow space in a synthetic fiber, moreover, imparts increased stability and bending strength thereto.
The design of the profile, including hollow profiles, depends upon the design of the spinneret. These usually are made of stainless steel or of hardened special steels, and a number of designs are known. These designs and the ones according to the invention now will be discussed with reference of the accompanying drawings, all of which are schematics of spinneret profiles.
In these drawings,
FIGS. 1-8 are spinneret profiles according to prior art,
FIGS. 9-10 are profiles according to the invention. Known plates may contain suitable spinning openings provided with a pin as a core,and the molten mass is forced through the openings under air pressure or by the pressure of another gas. Spinnerets of this kind generally consist of several plates, usually three plates, and are quite intricate. When a plurality of openings is present, great precision is required in the manufacture and installation.
Other plates are known which dispense with the center pin and instead contain especially disposed capillaries which, for certain uses, may be of a particular shape. Fibers produced with these devices melt together, forming a hollow yarn. For instance, spinnerets are employed which have single bores of round cross section or a plurality of single straight or bent slits of small width. As shown in FIG. l, these bores are disposed in a circle relative to each other. FIG. 2 illustrates the version wherein slits are provided each of which is straight; and FIG. 3 shows ernbodiments which use bent slits.
It has been established, however, that the adhesion of the single fibrils to each other produced with these devices is unsatisfactory because of the fineness of the fibrils and their inherent mobility. Cross sections frequently form which lack the closed hollow spaces and, in part, are open.
More advantageous are those spinnerets wherein the single slits or bores are interconnected, as shown in FIGS.
Patented Oct. 15, 1968 4 and 5, respectively. The melt flows through all these slits or bores and provides the fiber to be formed with an inner structure within its profile.
Other known spinning plates are made of equal halves provided with fitting shoulders, as shown in FIG. 6, or of uneven parts which lap, shown in FIG. 7. Bores with numerous single slits, as in FIG. 8, have only been used experimentally.
It now has been found that spinnerets are of great value for the production of hollow, closed-end synthetic fibers which have star-shaped profiles in a given configuration. When several bores in a spinning plate are disposed in a group so that the individual melt streams leaving the spinneret come to adhere to each other to form a fiber at a distance of substantially 10-40 cm. below the plate, a distance at which these streams still are sufficiently liquid, a very constant cross section is obtained without the use of a gas. The hollow space in the fiber thus formed and the wall thickness remain uniform thereby.
Well-profiled fibers or filaments are obteined by the combination of not more than 3 star profiles per bore group. More than three single bores per group produce less pronounced profiles and are applicable only in very special instances.
The spinneret according to the invention thus is characterized by 2-3 spinning openings with star-like profile per bore group.
A mirror-image disposition of 2 star profiles is shown in FIGS. 9 and l0 and is of great advantage. A plurality of bore groups may be distributed at will over the plate. The wall thickness of the hollow space, i.e., the cross section of the fiber produced can be varied in dependence on the operational conditions, such as the viscosity of the melt, its temperature, cooling and draw-ofi` conditions.
The size of the hollow space to be formed is readily controlled during the manufacture of the fiber. The time of adhesion during cooling of the melt which had passed the nozzle in the spinneret can be regulated exactly so that the hollow space is of any desired size but remains constant. Preferred is a cross section which amounts to approximately l0'-30% of the total area. Fibers thus spun not only retain their form but also the area proportions named during stretching and stretch twisting. Moreover, they are suited for such further processing wherein profiles of very slender cross sections generally meet with difficulties.
According to the invention, each individual star opening may have a bore hole; the holes of correlated star-spin nozzles may overlap; or a single bore hole may be present per nozzle pair.
Contrary to all expectations, a very slight strength of the plate at leg a (FIG, 9) sufiices. This leg separates the actual profiles. Even at high pressures on the melting side of the spinneret these legs are not forced out so that the conventional bore channel length and its proportion to the channel opening can be used, i.e., proportions of 1:2 to 2:1.
The plate may contain any desired number of nozzle openings. Itis recommended to keep the distances between the individual bore groups sufficiently large and to adapt the total number of bore holes to the cooling conditions so that undesirable adhesion of several single hollow fiber fibrils is averted. The star-shaped bores can be disposed on the plate either in parallel or in concentric circles.
A particularly advantageous embodiment of a spinning plate is obtained by disposing 2 spin openings of 3- or 4- cornered star profile in mirror image relative to each other, i.e., in Y- or X-form, as shown in FIGS. 9 and 10.
The following considerations are valid for the Y-form: The lengths A, B and C of the Shanks of the slit may be alike or different, however, they should be at least twice the width of the slit. Angles a, and 'y may be alike or different, but the most advantageous relation is attained with one of the following:
The most advantageous formations of the X-form are as follows:
a= and A=B=C=D The distance a of the two star profiles is at least equal to the slit width b.
Spinnerets of the kind described are eminently suited for the melt spinning of synthetic hollow fibers made from high-polymers, such as polyamides, polyesters or polyalkylenes.
The spinneret according to the invention enables the manufacture of a large number of hollow profile brils per spinning plate, whereby these fibrils have very uniform and constant cross section. This cannot be accomplished with spinnerets such as shown in FIGS. 3 and 5, wherein several correlated slits are used, because of the instability of the individual spun components. Moreover, the manufacturing costs of a spinneret having, e.g., a YY-bore are approximately 30% of those of the simplest spinning plate shown in FIGS. 7 and 8, and this is significant for the manufacture of synthetic bers considering the number of nozzles in a plate which amounts to 100-300.
The invention now will be further explained with reference to the drawings and by specific examples. However, it should be understood that these are given merely by way of illustration, and not of limitation, and that modifications and changes may be made without departing from the spirit and the scope of the invention as hereina'fter claimed.
Example 1a A spinneret having two Y-profile bores according to FIG. 9 was used which had the following dimensions:
Length of slits A and B mm 1.0 Length of slit C mm 0.5 Width of slits (b) mm 0.2 Distance Y--Y (a) mm 0.2 Angles of a, ,B and 'y degrees 120 Polycaprolactam shavings having a relative solution viscosity as a 1% sulfuric acid solution of 3.10 were spun from a melt at 260 C. to an endless hollow profile yarn whose hollow space amounted to 28% of the total cross section.
The yarn stretched 1:4.39 had a strength of 4.6 g./den. and an elongation at break of 23.8%.
Example I b Under otherwise like conditions as in the preceding example, a yarn was spun at a melt temperature of 270 C. having a hollow space of 15% of the cross section. The yarn was stretched in proportions of 1:4.15 and had a strength of 4.9 g./den. and an elongation at break of 23.0%.
Example 2 The spinneret used was like the one described in Example la except that the distance a was 0.4 mm. This increase required an advance of the melt temperature to 275 C. in order to attain a yarn of the cross section as named in Example 1b. The yarn thus produced was stretched in proportions of 1:4.15 and had a strength of 5.9 g./den. and an elongation at break of 20.0%.
4 Example 3 The spinning plate used had XX-bores (see FIG. 10) of the following dimensions:
Length of all slits mm 1.0 Width (b) mm 0.2 Distance X-X (a) mm-- 0.2 Angle (a) degrees Ground polyester shavings having a relative solution viscosity of 1.60 as 0.5% solution iu cresol were spun t0 hollow profile fibers at a melt temperature of 252 C. through a' spinneret as described in Example la. The hollow space in the fibers was 20% of the cross section. The staple fiber thus produced, after stretching to 1:3.9, had a strength of 4.1 g./den. and an elongation at break of 31.0%.
We claim as our invention:
1. A spinneret for the manufacture of hollow profiled synthetic fibers comprising a plate containing at least one bore group having at least two spinning openings of starshaped profile.
2. The spinneret as defined in claim 1, wherein said bore group has two spinning openings in the form of stars disposed in mirror image relative to each other.
3. The spinneret as defined in claim 2, wherein said stars are Y-shaped.
4. The spinneret as defined in claim 3, wherein the lengths of the slits of said Y-shape are equal and at least twice the length of their widths, and the distance between said stars in mirror image is at least as large as the width of said slits.
5. The spinneret as defined in claim 4, wherein the angles at which said slits meet are equal.
6. The spinneret as defined in claim 4, wherein the angles a, and 'y at which the slits meet are a ='y.
7. The spinneret as defined in claim 2, wherein said stars are X-shaped, the slits defining each said star being of equal length, the angles at which said slits meet are right angles, and the distance between said stars is at least as large as the width of said slits.
-8. A spinneret for the manufacture of hollow profiled synthetic fibers which comprises a plate provided with at least one bore group having at least two spinning openings of star-shaped profile, the stars being disposed in mirror image relative to each other; the slits defining said stars being of equal length, and the distance between said stars lbeing at least as large as the width of said slits.
References Cited UNITED STATES PATENTS 2,900,668 8/ 1959 Hubner et al 18-8 XR 3,249,669 5/ 1966 Jamieson 18-8 XR 3,303,530 y2/1967 Cobb 18-8 3,323,168 6/1967 Van Drunen et al 18-8 FOREIGN PATENTS 779,822 7/ 1957 Great Britain. 991,224 5/ 1965 Great Britain.
WILLIAM J. STEPHENSON, Primary Examiner.
US589979A 1966-10-27 1966-10-27 Device and process for the manufacture of hollow synthetic fibers Expired - Lifetime US3405424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US589979A US3405424A (en) 1966-10-27 1966-10-27 Device and process for the manufacture of hollow synthetic fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US589979A US3405424A (en) 1966-10-27 1966-10-27 Device and process for the manufacture of hollow synthetic fibers

Publications (1)

Publication Number Publication Date
US3405424A true US3405424A (en) 1968-10-15

Family

ID=24360381

Family Applications (1)

Application Number Title Priority Date Filing Date
US589979A Expired - Lifetime US3405424A (en) 1966-10-27 1966-10-27 Device and process for the manufacture of hollow synthetic fibers

Country Status (1)

Country Link
US (1) US3405424A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640670A (en) * 1968-06-20 1972-02-08 Fiber Industries Inc Spinnerette for extruding t-shaped filaments
US3981948A (en) * 1975-01-02 1976-09-21 Eastman Kodak Company Arrangements in spinnerets of spinning orifices having significant kneeing potential
US4376743A (en) * 1981-06-12 1983-03-15 Fiber Industries, Inc. Melt spinning process
EP0317192A1 (en) * 1987-11-13 1989-05-24 E.I. Du Pont De Nemours And Company New polyester fiberfill
US4836763A (en) * 1988-07-29 1989-06-06 E. I. Dupont De Nemours And Company Seven hole spinneret
US5125818A (en) * 1991-02-05 1992-06-30 Basf Corporation Spinnerette for producing bi-component trilobal filaments
US5129812A (en) * 1991-03-28 1992-07-14 Basf Corporation Multiple profile filaments from a single counterbore
US5277976A (en) * 1991-10-07 1994-01-11 Minnesota Mining And Manufacturing Company Oriented profile fibers
WO1994013869A1 (en) * 1992-12-08 1994-06-23 Basf Corporation Hollow trilobal cross section fiber
US5330348A (en) * 1992-08-05 1994-07-19 E. I. Du Pont De Nemours And Company Spinneret for the production of hollow filaments
WO1995014799A1 (en) * 1993-11-22 1995-06-01 Wellman, Inc. Method of forming self-texturing filaments and resulting self-texturing filaments
US5510183A (en) * 1993-11-22 1996-04-23 Wellman, Inc. Method of forming self-texturing filaments and resulting self-texturing filaments
US6342299B1 (en) * 1996-08-22 2002-01-29 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US20030114068A1 (en) * 2001-12-17 2003-06-19 Clemson University Research Foundation Article of manufacture useful as wallboard and a method for the making thereof
US20030118763A1 (en) * 2001-05-08 2003-06-26 Travelute Frederick L. Method and apparatus for high denier hollow spiral fiber
US6682672B1 (en) 2002-06-28 2004-01-27 Hercules Incorporated Process for making polymeric fiber
US20050095312A1 (en) * 2000-07-10 2005-05-05 Invista North America S.A R.L. Polymer filaments having profiled cross-section
US20050147788A1 (en) * 2003-11-19 2005-07-07 Invista North America S.A R.L. Spinneret plate for producing a bulked continuous filament having a three-sided exterior cross-section and a convex six-sided central void
US20050249950A1 (en) * 2002-11-19 2005-11-10 Industrial Technology Research Institute Functional composite fiber and preparation thereof and spinneret for preparing the same
US20070254057A1 (en) * 1999-12-02 2007-11-01 Grinshpun Vyacheslav D Hollow strandfoam and preparation thereof
US20180352837A1 (en) * 2014-03-18 2018-12-13 Rustichella D'abruzzo S.P.A. Spaghetti-like long pasta shape and relative production device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB779822A (en) * 1954-03-04 1957-07-24 Thueringisches Kunstfaserwerk Process for the production of formed products, such as filaments, fibres, ribbons and the like from synthetic linear high polymers with improved wearing properties
US2900668A (en) * 1955-11-04 1959-08-25 Henkel & Cie A G Production of granular perborates
GB991224A (en) * 1962-05-29 1965-05-05 Snia Viscosa Improvements in or relating to spinnerets
US3249669A (en) * 1964-03-16 1966-05-03 Du Pont Process for making composite polyester filaments
US3303530A (en) * 1965-01-13 1967-02-14 Du Pont Spinnerette
US3323168A (en) * 1962-05-24 1967-06-06 American Enka Corp Spinneret for spinning hollow filaments

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB779822A (en) * 1954-03-04 1957-07-24 Thueringisches Kunstfaserwerk Process for the production of formed products, such as filaments, fibres, ribbons and the like from synthetic linear high polymers with improved wearing properties
US2900668A (en) * 1955-11-04 1959-08-25 Henkel & Cie A G Production of granular perborates
US3323168A (en) * 1962-05-24 1967-06-06 American Enka Corp Spinneret for spinning hollow filaments
GB991224A (en) * 1962-05-29 1965-05-05 Snia Viscosa Improvements in or relating to spinnerets
US3249669A (en) * 1964-03-16 1966-05-03 Du Pont Process for making composite polyester filaments
US3303530A (en) * 1965-01-13 1967-02-14 Du Pont Spinnerette

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640670A (en) * 1968-06-20 1972-02-08 Fiber Industries Inc Spinnerette for extruding t-shaped filaments
US3981948A (en) * 1975-01-02 1976-09-21 Eastman Kodak Company Arrangements in spinnerets of spinning orifices having significant kneeing potential
US4376743A (en) * 1981-06-12 1983-03-15 Fiber Industries, Inc. Melt spinning process
EP0317192A1 (en) * 1987-11-13 1989-05-24 E.I. Du Pont De Nemours And Company New polyester fiberfill
US4836763A (en) * 1988-07-29 1989-06-06 E. I. Dupont De Nemours And Company Seven hole spinneret
US5125818A (en) * 1991-02-05 1992-06-30 Basf Corporation Spinnerette for producing bi-component trilobal filaments
US5129812A (en) * 1991-03-28 1992-07-14 Basf Corporation Multiple profile filaments from a single counterbore
US5277976A (en) * 1991-10-07 1994-01-11 Minnesota Mining And Manufacturing Company Oriented profile fibers
US5330348A (en) * 1992-08-05 1994-07-19 E. I. Du Pont De Nemours And Company Spinneret for the production of hollow filaments
WO1994013869A1 (en) * 1992-12-08 1994-06-23 Basf Corporation Hollow trilobal cross section fiber
WO1995014799A1 (en) * 1993-11-22 1995-06-01 Wellman, Inc. Method of forming self-texturing filaments and resulting self-texturing filaments
US5510183A (en) * 1993-11-22 1996-04-23 Wellman, Inc. Method of forming self-texturing filaments and resulting self-texturing filaments
US5531951A (en) * 1993-11-22 1996-07-02 Wellman, Inc. Method of forming staple fibers from self-texturing filaments
US5614296A (en) * 1993-11-22 1997-03-25 Wellman, Inc. Resilient molded preform made from staple fibers of self-texturing filaments
US6465096B1 (en) 1996-08-22 2002-10-15 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6617025B1 (en) 1996-08-22 2003-09-09 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6352774B1 (en) 1996-08-22 2002-03-05 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6387493B1 (en) 1996-08-22 2002-05-14 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6403217B1 (en) 1996-08-22 2002-06-11 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6426140B1 (en) 1996-08-22 2002-07-30 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6436518B1 (en) 1996-08-22 2002-08-20 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6451428B1 (en) 1996-08-22 2002-09-17 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6342299B1 (en) * 1996-08-22 2002-01-29 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6468653B1 (en) 1996-08-22 2002-10-22 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6492023B1 (en) 1996-08-22 2002-12-10 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6495256B1 (en) 1996-08-22 2002-12-17 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6497955B1 (en) 1996-08-22 2002-12-24 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6509093B1 (en) 1996-08-22 2003-01-21 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use bundles
US6761957B1 (en) 1996-08-22 2004-07-13 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6352664B1 (en) 1996-08-22 2002-03-05 Clemson University Research Foundation Process of making a bundle of synthetic fibers
US6610402B2 (en) 1996-08-22 2003-08-26 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US20070254057A1 (en) * 1999-12-02 2007-11-01 Grinshpun Vyacheslav D Hollow strandfoam and preparation thereof
US20050095312A1 (en) * 2000-07-10 2005-05-05 Invista North America S.A R.L. Polymer filaments having profiled cross-section
US20070231519A1 (en) * 2001-05-08 2007-10-04 Wellman, Inc. Method and Apparatus for High Denier Hollow Spiral Fiber
US20060014015A1 (en) * 2001-05-08 2006-01-19 Travelute Frederick L Method and apparatus for high denier hollow spiral fiber
US6797209B2 (en) 2001-05-08 2004-09-28 Wellman, Inc. Method and apparatus for high denier hollow spiral fiber
US20050037196A1 (en) * 2001-05-08 2005-02-17 Travelute Frederick L. Method and apparatus for high denier hollow spiral fiber
US6746230B2 (en) 2001-05-08 2004-06-08 Wellman, Inc. Apparatus for high denier hollow spiral fiber
US20030118763A1 (en) * 2001-05-08 2003-06-26 Travelute Frederick L. Method and apparatus for high denier hollow spiral fiber
US7229688B2 (en) 2001-05-08 2007-06-12 Wellman, Inc. Method and apparatus for high denier hollow spiral fiber
US7001664B2 (en) 2001-05-08 2006-02-21 Wellman, Inc. Method and apparatus for high denier hollow spiral fiber
US20030114068A1 (en) * 2001-12-17 2003-06-19 Clemson University Research Foundation Article of manufacture useful as wallboard and a method for the making thereof
US6682672B1 (en) 2002-06-28 2004-01-27 Hercules Incorporated Process for making polymeric fiber
US20050249950A1 (en) * 2002-11-19 2005-11-10 Industrial Technology Research Institute Functional composite fiber and preparation thereof and spinneret for preparing the same
US20050147788A1 (en) * 2003-11-19 2005-07-07 Invista North America S.A R.L. Spinneret plate for producing a bulked continuous filament having a three-sided exterior cross-section and a convex six-sided central void
US20180352837A1 (en) * 2014-03-18 2018-12-13 Rustichella D'abruzzo S.P.A. Spaghetti-like long pasta shape and relative production device
US10485251B2 (en) * 2014-03-18 2019-11-26 Rustichella D'abruzzo S.P.A. Spaghetti-like long pasta shape and relative production device

Similar Documents

Publication Publication Date Title
US3405424A (en) Device and process for the manufacture of hollow synthetic fibers
US3716317A (en) Pack for spinning heterofilament fibers
US3500498A (en) Apparatus for the manufacture of conjugated sheath-core type composite fibers
US3118012A (en) Melt spinning process
US3558420A (en) Hollow filaments
DE1158205B (en) Spinning head with front plate and rear plate
US4307054A (en) Process for the production of bi-component yarns
US3109195A (en) Spinneret plate
US3095607A (en) Spinneret assembly
GB1194406A (en) Device for producing Synthetic Fibres
US3272901A (en) Textile filament having apparent variable denier
DE1435466A1 (en) Process for the production of textile fiber products
US3541198A (en) Process for manufacturing composite filaments
US3780149A (en) Conjugate spinning process
EP0455897B1 (en) Apparatus for the preparation of very fine fibres
US3640670A (en) Spinnerette for extruding t-shaped filaments
US4357290A (en) Splittable conjugate yarn
US3728428A (en) Process for producing hollow filaments
GB1386406A (en) Melt spinning of synthetic textile filaments
EP0491012B1 (en) Process and device for making synthetic threads or fibres from polymers, especially polyamide, polyester or polypropylene
GB1150399A (en) Spinning of Conjugate Filaments
JPH02289107A (en) Melt-blowing spinning device
US4514350A (en) Method for melt spinning polyester filaments
CN115701842A (en) Random multi-color fiber and preparation method thereof
GB1060337A (en) Production of multi-component fibres