US3406363A - Multicolored micromagnets - Google Patents

Multicolored micromagnets Download PDF

Info

Publication number
US3406363A
US3406363A US553087A US55308766A US3406363A US 3406363 A US3406363 A US 3406363A US 553087 A US553087 A US 553087A US 55308766 A US55308766 A US 55308766A US 3406363 A US3406363 A US 3406363A
Authority
US
United States
Prior art keywords
micromagnets
particles
color
magnetic
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US553087A
Inventor
Clarence R Tate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FAIRFIELD NATIONAL BANK SOUTHEAST 3RD AND DELAWARE STREET WAYNE IL A NATIONAL BANKING CORP
Original Assignee
Clarence R. Tate
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarence R. Tate filed Critical Clarence R. Tate
Priority to US553087A priority Critical patent/US3406363A/en
Priority to US708270A priority patent/US3460248A/en
Application granted granted Critical
Publication of US3406363A publication Critical patent/US3406363A/en
Anticipated expiration legal-status Critical
Assigned to FAIRFIELD NATIONAL BANK, FAIRFIELD, WAYNE COUNTY, ILLINOIS, A NATIONAL BANKING CORP. reassignment FAIRFIELD NATIONAL BANK, FAIRFIELD, WAYNE COUNTY, ILLINOIS, A NATIONAL BANKING CORP. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZYEXX, INC.,
Assigned to FAIRFIELD NATIONAL BANK, SOUTHEAST 3RD AND DELAWARE STREET, WAYNE, IL A NATIONAL BANKING CORP. reassignment FAIRFIELD NATIONAL BANK, SOUTHEAST 3RD AND DELAWARE STREET, WAYNE, IL A NATIONAL BANKING CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ZZEXX, INC., FORMERLY THALATTA, INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • G09F9/375Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements the position of the elements being controlled by the application of a magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM

Definitions

  • the particles are made to possess a low volumetric magnetization so that their magnetic strength is not sufiicient to cause a magnetic interaction when in close association with each other, which would prevent selective orientation by an activating external magnetic force, and a magnetic field of opposite polarity applied to a portion of the surface reorients the affected particles with their secondcolor poles exposed to view thereby forming a visibly distinct pattern.
  • the present invention provides new magnetic particles having two or more colors for use in magnetically actuated visual display devices.
  • the invention further provides an improved method for the manufacture of such particles, which method permits high production rates.
  • tiny magnetic particles are provided which have more than two colors, and rnu-lti-color visual displays are provided using such particles.
  • FIGURE 1 is a magnified perspective view of a twocolored magnetically orientable particle, and;
  • FIGURES 2 and 3 are magnified views in elevation of magnetically orientable differently shaped particles having three different color zones.
  • the magnetic orientation of the several particles is illustrated by the arrow in each of the figures, the arrowhead in each instance, for convenience, indicating the north pole.
  • a diluent or extender which may also serve as a binder for the powdered magnetic material.
  • the tiny particles are conveniently described as having a constant magnetization vector, the term including both direction and magnitude.
  • the direction of magneti zation i.e., the permanent magnetic axis, may have any desired relationship to the surface color zones, as will be further described.
  • the magnetic particles shall be referred to hereinafter as micromagnets.
  • micromagnets it is preferred to suspend the micromagnets in a suspending fiuid in which the micromagnets will rotate therein upon the application of a magnetic field. It is desirable to provide this fluid with a viscosity and thixotropy such that a certain minimum force must be applied in order to rotate the micromagnets. Such viscosity and thixotropy provide a degree of stability to the display device, minimizing unwanted disorientation of the micromagnets. Finely divided magnesium aluminum silicate (Bentone) may be dispersed in a light oil, for example, to provide the desired viscosity and thixotropy.
  • Micromagnets can be manufactured rapidly and economically by forming appropriately colored compositions containing magnetizable material into thin flat sheets made up of two or more distinctly colored layers.
  • different colored hardenable solutions or suspensions can be cast successively onto a smooth carrier web or other suitable casting surface to form a layered sheet.
  • the sheet is subjected to a strong magnetic field to magnetize the magnetizable material, hardened, and broken up into a finely divided state by impacting in an agitator or in other suitable fragmentizer such as a mechanical blender.
  • the order of these steps may be interchanged if desired.
  • Hardening can be accomplished by curing and/or drying the compositions until relatively brittle.
  • micromagnet 10 shown in FIGURE 1 has a first color 12 adjacent the north pole and a different color 14 adjacent the south pole.
  • FIGURE 2 an edge view of a three-colored micromagnet 16 which may be made by a similar procedure to that just described.
  • Micromagnet 16 is provided with a first color 18, for example blue, on the surface adjacent to the north pole and second color 20, for example white, on the surface adjacent the south pole. Sandwiched between layers 18 and 20 is a third colored layer 22, for example red.
  • a first color for example blue
  • second color for example white
  • a third colored layer 22 Sandwiched between layers 18 and 20 is a third colored layer 22, for example red.
  • micromagnet 16 When used in a display device micromagnet 16 will present its blue colored surface when the south pole of a magnet is passed over the display device and its white colored surface when a north pole of a magnet is passed in front of the display device.
  • a magnet having closely adjacent north and south poles, passed over the surface will orient the micromagnets between its poles to an edgewise position to display a mark of a third color, red.
  • the colors may be selected to produce other colors in combination.
  • a yellow layer and a blue layer produces green when oriented to blend, and shades and blends may be also produced by orienting the micromagnets to intermediate degrees, the activating magnetic force in this case being of a strength and duration in'sutficient to cause a full or orientation.
  • the micromagnet of FIGURE 3 is spherical, three colored,.and can be similarly actuated. Three or more colored micromagnets can also be made in other shapes such as cubical, cylindrical, etc., if desired. Various methods for forming such micromagnets such as extrusion and cutting, etc., will be apparent to those skilled in the art.
  • micromagnets of this invention may be carried in a liquid suspension medium or used in dry powder form and the external activating magnetic force may be that from a permanent magnet or from an electrical field.
  • the micromagnets may be spread dry on a sheet of paper,
  • an external activating magnetic force passed under the carrier to produce a visual display.
  • Such axes may be of equal or, more preferably, of differing strengths, thus making it possible to control the orientation of the particles in more than one direction.
  • the same effect can be produced by forming two or more sheets of contrasting color, magnetizing the sheets in different directions, then laminating the sheets and fracturing the sheets to produce particles having multiple magnetic axes.
  • particles having three color zones could be formed in which the two outer zones are white and the middle zone is black having magnetic axes parallel to the layers.
  • Such particles when lying at random would present a predominantly white viewing surface on which a black line could be produced by applying to the surface thereof either a north or south pole magnet.
  • the magnetic strength of the particles can be varied by changing the proportion or the type of magnetizable material added, or by varying the strength of the magnetizing field.
  • the tendency to cluster can be reduced by using a more viscous liquid.
  • EXAMPLE I Color coded micromagnets were prepared with a binder of lacquer containing appropriate color pigments.
  • the lacquer was a widely marketed type containing cellulose nitrate, ester gum, plasticizer, glycol esters, alcohols, aromatic and aliphatic hydrocarbons and was slightly thinned with lacquer thinner.
  • a white portion contained 60 parts of lacquer, and 50 parts of titanium dioxide pigment.
  • a red portion contained 75 parts of the lacquer and parts of red pigment.
  • a black portion contained 60 parts of lacquer, 20 parts of carbon black, and 10 parts of powdered barium ferrite. Corn starch, added to the blends, will provide additional thickening, if desired.
  • compositions of lighter viscosity can be sprayed or otherwise coated.
  • the dried sheet was made up of a first layer /2 mil thick of white, a central layer of mil of red, and a third layer of A mil of the black, the layers being parallel to each other.
  • Micromagnets with more than three color zones can be obtained from a sheet having additional other colored layers and two color micromagnets can be made in this manner from a sheet having laminations with only two contrasting colors.
  • the composition consisting of parts of liquid epoxy resin to which is added .35 parts of liquid curing agent just prior to coating and thoroughly mixed with this is 100 parts of titanium dioxide.
  • the epoxy resin has a viscosity of -210 cps. at 77 F. and the curing agent has a viscosity of 150-400 cps. at 77 F.
  • the mixture is then spread in an even layer to a thickness of about 1 mil on a temporary carrier, such as a sheet of glass, the surface of which has been previously prepared with a film of mold releaseagent, and is permitted to cure either by heat or the passage of time to a hardened state.
  • the cured material is directionally magnetized by placing the sheet between the pole pieces of an electromagnet where it is subjected to a magnetic field which magnetizes the barium ferrite component. The sheet is removed from the temporary carrier by peeling and is then fragmented to a virtual powder under vigorous agitation. Any oversize micromagnets are screened out.
  • EXAMPLE III In another modification of the invention, color zones are produced on preformed magnetizable particles. Barium ferrite is first well mixed with plaster of Paris and the mixture is made into a sprayable slurry with water. It is then dispersed into small droplets by spraying from a spray gun, and the particles are allowed to fall through the air onto a soft collecting surface and there to harden by hydration or setting of the plaster. A quantity of tiny substantially spherical or spheroidal hard particles is obtained. The mass is screened to remove off-size particles.
  • the particles are pre-sized and colored over their entire surface with a yellow pigmented lacquer. This is done by dispersing the particles in the lacquer, considerably thinned, and spraying the mixture through a spray gun through the air onto a receiving surface, the lacquer coating on the particles surfaces drying sufiiciently while falling to avoid agglomeration.
  • a thin layer of diluted quick-drying paint having very finely ground pigment and of a contrasting color is spread on a flat paper surface and the spheroids dropped thereon with sparse distribution.
  • the paint wets and colors the lower surface area of the particles after which the paper, with the particles adhering in the paint to the surface, is subjected to magnetic flux as in Example I.
  • the particles are then snapped or brushed from the surface, tdhe retained paint on their surfaces being now virtually
  • the particles are, at this point, two-color micromagnets, which may be used to form a two-color display or the same coating procedure is repeated but with a different colored paint and using a strong magnetic field, such as that from a pole of a broad flat magnet placed under the receiving paper, to orient the falling micromagnets with their previously painted surfaces up.
  • the depth of the paint layer is less than the radius of the spheroids so that the central portions expose the first yellow color.
  • the double coated particles are then removed from the paper and magnetically orientable particles having three adjacent color zones bounded by parallel planes and magnetized in the direction of the color axis, i.e., perpendicular to the said planes, are thereby obtained.
  • Additional color zones may be provided by extensions of the procedures described and zones may be in any combination of colors or any relative widths desired. The same or different colors may be applied at opposite poles of the micromagnets. Micromagnets may be supplied with two, three, or more color zones depending somewhat on the particle size, the viscosity, surface tension and wetting characteristics of the paint, the thickness of the paint layers, etc.
  • EXAMPLE IV This composition was roll coated with a rotogravure 120 tri-helicoid roll at a rate of yards per minute onto a plastic release web. This coating was oven dried at 250 F. The coating had a dry weight of .00073 gram/cm? of area.
  • a black colored hardenable coating composition was prepared by mixing the following ingredients:
  • This composition was coated using the 80 tri-helicoid rotogravure roll over the white layer and oven dried at 250 F.
  • the black layer had a dry weight of 0.00065 gram/cm
  • the combined layers had a weight of 0.00138 gram/cm. and a calculated density of 1.77 grams per cc.
  • the combined layers had a barium ferrite content of 2.2%.
  • the hardened material was passed on the carrier web between the poles of an electromagnet, magnetized at 9000 gauss at a speed of 1 foot per second. Material was removed from the carrier web by flexing and air blasted and conveyed at high velocity through a tortuous path and impinged against itself and other obstructions until the average particle diameter was about 1 /2 times its thickness. Oversized particles were removed by screening.
  • a suspension in oil of the black and white micromagnets thus obtained was formed by mixing the particles into the following oily mixture:
  • the resin mixture had a calculated density of approximately 0.91 and a Brookfield viscosity of 140 centipoise.
  • An oil resin emulsion was formed by mixing 1 part by volume of the magnet contained oil mixture with 3.5 parts by volume of the resin. After mixing, an emulsion was formed in which the resin was a continuous phase having dispersed therein oil droplets averaging about 10 mils in diameter as a discontinuous phase. One or more colored micromagnets were contained within the prep0nderant number of oil droplets.
  • the emulsion was knife coated using a 0.025 setting on 2 mil hard aluminum foil precoated with a 2 mil thick black-pigmented vinyl acetate based coating. The coating was dried by passing high velocity room temperature air thereover until a surface skin was formed followed by air drying overnight.
  • Magnetically orientable micromagnets having at least three separate and distinct surface color zones and a constant magnetization vector, said magnetization vector being insufficient in strength to cause amon the micromagnets in close association a sufiicient magnetic interaction to prevent selective orientation by :an external activating magnetic force.
  • Magnetically orientable micromagnets having at least three separate and distinct surface color zones and a constant magnetization vector, said magnetization being insufficient in strength to cause among the micromagnets in close association in a liquid a sufiicient magnetic interaction to prevent selective orientation by an external activating magnetic force.
  • Magnetically orientable micromagnets having at least two separate and distinct surface color zones and a constant magnetization vector, said magnetization being insufiicient in strength to cause among the micromagnets in close association a sufiicient magnetic interaction to prevent selective orientation by an external activating magnetic force, said micromagnets having flat, generally parallel, top and bottom surfaces and irregularly shaped edges, the thickness of said particles between said top and bottom surfaces being less than the average dimension of said particles across the surfaces, said color zones being substantially parallel to said surfaces.
  • Micromagnets according to claim 3 comprising a hardened synthetic organic polymer containing finely divided barium ferrite.
  • Magnetically orientable micromagnets having at least two separate and distinct surface color zones and a constant magnetization vector, said magnetization being insufficient in strength to cause among the micromagnets in close association in a liqud a sufiicient magneto interaction to prevent selective orientation by an external activating magnetic force, said micromagnets having flat, generally parallel, top and bottom surfaces and irregularly shaped edges, the thickness of said particles between said top and bottom surfaces being less than the average dimension of said particles across said surfaces and said magnetization vector being substantially normal to said surfaces.

Description

Oct 5, 1968 c. R. we 3,406,363
MULTICOLORED MICROMAGNETS Filed May 26, 1966 II/I/ I INVENTOR.
QAREIVCER 7'4 TE TOR/V193 United States Patent 3,406,363 MULTICOLORED MICROMAGNETS Clarence R. Tate, 307 E. Court St., Fairlield, Ill. 62837 Filed May 26, 1966, Ser. No. 553,087 6 Claims. (Cl. 335-302) This invention relates to improved micromagnets for magnetically actuatable visual display devices and methods for forming such micromagnets.
In U.S.Patent 3,036,388, since reissued as Re. 25,363 and Re. 25,822, I have described magnetic writing materials employing magnetically orientable color coded particles. The particles in a liquid suspending medium beneath a transparent face plate, for example, may be oriented with their first-color poles toward the viewing surface by passing over the surface a flat erasing magnet. The particles are made to possess a low volumetric magnetization so that their magnetic strength is not sufiicient to cause a magnetic interaction when in close association with each other, which would prevent selective orientation by an activating external magnetic force, and a magnetic field of opposite polarity applied to a portion of the surface reorients the affected particles with their secondcolor poles exposed to view thereby forming a visibly distinct pattern.
The present invention provides new magnetic particles having two or more colors for use in magnetically actuated visual display devices. The invention further provides an improved method for the manufacture of such particles, which method permits high production rates. In a further embodiment of the invention, tiny magnetic particles are provided which have more than two colors, and rnu-lti-color visual displays are provided using such particles.
Further objects and advantages will be apparent from the accompanying detailed description and drawings wherein:
FIGURE 1 is a magnified perspective view of a twocolored magnetically orientable particle, and;
FIGURES 2 and 3 are magnified views in elevation of magnetically orientable differently shaped particles having three different color zones.
The magnetic orientation of the several particles is illustrated by the arrow in each of the figures, the arrowhead in each instance, for convenience, indicating the north pole. Although other magnetic materials are also useful, I prefer to use small proportions of magnetic materials of high retentivity such as barium ferrite, together with a diluent or extender which may also serve as a binder for the powdered magnetic material.
The tiny particles are conveniently described as having a constant magnetization vector, the term including both direction and magnitude. The direction of magneti zation, i.e., the permanent magnetic axis, may have any desired relationship to the surface color zones, as will be further described. The magnetic particles shall be referred to hereinafter as micromagnets.
Micromagnets small enough to pass through a 325- mesh Tyler standard screen, i.e. about 45 microns, provide a smooth uniform appearance at the viewing surface since the individual micromagnets cannot be resolved by the eye. Micromagnets not larger than about 100 microns are preferred but micromagnets up to about 2000 microns are generally useful.
It is preferred to suspend the micromagnets in a suspending fiuid in which the micromagnets will rotate therein upon the application of a magnetic field. It is desirable to provide this fluid with a viscosity and thixotropy such that a certain minimum force must be applied in order to rotate the micromagnets. Such viscosity and thixotropy provide a degree of stability to the display device, minimizing unwanted disorientation of the micromagnets. Finely divided magnesium aluminum silicate (Bentone) may be dispersed in a light oil, for example, to provide the desired viscosity and thixotropy.
Micromagnets can be manufactured rapidly and economically by forming appropriately colored compositions containing magnetizable material into thin flat sheets made up of two or more distinctly colored layers. For example, different colored hardenable solutions or suspensions can be cast successively onto a smooth carrier web or other suitable casting surface to form a layered sheet. The sheet is subjected to a strong magnetic field to magnetize the magnetizable material, hardened, and broken up into a finely divided state by impacting in an agitator or in other suitable fragmentizer such as a mechanical blender. The order of these steps may be interchanged if desired. Hardening can be accomplished by curing and/or drying the compositions until relatively brittle. Although it might be expected that violently reducing the sheet to a virtual powder would result in particles either singly colored or unusable because of randomly different characteristics, it has been found that progressive fragmentation tends to break the sheet across the broad dimensions, which provide the lines of least resistance to fracture. Each micromagnet therefore tends to retain its individual magnetic and color zone integrity so long as fragmentation is stopped before the micromagnets are reduced in size and dimension to less than the thickness of the sheet. The micromagnet shown in FIG- URE 1 is typical of those produced by this method. As shown, the individual micromagnets have fiat, generally parallel top and bottom surfaces and irregularly shaped edges. The particles illustrated are magnetized so that the magnetic axis of each micromagnet is substantially normal to the flat parallel surfaces. Micromagnet 10 shown in FIGURE 1 has a first color 12 adjacent the north pole and a different color 14 adjacent the south pole.
In FIGURE 2 is shown an edge view of a three-colored micromagnet 16 which may be made by a similar procedure to that just described. Micromagnet 16 is provided with a first color 18, for example blue, on the surface adjacent to the north pole and second color 20, for example white, on the surface adjacent the south pole. Sandwiched between layers 18 and 20 is a third colored layer 22, for example red. When used in a display device micromagnet 16 will present its blue colored surface when the south pole of a magnet is passed over the display device and its white colored surface when a north pole of a magnet is passed in front of the display device. A magnet having closely adjacent north and south poles, passed over the surface, will orient the micromagnets between its poles to an edgewise position to display a mark of a third color, red. The colors may be selected to produce other colors in combination. For example, a yellow layer and a blue layer produces green when oriented to blend, and shades and blends may be also produced by orienting the micromagnets to intermediate degrees, the activating magnetic force in this case being of a strength and duration in'sutficient to cause a full or orientation.
The micromagnet of FIGURE 3 is spherical, three colored,.and can be similarly actuated. Three or more colored micromagnets can also be made in other shapes such as cubical, cylindrical, etc., if desired. Various methods for forming such micromagnets such as extrusion and cutting, etc., will be apparent to those skilled in the art.
The micromagnets of this invention may be carried in a liquid suspension medium or used in dry powder form and the external activating magnetic force may be that from a permanent magnet or from an electrical field. The micromagnets may be spread dry on a sheet of paper,
for example, and an external activating magnetic force passed under the carrier to produce a visual display.
By subjecting a sheet containing magnetizable material to a magnetic field first in one direction and then in another, it is possible to produce particles having more than one magnetic axis. Such axes may be of equal or, more preferably, of differing strengths, thus making it possible to control the orientation of the particles in more than one direction. The same effect can be produced by forming two or more sheets of contrasting color, magnetizing the sheets in different directions, then laminating the sheets and fracturing the sheets to produce particles having multiple magnetic axes.
In some cases it is desirable to magnetize the particles in a direction other than parallel to the color axes, for example, in a direction normal thereto. For example, particles having three color zones could be formed in which the two outer zones are white and the middle zone is black having magnetic axes parallel to the layers. Such particles when lying at random would present a predominantly white viewing surface on which a black line could be produced by applying to the surface thereof either a north or south pole magnet.
The magnetic strength of the particles can be varied by changing the proportion or the type of magnetizable material added, or by varying the strength of the magnetizing field. In the case of particles suspended within a liquid medium, the tendency to cluster can be reduced by using a more viscous liquid.
The following examples, in which proportions are given by weight unless otherwise indicated, will serve to illustrate but not limit the invention. Also the colors mentioned and the layer thickness given are illustrative and may be varied to produce displays having any desired combinations of colors and sharpness of images.
EXAMPLE I Color coded micromagnets were prepared with a binder of lacquer containing appropriate color pigments. The lacquer was a widely marketed type containing cellulose nitrate, ester gum, plasticizer, glycol esters, alcohols, aromatic and aliphatic hydrocarbons and was slightly thinned with lacquer thinner. A white portion contained 60 parts of lacquer, and 50 parts of titanium dioxide pigment. A red portion contained 75 parts of the lacquer and parts of red pigment. A black portion contained 60 parts of lacquer, 20 parts of carbon black, and 10 parts of powdered barium ferrite. Corn starch, added to the blends, will provide additional thickening, if desired.
The several blends were then coated in successive layers on a polyethylene carrier with intermediate drying. In spreading, the depth of each layer was controlled by drawing the sheet between spaced bars although other means such as the use of rollers are also suitable. Compositions of lighter viscosity can be sprayed or otherwise coated. The dried sheet was made up of a first layer /2 mil thick of white, a central layer of mil of red, and a third layer of A mil of the black, the layers being parallel to each other.
Several sheets of the coated carrier were stacked, each with the same color up, between the poles of a large electromagnet where they were subjected to a strong field to saturate the magnetizable barium ferrite component. The sheets were then peeled from the carrier and broken up by vigorous agitation by impacting in an agitator or in a mechanical blender into micromagnets capable of passing through a 325 mesh Tyler screen.
Micromagnets with more than three color zones can be obtained from a sheet having additional other colored layers and two color micromagnets can be made in this manner from a sheet having laminations with only two contrasting colors.
EXAMPLE II A curable epoxy resin composition is used as a binder,
4 the composition consisting of parts of liquid epoxy resin to which is added .35 parts of liquid curing agent just prior to coating and thoroughly mixed with this is 100 parts of titanium dioxide. The epoxy resin has a viscosity of -210 cps. at 77 F. and the curing agent has a viscosity of 150-400 cps. at 77 F. The mixture is then spread in an even layer to a thickness of about 1 mil on a temporary carrier, such as a sheet of glass, the surface of which has been previously prepared with a film of mold releaseagent, and is permitted to cure either by heat or the passage of time to a hardened state. A second layer, preferably thicker, from a composition of 100 parts of epoxy resin, 35 parts of curing agent, 15 parts of carbon black, and 15 parts of powdered barium ferrite, is then applied and similarly cured. Then another thin layer from a composition like that of the initial layer, except containing 40 parts of a red coloring pigment instead of white, is applied and permitted to cure. The cured material is directionally magnetized by placing the sheet between the pole pieces of an electromagnet where it is subjected to a magnetic field which magnetizes the barium ferrite component. The sheet is removed from the temporary carrier by peeling and is then fragmented to a virtual powder under vigorous agitation. Any oversize micromagnets are screened out.
EXAMPLE III In another modification of the invention, color zones are produced on preformed magnetizable particles. Barium ferrite is first well mixed with plaster of Paris and the mixture is made into a sprayable slurry with water. It is then dispersed into small droplets by spraying from a spray gun, and the particles are allowed to fall through the air onto a soft collecting surface and there to harden by hydration or setting of the plaster. A quantity of tiny substantially spherical or spheroidal hard particles is obtained. The mass is screened to remove off-size particles.
The particles are pre-sized and colored over their entire surface with a yellow pigmented lacquer. This is done by dispersing the particles in the lacquer, considerably thinned, and spraying the mixture through a spray gun through the air onto a receiving surface, the lacquer coating on the particles surfaces drying sufiiciently while falling to avoid agglomeration.
A thin layer of diluted quick-drying paint having very finely ground pigment and of a contrasting color is spread on a flat paper surface and the spheroids dropped thereon with sparse distribution. The paint wets and colors the lower surface area of the particles after which the paper, with the particles adhering in the paint to the surface, is subjected to magnetic flux as in Example I. When most of the volatile solvent is evaporated from the paint, the particles are then snapped or brushed from the surface, tdhe retained paint on their surfaces being now virtually The particles are, at this point, two-color micromagnets, which may be used to form a two-color display or the same coating procedure is repeated but with a different colored paint and using a strong magnetic field, such as that from a pole of a broad flat magnet placed under the receiving paper, to orient the falling micromagnets with their previously painted surfaces up. The depth of the paint layer is less than the radius of the spheroids so that the central portions expose the first yellow color. The double coated particles are then removed from the paper and magnetically orientable particles having three adjacent color zones bounded by parallel planes and magnetized in the direction of the color axis, i.e., perpendicular to the said planes, are thereby obtained.
Additional color zones may be provided by extensions of the procedures described and zones may be in any combination of colors or any relative widths desired. The same or different colors may be applied at opposite poles of the micromagnets. Micromagnets may be supplied with two, three, or more color zones depending somewhat on the particle size, the viscosity, surface tension and wetting characteristics of the paint, the thickness of the paint layers, etc.
EXAMPLE IV This composition was roll coated with a rotogravure 120 tri-helicoid roll at a rate of yards per minute onto a plastic release web. This coating was oven dried at 250 F. The coating had a dry weight of .00073 gram/cm? of area. A black colored hardenable coating composition was prepared by mixing the following ingredients:
Parts Styrene butadiene copolymer containing 40% carbon black (Goodyear Pliolite 2C1S5) Barium ferrite containing polymer (.224 part barium ferrite, 0071 part clear styrene butadiene copolymer Pliolite S5-E, 0.295 part toluol) 0.59 Toluol 14.5
This composition was coated using the 80 tri-helicoid rotogravure roll over the white layer and oven dried at 250 F. The black layer had a dry weight of 0.00065 gram/cm The combined layers had a weight of 0.00138 gram/cm. and a calculated density of 1.77 grams per cc. The combined layers had a barium ferrite content of 2.2%. The hardened material was passed on the carrier web between the poles of an electromagnet, magnetized at 9000 gauss at a speed of 1 foot per second. Material was removed from the carrier web by flexing and air blasted and conveyed at high velocity through a tortuous path and impinged against itself and other obstructions until the average particle diameter was about 1 /2 times its thickness. Oversized particles were removed by screening. A suspension in oil of the black and white micromagnets thus obtained was formed by mixing the particles into the following oily mixture:
Parts Low molecular weight chlorot-rifiuoroethylene polymer having a density of 1.9 and a Brookfield viscosity at 72 F., #1 spindle, r.p.m., of 124 centipoise (Kel F Oil #3, 3M Co.) 300.00 Oil having a density of 0.85 and a Brookfield viscosity at 72 F. of 24 centipoise #1 spindle, 60 r.p.m. (Retrax, Std. Oil Co.) 269.00 Purified Bentonite with an organic base, gelling agent (Bentone 38, Nat. Lead Co.) 1.00 Stearic acid 4.75
The resin mixture had a calculated density of approximately 0.91 and a Brookfield viscosity of 140 centipoise. An oil resin emulsion was formed by mixing 1 part by volume of the magnet contained oil mixture with 3.5 parts by volume of the resin. After mixing, an emulsion was formed in which the resin was a continuous phase having dispersed therein oil droplets averaging about 10 mils in diameter as a discontinuous phase. One or more colored micromagnets were contained within the prep0nderant number of oil droplets. The emulsion was knife coated using a 0.025 setting on 2 mil hard aluminum foil precoated with a 2 mil thick black-pigmented vinyl acetate based coating. The coating was dried by passing high velocity room temperature air thereover until a surface skin was formed followed by air drying overnight.
What is claimed is:
1. Magnetically orientable micromagnets having at least three separate and distinct surface color zones and a constant magnetization vector, said magnetization vector being insufficient in strength to cause amon the micromagnets in close association a sufiicient magnetic interaction to prevent selective orientation by :an external activating magnetic force.
2. Magnetically orientable micromagnets having at least three separate and distinct surface color zones and a constant magnetization vector, said magnetization being insufficient in strength to cause among the micromagnets in close association in a liquid a sufiicient magnetic interaction to prevent selective orientation by an external activating magnetic force.
3. Magnetically orientable micromagnets having at least two separate and distinct surface color zones and a constant magnetization vector, said magnetization being insufiicient in strength to cause among the micromagnets in close association a sufiicient magnetic interaction to prevent selective orientation by an external activating magnetic force, said micromagnets having flat, generally parallel, top and bottom surfaces and irregularly shaped edges, the thickness of said particles between said top and bottom surfaces being less than the average dimension of said particles across the surfaces, said color zones being substantially parallel to said surfaces.
4. Micromagnets according to claim 3 wherein said magnetization vector is substantially normal to said surfaces.
5. Micromagnets according to claim 3 comprising a hardened synthetic organic polymer containing finely divided barium ferrite.
6. Magnetically orientable micromagnets having at least two separate and distinct surface color zones and a constant magnetization vector, said magnetization being insufficient in strength to cause among the micromagnets in close association in a liqud a sufiicient magneto interaction to prevent selective orientation by an external activating magnetic force, said micromagnets having flat, generally parallel, top and bottom surfaces and irregularly shaped edges, the thickness of said particles between said top and bottom surfaces being less than the average dimension of said particles across said surfaces and said magnetization vector being substantially normal to said surfaces.
References Cited UNITED STATES PATENTS 3,124,725 3/ 1964 Leguillon 335-303 FOREIGN PATENTS 102,151 7/ 1963 Norway.
GEORGE HARRIS, Primary Examiner.

Claims (1)

1. MAGNETICALLY ORIENTABLE MICROMAGNETS HAVING AT LEAST THREE SEPARATE AND DISTINCT SURFACE COLOR ZONES AND A CONSTANT MAGNETIZATION VECTOR, SAID MAGNETIZATION VECTOR BEING INSUFFICIENT IN STRENGTH TO CAUSE AMONG THE MICROMAGNETS IN CLOSE ASSOCIATION A SUFFICIENT MAGNETIC INTERACTION TO PREVENT SELECTIVE ORIENTATION BY AN EXTERNAL ACTIVATING MAGNETIC FORCE.
US553087A 1966-05-26 1966-05-26 Multicolored micromagnets Expired - Lifetime US3406363A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US553087A US3406363A (en) 1966-05-26 1966-05-26 Multicolored micromagnets
US708270A US3460248A (en) 1966-05-26 1968-02-26 Method for making micromagnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US553087A US3406363A (en) 1966-05-26 1966-05-26 Multicolored micromagnets

Publications (1)

Publication Number Publication Date
US3406363A true US3406363A (en) 1968-10-15

Family

ID=24208075

Family Applications (1)

Application Number Title Priority Date Filing Date
US553087A Expired - Lifetime US3406363A (en) 1966-05-26 1966-05-26 Multicolored micromagnets

Country Status (1)

Country Link
US (1) US3406363A (en)

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460248A (en) * 1966-05-26 1969-08-12 Clarence R Tate Method for making micromagnets
US3873954A (en) * 1974-03-07 1975-03-25 Max Baermann Light colored magnetic rubber
USRE29451E (en) * 1974-03-07 1977-10-18 Light colored magnetic rubber
US4457723A (en) * 1981-06-11 1984-07-03 Thalatta, Inc. Color changeable fabric
US4659619A (en) * 1981-06-11 1987-04-21 Thalatta, Inc. Color changeable fabric
US5347253A (en) * 1993-04-12 1994-09-13 Magx Co., Ltd. Attracting body utilizing magnet
US5930026A (en) * 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5961804A (en) * 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6017584A (en) * 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6067185A (en) * 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6097531A (en) * 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US6110538A (en) * 1998-11-25 2000-08-29 Xerox Corporation Method of making a gyricon display using magnetic latching
US6120588A (en) * 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6120839A (en) * 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6124851A (en) * 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6147791A (en) * 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US6174153B1 (en) 1998-11-25 2001-01-16 Xerox Corporation Apparatus for making uniformly magnetized elements for a gyricon display
US6197228B1 (en) 1998-11-25 2001-03-06 Xerox Corporation Method of making a gyricon display using magnetic latching
US6196848B1 (en) * 1997-09-12 2001-03-06 Takara Co., Ltd. Infant toy for drawing colored picture
US6211998B1 (en) 1998-11-25 2001-04-03 Xerox Corporation Magnetic unlatching and addressing of a gyricon display
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
US6249271B1 (en) 1995-07-20 2001-06-19 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6251329B1 (en) 1998-11-25 2001-06-26 Xerox Corporation Method of making a gyricon display using magnetic latching
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
US6262707B1 (en) 1998-11-25 2001-07-17 Xerox Corporation Gyricon displays utilizing magnetic addressing and latching mechanism
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
EP1120769A2 (en) * 2000-01-26 2001-08-01 Kabushiki Kaisha Pilot Magnetic material-inverting display panel
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US6376828B1 (en) 1998-10-07 2002-04-23 E Ink Corporation Illumination system for nonemissive electronic displays
US6377387B1 (en) 1999-04-06 2002-04-23 E Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6440252B1 (en) 1999-12-17 2002-08-27 Xerox Corporation Method for rotatable element assembly
US6445489B1 (en) 1998-03-18 2002-09-03 E Ink Corporation Electrophoretic displays and systems for addressing such displays
US6473072B1 (en) 1998-05-12 2002-10-29 E Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6480182B2 (en) 1997-03-18 2002-11-12 Massachusetts Institute Of Technology Printable electronic display
US20020171910A1 (en) * 2001-05-15 2002-11-21 Pullen Anthony Edward Electrophoretic displays containing magnetic particles
US6485280B1 (en) 1999-07-23 2002-11-26 Xerox Corporation Methods and apparatus for fabricating bichromal elements
US6498674B1 (en) 2000-04-14 2002-12-24 Xerox Corporation Rotating element sheet material with generalized containment structure
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6504525B1 (en) 2000-05-03 2003-01-07 Xerox Corporation Rotating element sheet material with microstructured substrate and method of use
US20030011868A1 (en) * 1998-03-18 2003-01-16 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US6515649B1 (en) 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US6518949B2 (en) 1998-04-10 2003-02-11 E Ink Corporation Electronic displays using organic-based field effect transistors
US6538801B2 (en) 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US6542283B1 (en) 1998-11-25 2003-04-01 Xerox Corporation Gyricon displays utilizing magnetic elements and magnetic trapping
US6545671B1 (en) 2000-03-02 2003-04-08 Xerox Corporation Rotating element sheet material with reversible highlighting
US6665042B1 (en) 2000-05-16 2003-12-16 The University Of Rochester Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same
USD485294S1 (en) 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US6690350B2 (en) 2001-01-11 2004-02-10 Xerox Corporation Rotating element sheet material with dual vector field addressing
US6693620B1 (en) 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US6704133B2 (en) 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US6727881B1 (en) 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US20040196226A1 (en) * 2003-04-02 2004-10-07 Kosc Tanya Z. Optical devices having flakes with angularly dependent optical properties in response to an alternating current electric field when the flakes are suspended in a host fluid to provide a flake/fluid system which is conductive
US20040233508A1 (en) * 2003-05-20 2004-11-25 Kosc Tanya Z. Electrically addressable optical devices using a system of composite layered flakes suspended in a fluid host to obtain angularly dependent optical effects
US6839158B2 (en) 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6842657B1 (en) 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6847347B1 (en) 2000-08-17 2005-01-25 Xerox Corporation Electromagnetophoretic display system and method
US6864875B2 (en) 1998-04-10 2005-03-08 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US6865010B2 (en) 2001-12-13 2005-03-08 E Ink Corporation Electrophoretic electronic displays with low-index films
US6897848B2 (en) 2001-01-11 2005-05-24 Xerox Corporation Rotating element sheet material and stylus with gradient field addressing
US6970154B2 (en) 2001-01-11 2005-11-29 Jpmorgan Chase Bank Fringe-field filter for addressable displays
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US7015892B1 (en) 1999-09-10 2006-03-21 Takara Co., Ltd. Magnetophoretic display panel
US7038655B2 (en) 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
US7071913B2 (en) 1995-07-20 2006-07-04 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US7109968B2 (en) 1995-07-20 2006-09-19 E Ink Corporation Non-spherical cavity electrophoretic displays and methods and materials for making the same
US7167155B1 (en) 1995-07-20 2007-01-23 E Ink Corporation Color electrophoretic displays
US20070052757A1 (en) * 1996-07-19 2007-03-08 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US7230750B2 (en) 2001-05-15 2007-06-12 E Ink Corporation Electrophoretic media and processes for the production thereof
US7242513B2 (en) 1997-08-28 2007-07-10 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7247379B2 (en) 1997-08-28 2007-07-24 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US7312916B2 (en) 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
US20080150888A1 (en) * 1995-07-20 2008-06-26 E Ink Corporation Electrostatically addressable electrophoretic display
US20080274445A1 (en) * 2004-01-29 2008-11-06 Kabushiki Kaisha Pilot Corporation (Also Trading As Pilot Corporation) Reversal Magnetic Display Panel
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7667684B2 (en) 1998-07-08 2010-02-23 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US20100283806A1 (en) * 1997-08-28 2010-11-11 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US7956841B2 (en) 1995-07-20 2011-06-07 E Ink Corporation Stylus-based addressing structures for displays
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US9664978B2 (en) 2002-10-16 2017-05-30 E Ink Corporation Electrophoretic displays
US11195480B2 (en) 2013-07-31 2021-12-07 E Ink Corporation Partial update driving methods for bistable electro-optic displays and display controllers using the same
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US11733580B2 (en) 2010-05-21 2023-08-22 E Ink Corporation Method for driving two layer variable transmission display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124725A (en) * 1964-03-10 Flexible plastic permanent magnets

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124725A (en) * 1964-03-10 Flexible plastic permanent magnets

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460248A (en) * 1966-05-26 1969-08-12 Clarence R Tate Method for making micromagnets
US3873954A (en) * 1974-03-07 1975-03-25 Max Baermann Light colored magnetic rubber
USRE29451E (en) * 1974-03-07 1977-10-18 Light colored magnetic rubber
US4457723A (en) * 1981-06-11 1984-07-03 Thalatta, Inc. Color changeable fabric
US4659619A (en) * 1981-06-11 1987-04-21 Thalatta, Inc. Color changeable fabric
US5347253A (en) * 1993-04-12 1994-09-13 Magx Co., Ltd. Attracting body utilizing magnet
US6249271B1 (en) 1995-07-20 2001-06-19 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US20080211765A1 (en) * 1995-07-20 2008-09-04 E Ink Corporation Stylus-based addressing structures for displays
US6017584A (en) * 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US8593718B2 (en) 1995-07-20 2013-11-26 E Ink Corporation Electro-osmotic displays and materials for making the same
US8384658B2 (en) 1995-07-20 2013-02-26 E Ink Corporation Electrostatically addressable electrophoretic display
US8305341B2 (en) 1995-07-20 2012-11-06 E Ink Corporation Dielectrophoretic displays
US6680725B1 (en) 1995-07-20 2004-01-20 E Ink Corporation Methods of manufacturing electronically addressable displays
US6120839A (en) * 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6124851A (en) * 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6515649B1 (en) 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US8089453B2 (en) 1995-07-20 2012-01-03 E Ink Corporation Stylus-based addressing structures for displays
US6727881B1 (en) 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US7956841B2 (en) 1995-07-20 2011-06-07 E Ink Corporation Stylus-based addressing structures for displays
US7791789B2 (en) 1995-07-20 2010-09-07 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US7746544B2 (en) 1995-07-20 2010-06-29 E Ink Corporation Electro-osmotic displays and materials for making the same
US7071913B2 (en) 1995-07-20 2006-07-04 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US20090040594A1 (en) * 1995-07-20 2009-02-12 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US7106296B1 (en) 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US20080150888A1 (en) * 1995-07-20 2008-06-26 E Ink Corporation Electrostatically addressable electrophoretic display
US7109968B2 (en) 1995-07-20 2006-09-19 E Ink Corporation Non-spherical cavity electrophoretic displays and methods and materials for making the same
US7391555B2 (en) 1995-07-20 2008-06-24 E Ink Corporation Non-spherical cavity electrophoretic displays and materials for making the same
US7167155B1 (en) 1995-07-20 2007-01-23 E Ink Corporation Color electrophoretic displays
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US6652075B2 (en) 1996-07-19 2003-11-25 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US20070052757A1 (en) * 1996-07-19 2007-03-08 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US20070057908A1 (en) * 1996-07-19 2007-03-15 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US7148128B2 (en) 1996-07-19 2006-12-12 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6538801B2 (en) 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US6422687B1 (en) 1996-07-19 2002-07-23 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6120588A (en) * 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US20040054031A1 (en) * 1996-07-19 2004-03-18 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US8035886B2 (en) 1996-07-19 2011-10-11 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US5930026A (en) * 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US6130773A (en) * 1996-10-25 2000-10-10 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US6980196B1 (en) 1997-03-18 2005-12-27 Massachusetts Institute Of Technology Printable electronic display
US5961804A (en) * 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6480182B2 (en) 1997-03-18 2002-11-12 Massachusetts Institute Of Technology Printable electronic display
US6392785B1 (en) 1997-08-28 2002-05-21 E Ink Corporation Non-spherical cavity electrophoretic displays and materials for making the same
US8441714B2 (en) 1997-08-28 2013-05-14 E Ink Corporation Multi-color electrophoretic displays
US7247379B2 (en) 1997-08-28 2007-07-24 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US20100283806A1 (en) * 1997-08-28 2010-11-11 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US9268191B2 (en) 1997-08-28 2016-02-23 E Ink Corporation Multi-color electrophoretic displays
US7242513B2 (en) 1997-08-28 2007-07-10 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US8593721B2 (en) 1997-08-28 2013-11-26 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US8213076B2 (en) 1997-08-28 2012-07-03 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6839158B2 (en) 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6067185A (en) * 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6196848B1 (en) * 1997-09-12 2001-03-06 Takara Co., Ltd. Infant toy for drawing colored picture
US20030011868A1 (en) * 1998-03-18 2003-01-16 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US6445489B1 (en) 1998-03-18 2002-09-03 E Ink Corporation Electrophoretic displays and systems for addressing such displays
US6704133B2 (en) 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US6753999B2 (en) 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US6518949B2 (en) 1998-04-10 2003-02-11 E Ink Corporation Electronic displays using organic-based field effect transistors
US8466852B2 (en) 1998-04-10 2013-06-18 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US6864875B2 (en) 1998-04-10 2005-03-08 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US6738050B2 (en) 1998-05-12 2004-05-18 E Ink Corporation Microencapsulated electrophoretic electrostatically addressed media for drawing device applications
US6473072B1 (en) 1998-05-12 2002-10-29 E Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US7667684B2 (en) 1998-07-08 2010-02-23 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
USD485294S1 (en) 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
US6376828B1 (en) 1998-10-07 2002-04-23 E Ink Corporation Illumination system for nonemissive electronic displays
US6262707B1 (en) 1998-11-25 2001-07-17 Xerox Corporation Gyricon displays utilizing magnetic addressing and latching mechanism
US6251329B1 (en) 1998-11-25 2001-06-26 Xerox Corporation Method of making a gyricon display using magnetic latching
US6174153B1 (en) 1998-11-25 2001-01-16 Xerox Corporation Apparatus for making uniformly magnetized elements for a gyricon display
US6542283B1 (en) 1998-11-25 2003-04-01 Xerox Corporation Gyricon displays utilizing magnetic elements and magnetic trapping
US6147791A (en) * 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US6211998B1 (en) 1998-11-25 2001-04-03 Xerox Corporation Magnetic unlatching and addressing of a gyricon display
US6110538A (en) * 1998-11-25 2000-08-29 Xerox Corporation Method of making a gyricon display using magnetic latching
US6097531A (en) * 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US6197228B1 (en) 1998-11-25 2001-03-06 Xerox Corporation Method of making a gyricon display using magnetic latching
US6377387B1 (en) 1999-04-06 2002-04-23 E Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6842657B1 (en) 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US7038655B2 (en) 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
US6693620B1 (en) 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US6485280B1 (en) 1999-07-23 2002-11-26 Xerox Corporation Methods and apparatus for fabricating bichromal elements
US7015892B1 (en) 1999-09-10 2006-03-21 Takara Co., Ltd. Magnetophoretic display panel
US6846377B2 (en) 1999-12-17 2005-01-25 Xerox Corporation System and method for rotatable element assembly and laminate substrate assembly
US6440252B1 (en) 1999-12-17 2002-08-27 Xerox Corporation Method for rotatable element assembly
EP1120769A3 (en) * 2000-01-26 2003-04-09 Kabushiki Kaisha Pilot Magnetic material-inverting display panel
EP1120769A2 (en) * 2000-01-26 2001-08-01 Kabushiki Kaisha Pilot Magnetic material-inverting display panel
US6545671B1 (en) 2000-03-02 2003-04-08 Xerox Corporation Rotating element sheet material with reversible highlighting
US6498674B1 (en) 2000-04-14 2002-12-24 Xerox Corporation Rotating element sheet material with generalized containment structure
US6504525B1 (en) 2000-05-03 2003-01-07 Xerox Corporation Rotating element sheet material with microstructured substrate and method of use
US6665042B1 (en) 2000-05-16 2003-12-16 The University Of Rochester Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same
US6894677B2 (en) 2000-08-17 2005-05-17 Xerox Corporation Electromagnetophoretic display system and method
US6847347B1 (en) 2000-08-17 2005-01-25 Xerox Corporation Electromagnetophoretic display system and method
US6690350B2 (en) 2001-01-11 2004-02-10 Xerox Corporation Rotating element sheet material with dual vector field addressing
US6970154B2 (en) 2001-01-11 2005-11-29 Jpmorgan Chase Bank Fringe-field filter for addressable displays
US6897848B2 (en) 2001-01-11 2005-05-24 Xerox Corporation Rotating element sheet material and stylus with gradient field addressing
US20020171910A1 (en) * 2001-05-15 2002-11-21 Pullen Anthony Edward Electrophoretic displays containing magnetic particles
US7532388B2 (en) 2001-05-15 2009-05-12 E Ink Corporation Electrophoretic media and processes for the production thereof
US6870661B2 (en) 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
US7230750B2 (en) 2001-05-15 2007-06-12 E Ink Corporation Electrophoretic media and processes for the production thereof
US7375875B2 (en) 2001-05-15 2008-05-20 E Ink Corporation Electrophoretic media and processes for the production thereof
US6865010B2 (en) 2001-12-13 2005-03-08 E Ink Corporation Electrophoretic electronic displays with low-index films
US7312916B2 (en) 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
US10331005B2 (en) 2002-10-16 2019-06-25 E Ink Corporation Electrophoretic displays
US9664978B2 (en) 2002-10-16 2017-05-30 E Ink Corporation Electrophoretic displays
US7042617B2 (en) 2003-04-02 2006-05-09 The University Of Rochester Optical devices having flakes suspended in a host fluid to provide a flake/fluid system providing flakes with angularly dependent optical properties in response to an alternating current electric field due to the dielectric properties of the system
US20040196226A1 (en) * 2003-04-02 2004-10-07 Kosc Tanya Z. Optical devices having flakes with angularly dependent optical properties in response to an alternating current electric field when the flakes are suspended in a host fluid to provide a flake/fluid system which is conductive
US6829075B1 (en) 2003-05-20 2004-12-07 The University Of Rochester Electrically addressable optical devices using a system of composite layered flakes suspended in a fluid host to obtain angularly dependent optical effects
US20040233508A1 (en) * 2003-05-20 2004-11-25 Kosc Tanya Z. Electrically addressable optical devices using a system of composite layered flakes suspended in a fluid host to obtain angularly dependent optical effects
US9740076B2 (en) 2003-12-05 2017-08-22 E Ink Corporation Multi-color electrophoretic displays
US9829764B2 (en) 2003-12-05 2017-11-28 E Ink Corporation Multi-color electrophoretic displays
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US20080274445A1 (en) * 2004-01-29 2008-11-06 Kabushiki Kaisha Pilot Corporation (Also Trading As Pilot Corporation) Reversal Magnetic Display Panel
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US11733580B2 (en) 2010-05-21 2023-08-22 E Ink Corporation Method for driving two layer variable transmission display
US11195480B2 (en) 2013-07-31 2021-12-07 E Ink Corporation Partial update driving methods for bistable electro-optic displays and display controllers using the same

Similar Documents

Publication Publication Date Title
US3406363A (en) Multicolored micromagnets
US3460248A (en) Method for making micromagnets
US4368952A (en) Magnetic display panel using reversal magnetism
US3982334A (en) Compartmentalized micromagnet display device
US3938263A (en) Compartmentalized micromagnet display device
US4055377A (en) Magnetically orientable retroreflectorization particles
US3095668A (en) Magnetic blocks
USRE25822E (en) Magnetic writing materials set
EP0246924B1 (en) Method of manufacturing plastic particles for a particle display
AU631435B2 (en) Forming method of patterned coating
US3853676A (en) Reference points on films containing curved configurations of magnetically oriented pigment
US2570856A (en) Process for obtaining pigmented films
US6196848B1 (en) Infant toy for drawing colored picture
US4643684A (en) Magnetic display panel
US6943772B2 (en) Magnetic display device
US6705874B1 (en) Colored magnetic particles for magnetophoretic display and method for manufacturing same
JP2012505954A (en) Magnetic loading support ink
JP6177329B2 (en) Artificial cold snow
EP0847876B1 (en) Dispersion composition for magnetic display
DE3732116A1 (en) Magnetisable screen printing ink and process for preparing a sheet magnet
JP4004718B2 (en) Thin microcapsule magnetophoretic display sheet
JPH047518B2 (en)
JP6549630B2 (en) Artificial cold snow
JPS60115497A (en) Composite body of magnetic material or dielectric material and light-transmitting material
JPH0515841A (en) Method for forming patterned coating film

Legal Events

Date Code Title Description
AS Assignment

Owner name: FAIRFIELD NATIONAL BANK, FAIRFIELD, WAYNE COUNTY,

Free format text: SECURITY INTEREST;ASSIGNOR:ZYEXX, INC.,;REEL/FRAME:004932/0618

Effective date: 19860224

AS Assignment

Owner name: FAIRFIELD NATIONAL BANK, SOUTHEAST 3RD AND DELAWAR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ZZEXX, INC., FORMERLY THALATTA, INC.;REEL/FRAME:005030/0762

Effective date: 19881201