US3428035A - Internal combustion engine valve seat - Google Patents

Internal combustion engine valve seat Download PDF

Info

Publication number
US3428035A
US3428035A US598509A US3428035DA US3428035A US 3428035 A US3428035 A US 3428035A US 598509 A US598509 A US 598509A US 3428035D A US3428035D A US 3428035DA US 3428035 A US3428035 A US 3428035A
Authority
US
United States
Prior art keywords
insert
valve seat
cast
casting
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US598509A
Inventor
John P Stefan
Emmett J Horton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Motor Co
Original Assignee
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Motor Co filed Critical Ford Motor Co
Application granted granted Critical
Publication of US3428035A publication Critical patent/US3428035A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49298Poppet or I.C. engine valve or valve seat making
    • Y10T29/49306Valve seat making

Definitions

  • valve seat distortion, wear, corrosion, and burning are basic problems that shorten the valve life in an engine, thereby reducing the reliability of the valve train.
  • High operating temperatures, a corrosive atmosphere, and high stress applications are responsible for these basic problems.
  • the present invention proposes that the valve seats comprise alloy inserts which are cast into the cylinder block or valve head prior to machining of the cast engine component.
  • the present invention relates to a composite metal casting comprising a cast metal material and a metal alloy insert embedded in said cast metal material during the casting process.
  • the insert has a surface that forms a wear and corrosion resistant portion of an exposed surface of the composite casting when the latter is machined, in the case of an internal combustion engine, to form a valve port.
  • the alloy insert has an integral portion of the insert is provided with a diminishthe casting into the body of the cast metal material.
  • the integral portion of the insert is provided with a diminishing cross sectional area from its exposed surface into the body of the casting to promote fusion of the perimeter portion with said cast material during casting with minimal fusion in the area of the exposed surface.
  • the method by which a wear resistant valve seat for a valve port of a cast metal internal combustion engine component is formed comprises the steps of forming an annular valve seat insert of a wear, heat and corrosion resistant alloy.
  • the insert has diminishing thickness from the wall of the aperture therein to the perimeter. When the molten metal forming the cast engine component is cast against the insert, this causes the thinner perimeter portion of the latter to reach a soft molten state so that the insert bonds itself by fusion with the casting metal. After proper cooling, the main casting and the insert are machined to provide a predetermined valve port configuration, then the insert is further machined to form the valve seat proper.
  • the control of the fusion area is important because proper fusion at a proper location produces a good seat or insert retention within the casting body and provides good insert cooling. With good cooling, the alloy metal seat or insert is subjected to lower temperatures, thereby reducing valve seat distortion, increasing eifective seat hardness, reducing wear and extending valve seat life. This avoids the tendency of metals to lose their hardness qualities at elevated temperatures.
  • FIG. 1 is a fragmentary cross sectional view of a cast engine component with the wear resistant insert cast in place and prior to any machining operations;
  • FIG. 2 is in part similar to FIG. 1 after the cast engine component and valve seat insert have been machined to receive a valve as shown;
  • FIG. 3 illustrates one embodiment of a valve seat insert for use in carrying out the present invention
  • FIG. 4 illustrates a second embodiment of a valve seat insert.
  • FIGS. 1 and 2 of the drawings there is shown generally at 11 a fragmentary cross sectional portion of a cast cylinder head having a valve port 12 formed therein. Integrally cast in the cylinder head casting 11 is a valve seat insert 13.
  • the valve seat insert 13 is in the form of an annulus having a flat base 14 which lies in a plane substantially normal to the longitudinal axis 15 of the valve port.
  • the aperture in the annulus has an outwardly inclined circula-r wall 16.
  • the annulus has a main body portion 17 of diminishing cross section, the opposite surfaces 18 and 19 being inclined relative to the base 14 to give a modified triangular appearance to the body portion when the latter is viewed in cross section.
  • the direction of inclination of the body portion 17 is such, as seen in FIGS. 1 and 2, that the extremity of peripheral edge 21 is relatively deeply embedded in the cylinder head casting 11.
  • FIG. 1 illustrates the cross sectional appearance of the cylinder head and valve insert in the rough casting stage.
  • the stippled area of FIG. 1 indicates the metal that has to be removed by machining operations to provide a finished cylinder head and valve seat to receive the tappet valve 22 (see FIG. 2).
  • FIGS. 3 and 4 illustrate two embodiments of the valve seat insert, the FIG. 4 embodiment differing from that of FIG. 3 only in that it is provided with secondary apertures 23 adapted to form a mechanical interlock with the cast metal of the cylinder head.
  • the triangular or tapered section of the alloy seat insert results in selective fusion between the alloy seat insert and the cast iron of the cylinder head.
  • the triangular or tapered section of the insert brings about the bonding or fusion near the area of the apex of the insert section since the thinness of the section near the perimeter of the insert results in the insert alloy reaching a molten state. In this perimeter area, hard carbides are formed which in no way affect the machinability of the insert at the valve seat area since the thicker section or areas of the insert do not reach the soft molten state.
  • the triangular or tapered section of the alloy valve seat insert provides another important advantage.
  • the molten metal of the engine component when cast is not always at a definite temperature. If the metal is 100 cooler than an established norm not as much of the tapered section will fuse. If the molten metal temperature is higher than the norm, fusion will take place further toward the center of the insert.
  • the taper and its length is easily designed to obtain fusion within the permissible minimum and maximum temperatures for casting the engine component metal.
  • valve seat inserts Suitable materials for satisfactory valve seat inserts that are satisfactorily wear and corrosion resistant and are readily machinable include the following:
  • a valve seat construction for an internal combustion engine comprising a cast metal body and an annular valve seat insert of a Wear resistant metal
  • said insert having at least two edge portions adjacent the annulus aperture wall projecting into the valve port area of said casting body and said insert and casting body being machined together to provide the finished valve port,
  • said insert having a main body portion of substantially triangular diminishing cross section extending at an angle into the cast metal body
  • said insert being retained in place in the cast metal body by the fusion of its main body portion in the area of its diminished cross section to the cast metal body.
  • valve seat construction for an internal combustion engine according to claim 1 in which:
  • the two edge portions adjacent the annulus aperture wall are machined in angular relationship to each other, the edge portion adjacent the outer surface of the cast metal body being machined at a flatter angle than the edge portion forming a continuation of the valve port in the cast body to form a valve seat.
  • a method of forming a wear resistant valve seat for a valve port of a cast metal internal combustion engine component comprising the steps of:
  • annular valve seat insert of a wear, heat and corrosion resistant alloy
  • said insert having substantially triangular diminishing thickness from the wall of the aperture therethrough to the perimeter
  • the extent to which the insert is fused into the casting metal being a function of the decreasing thickness of the perimeter portion of the insert and the temperature of the casting molten metal
  • a composite metal casting comprising a cast metal material and a metal alloy insert, the metal insert having been embedded in such cast metal material during the casting process,
  • said insert having an annular body portion a surface of which forms at least a portion of an exposed machined surface of said composite casting,
  • said insert also having an integral portion of substantially triangular diminishing cross sectional area extending from said annular body portion into the body of said cast material,
  • the extent of the fusion having been a function of the cross sectional thickness of said insert integral portion and the temperature in the molten state of the cast metal material in which the insert is embedded.
  • the annular body portion has a base surface defining a plane normal to the axis of the annulus and an aperture wall diverging from the base plane, and
  • the insert integral portion extends angularly from said base plane and said aperture wall into the body portion, said integral portion having converging walls creating the substantially triangular diminishing cross sectional area.

Description

INTERNAL COMBUSTION ENGINE VALVE SEAT Filed Dec. I l, 1966 Sheet 0f 2 J 0H N R57Z-E4/V EMME 7' 7' J HORTON F G. 2 IN VENTORS ATTORNEYS Feb. 18, 1969 p,. TEFAN ET AL 3,428,035
INTERNAL COMBUSTION ENGINE VALVE SEAT Filed Dec. 1. 1966 Sheet 2 of 2 J O H N R 5 7 E l-74N EMME T T J HORTON INVENTORS ATTORNEYS United States Patent Claims ABSTRACT OF THE DISCLOSURE A method and means for integrally forming a valve seat in an engine component by casting an alloy valve seat insert into the engine component prior to the machining of the valve seat area. The alloy valve seat is retained through controlled diffusion of its perimeter into the cast material.
Background of the invention Valve seat distortion, wear, corrosion, and burning are basic problems that shorten the valve life in an engine, thereby reducing the reliability of the valve train. High operating temperatures, a corrosive atmosphere, and high stress applications are responsible for these basic problems. To improve the reliability and durability of the valve train, the present invention proposes that the valve seats comprise alloy inserts which are cast into the cylinder block or valve head prior to machining of the cast engine component.
It is known in the prior art to use pressed-in alloy inserts which are held in place by a nickel brazing alloy, such as is taught by US. Patent No. 3,170,452. The disadvantage of this is that the brazing alloy produces a heat transfer dam between the insert and the cast body. This may result in seat distortion and insert fall-out if the fit between the insert and the recess receiving the insert is excessive. The usual method is to press the inserts into carefully machined holes, the inserts sometimes being pre-shrunk by being cooled in Dry Ice before insertion. Here again a poor fit between the insert and the receiving recess can result in short life or excessive fallout characteristics. The present invention avoids such fallout because the insert becomes integrated with the main body of cast material.
Summary of the invention More specifically, the present invention relates to a composite metal casting comprising a cast metal material and a metal alloy insert embedded in said cast metal material during the casting process. The insert has a surface that forms a wear and corrosion resistant portion of an exposed surface of the composite casting when the latter is machined, in the case of an internal combustion engine, to form a valve port. The alloy insert has an integral portion of the insert is provided with a diminishthe casting into the body of the cast metal material. The integral portion of the insert is provided with a diminishing cross sectional area from its exposed surface into the body of the casting to promote fusion of the perimeter portion with said cast material during casting with minimal fusion in the area of the exposed surface.
The method by which a wear resistant valve seat for a valve port of a cast metal internal combustion engine component is formed according to the present invention comprises the steps of forming an annular valve seat insert of a wear, heat and corrosion resistant alloy. The insert has diminishing thickness from the wall of the aperture therein to the perimeter. When the molten metal forming the cast engine component is cast against the insert, this causes the thinner perimeter portion of the latter to reach a soft molten state so that the insert bonds itself by fusion with the casting metal. After proper cooling, the main casting and the insert are machined to provide a predetermined valve port configuration, then the insert is further machined to form the valve seat proper.
The control of the fusion area is important because proper fusion at a proper location produces a good seat or insert retention within the casting body and provides good insert cooling. With good cooling, the alloy metal seat or insert is subjected to lower temperatures, thereby reducing valve seat distortion, increasing eifective seat hardness, reducing wear and extending valve seat life. This avoids the tendency of metals to lose their hardness qualities at elevated temperatures.
Brief description of the drawing Other objects, advantages and features of the present invention will be made more apparent as this description proceeds, reference being had to the accompanying drawings, wherein:
FIG. 1 is a fragmentary cross sectional view of a cast engine component with the wear resistant insert cast in place and prior to any machining operations;
FIG. 2 is in part similar to FIG. 1 after the cast engine component and valve seat insert have been machined to receive a valve as shown;
FIG. 3 illustrates one embodiment of a valve seat insert for use in carrying out the present invention; and
FIG. 4 illustrates a second embodiment of a valve seat insert.
Description of the preferred embodiment Referring now in detail to FIGS. 1 and 2 of the drawings, there is shown generally at 11 a fragmentary cross sectional portion of a cast cylinder head having a valve port 12 formed therein. Integrally cast in the cylinder head casting 11 is a valve seat insert 13.
The valve seat insert 13 is in the form of an annulus having a flat base 14 which lies in a plane substantially normal to the longitudinal axis 15 of the valve port. The aperture in the annulus has an outwardly inclined circula-r wall 16. The annulus has a main body portion 17 of diminishing cross section, the opposite surfaces 18 and 19 being inclined relative to the base 14 to give a modified triangular appearance to the body portion when the latter is viewed in cross section. The direction of inclination of the body portion 17 is such, as seen in FIGS. 1 and 2, that the extremity of peripheral edge 21 is relatively deeply embedded in the cylinder head casting 11.
FIG. 1 illustrates the cross sectional appearance of the cylinder head and valve insert in the rough casting stage. The stippled area of FIG. 1 indicates the metal that has to be removed by machining operations to provide a finished cylinder head and valve seat to receive the tappet valve 22 (see FIG. 2).
FIGS. 3 and 4 illustrate two embodiments of the valve seat insert, the FIG. 4 embodiment differing from that of FIG. 3 only in that it is provided with secondary apertures 23 adapted to form a mechanical interlock with the cast metal of the cylinder head.
The triangular or tapered section of the alloy seat insert results in selective fusion between the alloy seat insert and the cast iron of the cylinder head. The triangular or tapered section of the insert brings about the bonding or fusion near the area of the apex of the insert section since the thinness of the section near the perimeter of the insert results in the insert alloy reaching a molten state. In this perimeter area, hard carbides are formed which in no way affect the machinability of the insert at the valve seat area since the thicker section or areas of the insert do not reach the soft molten state.
The triangular or tapered section of the alloy valve seat insert provides another important advantage. The molten metal of the engine component when cast is not always at a definite temperature. If the metal is 100 cooler than an established norm not as much of the tapered section will fuse. If the molten metal temperature is higher than the norm, fusion will take place further toward the center of the insert. The taper and its length is easily designed to obtain fusion within the permissible minimum and maximum temperatures for casting the engine component metal.
Suitable materials for satisfactory valve seat inserts that are satisfactorily wear and corrosion resistant and are readily machinable include the following:
Example I.-Haynes Alloy N0. 25
Percent Nickel 9.00-11.00 Chromium 19.00-21.00 Tungsten 14.00-16.00 Iron (max.) 3.00 Carbon 0.05-0.15 Silicon (max.) 1.00 Manganese 1.00-2.00 Cobalt Balance Example 2.-Mulrimet Alloy Percent Nickel 19.00-2l.00 Cobalt 18.50-21.00 Chromium 20.00-22.50 Molybdenum 2.50-3.50 Tungsten 2.00-3.00 Carbon 0.08-0.16 Nitrogen 0.10-0.20 Columbium and Tantalum 0.75-1.25 Silicon (max.) 1.00 Manganese 1.00-2.00 Iron Balance It will be understood that the invention is not to be limited to the exact construction shown and described, but that various changes and modifications may be made without departing from the spirit and scope of the invention, as defined in the appended claims.
We claim:
1. A valve seat construction for an internal combustion engine comprising a cast metal body and an annular valve seat insert of a Wear resistant metal,
said insert being embedded within the cast metal body prior to the machining of the latter to form a valve port,
said insert having at least two edge portions adjacent the annulus aperture wall projecting into the valve port area of said casting body and said insert and casting body being machined together to provide the finished valve port,
said insert having a main body portion of substantially triangular diminishing cross section extending at an angle into the cast metal body,
said insert being retained in place in the cast metal body by the fusion of its main body portion in the area of its diminished cross section to the cast metal body.
2. A valve seat construction for an internal combustion engine according to claim 1 in which:
the two edge portions adjacent the annulus aperture wall are machined in angular relationship to each other, the edge portion adjacent the outer surface of the cast metal body being machined at a flatter angle than the edge portion forming a continuation of the valve port in the cast body to form a valve seat.
3. A method of forming a wear resistant valve seat for a valve port of a cast metal internal combustion engine component comprising the steps of:
forming an annular valve seat insert of a wear, heat and corrosion resistant alloy,
said insert having substantially triangular diminishing thickness from the wall of the aperture therethrough to the perimeter,
casting molten metal against said insert causing the thinner perimeter portion of the latter to reach a molten state and to fuse with the casing metal,
the extent to which the insert is fused into the casting metal being a function of the decreasing thickness of the perimeter portion of the insert and the temperature of the casting molten metal,
then after cooling, machining the casting metal and insert to provide a predetermined valve port configuration,
and then further machining said insert to provide a valve seat thereon.
4. A composite metal casting comprising a cast metal material and a metal alloy insert, the metal insert having been embedded in such cast metal material during the casting process,
said insert having an annular body portion a surface of which forms at least a portion of an exposed machined surface of said composite casting,
said insert also having an integral portion of substantially triangular diminishing cross sectional area extending from said annular body portion into the body of said cast material,
said insert and said cast metal material being fused together with the greatest degree of fusion occurring between said integral portion adjacent the perimetrical apex and the cast metal material,
the extent of the fusion having been a function of the cross sectional thickness of said insert integral portion and the temperature in the molten state of the cast metal material in which the insert is embedded.
5. A composite metal casting according to claim 4, in which:
the annular body portion has a base surface defining a plane normal to the axis of the annulus and an aperture wall diverging from the base plane, and
the insert integral portion extends angularly from said base plane and said aperture wall into the body portion, said integral portion having converging walls creating the substantially triangular diminishing cross sectional area.
References Cited UNITED STATES PATENTS 2,064,155 12/1936 Fahrenwald 22203 3,170,452 2/1965 Dobovan 123l88 FOREIGN PATENTS 771,443 7/1934 France. 807,344 10/1936 France.
WENDELL E. BURNS, Primary Examiner.
US. Cl. X.R.
US598509A 1966-12-01 1966-12-01 Internal combustion engine valve seat Expired - Lifetime US3428035A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US59850966A 1966-12-01 1966-12-01

Publications (1)

Publication Number Publication Date
US3428035A true US3428035A (en) 1969-02-18

Family

ID=24395842

Family Applications (1)

Application Number Title Priority Date Filing Date
US598509A Expired - Lifetime US3428035A (en) 1966-12-01 1966-12-01 Internal combustion engine valve seat

Country Status (2)

Country Link
US (1) US3428035A (en)
GB (1) GB1181118A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693606A (en) * 1968-08-16 1972-09-26 Daimler Benz Ag Valve seat for an inlet valve of mixture-inducing internal combustion engines
US4346684A (en) * 1979-05-05 1982-08-31 Goetze Ag Valve seat ring
EP0092081A1 (en) * 1982-04-21 1983-10-26 Nissan Motor Co., Ltd. Improvements in light metal cylinder head with valve seat insert
US4424953A (en) 1982-03-09 1984-01-10 Honda Giken Kogyo Kabushiki Kaisha Dual-layer sintered valve seat ring
US4484547A (en) * 1980-01-25 1984-11-27 Nickerson James W Valve guide and method for making same
US4509722A (en) * 1981-02-26 1985-04-09 Nippon Piston Ring Co., Ltd. Composite valve seat
US4831976A (en) * 1987-02-02 1989-05-23 General Motors Corporation Engine with valve seat inserts and method of retaining
US5020490A (en) * 1989-01-19 1991-06-04 Aisin Seiki Kabushiki Kaisha Valve seat arrangement
EP0730085A1 (en) * 1995-02-28 1996-09-04 Yamaha Hatsudoki Kabushiki Kaisha A cylinder head and a method for producing a valve seat
US5745993A (en) * 1996-02-27 1998-05-05 Yamaha Hatsudoki Kabushiki Kaisha Valve seat
US5768779A (en) * 1995-09-14 1998-06-23 Yamaha Hatsudoki Kabushiki Kaisha Method of manufacturing cylinder head for engine
US5778531A (en) * 1995-09-14 1998-07-14 Yamaha Hatsudoki Kabushiki Kaisha Method of manufacturing cylinder head for engine
US6138351A (en) * 1995-03-13 2000-10-31 Yamaha Hatsudoki Kabushiki Kaisha Method of making a valve seat
US20130333656A1 (en) * 2012-02-04 2013-12-19 David Endrigo Valve seats for cylinder heads in aircraft engines
US20160333751A1 (en) * 2015-05-07 2016-11-17 Frank J. Ardezzone Engine Insert and Process for Installing
US20220074325A1 (en) * 2020-09-08 2022-03-10 GM Global Technology Operations LLC Method of manufacture and design of cast-in-place valve seats

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR771443A (en) * 1934-04-09 1934-10-08 Further development and installation of seat rings for combustion engine valves
US2064155A (en) * 1933-06-26 1936-12-15 Frank A Fahrenwald Valve and seat for internal combustion engines
FR807344A (en) * 1935-06-25 1937-01-09 Improvements made to internal combustion or internal combustion engines, especially overhead valve engines
US3170452A (en) * 1961-06-28 1965-02-23 Gen Motors Corp Valve seat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2064155A (en) * 1933-06-26 1936-12-15 Frank A Fahrenwald Valve and seat for internal combustion engines
FR771443A (en) * 1934-04-09 1934-10-08 Further development and installation of seat rings for combustion engine valves
FR807344A (en) * 1935-06-25 1937-01-09 Improvements made to internal combustion or internal combustion engines, especially overhead valve engines
US3170452A (en) * 1961-06-28 1965-02-23 Gen Motors Corp Valve seat

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693606A (en) * 1968-08-16 1972-09-26 Daimler Benz Ag Valve seat for an inlet valve of mixture-inducing internal combustion engines
US4346684A (en) * 1979-05-05 1982-08-31 Goetze Ag Valve seat ring
US4484547A (en) * 1980-01-25 1984-11-27 Nickerson James W Valve guide and method for making same
US4509722A (en) * 1981-02-26 1985-04-09 Nippon Piston Ring Co., Ltd. Composite valve seat
US4424953A (en) 1982-03-09 1984-01-10 Honda Giken Kogyo Kabushiki Kaisha Dual-layer sintered valve seat ring
EP0092081A1 (en) * 1982-04-21 1983-10-26 Nissan Motor Co., Ltd. Improvements in light metal cylinder head with valve seat insert
US4570585A (en) * 1982-04-21 1986-02-18 Nissan Motor Co., Ltd. Light metal cylinder head with valve seat insert
US4831976A (en) * 1987-02-02 1989-05-23 General Motors Corporation Engine with valve seat inserts and method of retaining
US5020490A (en) * 1989-01-19 1991-06-04 Aisin Seiki Kabushiki Kaisha Valve seat arrangement
EP0730085A1 (en) * 1995-02-28 1996-09-04 Yamaha Hatsudoki Kabushiki Kaisha A cylinder head and a method for producing a valve seat
US6138351A (en) * 1995-03-13 2000-10-31 Yamaha Hatsudoki Kabushiki Kaisha Method of making a valve seat
US5768779A (en) * 1995-09-14 1998-06-23 Yamaha Hatsudoki Kabushiki Kaisha Method of manufacturing cylinder head for engine
US5778531A (en) * 1995-09-14 1998-07-14 Yamaha Hatsudoki Kabushiki Kaisha Method of manufacturing cylinder head for engine
US5745993A (en) * 1996-02-27 1998-05-05 Yamaha Hatsudoki Kabushiki Kaisha Valve seat
US20130333656A1 (en) * 2012-02-04 2013-12-19 David Endrigo Valve seats for cylinder heads in aircraft engines
US20160333751A1 (en) * 2015-05-07 2016-11-17 Frank J. Ardezzone Engine Insert and Process for Installing
US20220074325A1 (en) * 2020-09-08 2022-03-10 GM Global Technology Operations LLC Method of manufacture and design of cast-in-place valve seats
US11326485B2 (en) * 2020-09-08 2022-05-10 GM Global Technology Operations LLC Method of manufacture and design of cast-in-place valve seats

Also Published As

Publication number Publication date
DE1576376A1 (en) 1970-02-26
GB1181118A (en) 1970-02-11
DE1576376B2 (en) 1975-06-26

Similar Documents

Publication Publication Date Title
US3428035A (en) Internal combustion engine valve seat
US2101970A (en) Valve seat
US5586530A (en) Valve seat insert
US5425306A (en) Composite insert for use in a piston
US2407561A (en) Hollow valve for internalcombustion engines
EP0091097A1 (en) Engine valve and method of producing the same
US3710773A (en) Mushroom valve, especially for internal combustion engines
US5787853A (en) Valve seat-bonding area structures and valve seat-bonded cylinder head with the structures
US2193088A (en) Poppet valve blank and method of making same
GB2093554A (en) Tappet with ceramic camface
US5742020A (en) Valve seat-bonded cylinder head and method for producing same
US2136690A (en) Internal combustion engine valve and seat
US3830209A (en) Cylinder head and method of reconstructing same
US4487175A (en) Cylinder head for internal combustion engine
US4590901A (en) Heat insulated reciprocating component of an internal combustion engine and method of making same
US2119042A (en) Valve
US1959068A (en) Method of producing valve seat rings
JPH09239566A (en) Method for joining different metallic materials
US3170452A (en) Valve seat
US5592913A (en) Exhaust valve with a tapered stem portion
US1949614A (en) Valve seat retaining means
US2296460A (en) Method of forming valve seat inserts
US3147747A (en) Valves for internal combustion engines
US1826542A (en) Poppet valve and process of making same
EP0730085B1 (en) A cylinder head and a method for producing a valve seat