US3453257A - Cyclodextrin with cationic properties - Google Patents

Cyclodextrin with cationic properties Download PDF

Info

Publication number
US3453257A
US3453257A US615314A US3453257DA US3453257A US 3453257 A US3453257 A US 3453257A US 615314 A US615314 A US 615314A US 3453257D A US3453257D A US 3453257DA US 3453257 A US3453257 A US 3453257A
Authority
US
United States
Prior art keywords
cyclodextrin
ether
alkyl
product
cationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US615314A
Inventor
Stanley M Parmerter
Earle E Allen Jr
Glenn A Hull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Bestfoods North America
Original Assignee
Unilever Bestfoods North America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Bestfoods North America filed Critical Unilever Bestfoods North America
Application granted granted Critical
Publication of US3453257A publication Critical patent/US3453257A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/39Electrets separator

Definitions

  • cyclodextrin products form cationic salts with a variety of anions.
  • the application also covers methods for preparing such cyclodextrin products having substituents which impart cationic properties thereto.
  • the products are useful in sizing paper, as binders, and as flocculants. They are also complexing and clathrating materials.
  • This invention relates to novel, useful derivatives of cyclodextrin, and to methods of producing them.
  • this invention relates to derivatives of cyclodextrin that include ether substituents that impart cationic properties to the cyclodextrin. More precisely, these derivatives include substituents that introduce a positive electrical charge into the molecule.
  • the cyclodextrins are a group of homologous oligosaccharides that are obtained from starch by the action of enzymes elaborated by Bacillus macerans.
  • the cyclodextrins are also known as Schardinger dextrins from an early investigator who studied these materials. They are homologous cyclic molecules containing 6 or more OL-D glucopyranose units linked together at the 1,4 positions as in amylose.
  • the cyclic molecule may also be referred to as a torus. As a consequence of the cyclic arrangement, this trous is characterized by having neither a reducing end g-roup nor a nonreducing end group.
  • the torus molecule is depicted in the following schematic formula, where the hydroxyl groups are shown in the 2, 3, and '6 positions in the illustrated anhydroglucose units.
  • the letter n may be a number from 4 to 6, or higher.
  • the torus molecule is known as a-cyclodextrin or cyclohexaamylose, because the torus contains six anhydroglucose units; when n is 5, the seven unit member is known as fl-cyclodextrin or cycloheptaamylose; and when n is 6, the eight unit member is known as 'ycyclodextrin or cyclooctaamylose.
  • cyclodextrin it is intended to include the foregoing forms as well as still other tori that have a still larger number of units in the molecule, and, as well, mixtures of these and other homologs.
  • Cyclodextrin is produced from starch by the action of an enzyme commonly known as cyclodextrin transglycosylase (B. macerans amylase).
  • the source of the enzyme is usually a culture of Bacillus macerans which is grown under conventional conditions on conventional media containing sources of nitrogen, carbon, growth factors and minerals.
  • the cyclodextrin transglycosylase may be produced by following published teachings such as, for
  • the cyclodextrin transglycosylase activity in cultures of Bacillus macerans may be measured by the Tilden- Hudson procedure as described by these two workers in J. Bacteriol., 43, 527-544, 1942.
  • the cyclodextrin transglycosylase is added to a dilute solution of a gelatinized starch, whereupon a conversion to cyclodextrin occurs by enzymolysis.
  • Procedures for making and isolating the cyclodextrin-s have been described in the literature, for example, by F. Cramer and D. Steinle, Ann., 595, 81 (1955).
  • the various homologs such as, for example, the alpha, beta, and gamma, may be fractionated by procedures such as those described by D. French, et al., J. Am. Chem. Soc., 71, 353 (1949).
  • the various homologous cyclodextrins having from six to eight units, or higher, and their mixtures, may be used as equivalent materials for the purposes of this invention. In practice, there may be little reason for separating the various fractions, and the cyclodextrin employed may contain a preponderance of [3-cyclodextrin, for example. No distinction is intended between the various homologous cyclodextn'ns or their mixtures unless otherwise indicated, when using the term cyclodextrin.
  • Cyclodextrin is known as a clathrating compound, that is, it is adapted to form inclusion compounds. It is known to form a variety of crystalline complexes with many organic substances, particularly with organic liquids of low solubility in water. It is also known to form various complexes with neutral salts, halogens, and bases. In referring to the inclusion and clathrating properties, reference is often made to the torus molecule being a host molecule and the included or complexed molecule being the guest molecule. cyclodextrin has established utility, and is the subject of study for further applications. It is understandably desirable to provide novel cyclodextrin structures to be used as inclusion compounds, and for other purposes.
  • Another object of this invention is to provide a method for making new cyclodextrin products, in particular, a relatively simple, practical and economical method for making cyclodextrin products having ether moieties which impart desirable cationic properties to the cyclodextrins, such method endowing the new cyclodextrin products with greater attraction for various commercial efforts.
  • a more general object of the invention is to provide novel cyclodextrin derivatives that are formed from reagents that introduce cationic-type substituents into the molecule, over broad ranges of substitution.
  • a related object of the invention is to provide novel, practical processes for making such derivatives.
  • cyclodextrin derivatives which possess a cationic character. These cyclodextrin derivatives are generally formed by the reaction of cyclodextrin with a reagent that introduces a cationic-type substituent into the molecule. That is, through such reaction the cyclodextrin has introduced into its structure a substituent possessing a positive electrical charge.
  • Preferred cyclodextrin products of the invention may be represented by the following general formula:
  • R is the residue of the reactant which reacts with the hydroxyl group of the anhydroglucose unit in the cyclodextrin, and may be an alkylene, a hydroxy alkylene, an otherwise substituted alkylene, an aralkylene, a cycloalkylene, or a phenylene radical.
  • R may be methylene, ethylene, propylene, etc.
  • the foregoing and other alkylene radicals also may have substituted thereon in one or more places a hydroxy, alkyl or aryl radical, cycloalkylene radicals derived from, for example, cyclopropane, cyclobutane and higher homologues.
  • R may also represent a phenylene radical and alkyl or halo substituted phenylene radicals.
  • the actual reactive portion, of molecules used to prepare the cyclodextrin derivatives, are in the main a hydroxy vinyl, a halogen, or an epoxy group, as will be described in greater detail later.
  • X is sulfur, phosphorus or nitrogen.
  • R and R may be different or the same, and can be alkyl, aryl, aralkyl, cycloalkyl, hydroxyalkyl, halogeno alkyl, cycloheteryl or other substituted alkyls.
  • the radical R is sometimes present and sometimes absent.
  • R and R When it is present, it is selected from the same class as R and R and may be the same as one or both of R or R or R may be different from one or both of R and R
  • R and R may be methyl, ethyl, n-propyl, t-butyl, heptyl, hexadecyl, and the like alkyl radicals which may also be substituted with hydroxy, halo, alkyl or other substituents.
  • R and R may be cyclopropyl, cyclopentyl as well as phenyl, alkyl substituted phenyl and other cyclic groups.
  • Further groups that may be represented by R and R are morpholinyl, pyridyl, pyrrolidyl, furfuryl, imidazolidyl, imidazolyl and the like.
  • the products When X is sulfur, the products are sulfonium ether salts. When X is phosphorus, the products are phosphonium ether salts. When X is nitrogen, the products are either quaternary ammonium salts or may be primary, secondary, or tertiary amines or salts of the amines.
  • R and R When X is nitrogen, therefore, either or both of R and R may also be hydrogen, as well as one of those radicals mentioned above, and there may not be a substituent R
  • R and R When R and R are hydrogen, R is absent, n is one or zero, and Y is an anion such as halide, acetate, formate, nitrate, phosphate, sulfate, and the like, or the residue of any other inorganic or organic acid such as, for example, hydrochloric, hydrobromic, acetic, formic, oleic, stearic, benzoic, butyric, etc.
  • the cyclodextrin derivatives include primary amines and salts thereof.
  • Y may represent an anion or acid as above, and n may be zero or one, whereby secondary amines or salts are represented.
  • n is zero or one
  • Y is an anion or acid. In this case tertiary amines or salts are depicted.
  • the ether products of the invention may be the ammonium quaternary salts, or phosphonium, or sulfonium salts, or they may be the primary, secondary or tertiary amino ethers or salts thereof.
  • Such amino ethers serve usefully as intermediates to prepare the quaternary ammonium salts, as will be described later in more detail.
  • R and R represent hydrogen or alkyl radicals containing up to 18 [Yin carbon atoms, and R when present, is also an alkyl radical of up to about 18 carbon atoms.
  • the anhydroglucose unit may have different degrees of substitution (D.S.), from one to three.
  • D.S. degrees of substitution
  • a cyclodextrin derivative there will generally be some cyclodextrin molecules that are not substituted at all (D.S., 0), together with other molecules that have different degrees of substitution, from 1 to 3.
  • a statistical average is employed to characterize the average D.S. of the entire quantity, although the figure is ordinarily stated as the D.S. rather than as the average D.S.
  • the present invention embraces derivatives of cyclodextrin (actually, reaction mixtures obtained from the derivatizing of cyclodextrin) whose D.S. is from a small but detectable amount, such as, for example, as little as 0.0001, up to the maximum level of three.
  • the cyclodextrin derivatives may be recovered in the form of a mixture with other materials, such as unreacted cyclodextrin, and, as well, in substantially pure form.
  • the D.S. of the cyclohexaamylose derivative would be 0.167. Since some of the derivatives obtained by the present invention have D.S. values below 0.167, there must be unsubstituted molecules present.
  • the 6 position hydroxyl in any anhydroglucose unit is the most reactive. Further, the hydroxyl at the 2 position is believed to be the next most reactive, and the hydroxyl at the 3 position is believed to bet the least reactive. The present belief of the art further supposes that the 6 position hydroxyl in the anhydroglucose unit will undergo a more extensive substitution or addition than the hydroxyls at the 2 and 3 positions, respectively, but it may be otherwise.
  • the general formula is intended to represent the products of this invention wherein the ether substitution may occur in different degrees of substitution at all or less than all anhydroglucose units in the cyclodextrin.
  • the material that is reacted with a cationic reagent in accordance with this invention, will be cyclodextrin either in the form of an homologous mixture of cycloamyloses, or in the form of a substantially pure homolog such as, for example, B-cyclodextrin.
  • the cyclodextrin may be initially partially derivatized or cross-linked.
  • the cyclodextrin could be phosphorylated so as to be crosslinked and anionic in nature.
  • cationic and anionic are used here in their prior art sense, to characterize derivatives that migrate, upon electrophoresis, either to the cathode or to the anode respectively.
  • cationic-type is used to refer to a substituent that would normally result in a cationic cyclodextrin, if the cyclodextrin were not otherwise derivatized or modified.
  • anionic-type is used in a similar way.
  • a cationic-type substituent is one that introduces a positive electrical charge into the molecule, even though the net charge on the molecule is not necessarily positive.
  • cyclodextrin derivatives of this invention may, in general, be prepared by reacting cyclodextrin under alkaline conditions with a reactant of the type represented by the formula:
  • R R R and Y represent groups as before stated, n is zero or one, and R is a group containing a cyclodextrin reactive site such as halogen, vinyl, or epoxy. Accordingly, R may be a halogen substituted alkyl, alkaryl, aryl, cycloaliphatic, or cycloheteryl radical, or a like radical containing an epoxy or vinyl group in place of or in addition to the halide group. It is understood, of
  • radicals may contain one or more additional substituents as long as these groups do not interfere with reactivity of the molecule with cyclodextrin.
  • the tertiary amino ethers may be formed by reacting an etherifying agent with cyclodextrin.
  • an etherifying agent may be, for example, a dialkyl aminoalkyl halide or a dialkyl aminoalkyl epoxide
  • a representative dialkyl aminoalkyl halide is 2-chloro-N,N-dimethylethylamine
  • a representative dialkyl amino alkyl epoxide is B-dibutyl amino 1,2 epoxypropane.
  • the resulting tertiary amine derivative may be represented by the formula:
  • R and R are preferably alkyl groups, but also may depict aryl or aralkyl radicals.
  • This tertiary amino ether may then be conventionally quaternized by a reactant such as an alkyl halide, such as, for example, methyl iodide.
  • R cyclodextrin-O ;R1I ]'-R 3][Y] where R and R are alkyl groups up to about 18 carbon atoms, R is a radical as previously defined, and Y is an acid which forms an acid addition salt with the amine portion of the cyclodextrin ether.
  • One way of preparing the primary amino ethers is to react cyclodextrin with acrylonitrile to obtain the cyanoethylated product, and then reduce this product to obtain the primary amino propyl ether.
  • Such reactions may be represented by the following:
  • cyclodextrin-CH OH CHCN cyclodextrin-O-CHzCHr OHaNH
  • the foregoing primary amine may be reacted with an alkyl halide to obtain the quaternary ammonium ether derivative.
  • One preferred way of preparing the cyclodextrin amino ether quaternary products is to react an epoxide form of a quaternary ammonium salt with the cyclodextrin.
  • One way in which this can be done is by treating a chlorohydrin derivative with a strong alkali to convert it to the epoxide form.
  • a chlorohydrin derivative with a strong alkali to convert it to the epoxide form.
  • N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride may be treated with sodium hydroxide to obtain N-(2,3-epoxypropyl) trimethylammonium chloride. This reaction is indicated as follows:
  • the foregoing form may also be prepared in a different way, by first reacting trimethyl amine and epichlorohydrin. It is preferred to remove any unreacted epihalohydrin from the reaction product to prevent any crosslinking when the reaction product is used. This may be done by using vacuum evaporation or solvent extraction.
  • the quaternary ammonium etherification agents may have various types of alkyl and aryl substitutions of nitrogen, and when such substitutions are alkyl groups they may contain a number of carbon atoms, say up to about 18.
  • the products from the foregoing reaction may be isolated by lowering the pH of the reaction mixture towards neutrality and then treating with an alcohol or other solvents to obtain the precipitated product.
  • the cationic-type substituents of the cyclodextrin products may also be quaternary phosphorus ethers which are prepared, generally, by reacting cyclodextrin under alkali conditions with a quaternary phosphonium represented by the formula:
  • R R R R and Y represent groups as hereinbefore defined.
  • phosphonium etherification reagents and among such reagents may be mentioned 2-chloroethyl tributyl phosphonium chloride, which may be obtained by reacting tributyl phosphine and 2-chloroethanol to obtain 2-hydroxy ethyl tributyl phosphonum chloride. This latter product reacts with thionyl chloride to obtain the phosphonium etherification reagent.
  • the cationic-type substituents of the cyclodextrin products may also be sulfonium salts which may be obtained by reacting cyclodextrin under alkali conditions with a sulfonium compound represented by the formula:
  • the various sulfonium etherification reagents may include the halogeno alkyl sulfonium salt, the vinyl sulfonium salts, and the epoxy alkyl sulfonium salts.
  • the halogeno alkyl sulfonium salts may be dehydrated to form the vinyl sulfonium salts and the epoxy alkyl sulfonium salts may be obtained by epoxidation of an alkylene sulfonium salt.
  • Various other conventional steps may be practiced in the process to facilitate the collection and separation of the foregoing cyclodextrin cationic ethers. This may include neutralizing the basic catalyst and stripping the volatiles under reduced pressure before or after filtration.
  • Example 1 Quaternary ammonium ether of ,B-cyclodextrin B-cyclodextrin in an amount of 11.3 grams was slurried in 50 ml. of water and to the slurry was added 4.5 ml. of 2 N NaOH to raise the pH to 11.6.
  • a cationic reagent was previously prepared by cyclizing 9.4 g. N-(3-chloro-2-hydroxypropyl) trimethylarnmonium chloride to the epoxide form with 24.4 ml. of 2 N NaOH, allowing the mixture to stand for two minutes, and titrating to the neutral end point with a few drops of dilute HCl in the presence of 2 drops of phenolphthalein.
  • the cationic reagent was added to the slurry mixture and allowed to react overnight at 50 C.
  • the product was again redissolved in methanol, the solution was poured into acetone in an operating Waring blender, and a finely divided white solid was obtained. The product was dried overnight in a vacuum oven to obtain a yield of 15.41 grams. The percent nitrogen was found to be 2.60%, D.S. 0.41.
  • Example 2 Quaternary ammonium ether of p-cyclodextrin
  • the procedure of Example 2 was followed in using 57 grams of fi-cyclodextrin and 132 grams of N-(3-chloro-2- hydroxypropyl)-trimethylammonium chloride.
  • the yield of the product melting at 240 C. with decomposition was 112 grams. Its nitrogen content of 4.8% corresponds to a D.S. of 1.15.
  • Example 4 Quaternary ammonium ether of int-cyclodextrin
  • the procedure of Example 2 was followed in using 20 frams of a-cyclodextrin and 45 grams of N-(3-ch1oro- 2-hydroxypropyl) trimethylammonium chloride.
  • the product crystallized from ethanol as a white solid melting at 255 C. (softening from 240). Analysis indicated 4.2% nitrogen, corresponding to a D8. of 0.89.
  • Example 5 Tetiary amino ether of B-cyclodextrin To a mixture of 56 grams of sodium hydroxide in 100 m1. of water was added 113 grams of fl-cyclodextrin. A solution of 202 grams of 2-chloro-N,N-dimethylethylamine hydrochloride in 199 ml. of water was then added to the mixture, with cooling. The pH was raised to 11.6 with 2 N sodium hydroxide, then the mixture was heated at 60 C. for sixteen hours.
  • the yield of the material was 82 grams, and it was characterized by melting at 282 C., with decomposition and browning from 274 C. Analysis indicated 0.98% nitrogen or 0.12 D.S. When a 20 gram sample was boiled with water, 17.7 grams of toluene-free product melting at 291292 C. with decomposition was obtained.
  • Example 6 Quaternary ammonium ether of cyclodextrin This example illustrates the preparation of an amino ether of cationic cyclodextrin by process steps similar to Example 1, except that a fatty cationic reagent was prepared by cyclizing N-(3-chloro-2-hydroxypropyl)-N,N- dimethyldodecylammonium chloride to the epoxide form with NaOH. The reaction mixture was prepared by mixing grams of fl-cyclodextrin, ml. of 50% NaOH and 14 grams of the fatty cationic reagent in 20 ml. of water.
  • Example 7 Solubility determinations The product obtained according to Example 1 and B-cyclodextrin were compared relative to water solublity. Saturated solutions of each compound were obtained using excess solid in flasks of water, and frequently shaking the flasks over a seven day period. An aliquot was removed from each flask with a pipette which had an attached inlet stopper with glass wool, to prevent entry of any solids. The aliquots were placed in .a vacuum oven and held therein at 60 C. for two days. The dried products were weighed until a constant weight was obtained. The solubility results were determined to be as follows:
  • Example 8 Tetiary amino ether of Li-cyclodextrin A thick paste was prepared of 113.4 grams (0.1 mole) of ,B-cyclodextrin and 40 ml. of .a 30% aqueous solution of NaOH. The paste was placed in a flask equipped with a mechanical stirrer, and to the flask was then added, portionwise, 51.6 grams of 2-chloro-triethylamine hydrochloride over .a one-half hour period. The mixture was then stirred overnight at 50 C.
  • Example 9 Quaternization of tertiary amino ether of cyclodextrin
  • the tertiary amino product of Example 8 was reacted with ethyl chloride in the usual way to obtain the corresponding triethylaminoethyl chloride ether of cyclodextrin.
  • the cyclodextrin derivatives of the present invention are characterized, in general, by greatly enhanced water solubility. Moreover, many of these derivatives have a positive net molecular electric charge, and all contain substituents that introduce a positive electric charge in the molecule. They are therefore selectively attracted to substances bearing negative molecular charges. These properties make these derivatives particularly desirable for several important commercial and technical applications.
  • the cyclodextrin derivatives of the present invention are useful, for example, in applications such as the sizing of paper pulp, since such pulp is known to carry .a negative charge. They are also useful in other applications, as well, such as, for example, as flocculating agents for anionic colloids, as suspending agents, as emulsifying agents, as textile dye assistants, and the like. One use for the flocculating agents is to facilitate settling of wastes in sewage treatment. Generally, the cyclodextrin derivatives of the present invention may be used in ways similar to the ways in which cationic starches are used. They are also useful in the production of paper, as binders in sizing and coating compositions.
  • the cationic cyclodextrin derivatives are also useful when incorporated into tobacco or tobacco filters such as cigarette and cigar filters, whether or not these filters are an integral part of the cigarette or cigar itself. In such use the derivatives help to trap tars, undesirable flavors and the like.
  • the derivatives of the present invention are also particularly useful as surfactants. They have particular utility as surface active agents when the molecule contains one or more long chain fatty groups.
  • a preferred surfactant is prepared by alkoxylating the cyclodextrin with 1-50 moles of alkoxylating agent such as ethylene oxide, propylene oxide and the like, followed by introduction of a cationic substituent by reaction of the terminal hydroxide group by one or more of the same reactions as set forth above.
  • R is of the class consisting of alkylene, hydroxy alkylene, halogeno alkylene, monocyclic aralkylene, cycloalkylene, and phenylene
  • X is of the class consisting of sulfur, phosphorus and nitrogen
  • R and R are of the class consisting of alkyl, monocyclic aryl, monocyclic aralkyl, cycloalkyl, hydroxy alkyl, halogeno alkyl and cycloheteryl
  • R is of the same class as R and R and Y is an anion and n is one; with the further provision that when X is sulfur, R is absent; that when X is nitrogen, R R may additionally be hydrogen and R may additionally be absent, Y may additionally be an acid residue and n is zero or one; providing still further, that when R is absent and when neither R and R are hydrogen, then n is zero or one, and Y is an acid residue when n is one; and when R, is absent and one of R and R is hydrogen
  • a cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
  • R R and R are alkyl radicals containing up to about 18 carbon atoms, and Y is an anion.
  • a cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
  • R R and R are alkyl groups up to about 18 carbon atoms, and Y is an anion.
  • a cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
  • a cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
  • R and R are alkyl groups up to about 18 carbon atoms
  • Y is an acid which forms an acid addition salt with the amine portion of the cyclodextrin ether.
  • a cyclodextrin product as in claim 1 further char acterized in that the cyclodextrin product is represented by the following:
  • R and R are of the class of alkyl groups up to about 18 carbon atoms and hydrogen.
  • a cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
  • cyclodextrin has from 6 to 8 or more cyclic anhydroglucose units.
  • a cyclodextrin product as in claim 5 further characterized in that the cyclodextrin product is represented by the following:
  • a method for preparing cyclodextrin ether products which comprises:
  • R is of the class consisting of alkyl, alkaryl, monocyclic aryl, cycloaliphatic, and cycloheteryl, further characterized in that each of the foregoing R radicals have at least a reactive group of the class consisting of vinyl, epoxy, and halogen;
  • X is of the class consisting of sulfur, phosphorus and nitrogen;
  • R and R are of the class consisting of alkyl, monocyclic aryl, monocyclic aralkyl, cycloalkyl, hydroxy alkyl, halogeno alkyl and cycloheteryl;
  • R is of the same class as R and R and Y is an anion and n is one; with the further provision that when X is sulfur, R is zero; that when X is nitrogen, R and R may additionally be hydrogen and R may additionally be zero, Y may additionally be an acid residue and n is zero or one; providing still further, that when R, is zero and when neither R and R are hydrogen, then 11 is
  • R R and R are alkyl groups up to about 18 carbon atoms and Y is an anion, further characterized in that the reaction is conducted at elevated temperatures to accelerate the reaction; and a sufficient amount of said salt reactant is reacted with said cyclodextrin to attain a desired degree of substitution at the anhydroglucose units in said cyclodextrin.
  • a method as in claim 10 further characterized in that the salt reactant represented by the following formula:
  • a method as in claim 10 further characterized in that the salt reactant is represented by the following formula:
  • a method for preparing amino and ammonium ether derivatives of cyclodextrin which includes reacting a cyclodextrin with acrylonitrile, reducing the cyanoethylated product to obtain a primary aminopropyl ether derivative, and reacting said primary amino ether product with an alkyl halide in amounts sufiicient to obtain secondary and tertiary amino ethers and quaternary ammonium ethers of cyclodextrin.

Description

United States Patent C) l 3,453,257 CYCLODEXTRIN WITH CATIONIC PROPERTIES Stanley M. Parmerter, Wheaton, Earle E. Allen, Jr., Chicago, and Glenn A. Hull, Oak Park, Ill., assignors to Corn Products Company, New York, N.Y., a corporation of Delaware No Drawing. Filed Feb. 13, 1967, Ser. No. 615,314 Int. Cl. C13l 1/10; C08b 25/02; A24f 47/00 U.S. Cl. 260-209 21 Claims ABSTRACT OF THE DISCLOSURE This application covers cyclodextrin products having ether substituent-s which impart cationic properties to the cyclodextrin. These cyclodextrin products form cationic salts with a variety of anions. The application also covers methods for preparing such cyclodextrin products having substituents which impart cationic properties thereto. The products are useful in sizing paper, as binders, and as flocculants. They are also complexing and clathrating materials.
This invention relates to novel, useful derivatives of cyclodextrin, and to methods of producing them.
More particularly, this invention relates to derivatives of cyclodextrin that include ether substituents that impart cationic properties to the cyclodextrin. More precisely, these derivatives include substituents that introduce a positive electrical charge into the molecule.
The cyclodextrins are a group of homologous oligosaccharides that are obtained from starch by the action of enzymes elaborated by Bacillus macerans. The cyclodextrins are also known as Schardinger dextrins from an early investigator who studied these materials. They are homologous cyclic molecules containing 6 or more OL-D glucopyranose units linked together at the 1,4 positions as in amylose. The cyclic molecule may also be referred to as a torus. As a consequence of the cyclic arrangement, this trous is characterized by having neither a reducing end g-roup nor a nonreducing end group. The torus molecule is depicted in the following schematic formula, where the hydroxyl groups are shown in the 2, 3, and '6 positions in the illustrated anhydroglucose units. The letter n may be a number from 4 to 6, or higher.
When n is 4, the torus molecule is known as a-cyclodextrin or cyclohexaamylose, because the torus contains six anhydroglucose units; when n is 5, the seven unit member is known as fl-cyclodextrin or cycloheptaamylose; and when n is 6, the eight unit member is known as 'ycyclodextrin or cyclooctaamylose. When reference is made herein to cyclodextrin, it is intended to include the foregoing forms as well as still other tori that have a still larger number of units in the molecule, and, as well, mixtures of these and other homologs.
Cyclodextrin is produced from starch by the action of an enzyme commonly known as cyclodextrin transglycosylase (B. macerans amylase). The source of the enzyme is usually a culture of Bacillus macerans which is grown under conventional conditions on conventional media containing sources of nitrogen, carbon, growth factors and minerals. The cyclodextrin transglycosylase may be produced by following published teachings such as, for
example, those described by D. French in Methods in Enzymology, S.P. Colowick and ND. Kaplan, editors, Academic Press, New York, N.Y., vol. V, 1962, pp. 148- 155.
The cyclodextrin transglycosylase activity in cultures of Bacillus macerans may be measured by the Tilden- Hudson procedure as described by these two workers in J. Bacteriol., 43, 527-544, 1942. In general, the cyclodextrin transglycosylase is added to a dilute solution of a gelatinized starch, whereupon a conversion to cyclodextrin occurs by enzymolysis. Procedures for making and isolating the cyclodextrin-s have been described in the literature, for example, by F. Cramer and D. Steinle, Ann., 595, 81 (1955). If desired, the various homologs such as, for example, the alpha, beta, and gamma, may be fractionated by procedures such as those described by D. French, et al., J. Am. Chem. Soc., 71, 353 (1949).
The various homologous cyclodextrins, having from six to eight units, or higher, and their mixtures, may be used as equivalent materials for the purposes of this invention. In practice, there may be little reason for separating the various fractions, and the cyclodextrin employed may contain a preponderance of [3-cyclodextrin, for example. No distinction is intended between the various homologous cyclodextn'ns or their mixtures unless otherwise indicated, when using the term cyclodextrin.
Cyclodextrin is known as a clathrating compound, that is, it is adapted to form inclusion compounds. It is known to form a variety of crystalline complexes with many organic substances, particularly with organic liquids of low solubility in water. It is also known to form various complexes with neutral salts, halogens, and bases. In referring to the inclusion and clathrating properties, reference is often made to the torus molecule being a host molecule and the included or complexed molecule being the guest molecule. cyclodextrin has established utility, and is the subject of study for further applications. It is understandably desirable to provide novel cyclodextrin structures to be used as inclusion compounds, and for other purposes.
It is accordingly one primary object of the invention to provide new cyclodextrin products, namely, cyclodextrin derivatives having ether substituents which impart cationic properties to the cyclodextrin.
It is another object of this invention to provide new cyclodextrin products which have ether substituents imparting cationic properties to the cyclodextrin, with said ether substituents being present in said cyclodextrin in various degrees of substitution.
Another object of this invention is to provide a method for making new cyclodextrin products, in particular, a relatively simple, practical and economical method for making cyclodextrin products having ether moieties which impart desirable cationic properties to the cyclodextrins, such method endowing the new cyclodextrin products with greater attraction for various commercial efforts.
A more general object of the invention is to provide novel cyclodextrin derivatives that are formed from reagents that introduce cationic-type substituents into the molecule, over broad ranges of substitution. A related object of the invention is to provide novel, practical processes for making such derivatives.
Other objects of the invention will be apparent hereinafter from the specification and from the recitals of the appended claims.
In accordance with the invention we have discovered a new class of cyclodextrin derivatives which possess a cationic character. These cyclodextrin derivatives are generally formed by the reaction of cyclodextrin with a reagent that introduces a cationic-type substituent into the molecule. That is, through such reaction the cyclodextrin has introduced into its structure a substituent possessing a positive electrical charge.
Preferred cyclodextrin products of the invention may be represented by the following general formula:
In the foregoing general formula, R is the residue of the reactant which reacts with the hydroxyl group of the anhydroglucose unit in the cyclodextrin, and may be an alkylene, a hydroxy alkylene, an otherwise substituted alkylene, an aralkylene, a cycloalkylene, or a phenylene radical. Thus, R may be methylene, ethylene, propylene, etc. The foregoing and other alkylene radicals also may have substituted thereon in one or more places a hydroxy, alkyl or aryl radical, cycloalkylene radicals derived from, for example, cyclopropane, cyclobutane and higher homologues. R may also represent a phenylene radical and alkyl or halo substituted phenylene radicals. The actual reactive portion, of molecules used to prepare the cyclodextrin derivatives, are in the main a hydroxy vinyl, a halogen, or an epoxy group, as will be described in greater detail later.
X is sulfur, phosphorus or nitrogen. R and R may be different or the same, and can be alkyl, aryl, aralkyl, cycloalkyl, hydroxyalkyl, halogeno alkyl, cycloheteryl or other substituted alkyls. The radical R is sometimes present and sometimes absent. When it is present, it is selected from the same class as R and R and may be the same as one or both of R or R or R may be different from one or both of R and R Thus, R and R may be methyl, ethyl, n-propyl, t-butyl, heptyl, hexadecyl, and the like alkyl radicals which may also be substituted with hydroxy, halo, alkyl or other substituents. Again, R and R may be cyclopropyl, cyclopentyl as well as phenyl, alkyl substituted phenyl and other cyclic groups. Further groups that may be represented by R and R are morpholinyl, pyridyl, pyrrolidyl, furfuryl, imidazolidyl, imidazolyl and the like.
When X is sulfur, the products are sulfonium ether salts. When X is phosphorus, the products are phosphonium ether salts. When X is nitrogen, the products are either quaternary ammonium salts or may be primary, secondary, or tertiary amines or salts of the amines.
When X is nitrogen, therefore, either or both of R and R may also be hydrogen, as well as one of those radicals mentioned above, and there may not be a substituent R When R and R are hydrogen, R is absent, n is one or zero, and Y is an anion such as halide, acetate, formate, nitrate, phosphate, sulfate, and the like, or the residue of any other inorganic or organic acid such as, for example, hydrochloric, hydrobromic, acetic, formic, oleic, stearic, benzoic, butyric, etc. Thus, the cyclodextrin derivatives include primary amines and salts thereof. When R is absent and one of R or R is hydrogen Y may represent an anion or acid as above, and n may be zero or one, whereby secondary amines or salts are represented. When R is absent and neither R or R are hydrogen, n is zero or one, and Y is an anion or acid. In this case tertiary amines or salts are depicted.
When X is sulfur, R is absent, n is one, and Y is an anion, so that the general formula above represents sulfonium salts.
When X is phosphorus, then It is one and Y is an anion, so that the general formula represents phosphonium salts.
Thus, the ether products of the invention may be the ammonium quaternary salts, or phosphonium, or sulfonium salts, or they may be the primary, secondary or tertiary amino ethers or salts thereof. Such amino ethers serve usefully as intermediates to prepare the quaternary ammonium salts, as will be described later in more detail.
In preferred cyclodextrin cationic derivatives, R and R represent hydrogen or alkyl radicals containing up to 18 [Yin carbon atoms, and R when present, is also an alkyl radical of up to about 18 carbon atoms.
As is known, the anhydroglucose unit may have different degrees of substitution (D.S.), from one to three. In a given quantity of a cyclodextrin derivative, there will generally be some cyclodextrin molecules that are not substituted at all (D.S., 0), together with other molecules that have different degrees of substitution, from 1 to 3. A statistical average is employed to characterize the average D.S. of the entire quantity, although the figure is ordinarily stated as the D.S. rather than as the average D.S.
The present invention embraces derivatives of cyclodextrin (actually, reaction mixtures obtained from the derivatizing of cyclodextrin) whose D.S. is from a small but detectable amount, such as, for example, as little as 0.0001, up to the maximum level of three. This necessarily implies that the cyclodextrin derivatives may be recovered in the form of a mixture with other materials, such as unreacted cyclodextrin, and, as well, in substantially pure form. For example, if there were a single substituent in a single anhydroglucose unit of cyclohexaamylose, the D.S. of the cyclohexaamylose derivative would be 0.167. Since some of the derivatives obtained by the present invention have D.S. values below 0.167, there must be unsubstituted molecules present.
According to present beliefs in the art, the 6 position hydroxyl in any anhydroglucose unit is the most reactive. Further, the hydroxyl at the 2 position is believed to be the next most reactive, and the hydroxyl at the 3 position is believed to bet the least reactive. The present belief of the art further supposes that the 6 position hydroxyl in the anhydroglucose unit will undergo a more extensive substitution or addition than the hydroxyls at the 2 and 3 positions, respectively, but it may be otherwise. Irrespective of the actual sequence or order of reactions or the number of anhydroglucose units involved, the general formula is intended to represent the products of this invention wherein the ether substitution may occur in different degrees of substitution at all or less than all anhydroglucose units in the cyclodextrin.
Ordinarily, the material that is reacted with a cationic reagent, in accordance with this invention, will be cyclodextrin either in the form of an homologous mixture of cycloamyloses, or in the form of a substantially pure homolog such as, for example, B-cyclodextrin. However, it is also contemplated that the cyclodextrin may be initially partially derivatized or cross-linked. For example, the cyclodextrin could be phosphorylated so as to be crosslinked and anionic in nature.
The terms cationic and anionic are used here in their prior art sense, to characterize derivatives that migrate, upon electrophoresis, either to the cathode or to the anode respectively. The term cationic-type is used to refer to a substituent that would normally result in a cationic cyclodextrin, if the cyclodextrin were not otherwise derivatized or modified. The term anionic-type is used in a similar way.
Thus, a cationic-type substituent is one that introduces a positive electrical charge into the molecule, even though the net charge on the molecule is not necessarily positive.
The cyclodextrin derivatives of this invention may, in general, be prepared by reacting cyclodextrin under alkaline conditions with a reactant of the type represented by the formula:
wherein X, R R R and Y represent groups as before stated, n is zero or one, and R is a group containing a cyclodextrin reactive site such as halogen, vinyl, or epoxy. Accordingly, R may be a halogen substituted alkyl, alkaryl, aryl, cycloaliphatic, or cycloheteryl radical, or a like radical containing an epoxy or vinyl group in place of or in addition to the halide group. It is understood, of
course, that the above radicals may contain one or more additional substituents as long as these groups do not interfere with reactivity of the molecule with cyclodextrin.
The tertiary amino ethers may be formed by reacting an etherifying agent with cyclodextrin. Such an agent may be, for example, a dialkyl aminoalkyl halide or a dialkyl aminoalkyl epoxide A representative dialkyl aminoalkyl halide is 2-chloro-N,N-dimethylethylamine, and a representative dialkyl amino alkyl epoxide is B-dibutyl amino 1,2 epoxypropane. The resulting tertiary amine derivative may be represented by the formula:
where R and R are preferably alkyl groups, but also may depict aryl or aralkyl radicals. This tertiary amino ether may then be conventionally quaternized by a reactant such as an alkyl halide, such as, for example, methyl iodide.
Another preferred cyclodextrin product is represented by the following structural formula:
R: cyclodextrin-O ;R1I ]'-R 3][Y] where R and R are alkyl groups up to about 18 carbon atoms, R is a radical as previously defined, and Y is an acid which forms an acid addition salt with the amine portion of the cyclodextrin ether.
One way of preparing the primary amino ethers is to react cyclodextrin with acrylonitrile to obtain the cyanoethylated product, and then reduce this product to obtain the primary amino propyl ether. Such reactions may be represented by the following:
cyclodextrin-CH OH =CHCN cyclodextrin-O-CHzCHr OHaNH The foregoing primary amine may be reacted with an alkyl halide to obtain the quaternary ammonium ether derivative.
One preferred way of preparing the cyclodextrin amino ether quaternary products is to react an epoxide form of a quaternary ammonium salt with the cyclodextrin. One way in which this can be done is by treating a chlorohydrin derivative with a strong alkali to convert it to the epoxide form. For example, N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride may be treated with sodium hydroxide to obtain N-(2,3-epoxypropyl) trimethylammonium chloride. This reaction is indicated as follows:
The foregoing form may also be prepared in a different way, by first reacting trimethyl amine and epichlorohydrin. It is preferred to remove any unreacted epihalohydrin from the reaction product to prevent any crosslinking when the reaction product is used. This may be done by using vacuum evaporation or solvent extraction.
The quaternary ammonium etherification agents may have various types of alkyl and aryl substitutions of nitrogen, and when such substitutions are alkyl groups they may contain a number of carbon atoms, say up to about 18.
The products from the foregoing reaction may be isolated by lowering the pH of the reaction mixture towards neutrality and then treating with an alcohol or other solvents to obtain the precipitated product.
The cationic-type substituents of the cyclodextrin products may also be quaternary phosphorus ethers which are prepared, generally, by reacting cyclodextrin under alkali conditions with a quaternary phosphonium represented by the formula:
where R R R R and Y represent groups as hereinbefore defined. The foregoing are phosphonium etherification reagents and among such reagents may be mentioned 2-chloroethyl tributyl phosphonium chloride, which may be obtained by reacting tributyl phosphine and 2-chloroethanol to obtain 2-hydroxy ethyl tributyl phosphonum chloride. This latter product reacts with thionyl chloride to obtain the phosphonium etherification reagent.
The cationic-type substituents of the cyclodextrin products may also be sulfonium salts which may be obtained by reacting cyclodextrin under alkali conditions with a sulfonium compound represented by the formula:
where R R R R and Y represent groups as hereinbefore defined. The various sulfonium etherification reagents may include the halogeno alkyl sulfonium salt, the vinyl sulfonium salts, and the epoxy alkyl sulfonium salts. The halogeno alkyl sulfonium salts may be dehydrated to form the vinyl sulfonium salts and the epoxy alkyl sulfonium salts may be obtained by epoxidation of an alkylene sulfonium salt.
Among the sulfonium etherifying reagents which reacts with the cyclodextrins may be mentioned 2-chloroethylmethyl-methylethyl sulfonium iodide, beta-chloroethyl-methyl-[Z-(ethylmethyl sulfonium) ethyl] sulfonium diiodide, methyl-cyclohexyl-chloroethyl sulfonium iodide, and the like.
Various other conventional steps may be practiced in the process to facilitate the collection and separation of the foregoing cyclodextrin cationic ethers. This may include neutralizing the basic catalyst and stripping the volatiles under reduced pressure before or after filtration.
The following examples are now presented to teach some embodiments of practicing the invention, but it should be understood that such teachings are only representative and in no sense should they be considered as being exclusive teachings.
Example 1.-Quaternary ammonium ether of ,B-cyclodextrin B-cyclodextrin in an amount of 11.3 grams was slurried in 50 ml. of water and to the slurry was added 4.5 ml. of 2 N NaOH to raise the pH to 11.6.
A cationic reagent was previously prepared by cyclizing 9.4 g. N-(3-chloro-2-hydroxypropyl) trimethylarnmonium chloride to the epoxide form with 24.4 ml. of 2 N NaOH, allowing the mixture to stand for two minutes, and titrating to the neutral end point with a few drops of dilute HCl in the presence of 2 drops of phenolphthalein. The cationic reagent was added to the slurry mixture and allowed to react overnight at 50 C.
Following the reaction period, the pH was reduced to 11.2, and the mixture appeared as a clear homogeneous liquid. The mixture was neutralized to pH 6.5 with 2 N HCl. The mixture was evaporated to dryness. The residue was dissolved in a minimum amount of hot methanol. Chilling gave a precipitate of salt which was discarded. Acetone was then added, whereupon a white, gummy amorphous solid was obtained.
The product was again redissolved in methanol, the solution was poured into acetone in an operating Waring blender, and a finely divided white solid was obtained. The product was dried overnight in a vacuum oven to obtain a yield of 15.41 grams. The percent nitrogen was found to be 2.60%, D.S. 0.41.
Example 2.Quaternary ammonium ether of p-cyclodextrin Example 3.-Quaternary ammonium ether of [i-cyclodextrin The procedure of Example 2 was followed in using 57 grams of fi-cyclodextrin and 132 grams of N-(3-chloro-2- hydroxypropyl)-trimethylammonium chloride. The yield of the product melting at 240 C. with decomposition was 112 grams. Its nitrogen content of 4.8% corresponds to a D.S. of 1.15.
Example 4.-Quaternary ammonium ether of int-cyclodextrin The procedure of Example 2 was followed in using 20 frams of a-cyclodextrin and 45 grams of N-(3-ch1oro- 2-hydroxypropyl) trimethylammonium chloride. The product crystallized from ethanol as a white solid melting at 255 C. (softening from 240). Analysis indicated 4.2% nitrogen, corresponding to a D8. of 0.89.
Example 5 .Tertiary amino ether of B-cyclodextrin To a mixture of 56 grams of sodium hydroxide in 100 m1. of water was added 113 grams of fl-cyclodextrin. A solution of 202 grams of 2-chloro-N,N-dimethylethylamine hydrochloride in 199 ml. of water was then added to the mixture, with cooling. The pH was raised to 11.6 with 2 N sodium hydroxide, then the mixture was heated at 60 C. for sixteen hours.
To the resultant mixture, 2 N hydrochloric acid was added to adjust the pH to 6.2, and then the mixture was poured into a large volume of acetone. The resultant gummy product was dissolved in 1200 ml. of warm water and 300 ml. of toluene was added. The mixture was shaken and left for 24 hours before the crystalline complex was collected.
The yield of the material was 82 grams, and it was characterized by melting at 282 C., with decomposition and browning from 274 C. Analysis indicated 0.98% nitrogen or 0.12 D.S. When a 20 gram sample was boiled with water, 17.7 grams of toluene-free product melting at 291292 C. with decomposition was obtained.
Example 6.Quaternary ammonium ether of cyclodextrin This example illustrates the preparation of an amino ether of cationic cyclodextrin by process steps similar to Example 1, except that a fatty cationic reagent was prepared by cyclizing N-(3-chloro-2-hydroxypropyl)-N,N- dimethyldodecylammonium chloride to the epoxide form with NaOH. The reaction mixture was prepared by mixing grams of fl-cyclodextrin, ml. of 50% NaOH and 14 grams of the fatty cationic reagent in 20 ml. of water.
Example 7.-Solubility determinations The product obtained according to Example 1 and B-cyclodextrin were compared relative to water solublity. Saturated solutions of each compound were obtained using excess solid in flasks of water, and frequently shaking the flasks over a seven day period. An aliquot was removed from each flask with a pipette which had an attached inlet stopper with glass wool, to prevent entry of any solids. The aliquots were placed in .a vacuum oven and held therein at 60 C. for two days. The dried products were weighed until a constant weight was obtained. The solubility results were determined to be as follows:
8 Compound: Solubility, g./ ml. ,B-cyclodextrin 1.48 Quaternary ammonium ether derivative 76.58
The foregoing data shows that the quaternary amino ether derivative has a solubility almost 52 times as great as the fl-cyclodextrin.
Example 8.Tertiary amino ether of Li-cyclodextrin A thick paste was prepared of 113.4 grams (0.1 mole) of ,B-cyclodextrin and 40 ml. of .a 30% aqueous solution of NaOH. The paste was placed in a flask equipped with a mechanical stirrer, and to the flask was then added, portionwise, 51.6 grams of 2-chloro-triethylamine hydrochloride over .a one-half hour period. The mixture was then stirred overnight at 50 C.
After 18 hours, the mixture was neutralized to pH 6.5 by the addition of concentrated HCl after adding 100 ml. of water. The mixture was then poured into 3 liters of methanol with stirring. The precipitate was filtered and washed with 1 liter of methanol. The product was then dispersed in acetone in an operating Waring blender, filtered, air dried, and then dried in a vacuum oven at 50 C. for 4 hours.
Example 9.-Quaternization of tertiary amino ether of cyclodextrin The tertiary amino product of Example 8 was reacted with ethyl chloride in the usual way to obtain the corresponding triethylaminoethyl chloride ether of cyclodextrin.
The cyclodextrin derivatives of the present invention are characterized, in general, by greatly enhanced water solubility. Moreover, many of these derivatives have a positive net molecular electric charge, and all contain substituents that introduce a positive electric charge in the molecule. They are therefore selectively attracted to substances bearing negative molecular charges. These properties make these derivatives particularly desirable for several important commercial and technical applications.
The cyclodextrin derivatives of the present invention are useful, for example, in applications such as the sizing of paper pulp, since such pulp is known to carry .a negative charge. They are also useful in other applications, as well, such as, for example, as flocculating agents for anionic colloids, as suspending agents, as emulsifying agents, as textile dye assistants, and the like. One use for the flocculating agents is to facilitate settling of wastes in sewage treatment. Generally, the cyclodextrin derivatives of the present invention may be used in ways similar to the ways in which cationic starches are used. They are also useful in the production of paper, as binders in sizing and coating compositions.
The cationic cyclodextrin derivatives are also useful when incorporated into tobacco or tobacco filters such as cigarette and cigar filters, whether or not these filters are an integral part of the cigarette or cigar itself. In such use the derivatives help to trap tars, undesirable flavors and the like. The derivatives of the present invention are also particularly useful as surfactants. They have particular utility as surface active agents when the molecule contains one or more long chain fatty groups. A preferred surfactant is prepared by alkoxylating the cyclodextrin with 1-50 moles of alkoxylating agent such as ethylene oxide, propylene oxide and the like, followed by introduction of a cationic substituent by reaction of the terminal hydroxide group by one or more of the same reactions as set forth above.
While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modification, and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice in the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as fall within the scope of the invention.
We claim:
1. A cyclodextrin ether product represented by the formula:
where R is of the class consisting of alkylene, hydroxy alkylene, halogeno alkylene, monocyclic aralkylene, cycloalkylene, and phenylene; X is of the class consisting of sulfur, phosphorus and nitrogen; R and R are of the class consisting of alkyl, monocyclic aryl, monocyclic aralkyl, cycloalkyl, hydroxy alkyl, halogeno alkyl and cycloheteryl; R is of the same class as R and R and Y is an anion and n is one; with the further provision that when X is sulfur, R is absent; that when X is nitrogen, R R may additionally be hydrogen and R may additionally be absent, Y may additionally be an acid residue and n is zero or one; providing still further, that when R is absent and when neither R and R are hydrogen, then n is zero or one, and Y is an acid residue when n is one; and when R, is absent and one of R and R is hydrogen, then It is zero or one and Y is an acid residue when n is one.
2. A cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
where R R and R are alkyl radicals containing up to about 18 carbon atoms, and Y is an anion.
3. A cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
where R R and R are alkyl groups up to about 18 carbon atoms, and Y is an anion.
4. A cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
R: P cyclodextrin-O LR1R:1:|[Y]- where R and R are alkyl groups up to about 18 carbon atoms, and Y is an anion.
5. A cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
where R and R are alkyl groups up to about 18 carbon atoms, and Y is an acid which forms an acid addition salt with the amine portion of the cyclodextrin ether.
6. A cyclodextrin product as in claim 1 further char acterized in that the cyclodextrin product is represented by the following:
r t cyclodextrinl:R NR
where R and R are of the class of alkyl groups up to about 18 carbon atoms and hydrogen.
7. A cyclodextrin product as in claim 1 further characterized in that the cyclodextrin product is represented by the following:
and is characterized by a degree of substitution of from less than 1 up to 3, and the cyclodextrin has from 6 to 8 or more cyclic anhydroglucose units.
8. A cyclodextrin product as in claim 5 further characterized in that the cyclodextrin product is represented by the following:
9. A cyclodextrin ether product in accordance with claim 1 wherein the D5. is from a small but detectable amount up to 3.
10. A method for preparing cyclodextrin ether products which comprises:
reacting a cyclodextrin with a reactant represented by the following formula:
where R is of the class consisting of alkyl, alkaryl, monocyclic aryl, cycloaliphatic, and cycloheteryl, further characterized in that each of the foregoing R radicals have at least a reactive group of the class consisting of vinyl, epoxy, and halogen; X is of the class consisting of sulfur, phosphorus and nitrogen; R and R are of the class consisting of alkyl, monocyclic aryl, monocyclic aralkyl, cycloalkyl, hydroxy alkyl, halogeno alkyl and cycloheteryl; R is of the same class as R and R and Y is an anion and n is one; with the further provision that when X is sulfur, R is zero; that when X is nitrogen, R and R may additionally be hydrogen and R may additionally be zero, Y may additionally be an acid residue and n is zero or one; providing still further, that when R, is zero and when neither R and R are hydrogen, then 11 is zero or one, and Y is an acid residue when n is one; and when R is zero and one or both of R and R is hydrogen, then n is zero or one and Y is an acid when n is one; and conducting said reaction in the presence of an effective amount of an alkaline catalyst. 11. A method as in claim 10 further characterized'in that the reactant is a salt represented by the following formula:
where R R and R are alkyl groups up to about 18 carbon atoms and Y is an anion, further characterized in that the reaction is conducted at elevated temperatures to accelerate the reaction; and a sufficient amount of said salt reactant is reacted with said cyclodextrin to attain a desired degree of substitution at the anhydroglucose units in said cyclodextrin.
12. A method as in claim 10 further characterized in that the salt reactant represented by the following formula:
R2 [Rs-Ra] [Y] where R and R are alkyl groups up to about 18 carbon atoms and Y is an anion, further characterized in that the reaction is conducted at elevated temperatures to accelerate the reaction, and wherein the foregoing salt reactant is added in an amount sufiicient to obtain a desired degree of substitution of said salt reactant at the anhydroglucose units in said cyclodextrinl 1 1 13. A method as in claim 10 further characterized in that the salt reactant is represented by the following formula:
R2 ns][ where R R and R are alkyl groups up to about 18 carbon atoms and Y is an anion, further characterized in that said reaction is conducted at elevated temperatures to accelerate the reaction, and said salt reactant is added in an amount sufficient to obtain a desired degree of substitution of said salt reactant at the anhydroglucose units in said cyclodextrin.
14. A method for preparing amino and ammonium ether derivatives of cyclodextrin which includes reacting a cyclodextrin with acrylonitrile, reducing the cyanoethylated product to obtain a primary aminopropyl ether derivative, and reacting said primary amino ether product with an alkyl halide in amounts sufiicient to obtain secondary and tertiary amino ethers and quaternary ammonium ethers of cyclodextrin.
15. The quaternary ammonium ethers of cyclodextrin.
16. The quaternary phosphorus ethers of cyclodextrin.
17. The sulfonium ethers of cyclodextrin.
18. N,N-dimethyl, N-(2-cyclodextrin oxyethyl) amine hydrochloride.
19. N,N-diethyl, N-(Z-cyclodextrin oxyethyl)amine hydrochloride.
20. The tertiary amine ethers of cyclodextrin.
21. The amine ethers of cyclodextrin.
References Cited UNITED STATES PATENTS 2,539,704 1/1951 Schoene et al 260-209 3,140,184 7/ 1964 Robbins.
3,222,358 12/1965 Touey et a1. 260-209 3,346,555 10/1967 Nordgren 260-209 LEWIS Gorrs, Primary Examiner.
JOHNNIE R. BROWN, Asssistant Examiner.
US. Cl. X.R.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No 3 ,453 ,257 July 1 1969 Stanley M. Parmerter et a1.
It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
Column 1, line 41, "trous" should read torus Column line 30, "bet" should read be Column 5, lines 35 to 38, the formula should appear as shown below:
[nascent H] cyclodextrinOH+CH =CHCN% cyclodextrin-O-CH CH CN-') Column 6, line 13, "phosphonum" should read phosphonium line 55 "9 4 g. should read 9 .4 g Column 7 line 26, "frams" should read grams Signed and sealed this 31st day of March 1970.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. WILLIAM E. SCHUYLER, JR. Attesting Officer Commissioner of Patents
US615314A 1967-02-13 1967-02-13 Cyclodextrin with cationic properties Expired - Lifetime US3453257A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61531467A 1967-02-13 1967-02-13

Publications (1)

Publication Number Publication Date
US3453257A true US3453257A (en) 1969-07-01

Family

ID=24464856

Family Applications (1)

Application Number Title Priority Date Filing Date
US615314A Expired - Lifetime US3453257A (en) 1967-02-13 1967-02-13 Cyclodextrin with cationic properties

Country Status (1)

Country Link
US (1) US3453257A (en)

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960720A (en) * 1973-03-23 1976-06-01 Exploaterings Aktiebolaget T.B.F. Gel product for separation purposes and method of using the product for hydrophobic salting out adsorption
US4407795A (en) * 1981-07-16 1983-10-04 American Cyanamid Company Inclusion compound of p-hexadecylamino benzoic acid in cyclodextrin and method of use
US4582900A (en) * 1983-12-17 1986-04-15 Hoechst Aktiengesellschaft Water-soluble mixed ethers of β-cyclodextrin and a process for their preparation
US4638058A (en) * 1983-12-17 1987-01-20 Hoechst Aktiengesellschaft Ethers of beta-cyclodextrin and a process for their preparation
US4727064A (en) * 1984-04-25 1988-02-23 The United States Of America As Represented By The Department Of Health And Human Services Pharmaceutical preparations containing cyclodextrin derivatives
US4948395A (en) * 1989-09-12 1990-08-14 Advanced Separations Technologies Inc. Chiral separation media
EP0387681A2 (en) * 1989-03-09 1990-09-19 Farmhispania S.A. Ammonium salts of polycyclodextrins for use as hypocholesteremic agents
US4975293A (en) * 1988-01-11 1990-12-04 The United States Of America As Represented By The Secretary Of Agriculture Process for preserving raw fruit and vegetable juices using cyclodextrins and compositions thereof
US5064944A (en) * 1989-09-12 1991-11-12 Advanced Separation Technologies Inc. Chiral separation media
US5068227A (en) * 1989-01-18 1991-11-26 Cyclex, Inc. Cyclodextrins as carriers
US5154738A (en) * 1989-09-12 1992-10-13 Advanced Separation Technologies, Inc. Chiral separation media
US5241059A (en) * 1990-05-21 1993-08-31 Toppan Printing Co., Ltd. Cyclodextrin derivatives
US5534165A (en) * 1994-08-12 1996-07-09 The Procter & Gamble Company Fabric treating composition containing beta-cyclodextrin and essentially free of perfume
US5578563A (en) * 1994-08-12 1996-11-26 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
US5593670A (en) * 1994-08-12 1997-01-14 The Proctor & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
US5663134A (en) * 1994-08-12 1997-09-02 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
US5668097A (en) * 1994-08-12 1997-09-16 The Procter & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
US5714137A (en) * 1994-08-12 1998-02-03 The Procter & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
US5728823A (en) * 1994-08-18 1998-03-17 Consortium Fur Elektrochemische Industrie Gmbh Cyclodextrin derivatives having at least one nitrogen-containing heterocycle, their preparation and use
US5780020A (en) * 1996-10-28 1998-07-14 The Proctor & Gamble Company Methods and compositions for reducing body odor
US5831081A (en) * 1995-02-16 1998-11-03 Consortium Fur Elektrochemische Industrie Gmbh Process for the purification of water-soluble cyclodextrin derivatives
US5874067A (en) * 1996-10-24 1999-02-23 The Procter & Gamble Company Methods for controlling environmental odors on the body
US5879666A (en) * 1996-10-24 1999-03-09 The Procter & Gamble Company Methods and compositions for reducing body odor
US5882638A (en) * 1996-10-24 1999-03-16 The Proctor & Gamble Company Methods using uncomplexed cyclodextrin solutions for controlling environmental odors
US5885599A (en) * 1996-10-28 1999-03-23 The Procter & Gamble Company Methods and compositions for reducing body odors and excess moisture
US5897855A (en) * 1996-10-24 1999-04-27 The Procter & Gamble Company Methods and compositions for reducing body odor
US5911976A (en) * 1996-10-24 1999-06-15 The Procter & Gamble Company Compositions for reducing body odor
US5939060A (en) * 1994-08-12 1999-08-17 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
US6077318A (en) * 1994-08-12 2000-06-20 The Procter & Gamble Company Method of using a composition for reducing malodor impression
US6358469B1 (en) 1998-12-01 2002-03-19 S. C. Johnson & Son, Inc. Odor eliminating aqueous formulation
US20020037817A1 (en) * 2000-07-19 2002-03-28 The Procter & Gamble Company Cleaning composition
US20020095910A1 (en) * 2000-05-12 2002-07-25 Hartmut Salow Filter material with flavoring and flavor-protecting properties and a process for its production
US20020169090A1 (en) * 2000-07-19 2002-11-14 Foley Peter Robert Cleaning composition
US6623848B2 (en) 1999-08-20 2003-09-23 Stockhausen Gmbh & Co. Kg Water-absorbing polymers having interstitial compounds, a process for their production, and their use
WO2003105867A1 (en) * 2002-06-13 2003-12-24 Novartis Ag Quaternised ammonium cyclodextrin compounds
US6682694B2 (en) 1994-08-12 2004-01-27 The Procter & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
US6740713B1 (en) 1999-07-08 2004-05-25 Procter & Gamble Company Process for producing particles of amine reaction products
US6764986B1 (en) 1999-07-08 2004-07-20 Procter & Gamble Company Process for producing particles of amine reaction products
US20040157989A1 (en) * 1998-06-08 2004-08-12 Christoph Bruhn Water-absorbing polymers with supramolecular hollow molecules, method for producing them and use of the same
WO2005014782A2 (en) 2003-06-13 2005-02-17 Alnylam Europe Ag., Double-stranded ribonucleic acid with increased effectiveness in an organism
US20050113277A1 (en) * 1999-09-27 2005-05-26 Sherry Alan E. Hard surface cleaning compositions and wipes
US20050133174A1 (en) * 1999-09-27 2005-06-23 Gorley Ronald T. 100% synthetic nonwoven wipes
WO2005060968A1 (en) 2003-12-11 2005-07-07 Sepracor Inc. Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
US6972276B1 (en) 1999-07-09 2005-12-06 Procter & Gamble Company Process for making amine compounds
WO2006009869A1 (en) 2004-06-17 2006-01-26 Infinity Pharmaceuticals, Inc. Coumpounds and methods for inhibiting the interaction of bcl proteins with binding partners
US7091192B1 (en) * 1998-07-01 2006-08-15 California Institute Of Technology Linear cyclodextrin copolymers
WO2006088865A1 (en) * 2005-02-15 2006-08-24 Georgia Tech Research Corporation Method for improving the consolidation and dewatering of suspended particulate matter
US20070098148A1 (en) * 2005-10-14 2007-05-03 Sherman Kenneth N Aroma releasing patch on mobile telephones
WO2008016968A2 (en) 2006-08-03 2008-02-07 Trustees Of Tufts College Non-flushing niacin analogues, and methods of use thereof
US20080058427A1 (en) * 2002-09-06 2008-03-06 Insert Therapeutics, Inc. Cyclodextrin-based polymers for therapeutics delivery
US20080149288A1 (en) * 2006-02-14 2008-06-26 Georgia Tech Research Corporation Method for Altering the Tack of Materials
US20090000752A1 (en) * 2007-06-28 2009-01-01 Buckman Laboratories International, Inc. Use of Cyclodextrins For Odor Control In Papermaking Sludges, and Deodorized Sludge and Products
WO2009007828A1 (en) * 2007-07-11 2009-01-15 Ophthalmopharma Ag Complexes of prostaglandin derivatives and monosubstituted, charged beta-cyclodextrins
EP2036481A2 (en) 1999-09-27 2009-03-18 The Procter and Gamble Company Hard surface cleaning compositions, premoistened wipes, methods of use, and articles comprising said compositions or wipes and instructions for use resulting in easier cleaning and maintenance, improved surface appearance and/or hygiene under stress conditions such as no-rinse
US20090220433A1 (en) * 2005-05-12 2009-09-03 The General Hospital Corporation Novel biotinylated compositions
US20100016782A1 (en) * 2008-07-16 2010-01-21 John Erich Oblong Method of Regulating Hair Growth
US20100093719A1 (en) * 2005-02-18 2010-04-15 Surface Logix, Inc. Pharmacokinetically improved compounds
US20100192311A1 (en) * 2009-01-30 2010-08-05 Euan John Magennis Method for perfuming fabrics
EP2248881A1 (en) 2002-05-23 2010-11-10 The Procter and Gamble Company Methods and articles for reducing airborne particles
EP2311502A1 (en) 1994-08-12 2011-04-20 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
EP2319493A2 (en) 2002-07-23 2011-05-11 Novartis AG Ophthalmic ointment composition comprising a drug, an ointment base and a solubilizing/dispersing agent
WO2011060320A1 (en) 2009-11-13 2011-05-19 Avi Biopharma, Inc. Antisense antiviral compound and method for treating influenza viral infection
US20110172422A1 (en) * 2005-02-18 2011-07-14 Surface Logix, Inc. Methods of Making Pharmacokinetically Improved Compounds Comprising Functional Residues or Groups and Pharmaceutical Compositions Comprising Said Compounds
WO2011113015A2 (en) 2010-03-12 2011-09-15 Avi Biopharma, Inc. Antisense modulation of nuclear hormone receptors
US20110237540A1 (en) * 2009-11-23 2011-09-29 Crawford Thomas C Cyclodextrin-based polymers for therapeutic delivery
EP2388017A2 (en) 2004-02-24 2011-11-23 The General Hospital Corporation Catalytic radiofluorination
WO2011163612A1 (en) 2010-06-24 2011-12-29 Trustees Of Tufts College Niacin mimetics, and methods of use thereof
WO2012101241A1 (en) 2011-01-27 2012-08-02 Givaudan Sa Compositions
WO2013012752A2 (en) 2011-07-15 2013-01-24 Sarepta Therapeutics, Inc. Methods and compositions for manipulating translation of protein isoforms from alternative initiation start sites
US8450316B2 (en) 2010-06-24 2013-05-28 Trustees Of Tufts College Niacin mimetics, and methods of use thereof
WO2013086444A2 (en) 2011-12-08 2013-06-13 Sarepta Therapeutics, Inc. Methods for treating progeroid laminopathies using oligonucleotide analogues targeting human lmna
WO2013096055A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
WO2013096049A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
WO2013096060A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
WO2013096051A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
WO2013096059A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
US8492538B1 (en) 2009-06-04 2013-07-23 Jose R. Matos Cyclodextrin derivative salts
US8497365B2 (en) 2007-01-24 2013-07-30 Mark E. Davis Cyclodextrin-based polymers for therapeutics delivery
US8506996B2 (en) 1997-01-29 2013-08-13 Peter J. Cronk Therapeutic delivery system
WO2013123254A1 (en) 2012-02-15 2013-08-22 Cydex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
WO2013130666A1 (en) 2012-02-28 2013-09-06 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
WO2013171641A1 (en) 2012-05-15 2013-11-21 Novartis Ag Compounds and compositions for inhibiting the activity of abl1, abl2 and bcr-abl1
WO2013171639A1 (en) 2012-05-15 2013-11-21 Novartis Ag Benzamide derivatives for inhibiting the activity of abl1, abl2 and bcr-abl1
WO2013171640A1 (en) 2012-05-15 2013-11-21 Novartis Ag Benzamide derivatives for inhibiting the activity of abl1, abl2 and bcr-abl1
WO2013171642A1 (en) 2012-05-15 2013-11-21 Novartis Ag Benzamide derivatives for inhibiting the activity of abl1, abl2 and bcr-abl1
WO2014066274A1 (en) 2012-10-22 2014-05-01 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
WO2014100714A1 (en) 2012-12-20 2014-06-26 Sarepta Therapeutics, Inc. Improved exon skipping compositions for treating muscular dystrophy
US20140187454A1 (en) * 2012-12-27 2014-07-03 Shell Oil Company Compositions
US20140182192A1 (en) * 2012-12-27 2014-07-03 Shell Oil Company Compositions
EP2762567A1 (en) 2008-10-24 2014-08-06 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US8834514B2 (en) 2006-08-30 2014-09-16 Xennovate Medical Llc Resilient band medical device
WO2014144978A2 (en) 2013-03-15 2014-09-18 Sarepta Therapeutics, Inc. Improved compositions for treating muscular dystrophy
WO2014153220A2 (en) 2013-03-14 2014-09-25 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
WO2014153240A2 (en) 2013-03-14 2014-09-25 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
WO2015022662A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
WO2015022664A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
WO2015022663A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
WO2015054463A1 (en) 2013-10-10 2015-04-16 The Procter & Gamble Company Pet deodorizing composition
WO2015092634A1 (en) 2013-12-16 2015-06-25 Novartis Ag 1,2,3,4-tetrahydroisoquinoline compounds and compositions as selective estrogen receptor antagonists and degraders
WO2015107493A1 (en) 2014-01-17 2015-07-23 Novartis Ag 1 -pyridazin-/triazin-3-yl-piper(-azine)/idine/pyrolidine derivatives and and compositions thereof for inhibiting the activity of shp2
WO2015107494A1 (en) 2014-01-17 2015-07-23 Novartis Ag 1 -(triazin-3-yi_/pyridazin-3-yl)-piper(-azine)idine derivatives and compositions thereof for inhibiting the activity of shp2
WO2015107495A1 (en) 2014-01-17 2015-07-23 Novartis Ag N-azaspirocycloalkane substituted n-heteroaryl compounds and compositions for inhibiting the activity of shp2
US9200088B2 (en) 2008-04-28 2015-12-01 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
WO2016029179A1 (en) 2014-08-22 2016-02-25 Cydex Pharmaceuticals, Inc. Fractionated alkylated cyclodextrin compositions and processes for preparing and using the same
CN105461832A (en) * 2015-12-31 2016-04-06 湖北中医药大学 Cationic beta-cyclodextrin derivative and preparation method and application thereof
EP3023496A2 (en) 2010-05-13 2016-05-25 Sarepta Therapeutics, Inc. Compounds which modulate interleukins 17 and 23 signaling activity
EP3034510A1 (en) 2004-04-30 2016-06-22 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a c5-modified pyrimidine
WO2016106168A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions stabilized with an amphiphilic rheology modifier crosslinked with an amphiphilic crosslinker
WO2016106167A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions
WO2016172118A1 (en) 2015-04-20 2016-10-27 Cornell University Porous cyclodextrin polymeric materials and methods of making and using same
WO2016203404A1 (en) 2015-06-19 2016-12-22 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
WO2016203405A1 (en) 2015-06-19 2016-12-22 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
WO2016203406A1 (en) 2015-06-19 2016-12-22 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
WO2017190041A1 (en) 2016-04-29 2017-11-02 Sarepta Therapeutics, Inc. Oligonucleotide analogues targeting human lmna
WO2017216706A1 (en) 2016-06-14 2017-12-21 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
WO2018005805A1 (en) 2016-06-30 2018-01-04 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
EP3281957A1 (en) 2016-08-13 2018-02-14 Université de Strasbourg Aza-capped cyclodextrins and process of preparing them
WO2018118662A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118599A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118627A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
EP3360870A1 (en) 2013-02-19 2018-08-15 Novartis AG Benzothiophene derivatives and compositions thereof as selective estrogen receptor degraders
US20180282530A1 (en) * 2017-04-04 2018-10-04 The Florida International University Board Of Trustees Application of cyclodextrins (cds) for remediation of perfluoroalkyl substances (pfass)
WO2018195338A1 (en) 2017-04-20 2018-10-25 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation
WO2018204812A1 (en) 2017-05-04 2018-11-08 Lubrizol Advanced Materials, Inc. Dual activated microgel
WO2019059973A1 (en) 2017-09-22 2019-03-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2019067975A1 (en) 2017-09-28 2019-04-04 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
WO2019067981A1 (en) 2017-09-28 2019-04-04 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
WO2019067979A1 (en) 2017-09-28 2019-04-04 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
US10463687B2 (en) 2011-01-20 2019-11-05 Cornell University Treatments for retinal disorders
US10532104B2 (en) 2012-08-31 2020-01-14 The General Hospital Corporation Biotin complexes for treatment and diagnosis of Alzheimer'S disease
WO2020023688A1 (en) 2018-07-27 2020-01-30 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
EP3653216A1 (en) 2015-09-30 2020-05-20 Sarepta Therapeutics, Inc. Methods for treating muscular dystrophy
WO2020123574A1 (en) 2018-12-13 2020-06-18 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US10758629B2 (en) 2018-05-29 2020-09-01 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2020198268A1 (en) 2019-03-28 2020-10-01 Sarepta Therapeutics, Inc. Methods for treating muscular dystrophy with casimersen
WO2020201698A1 (en) 2019-04-04 2020-10-08 University Of Exeter Antifungal compositions
WO2020214763A1 (en) 2019-04-18 2020-10-22 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
WO2020257489A1 (en) 2019-06-19 2020-12-24 Sarepta Therapeutics, Inc. Methods for treating muscular dystrophy
US11001645B2 (en) 2019-02-14 2021-05-11 Cyclopure, Inc. Charge-bearing cyclodextrin polymeric materials and methods of making and using same
WO2021102080A1 (en) 2019-11-19 2021-05-27 Lubrizol Advanced Materials, Inc. Redeposition inhibiting polymers and detergent compositions containing same
WO2021126986A1 (en) 2019-12-19 2021-06-24 Lubrizol Advanced Materials, Inc. Redeposition inhibiting polymers and detergent compositions containing same
US20220034039A1 (en) * 2018-12-18 2022-02-03 North Carolina State University Fast disintegrating paper products and methods of making
US11279774B2 (en) 2019-01-03 2022-03-22 Underdog Pharmaceuticals, Inc. Cyclodextrin dimers, compositions thereof, and uses thereof
US11464871B2 (en) 2012-10-02 2022-10-11 Novartis Ag Methods and systems for polymer precipitation and generation of particles
US11512146B2 (en) 2019-02-14 2022-11-29 Cyclopure, Inc. Charge-bearing cyclodextrin polymeric materials and methods of making and using same
EP4219717A2 (en) 2018-06-13 2023-08-02 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
WO2023178230A1 (en) 2022-03-17 2023-09-21 Sarepta Therapeutics, Inc. Phosphorodiamidate morpholino oligomer conjugates
WO2024073570A1 (en) 2022-09-28 2024-04-04 Altos Labs, Inc. Expression of regeneration factors in aged/senescent cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539704A (en) * 1948-07-07 1951-01-30 Us Rubber Co Treatment of hydroxylated polymers
US3140184A (en) * 1959-10-29 1964-07-07 Gen Foods Corp Edible materials containing water soluble dextrin forming complexes
US3222358A (en) * 1962-12-06 1965-12-07 Eastman Kodak Co Cyanoethylated hydroxyalkylsucrose and its preparation
US3346555A (en) * 1965-06-01 1967-10-10 Gen Mills Inc Adducts of polygalactomannan gums and process for preparing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539704A (en) * 1948-07-07 1951-01-30 Us Rubber Co Treatment of hydroxylated polymers
US3140184A (en) * 1959-10-29 1964-07-07 Gen Foods Corp Edible materials containing water soluble dextrin forming complexes
US3222358A (en) * 1962-12-06 1965-12-07 Eastman Kodak Co Cyanoethylated hydroxyalkylsucrose and its preparation
US3346555A (en) * 1965-06-01 1967-10-10 Gen Mills Inc Adducts of polygalactomannan gums and process for preparing same

Cited By (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960720A (en) * 1973-03-23 1976-06-01 Exploaterings Aktiebolaget T.B.F. Gel product for separation purposes and method of using the product for hydrophobic salting out adsorption
US4407795A (en) * 1981-07-16 1983-10-04 American Cyanamid Company Inclusion compound of p-hexadecylamino benzoic acid in cyclodextrin and method of use
US4582900A (en) * 1983-12-17 1986-04-15 Hoechst Aktiengesellschaft Water-soluble mixed ethers of β-cyclodextrin and a process for their preparation
US4638058A (en) * 1983-12-17 1987-01-20 Hoechst Aktiengesellschaft Ethers of beta-cyclodextrin and a process for their preparation
US4727064A (en) * 1984-04-25 1988-02-23 The United States Of America As Represented By The Department Of Health And Human Services Pharmaceutical preparations containing cyclodextrin derivatives
US4975293A (en) * 1988-01-11 1990-12-04 The United States Of America As Represented By The Secretary Of Agriculture Process for preserving raw fruit and vegetable juices using cyclodextrins and compositions thereof
US5068227A (en) * 1989-01-18 1991-11-26 Cyclex, Inc. Cyclodextrins as carriers
EP0387681A2 (en) * 1989-03-09 1990-09-19 Farmhispania S.A. Ammonium salts of polycyclodextrins for use as hypocholesteremic agents
EP0387681A3 (en) * 1989-03-09 1990-11-07 Farmhispania S.A. Ammonium salts of polycyclodextrins for use as hypocholesteremic agents
US4948395A (en) * 1989-09-12 1990-08-14 Advanced Separations Technologies Inc. Chiral separation media
US5064944A (en) * 1989-09-12 1991-11-12 Advanced Separation Technologies Inc. Chiral separation media
US5154738A (en) * 1989-09-12 1992-10-13 Advanced Separation Technologies, Inc. Chiral separation media
US5241059A (en) * 1990-05-21 1993-08-31 Toppan Printing Co., Ltd. Cyclodextrin derivatives
US5939060A (en) * 1994-08-12 1999-08-17 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
US5578563A (en) * 1994-08-12 1996-11-26 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
US5593670A (en) * 1994-08-12 1997-01-14 The Proctor & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
US5663134A (en) * 1994-08-12 1997-09-02 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
US5668097A (en) * 1994-08-12 1997-09-16 The Procter & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
US5714137A (en) * 1994-08-12 1998-02-03 The Procter & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
US6682694B2 (en) 1994-08-12 2004-01-27 The Procter & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
US5783544A (en) * 1994-08-12 1998-07-21 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
US5534165A (en) * 1994-08-12 1996-07-09 The Procter & Gamble Company Fabric treating composition containing beta-cyclodextrin and essentially free of perfume
EP2311502A1 (en) 1994-08-12 2011-04-20 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
US6248135B1 (en) 1994-08-12 2001-06-19 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
US6077318A (en) * 1994-08-12 2000-06-20 The Procter & Gamble Company Method of using a composition for reducing malodor impression
US5728823A (en) * 1994-08-18 1998-03-17 Consortium Fur Elektrochemische Industrie Gmbh Cyclodextrin derivatives having at least one nitrogen-containing heterocycle, their preparation and use
US5831081A (en) * 1995-02-16 1998-11-03 Consortium Fur Elektrochemische Industrie Gmbh Process for the purification of water-soluble cyclodextrin derivatives
US5874067A (en) * 1996-10-24 1999-02-23 The Procter & Gamble Company Methods for controlling environmental odors on the body
US5879666A (en) * 1996-10-24 1999-03-09 The Procter & Gamble Company Methods and compositions for reducing body odor
US5897855A (en) * 1996-10-24 1999-04-27 The Procter & Gamble Company Methods and compositions for reducing body odor
US5882638A (en) * 1996-10-24 1999-03-16 The Proctor & Gamble Company Methods using uncomplexed cyclodextrin solutions for controlling environmental odors
US5911976A (en) * 1996-10-24 1999-06-15 The Procter & Gamble Company Compositions for reducing body odor
US5780020A (en) * 1996-10-28 1998-07-14 The Proctor & Gamble Company Methods and compositions for reducing body odor
US5885599A (en) * 1996-10-28 1999-03-23 The Procter & Gamble Company Methods and compositions for reducing body odors and excess moisture
US8852224B2 (en) 1997-01-29 2014-10-07 Peter J. Cronk Therapeutic delivery system
US8506996B2 (en) 1997-01-29 2013-08-13 Peter J. Cronk Therapeutic delivery system
US6958429B2 (en) 1998-06-08 2005-10-25 Stockhausen Gmbh & Co. Kg Water-absorbing polymers with supramolecular hollow molecules, method for producing them and use of the same
US20040157989A1 (en) * 1998-06-08 2004-08-12 Christoph Bruhn Water-absorbing polymers with supramolecular hollow molecules, method for producing them and use of the same
US20110143944A1 (en) * 1998-07-01 2011-06-16 California Institute Of Technology Linear cyclodextrin copolymers
US20070025952A1 (en) * 1998-07-01 2007-02-01 California Institute Of Technology Linear cyclodextrin copolymers
US7091192B1 (en) * 1998-07-01 2006-08-15 California Institute Of Technology Linear cyclodextrin copolymers
US6358469B1 (en) 1998-12-01 2002-03-19 S. C. Johnson & Son, Inc. Odor eliminating aqueous formulation
US6764986B1 (en) 1999-07-08 2004-07-20 Procter & Gamble Company Process for producing particles of amine reaction products
US6740713B1 (en) 1999-07-08 2004-05-25 Procter & Gamble Company Process for producing particles of amine reaction products
US6972276B1 (en) 1999-07-09 2005-12-06 Procter & Gamble Company Process for making amine compounds
US6623848B2 (en) 1999-08-20 2003-09-23 Stockhausen Gmbh & Co. Kg Water-absorbing polymers having interstitial compounds, a process for their production, and their use
EP2036481A2 (en) 1999-09-27 2009-03-18 The Procter and Gamble Company Hard surface cleaning compositions, premoistened wipes, methods of use, and articles comprising said compositions or wipes and instructions for use resulting in easier cleaning and maintenance, improved surface appearance and/or hygiene under stress conditions such as no-rinse
US20050113277A1 (en) * 1999-09-27 2005-05-26 Sherry Alan E. Hard surface cleaning compositions and wipes
US20050133174A1 (en) * 1999-09-27 2005-06-23 Gorley Ronald T. 100% synthetic nonwoven wipes
US20020095910A1 (en) * 2000-05-12 2002-07-25 Hartmut Salow Filter material with flavoring and flavor-protecting properties and a process for its production
US6565710B2 (en) * 2000-05-12 2003-05-20 Papcel-Papter Und Cellulose, Technologie Und Handels-Gmbh Filter material with flavoring and flavor-protecting properties and a process for its production
US20020037817A1 (en) * 2000-07-19 2002-03-28 The Procter & Gamble Company Cleaning composition
US20020169090A1 (en) * 2000-07-19 2002-11-14 Foley Peter Robert Cleaning composition
EP2248881A1 (en) 2002-05-23 2010-11-10 The Procter and Gamble Company Methods and articles for reducing airborne particles
JP2011006448A (en) * 2002-06-13 2011-01-13 Novartis Ag Quaternized ammonium cyclodextrin compound
WO2003105867A1 (en) * 2002-06-13 2003-12-24 Novartis Ag Quaternised ammonium cyclodextrin compounds
US20090110734A1 (en) * 2002-06-13 2009-04-30 Georg Ludwig Kis Quaternised ammonium cyclodextrin compounds
US20050222085A1 (en) * 2002-06-13 2005-10-06 Kis Georg L Quaternised ammonium cyclodextrin compounds
EP2319493A2 (en) 2002-07-23 2011-05-11 Novartis AG Ophthalmic ointment composition comprising a drug, an ointment base and a solubilizing/dispersing agent
US8110179B2 (en) 2002-09-06 2012-02-07 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8580244B2 (en) 2002-09-06 2013-11-12 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8609081B2 (en) 2002-09-06 2013-12-17 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8252276B2 (en) 2002-09-06 2012-08-28 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US20080058427A1 (en) * 2002-09-06 2008-03-06 Insert Therapeutics, Inc. Cyclodextrin-based polymers for therapeutics delivery
US8475781B2 (en) 2002-09-06 2013-07-02 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8580243B2 (en) 2002-09-06 2013-11-12 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8518388B2 (en) 2002-09-06 2013-08-27 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8580242B2 (en) 2002-09-06 2013-11-12 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US9550860B2 (en) 2002-09-06 2017-01-24 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8680202B2 (en) 2002-09-06 2014-03-25 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8404662B2 (en) 2002-09-06 2013-03-26 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8399431B2 (en) 2002-09-06 2013-03-19 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8603454B2 (en) 2002-09-06 2013-12-10 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8389499B2 (en) 2002-09-06 2013-03-05 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8314230B2 (en) 2002-09-06 2012-11-20 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
WO2005014782A2 (en) 2003-06-13 2005-02-17 Alnylam Europe Ag., Double-stranded ribonucleic acid with increased effectiveness in an organism
EP2336317A1 (en) 2003-06-13 2011-06-22 Alnylam Europe AG Double-stranded ribonucleic acid with increased effectiveness in an organism
EP3604537A1 (en) 2003-06-13 2020-02-05 Alnylam Europe AG Double-stranded ribonucleic acid with increased effectiveness in an organism
EP2343073A2 (en) 2003-12-11 2011-07-13 Sepracor Inc. Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
WO2005060968A1 (en) 2003-12-11 2005-07-07 Sepracor Inc. Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
EP2610234A1 (en) 2004-02-24 2013-07-03 The General Hospital Corporation Catalytic radiofluorination
EP2388017A2 (en) 2004-02-24 2011-11-23 The General Hospital Corporation Catalytic radiofluorination
EP3034510A1 (en) 2004-04-30 2016-06-22 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a c5-modified pyrimidine
WO2006009869A1 (en) 2004-06-17 2006-01-26 Infinity Pharmaceuticals, Inc. Coumpounds and methods for inhibiting the interaction of bcl proteins with binding partners
WO2006088865A1 (en) * 2005-02-15 2006-08-24 Georgia Tech Research Corporation Method for improving the consolidation and dewatering of suspended particulate matter
EP1848854A4 (en) * 2005-02-15 2013-01-09 Georgia Tech Res Inst Method for altering the tack of materials
EP1848854A1 (en) * 2005-02-15 2007-10-31 Georgia Tech Research Corporation Method for altering the tack of materials
US7718075B2 (en) 2005-02-15 2010-05-18 Georgia Tech Research Corporation Method for improving the consolidation and dewatering of suspended particulate matter
US20080135194A1 (en) * 2005-02-15 2008-06-12 Georgia Tech Research Corporation Method for Improving the Consolidation and Dewatering of Suspended Particulate Matter
US20110172422A1 (en) * 2005-02-18 2011-07-14 Surface Logix, Inc. Methods of Making Pharmacokinetically Improved Compounds Comprising Functional Residues or Groups and Pharmaceutical Compositions Comprising Said Compounds
US20100093719A1 (en) * 2005-02-18 2010-04-15 Surface Logix, Inc. Pharmacokinetically improved compounds
US8669236B2 (en) 2005-05-12 2014-03-11 The General Hospital Corporation Biotinylated compositions
US20090220433A1 (en) * 2005-05-12 2009-09-03 The General Hospital Corporation Novel biotinylated compositions
US20070098148A1 (en) * 2005-10-14 2007-05-03 Sherman Kenneth N Aroma releasing patch on mobile telephones
US20080149288A1 (en) * 2006-02-14 2008-06-26 Georgia Tech Research Corporation Method for Altering the Tack of Materials
US8512523B2 (en) 2006-02-14 2013-08-20 Georgia Tech Research Corporation Method for altering the tack of materials
WO2008016968A2 (en) 2006-08-03 2008-02-07 Trustees Of Tufts College Non-flushing niacin analogues, and methods of use thereof
US8834514B2 (en) 2006-08-30 2014-09-16 Xennovate Medical Llc Resilient band medical device
US9610360B2 (en) 2007-01-24 2017-04-04 Ceruliean Pharma Inc. Polymer drug conjugates with tether groups for controlled drug delivery
US8497365B2 (en) 2007-01-24 2013-07-30 Mark E. Davis Cyclodextrin-based polymers for therapeutics delivery
US20090000752A1 (en) * 2007-06-28 2009-01-01 Buckman Laboratories International, Inc. Use of Cyclodextrins For Odor Control In Papermaking Sludges, and Deodorized Sludge and Products
US8147651B2 (en) 2007-06-28 2012-04-03 Buckman Laboratories International, Inc. Use of cyclodextrins for odor control in papermaking sludges, and deodorized sludge and products
WO2009007828A1 (en) * 2007-07-11 2009-01-15 Ophthalmopharma Ag Complexes of prostaglandin derivatives and monosubstituted, charged beta-cyclodextrins
US20100130444A1 (en) * 2007-07-11 2010-05-27 El Mustapha Belgsir Complexes of prostaglandin derivatives and monosubstituted, charged beta-cyclodextrins
US10117951B2 (en) 2008-04-28 2018-11-06 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
US11806402B2 (en) 2008-04-28 2023-11-07 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
US9200088B2 (en) 2008-04-28 2015-12-01 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
US9750822B2 (en) 2008-04-28 2017-09-05 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
US10780177B2 (en) 2008-04-28 2020-09-22 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
US20100016782A1 (en) * 2008-07-16 2010-01-21 John Erich Oblong Method of Regulating Hair Growth
EP3133160A1 (en) 2008-10-24 2017-02-22 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for dmd
EP2762567A1 (en) 2008-10-24 2014-08-06 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
EP3875587A1 (en) 2008-10-24 2021-09-08 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for dmd
EP3428278A1 (en) 2008-10-24 2019-01-16 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for dmd
EP4174178A1 (en) 2008-10-24 2023-05-03 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for dmd
EP3404100A1 (en) 2008-10-24 2018-11-21 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for dmd
WO2010088226A1 (en) 2009-01-30 2010-08-05 The Procter & Gamble Company Method for perfuming fabrics
EP2216394A1 (en) 2009-01-30 2010-08-11 The Procter & Gamble Company Method for perfuming fabrics
US20100192311A1 (en) * 2009-01-30 2010-08-05 Euan John Magennis Method for perfuming fabrics
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
US8492538B1 (en) 2009-06-04 2013-07-23 Jose R. Matos Cyclodextrin derivative salts
WO2011060320A1 (en) 2009-11-13 2011-05-19 Avi Biopharma, Inc. Antisense antiviral compound and method for treating influenza viral infection
US8697858B2 (en) 2009-11-13 2014-04-15 Sarepta Therapeutics, Inc. Antisense antiviral compound and method for treating influenza viral infection
US9394323B2 (en) 2009-11-13 2016-07-19 Sarepta Therapeutics, Inc. Antisense antiviral compound and method for treating influenza viral infection
EP3199634A1 (en) 2009-11-13 2017-08-02 Sarepta Therapeutics, Inc. Antisense antiviral compound and method for treating influenza viral infection
US20110237540A1 (en) * 2009-11-23 2011-09-29 Crawford Thomas C Cyclodextrin-based polymers for therapeutic delivery
WO2011113015A2 (en) 2010-03-12 2011-09-15 Avi Biopharma, Inc. Antisense modulation of nuclear hormone receptors
EP3023496A2 (en) 2010-05-13 2016-05-25 Sarepta Therapeutics, Inc. Compounds which modulate interleukins 17 and 23 signaling activity
US8450316B2 (en) 2010-06-24 2013-05-28 Trustees Of Tufts College Niacin mimetics, and methods of use thereof
US9212142B2 (en) 2010-06-24 2015-12-15 Trustees Of Tufts College Niacin mimetics, and methods of use thereof
WO2011163612A1 (en) 2010-06-24 2011-12-29 Trustees Of Tufts College Niacin mimetics, and methods of use thereof
US8937063B2 (en) 2010-06-24 2015-01-20 Trustees Of Tufts College Niacin mimetics, and methods of use thereof
US10463687B2 (en) 2011-01-20 2019-11-05 Cornell University Treatments for retinal disorders
US10849922B2 (en) 2011-01-20 2020-12-01 Cornell University Treatments for retinal disorders
WO2012101241A1 (en) 2011-01-27 2012-08-02 Givaudan Sa Compositions
WO2013012752A2 (en) 2011-07-15 2013-01-24 Sarepta Therapeutics, Inc. Methods and compositions for manipulating translation of protein isoforms from alternative initiation start sites
US10100305B2 (en) 2011-07-15 2018-10-16 Sarepta Therapeutics, Inc. Methods and compositions for manipulating translation of protein isoforms from alternative initiation of start sites
WO2013086444A2 (en) 2011-12-08 2013-06-13 Sarepta Therapeutics, Inc. Methods for treating progeroid laminopathies using oligonucleotide analogues targeting human lmna
WO2013096059A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
WO2013096055A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
WO2013096049A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
WO2013096060A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
WO2013096051A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
EP4083075A1 (en) 2012-02-15 2022-11-02 CyDex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
US11208500B2 (en) 2012-02-15 2021-12-28 Cydex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
WO2013123254A1 (en) 2012-02-15 2013-08-22 Cydex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
US9751957B2 (en) 2012-02-15 2017-09-05 Cydex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
EP3702374A1 (en) 2012-02-15 2020-09-02 CyDex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
US10633462B2 (en) 2012-02-15 2020-04-28 Cydex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
US10323103B2 (en) 2012-02-28 2019-06-18 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
WO2013130666A1 (en) 2012-02-28 2013-09-06 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
US9493582B2 (en) 2012-02-28 2016-11-15 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
WO2013171642A1 (en) 2012-05-15 2013-11-21 Novartis Ag Benzamide derivatives for inhibiting the activity of abl1, abl2 and bcr-abl1
WO2013171641A1 (en) 2012-05-15 2013-11-21 Novartis Ag Compounds and compositions for inhibiting the activity of abl1, abl2 and bcr-abl1
WO2013171639A1 (en) 2012-05-15 2013-11-21 Novartis Ag Benzamide derivatives for inhibiting the activity of abl1, abl2 and bcr-abl1
WO2013171640A1 (en) 2012-05-15 2013-11-21 Novartis Ag Benzamide derivatives for inhibiting the activity of abl1, abl2 and bcr-abl1
US10532104B2 (en) 2012-08-31 2020-01-14 The General Hospital Corporation Biotin complexes for treatment and diagnosis of Alzheimer'S disease
US11464871B2 (en) 2012-10-02 2022-10-11 Novartis Ag Methods and systems for polymer precipitation and generation of particles
WO2014066274A1 (en) 2012-10-22 2014-05-01 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
US10040872B2 (en) 2012-10-22 2018-08-07 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
US10800861B2 (en) 2012-10-22 2020-10-13 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
EP3885439A1 (en) 2012-12-20 2021-09-29 Sarepta Therapeutics, Inc. Improved exon skipping compositions for treating muscular dystrophy
WO2014100714A1 (en) 2012-12-20 2014-06-26 Sarepta Therapeutics, Inc. Improved exon skipping compositions for treating muscular dystrophy
US20140187454A1 (en) * 2012-12-27 2014-07-03 Shell Oil Company Compositions
CN104870617A (en) * 2012-12-27 2015-08-26 国际壳牌研究有限公司 Compositions
US9315754B2 (en) * 2012-12-27 2016-04-19 Shell Oil Company Compositions
US9382490B2 (en) * 2012-12-27 2016-07-05 Shell Oil Company Compositions
US20140182192A1 (en) * 2012-12-27 2014-07-03 Shell Oil Company Compositions
EP3360870A1 (en) 2013-02-19 2018-08-15 Novartis AG Benzothiophene derivatives and compositions thereof as selective estrogen receptor degraders
EP3633035A1 (en) 2013-03-14 2020-04-08 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
EP3998339A1 (en) 2013-03-14 2022-05-18 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
EP3495485A2 (en) 2013-03-14 2019-06-12 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
WO2014153220A2 (en) 2013-03-14 2014-09-25 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
WO2014153240A2 (en) 2013-03-14 2014-09-25 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
EP3760720A1 (en) 2013-03-14 2021-01-06 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
EP3662912A1 (en) 2013-03-15 2020-06-10 Sarepta Therapeutics, Inc. Improved dosages of eteplirsen for treating duchenne muscular dystrophy
WO2014144978A2 (en) 2013-03-15 2014-09-18 Sarepta Therapeutics, Inc. Improved compositions for treating muscular dystrophy
WO2015022663A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
WO2015022664A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
WO2015022662A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
WO2015054463A1 (en) 2013-10-10 2015-04-16 The Procter & Gamble Company Pet deodorizing composition
WO2015092634A1 (en) 2013-12-16 2015-06-25 Novartis Ag 1,2,3,4-tetrahydroisoquinoline compounds and compositions as selective estrogen receptor antagonists and degraders
WO2015107493A1 (en) 2014-01-17 2015-07-23 Novartis Ag 1 -pyridazin-/triazin-3-yl-piper(-azine)/idine/pyrolidine derivatives and and compositions thereof for inhibiting the activity of shp2
WO2015107494A1 (en) 2014-01-17 2015-07-23 Novartis Ag 1 -(triazin-3-yi_/pyridazin-3-yl)-piper(-azine)idine derivatives and compositions thereof for inhibiting the activity of shp2
WO2015107495A1 (en) 2014-01-17 2015-07-23 Novartis Ag N-azaspirocycloalkane substituted n-heteroaryl compounds and compositions for inhibiting the activity of shp2
US11795241B2 (en) 2014-08-22 2023-10-24 Cydex Pharmaceuticals, Inc. Fractionated alkylated cyclodextrin compositions and processes for preparing and using the same
WO2016029179A1 (en) 2014-08-22 2016-02-25 Cydex Pharmaceuticals, Inc. Fractionated alkylated cyclodextrin compositions and processes for preparing and using the same
US10851184B2 (en) 2014-08-22 2020-12-01 Cydex Pharmaceuticals, Inc. Fractionated alkylated cyclodextrin compositions and processes for preparing and using the same
WO2016106167A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions
WO2016106168A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions stabilized with an amphiphilic rheology modifier crosslinked with an amphiphilic crosslinker
WO2016172118A1 (en) 2015-04-20 2016-10-27 Cornell University Porous cyclodextrin polymeric materials and methods of making and using same
WO2016203406A1 (en) 2015-06-19 2016-12-22 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
WO2016203405A1 (en) 2015-06-19 2016-12-22 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
WO2016203404A1 (en) 2015-06-19 2016-12-22 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
EP3653216A1 (en) 2015-09-30 2020-05-20 Sarepta Therapeutics, Inc. Methods for treating muscular dystrophy
CN105461832A (en) * 2015-12-31 2016-04-06 湖北中医药大学 Cationic beta-cyclodextrin derivative and preparation method and application thereof
CN105461832B (en) * 2015-12-31 2018-02-02 湖北中医药大学 A kind of cationic beta cyclodextrin derivative and its preparation method and application
WO2017190041A1 (en) 2016-04-29 2017-11-02 Sarepta Therapeutics, Inc. Oligonucleotide analogues targeting human lmna
WO2017216706A1 (en) 2016-06-14 2017-12-21 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
WO2018005805A1 (en) 2016-06-30 2018-01-04 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
EP3281957A1 (en) 2016-08-13 2018-02-14 Université de Strasbourg Aza-capped cyclodextrins and process of preparing them
EP4115908A1 (en) 2016-12-19 2023-01-11 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11395855B2 (en) 2016-12-19 2022-07-26 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
EP4122497A1 (en) 2016-12-19 2023-01-25 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118627A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118599A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11382981B2 (en) 2016-12-19 2022-07-12 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11642364B2 (en) 2016-12-19 2023-05-09 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118662A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11000600B2 (en) 2016-12-19 2021-05-11 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US10888578B2 (en) 2016-12-19 2021-01-12 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11149135B2 (en) * 2017-04-04 2021-10-19 The Florida International University Board Of Trustees Application of cyclodextrins (CDS) for remediation of perfluoroalkyl substances (PFASS)
US20180282530A1 (en) * 2017-04-04 2018-10-04 The Florida International University Board Of Trustees Application of cyclodextrins (cds) for remediation of perfluoroalkyl substances (pfass)
WO2018195338A1 (en) 2017-04-20 2018-10-25 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation
WO2018204812A1 (en) 2017-05-04 2018-11-08 Lubrizol Advanced Materials, Inc. Dual activated microgel
WO2019059973A1 (en) 2017-09-22 2019-03-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2019067981A1 (en) 2017-09-28 2019-04-04 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
WO2019067979A1 (en) 2017-09-28 2019-04-04 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
WO2019067975A1 (en) 2017-09-28 2019-04-04 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
US11338041B2 (en) 2018-05-29 2022-05-24 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US10758629B2 (en) 2018-05-29 2020-09-01 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11491238B2 (en) 2018-05-29 2022-11-08 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US10765760B2 (en) 2018-05-29 2020-09-08 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
EP4219717A2 (en) 2018-06-13 2023-08-02 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
WO2020023688A1 (en) 2018-07-27 2020-01-30 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
WO2020123574A1 (en) 2018-12-13 2020-06-18 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US20220034039A1 (en) * 2018-12-18 2022-02-03 North Carolina State University Fast disintegrating paper products and methods of making
US11279774B2 (en) 2019-01-03 2022-03-22 Underdog Pharmaceuticals, Inc. Cyclodextrin dimers, compositions thereof, and uses thereof
US11001645B2 (en) 2019-02-14 2021-05-11 Cyclopure, Inc. Charge-bearing cyclodextrin polymeric materials and methods of making and using same
US11512146B2 (en) 2019-02-14 2022-11-29 Cyclopure, Inc. Charge-bearing cyclodextrin polymeric materials and methods of making and using same
US11155646B2 (en) 2019-02-14 2021-10-26 Cyclopure, Inc. Charge-bearing cyclodextrin polymeric materials and methods of making and using same
US11965042B2 (en) 2019-02-14 2024-04-23 Cyclopure, Inc. Charge-bearing cyclodextrin polymeric materials and methods of making and using same
WO2020198268A1 (en) 2019-03-28 2020-10-01 Sarepta Therapeutics, Inc. Methods for treating muscular dystrophy with casimersen
WO2020201698A1 (en) 2019-04-04 2020-10-08 University Of Exeter Antifungal compositions
WO2020214763A1 (en) 2019-04-18 2020-10-22 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
WO2020257489A1 (en) 2019-06-19 2020-12-24 Sarepta Therapeutics, Inc. Methods for treating muscular dystrophy
WO2021102080A1 (en) 2019-11-19 2021-05-27 Lubrizol Advanced Materials, Inc. Redeposition inhibiting polymers and detergent compositions containing same
WO2021126986A1 (en) 2019-12-19 2021-06-24 Lubrizol Advanced Materials, Inc. Redeposition inhibiting polymers and detergent compositions containing same
WO2023178230A1 (en) 2022-03-17 2023-09-21 Sarepta Therapeutics, Inc. Phosphorodiamidate morpholino oligomer conjugates
WO2024073570A1 (en) 2022-09-28 2024-04-04 Altos Labs, Inc. Expression of regeneration factors in aged/senescent cells

Similar Documents

Publication Publication Date Title
US3453257A (en) Cyclodextrin with cationic properties
US3426011A (en) Cyclodextrins with anionic properties
US3453258A (en) Reaction products of cyclodextrin and unsaturated compounds
US3459731A (en) Cyclodextrin polyethers and their production
US3553191A (en) Aminoethyl cyclodextrin and method of making same
US3453259A (en) Cyclodextrin polyol ethers and their oxidation products
US4638058A (en) Ethers of beta-cyclodextrin and a process for their preparation
US4031307A (en) Cationic polygalactomannan compositions
US3565887A (en) Unsaturated and long chain esters of cyclodextrin
US4582900A (en) Water-soluble mixed ethers of β-cyclodextrin and a process for their preparation
US3472840A (en) Quaternary nitrogen-containing cellulose ethers
US2995513A (en) Flocculation by starch ethers
EP0323627A2 (en) Modified galactomannans and process for their preparation
US3856775A (en) {62 -(1{43 3)-glucans
GB1028723A (en) Improvements in or relating to hydroxypropyl cellulose
US3639389A (en) Low d.e. starch hydrolysate derivatives
CA2047726C (en) Regioselective substitutions in cyclodextrins
US3598730A (en) Process of flocculating silica with a cationic xanthomonas gum ether
Katsura et al. NMR analyses of polysaccharide derivatives containing amine groups
US4031306A (en) Polygalactomannan allyl ether compositions
US3459732A (en) Cyclodextrin carbamates
US2894944A (en) Nitrogen containing starch derivatives
US3448101A (en) Dry heat process for the preparation of cationic starch ethers
US4992536A (en) Preparation of polycationic polysaccharides by site selective reaction
Kishida et al. Preparation of Water-soluble Methyl Konjac Gluco-mannan