US3453288A - Electron spin resonance labels for biomolecules - Google Patents

Electron spin resonance labels for biomolecules Download PDF

Info

Publication number
US3453288A
US3453288A US496683A US3453288DA US3453288A US 3453288 A US3453288 A US 3453288A US 496683 A US496683 A US 496683A US 3453288D A US3453288D A US 3453288DA US 3453288 A US3453288 A US 3453288A
Authority
US
United States
Prior art keywords
group
biologically active
nitroxide
label
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US496683A
Inventor
Harden M Mcconnell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synvar Associates
Original Assignee
Synvar Associates
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synvar Associates filed Critical Synvar Associates
Application granted granted Critical
Publication of US3453288A publication Critical patent/US3453288A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/08Working media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/806Antigenic peptides or proteins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry

Definitions

  • the present invention relates in general to electron spin resonance (ESR) labeling of biologically active molecules and more particularly to an improved class of such organic spin labels employing a nitroxide radical as the active labeling group bound to the biomolecule via the intermediary of an isocyanate group.
  • ESR electron spin resonance
  • Such improved ESR labels provide strong labeling resonance line and are useful, for example for obtaining a wealth of information about biomolecules and biological systems.
  • ESR labels have been used for labeling biomolecules.
  • a typical example of such a prior label is the positive ion radical of the tranquilizer drug chlorpromazine (CPZ which forms the subject matter of and is claimed in my copending application Ser. No. 496,682, filed Oct. 15, 1965.
  • CPZ+ attaches predominately only to DNA and RNA type biomolecules for labeling same. While specificity of the label is desirable in certain instances, there are many additional biomolecules to be ESR-labeled and thus a need for a more universal label.
  • the electron resonance line spectrum of CPZ+ includes a substantial amount of fine structure which tends to weaken the resonance lines of the spectrum making measurement of subtle changes in the spectrum of the label difficult.
  • ESR labels which employ a nitroxide radical group as the spin labeling group.
  • the nitroxide group provides a strong electron resonance line spectrum having little fine structure. This radical has been found to be remarkably stable and inert, to show sharp, well resolved and simple electron resonance spectra that are sensitive to molecular motion, and to a lesser extent, sensitive to polarity of the molecular environment.
  • the nitroxide radical group is attached to the biomolecule via the intermediary of an isocyanate group whereby the nitroxide label may be readily bound to such entities as proteins and synthetic polypeptides.
  • the principal object of the present invention is to provide an improved class of organic ESR labels for biologically active molecules.
  • the labelled molecules can be studied in vivo as Well as in vitro by ESR techniques and this flexibility provides a powerful research tool.
  • One feature of the present invention is the provision of a class of ESR biomolecule labeling chemicals and methods of synthesizing same wherein the nitroxide radical is used to provide electron resonance labeling line spectrum.
  • Another feature of the present invention is the same as the preceding wherein the nitroxide labeling group is attached to the biomolecule via the intermediary of an iso- ICC cyanate group whereby the label is made specific to certain proteins and synthetic polypeptides.
  • novel nitroxide compounds are synthesized to contain at least one isocyanate group which serves to form a covalent bond with atoms of the biologically active molecule to be labeled.
  • Isocyanate-containing nixtroxide compounds are especially useful for labeling most proteins through a conventional reaction between the isocyanate group and the e-amino group of the protein molecule.
  • a class of nitroxide compounds exhibiting ESR and useful for spin labeling biologically active molecules are those organic free radicals of the general formula where C and C are tertiary carbon atoms; C and C are bonded directly to a carbon or fluorine atoms; A represents at least one independent organic group and has a total valency of 6 for bonding to said C and C tertiary carbon atoms (the broken lines between A and C and C representing 6 saturated bonds); and where A contains a functional group other than a 2,4-dinitrophenyl group, which is operative to form a bond with a biologically active molecule.
  • A may represent one or more independent organic groups up to a total of 6 and the functional group serving to form the bond with the biologically active molecule may be present on any one or more of these groups.
  • a in the above formula includes a plurality of carbon atoms arranged to form a closed ring with C and C and where C and C are further substituted with lower alkyl groups so as to provide the requi site tertiary character for C and C
  • R2 (5 B4 R R and R are lower alkyl groups, i.e., each having about 1-5 carbon atoms;
  • B represents a plurality of carbon atoms in a partial cycloalkyl chain, i.e., an alkylene group, and X is an isocyanate or isothiocyanate group on B.
  • a in the general formula previously discussed comprises four independent organic groups, namely, R R R and R and B, the five groups having a total valency of 6 since B is divalent, whereas the Rs are monovalent.
  • R R R and R are each a methyl group
  • B represents an ethylene group or propylene group so as to form a five or six membered heterocyclic ring respectively, with the nitrogen atom
  • X is an isocyanate group attached to one of the carbon atoms in the ethylene group or propylene group.
  • C and C in addition being tertiary must have all of their valences satisfied )y saturated bonds to either carbon atoms or fluorine l'tOIIlS.
  • the 'eplacement of the methyl groups by fluorine atoms would )rovide typical compounds contemplated within the scope )f this invention.
  • Isocyanate and isothiocyanate functional groups are )articularly useful for bonding labels to e-amino groups )f proteins.
  • the reaction does not appear to be l00 percent specific for e-amino groups.
  • Evidence has :een obtained which indicates that the isocyanate group 1150 attaches to some extent to sulfhydryl groups of proeins although this point of attachment is minor compared 0 the extent of reaction with and attachment to e-amino groups.
  • Example A 2,2,5,5-tetramethyl-3-aminopyrrolidone-l-oxyl is used 18 a starting material. It may be synthesized from triicetonamine by the method of Rosantzev and Krivitzkaya, Tetrahedron, 21, 491 (1965).
  • a saturated solution of the amino compound of Rosantzev and Krivitzkaya in dry benzene is added dropwise at 0 C. to a stirred solution of 12.5 percent phosgene in benzene (1 mole amino compound to 2 moles phosgene).
  • the end product in accordance with the above general reaction is 2,2,5,5-tetramethyl-3-isocyanatopyrrolidine-1- oxyl, having the structural formula N00 a i CH3 1? o
  • the benzene solvent can be removed in vacuo at room temperature and the isocyanate product is ready for use as a label.
  • the isocyanate group while advantageous for its relative specificity for point of attachment to protein as well as for other reasons, is only exemplary of the functional groups which can be synthesized to form part of the label molecule. Any type of functional group capable of bonding in one way or another with a biologically active molecule is contemplated as an alternative to the isocyanate group.
  • the functional group of the label and the biologically active molecule can be bonded by a covalent bond such as results from the interaction between isocyanate and an amino group on the biologically active molecule or it may be non-covalent and fall within a diverse category of recognized bonds, such as an ionic bond, a hydrogen bond, a hydrophobic bond, a dispersion or Van der Waals bond, a charge-transfer or dipole-dipole bond, or a combination of a covalent bond and/or any of the other noted non-covalent bonds.
  • a covalent bond such as results from the interaction between isocyanate and an amino group on the biologically active molecule or it may be non-covalent and fall within a diverse category of recognized bonds, such as an ionic bond, a hydrogen bond, a hydrophobic bond, a dispersion or Van der Waals bond, a charge-transfer or dipole-dipole bond, or a combination of a covalent bond and/or any of the other noted non-covalent bonds.
  • a nitroxide label can be prepared with a maleimide functional group according to the following procedure.
  • N-(nitroxide)-maleamic acid (II) 0.63 gm. N-(nitroxide)-maleamic acid (II), 1 ml. acetic anhydride, and 0.12 gm. sodium acetate were stirred in a tightly closed container for twenty-four hours at 25-35 C.
  • the acetic anhydride was removed in vacuo at room temperature and the crude product was obtained as a viscous oil.
  • the N-(nitroxide)-maleimide may be purified by molecular distillation.
  • Both the crude and the purified product III has been shown to combine preferentially with sulfhydryl groups (over amino groups) in bovine serum albumin.
  • biologically active molecules i.e. protein containing e-amino groups and biologically active molecules containing sulfhydryl groups which may also be protein molecules.
  • the invention is applicable to all biologically active molecules, the term being used in the broadest sense to include all molecules atfecting the life processes from a chemical standpoint.
  • Biologically active mole cules within the present context include, for example, the following types of materials.
  • Antibodies (b) Drugs, such as for example, the tranquilizer,
  • the labeling of an antibody can be used.
  • a functional group will generally be required of a type that forms a non-covalent bond with the antibody.
  • the nitroxide label can be obtained as part of a molecule structure which includes a ketone group. A dinitrophenyl hydrazone derivative of the ketone will provide the requisite functional group for bonding to many antibodies.
  • the preparation of this type of label is illustrated by the following equation:
  • the functional group to be integrated with the nitroxide group may be part of a molecule otherwise considered a biologically active molecule within the broad meaning of the term as here used.
  • some biologically active molecules may serve as a functional group for bonding the nitroxide group to other biologically active molecules.
  • the first step in effect would be the labeling of a. biologically active molecule with the nitroxide group.
  • the so labeled biologically active molecule in turn serves as an integral unit as a label for another biologically active molecule.
  • an antibiotic (considered as a biologically active molecule herein) can be labeled with a nitroxide grouping by suitable synthesis procedures of the type discussed.
  • the so labeled antibiotic can in turn be used to label DNA which is also a biologically active molecule if the antibiotic selected in the first instance is one that reacts specifically with DNA.
  • a functional group for bonding purposes it is possible to choose materials which in and of themselves may serve as a label of a diiferent type.
  • a dye such as a fluorescent dye molecule
  • the dye is of the type which will bond with biologically active molecules
  • the result is a biologically active molecule labeled both with the dye and with the resonating nitroxide group.
  • the ether extract was chromographed on a silica column and was eluted with acetone.
  • the emission maximum occurs at 530 my. and the fluorescent lifetime is approximately 14 nanoseconds.
  • the sulphonamide prepared in the above example contains both the nitroxide label group and a fluorescent dye label grouping. This molecule has been shown to bond with bovine serum albumin and the double label characteristics observed.
  • Dyes illustrate one possibility of a second label.
  • Other possibilities include the synthesis of a nitroxide molecule with the requisite functional group for bonding purposes wherein the molecular structure also includes a radioactive element.
  • a radioactive trace can be obtained in the usual fashion.
  • the above example also illustrated the selection of a functional grouping for purposes of bonding the nitroxide to another type of biologically active molecule (bovine serum albumin).
  • the dye group has been utilized for forming a n0n-covalent bond between the bovine serum albumin and nitroxide containing molecule.
  • the mechanics of combining the label with the selected biologically active molecule is straightforward.
  • the mere combination of the label molecule and the biologically active molecule to permit contact between the two in a suitable solvent such as an aqueous medium is suflicient to achieve attachment of the label to the biologically active molecule.
  • the amount of label utilized will be dependent upon the sensitivity of the equipment used for detecting the electron spin resonance of the label. Using conventional ESR spectrometers it has been found that one labelling molecule per biologically active molecule provides an adequate signal to noise ratio.
  • R R R and R are lower alkyl groups
  • B is an alkylene group having 2-3 carbon atoms and forming a heterocyclic ring with C and C
  • X is an isocyanate group which is operative to form a bond with a biologically active molecule.
  • a free radical organic molecule for spin labeling biologically active molecules comprising 2,2,5,5-tetramethyl-3-isocyanatopyrrolidine-1-oxyl.

Description

United States Patent US. Cl. 260326.8 2 Claims ABSTRACT OF THE DISCLOSURE Stable free radical nitroxides in which the nitroxide nitrogen is bonded to 2 tertiary carbon atoms. The molecule further contains an isocyanate group which bonds with biologically active molecules to label the same. The labeled molecules can be studied from the electron spin resonance of the nitroxide.
The present invention relates in general to electron spin resonance (ESR) labeling of biologically active molecules and more particularly to an improved class of such organic spin labels employing a nitroxide radical as the active labeling group bound to the biomolecule via the intermediary of an isocyanate group. Such improved ESR labels provide strong labeling resonance line and are useful, for example for obtaining a wealth of information about biomolecules and biological systems.
Heretofore, synthetic organic ESR labels have been used for labeling biomolecules. A typical example of such a prior label is the positive ion radical of the tranquilizer drug chlorpromazine (CPZ which forms the subject matter of and is claimed in my copending application Ser. No. 496,682, filed Oct. 15, 1965. CPZ+ attaches predominately only to DNA and RNA type biomolecules for labeling same. While specificity of the label is desirable in certain instances, there are many additional biomolecules to be ESR-labeled and thus a need for a more universal label. In addition, the electron resonance line spectrum of CPZ+ includes a substantial amount of fine structure which tends to weaken the resonance lines of the spectrum making measurement of subtle changes in the spectrum of the label difficult.
In the present invention ESR labels are provided which employ a nitroxide radical group as the spin labeling group. The nitroxide group provides a strong electron resonance line spectrum having little fine structure. This radical has been found to be remarkably stable and inert, to show sharp, well resolved and simple electron resonance spectra that are sensitive to molecular motion, and to a lesser extent, sensitive to polarity of the molecular environment. In a preferred embodiment, of the present invention, the nitroxide radical group is attached to the biomolecule via the intermediary of an isocyanate group whereby the nitroxide label may be readily bound to such entities as proteins and synthetic polypeptides.
The principal object of the present invention is to provide an improved class of organic ESR labels for biologically active molecules. The labelled molecules can be studied in vivo as Well as in vitro by ESR techniques and this flexibility provides a powerful research tool.
One feature of the present invention is the provision of a class of ESR biomolecule labeling chemicals and methods of synthesizing same wherein the nitroxide radical is used to provide electron resonance labeling line spectrum.
Another feature of the present invention is the same as the preceding wherein the nitroxide labeling group is attached to the biomolecule via the intermediary of an iso- ICC cyanate group whereby the label is made specific to certain proteins and synthetic polypeptides.
In the preferred embodiment novel nitroxide compounds are synthesized to contain at least one isocyanate group which serves to form a covalent bond with atoms of the biologically active molecule to be labeled. Isocyanate-containing nixtroxide compounds are especially useful for labeling most proteins through a conventional reaction between the isocyanate group and the e-amino group of the protein molecule.
Thus, in accordance with this invention, a class of nitroxide compounds exhibiting ESR and useful for spin labeling biologically active molecules are those organic free radicals of the general formula where C and C are tertiary carbon atoms; C and C are bonded directly to a carbon or fluorine atoms; A represents at least one independent organic group and has a total valency of 6 for bonding to said C and C tertiary carbon atoms (the broken lines between A and C and C representing 6 saturated bonds); and where A contains a functional group other than a 2,4-dinitrophenyl group, which is operative to form a bond with a biologically active molecule.
As will appear more fully hereinafter, A may represent one or more independent organic groups up to a total of 6 and the functional group serving to form the bond with the biologically active molecule may be present on any one or more of these groups.
Present work has shown that much useful information can be gained where A in the above formula includes a plurality of carbon atoms arranged to form a closed ring with C and C and where C and C are further substituted with lower alkyl groups so as to provide the requi site tertiary character for C and C These materials may be defined as having the general formula wherein R t R1 B R3 ;.c,3. R2 (5 B4 R R and R are lower alkyl groups, i.e., each having about 1-5 carbon atoms; B represents a plurality of carbon atoms in a partial cycloalkyl chain, i.e., an alkylene group, and X is an isocyanate or isothiocyanate group on B.
In this latter situation it will be appreciated that A in the general formula previously discussed comprises four independent organic groups, namely, R R R and R and B, the five groups having a total valency of 6 since B is divalent, whereas the Rs are monovalent.
Within the group of materials covered by Formula II an especially useful material is that obtained where R R R and R are each a methyl group, B represents an ethylene group or propylene group so as to form a five or six membered heterocyclic ring respectively, with the nitrogen atom, and X is an isocyanate group attached to one of the carbon atoms in the ethylene group or propylene group.
It is to be noted that whereas the preferred materials include a heterocyclic ring as provided by Formula II the ring structure is not essential so long as the tertiary character of C and C is retained. Thus, stable molecules of the following type (III) have been reported in the literature and are contemplated within the Scope of this 3 nvention, Y representing a functional group operative For bonding the label to a biologically active molecule.
III
Further, and as already mentioned, C and C in addition being tertiary must have all of their valences satisfied )y saturated bonds to either carbon atoms or fluorine l'tOIIlS. For example, in Formula III given above, the 'eplacement of the methyl groups by fluorine atoms would )rovide typical compounds contemplated within the scope )f this invention.
Isocyanate and isothiocyanate functional groups are )articularly useful for bonding labels to e-amino groups )f proteins. However, the reaction does not appear to be l00 percent specific for e-amino groups. Evidence has :een obtained which indicates that the isocyanate group 1150 attaches to some extent to sulfhydryl groups of proeins although this point of attachment is minor compared 0 the extent of reaction with and attachment to e-amino groups.
Preparation of labels having isocyanate functional groups follows conventional organic synthesis procedures. IWhere the isothiocyanate derivative is desired, parallel )rocedures are used as will be clear to those skilled in the art.) In general, there are a number of compounds of vari- )US structure known and available containing the requiiite nitroxide group with adjacent tertiary carbon atoms. The present materials may be conveniently prepared from corresponding compounds having the structure of he end product sought with the difference being the preierve of an amino group at the site where the isocyanate group is desired. With such a corresponding amino compound, the isocyanate is obtained by a conventional conlensation reaction with phosgene in accordance with the iollowing general reaction.
a. typical preparation of an isocyanate-nitroxide label of :his invention is as follows:
Example A 2,2,5,5-tetramethyl-3-aminopyrrolidone-l-oxyl is used 18 a starting material. It may be synthesized from triicetonamine by the method of Rosantzev and Krivitzkaya, Tetrahedron, 21, 491 (1965).
A saturated solution of the amino compound of Rosantzev and Krivitzkaya in dry benzene is added dropwise at 0 C. to a stirred solution of 12.5 percent phosgene in benzene (1 mole amino compound to 2 moles phosgene). The end product in accordance with the above general reaction is 2,2,5,5-tetramethyl-3-isocyanatopyrrolidine-1- oxyl, having the structural formula N00 a i CH3 1? o The benzene solvent can be removed in vacuo at room temperature and the isocyanate product is ready for use as a label.
The isocyanate group, while advantageous for its relative specificity for point of attachment to protein as well as for other reasons, is only exemplary of the functional groups which can be synthesized to form part of the label molecule. Any type of functional group capable of bonding in one way or another with a biologically active molecule is contemplated as an alternative to the isocyanate group.
The functional group of the label and the biologically active molecule can be bonded by a covalent bond such as results from the interaction between isocyanate and an amino group on the biologically active molecule or it may be non-covalent and fall Within a diverse category of recognized bonds, such as an ionic bond, a hydrogen bond, a hydrophobic bond, a dispersion or Van der Waals bond, a charge-transfer or dipole-dipole bond, or a combination of a covalent bond and/or any of the other noted non-covalent bonds.
The type of functional group to be included as part of the nitroxide label molecule will depend largely upon the character of the biologically active molecule to be labeled. Where the molecule is a protein containing e-amino group, the isocyanate functional group is a logical choice. However, Where the molecule to be labeled has other prevalent reactive sites for bonding purposes, other functional groups may be preferred. For example, where the biologically active molecule has sulfhydryl groups, an imide type functional group may best serve the purpose. For example, a nitroxide label can be prepared with a maleimide functional group according to the following procedure.
Example B.Preparation of N-(2,2,5,5-tetramethyl- 1-oxylpyrrolidone-3 -maleimide The general reaction is as follows:
To a room temperature solution of 0.25 gm. of maleic anhydride in 5 ml. anhydrous diethyl ether was slowly added with stirring an equimolar amount (0.40 gm.) of 2,2,5,5-tetramethyl-3-aminopyrrolidine-l-oxyl (I) in 1 ml. of anhydrous diethyl ether. The N-(nitroxide)-maleamic acid (II) immediately precipitated and after three hours of stirring at room temperature the precipitate was filtered, washed ten times with 0.4 ml. of anhydrous diethyl ether, and dried (yield 97%). (Found: C, 56.0; H, 7.5; N, 11.3. C H N O requires: C, 56.5; H, 7.5; N, 11.0%.
In a typical reaction, a mixture of 0.63 gm. N-(nitroxide)-maleamic acid (II), 1 ml. acetic anhydride, and 0.12 gm. sodium acetate were stirred in a tightly closed container for twenty-four hours at 25-35 C. The acetic anhydride was removed in vacuo at room temperature and the crude product was obtained as a viscous oil. The N-(nitroxide)-maleimide may be purified by molecular distillation.
Both the crude and the purified product III has been shown to combine preferentially with sulfhydryl groups (over amino groups) in bovine serum albumin.
The above discussion exemplifies two types of biologically active molecules, i.e. protein containing e-amino groups and biologically active molecules containing sulfhydryl groups which may also be protein molecules. However, the invention is applicable to all biologically active molecules, the term being used in the broadest sense to include all molecules atfecting the life processes from a chemical standpoint. Biologically active mole cules within the present context include, for example, the following types of materials.
TABLE 1 (I) Nucleic acids:
(a) DNA (b) RNA (II) Proteins:
(a) Enzymes (b) Albumins, as serum albumin (c) Globular proteins, as antibodies (d) Structural proteins, as, for example, the proteins in hair (e) Synthetic polypeptides, that are used as, for examples, models of biological molecules (f) Lipo-Proteins, as, for example, in the brain (III) Nucleo-Protein:
(a) Nucleo-Histores (b) Nucleo-Protamines (IV) Other bialogically active molecules:
(9.) Antibodies (b) Drugs, such as for example, the tranquilizer,
chlorpromazine (c) Antigens, such as, for example, molecules concontaining the 2,4-dinitrophenyl group (d) Toxins.
From the diversity of the above exemplary list of biologically active molecules it will be appreciated that the spin label should be synthesized with the properties of the biologically active molecule in mind. In most cases, it will simply be a matter of adapting a known reaction of the biologically active molecule. The nitroxide group with its adjacent tertiary carbon atoms are conveniently formed as part of a molecule that is known to form a bond with the biologically active molecule.
It has already been illustrated how the reactivity of the isocyanate group and maleimide groups are utilized. To illustrate the other types of bonding required with some of the molecules in the above list other than proteins, the labeling of an antibody can be used. To label an antibody with the present nitroxide materials, a functional group will generally be required of a type that forms a non-covalent bond with the antibody. In order to accomplish this the nitroxide label can be obtained as part of a molecule structure which includes a ketone group. A dinitrophenyl hydrazone derivative of the ketone will provide the requisite functional group for bonding to many antibodies. The preparation of this type of label is illustrated by the following equation:
(I) 17TH-NHI N02 H+ CH3 l/CHs CH3 f on O NO:
CH3 CH3 17103 CH CH NO) The end product hydrazone derivative has been demonstrated to label antibodies formed by rabbits which are known to be specific to the 2,4-dinitrophenyl group and to form a bond therewith. The preparation of this derivative illustrates the broader concept of the invention which contemplates selecting a functional group known in the art to be operable for bonding to a particular biologically active molecule. The selected functional group is then included in a molecular structure with the discussed nitroxide grouping by conventional organic synthesis.
It is interesting to observe that the functional group to be integrated with the nitroxide group may be part of a molecule otherwise considered a biologically active molecule within the broad meaning of the term as here used. In other words, some biologically active molecules may serve as a functional group for bonding the nitroxide group to other biologically active molecules. In using such materials the first step in effect would be the labeling of a. biologically active molecule with the nitroxide group. The so labeled biologically active molecule in turn serves as an integral unit as a label for another biologically active molecule. To illustrate this point an antibiotic (considered as a biologically active molecule herein) can be labeled with a nitroxide grouping by suitable synthesis procedures of the type discussed. The so labeled antibiotic can in turn be used to label DNA which is also a biologically active molecule if the antibiotic selected in the first instance is one that reacts specifically with DNA.
In selecting a functional group for bonding purposes it is possible to choose materials which in and of themselves may serve as a label of a diiferent type. For example, if a dye such as a fluorescent dye molecule is chemically integrated with a molecular structure including the nitroxide group and the dye is of the type which will bond with biologically active molecules, the result is a biologically active molecule labeled both with the dye and with the resonating nitroxide group. A great deal of work has been done in the area of conjugating proteins with fluorescent dyes. Reference to such work will quickly reveal those dyes which are suitable for the biologically active molecule at hand and by chemically combining such a dye with the nitroxide structure in a single molecule in conventional fashion, a suitable spin label is obtained. To illustrate this approach to multi-labeling the following example is given.
Example C.1-dimethylaminoaphthalene-f-(N- nitroxide) -sulphon amide CH3 I V 112M 0 morn on, on; on:
A solution of 0.28 gm. 1-dimethylaminoaphthalene-S- sulfonyl chloride (Aldrich Chemical Co.) (I) in 5 ml. reagent grade acetone was filtered and added to 0.20 gm. (20% excess) 2,2,5,5-tetramethyl-3-aminopyrrolidine-1- oxyl (II) in 1 ml. acetone. The solution Was stirred for two hours at 25-35 C. and the acetone was removed in vacuo. The yellow solid was dissolved in ether and extracted repeatedly with an aqueous buffer (pH 6.8) to remove unreacted amine (I). The ether extract was chromographed on a silica column and was eluted with acetone. The resulting sulphonamide (III) contains -1.0 spin/mole and the optical spectrum in ethanol exhibits a maximum A ==337 my, e =4,000 cm. /millimole in the region characteristic of dimethylaminoaphthalene-sulphonamides. In glycerol (25 C.) the emission maximum occurs at 530 my. and the fluorescent lifetime is approximately 14 nanoseconds.
The sulphonamide prepared in the above example contains both the nitroxide label group and a fluorescent dye label grouping. This molecule has been shown to bond with bovine serum albumin and the double label characteristics observed.
Dyes illustrate one possibility of a second label. Other possibilities include the synthesis of a nitroxide molecule with the requisite functional group for bonding purposes wherein the molecular structure also includes a radioactive element. In addition to the spin label trace, a radioactive trace can be obtained in the usual fashion.
The above example also illustrated the selection of a functional grouping for purposes of bonding the nitroxide to another type of biologically active molecule (bovine serum albumin). Here the dye group has been utilized for forming a n0n-covalent bond between the bovine serum albumin and nitroxide containing molecule.
Once the label molecule has been synthesized to contain both the nitroxide group and the functional group needed for bonding purposes, the mechanics of combining the label with the selected biologically active molecule is straightforward. The mere combination of the label molecule and the biologically active molecule to permit contact between the two in a suitable solvent such as an aqueous medium is suflicient to achieve attachment of the label to the biologically active molecule. The amount of label utilized will be dependent upon the sensitivity of the equipment used for detecting the electron spin resonance of the label. Using conventional ESR spectrometers it has been found that one labelling molecule per biologically active molecule provides an adequate signal to noise ratio.
What is claimed is:
1. A nitroxide of the formula:
j 3 f R2 0 R4 wherein R R R and R are lower alkyl groups, B is an alkylene group having 2-3 carbon atoms and forming a heterocyclic ring with C and C and X is an isocyanate group which is operative to form a bond with a biologically active molecule.
2. A free radical organic molecule for spin labeling biologically active molecules comprising 2,2,5,5-tetramethyl-3-isocyanatopyrrolidine-1-oxyl.
References Cited UNITED STATES PATENTS 3,253,015 5/1966 Hoifman 260 465.5
3,163,677 12/1964 Holfmann et a1 260-583 ALEX MAZEL, Primary Examiner.
J. A. NARCAVAGE, Assistant Examiner.
US. Cl. X.R.
US496683A 1965-10-15 1965-10-15 Electron spin resonance labels for biomolecules Expired - Lifetime US3453288A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US49668365A 1965-10-15 1965-10-15
US49662265A 1965-10-15 1965-10-15
US49668265A 1965-10-15 1965-10-15
US51279365A 1965-12-09 1965-12-09
US513083A US3409522A (en) 1965-10-15 1965-12-10 Electrochemical machining of titanium and alloys thereof

Publications (1)

Publication Number Publication Date
US3453288A true US3453288A (en) 1969-07-01

Family

ID=27541776

Family Applications (4)

Application Number Title Priority Date Filing Date
US496622A Expired - Lifetime US3489522A (en) 1965-10-15 1965-10-15 Electron spin resonance labeling of biomolecules
US496683A Expired - Lifetime US3453288A (en) 1965-10-15 1965-10-15 Electron spin resonance labels for biomolecules
US512793A Expired - Lifetime US3481952A (en) 1965-10-15 1965-12-09 N-(1-oxide-2,2,5,5-tetra lower alkyl pyrrolidinyl-3)-maleimides
US513083A Expired - Lifetime US3409522A (en) 1965-10-15 1965-12-10 Electrochemical machining of titanium and alloys thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US496622A Expired - Lifetime US3489522A (en) 1965-10-15 1965-10-15 Electron spin resonance labeling of biomolecules

Family Applications After (2)

Application Number Title Priority Date Filing Date
US512793A Expired - Lifetime US3481952A (en) 1965-10-15 1965-12-09 N-(1-oxide-2,2,5,5-tetra lower alkyl pyrrolidinyl-3)-maleimides
US513083A Expired - Lifetime US3409522A (en) 1965-10-15 1965-12-10 Electrochemical machining of titanium and alloys thereof

Country Status (4)

Country Link
US (4) US3489522A (en)
BE (1) BE686616A (en)
DE (2) DE1496814A1 (en)
GB (2) GB1154559A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853914A (en) * 1971-01-11 1974-12-10 Syva Co Ligand determination of spin labeled compounds by receptor displacement
US3887698A (en) * 1973-03-12 1975-06-03 Univ Leland Stanford Junior Sacs with epitopic sites on walls enclosing stable free radicals
US3959287A (en) * 1972-07-10 1976-05-25 Syva Company Ligand determination of spin labeled compounds by receptor displacement
US4231750A (en) * 1977-12-13 1980-11-04 Diagnostic Reagents, Inc. Methods for performing chemical assays using fluorescence and photon counting
US4240797A (en) * 1977-10-18 1980-12-23 The Governing Council Of The University Of Toronto Assay for reserve bilirubin binding capacity
WO1984002643A1 (en) * 1983-01-10 1984-07-19 Robert Thomas Gordon Method for enhancing nmr imaging; and diagnostic use
US5164297A (en) * 1990-05-03 1992-11-17 Advanced Magnetics Inc. Solvent mediated relaxation assay system
US5254460A (en) * 1990-05-03 1993-10-19 Advanced Magnetics, Inc. Solvent mediated relaxation assay system
US10022812B2 (en) 2014-10-09 2018-07-17 General Electric Company Methods for the electroerosion machining of high-performance metal alloys

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850578A (en) * 1973-03-12 1974-11-26 H Mcconnell Process for assaying for biologically active molecules
CA1001232A (en) * 1973-11-30 1976-12-07 Ivan Hrvoic Nuclear dynamic polarization magnetometer
US4099918A (en) * 1977-04-18 1978-07-11 State Board Of Higher Education For And On Behalf Of The University Of Oregon Proxyl nitroxides as spin labels
US4332946A (en) * 1981-04-03 1982-06-01 Vanderbilt University Resolution enhancing maleimide spin label for biological EPR studies
US4604365A (en) * 1981-06-02 1986-08-05 Electro-Nucleonics, Inc. Immunoprecipitation assay
US4622952A (en) * 1983-01-13 1986-11-18 Gordon Robert T Cancer treatment method
US4622953A (en) * 1983-01-13 1986-11-18 Gordon Robert T Process for the treatment of atherosclerotic lesions
US4689295A (en) * 1983-01-20 1987-08-25 Integrated Genetics, Inc. Test for Salmonella
US4765179A (en) * 1985-09-09 1988-08-23 Solid State Farms, Inc. Radio frequency spectroscopy apparatus and method using multiple frequency waveforms
US4679426A (en) * 1985-09-09 1987-07-14 Fuller Milton E Wave shape chemical analysis apparatus and method
US4680272A (en) * 1985-10-23 1987-07-14 University Of California Method for detecting molecules containing amine or thiol groups
US5035781A (en) * 1989-07-19 1991-07-30 Jenoptik Jena Gmbh Electrolyte for the production of black surface layers on light metals
KR100916479B1 (en) * 2007-11-30 2009-09-08 삼성전기주식회사 Electrolyte for electro-chemical machining of metal product
CN102686786B (en) * 2009-11-23 2016-01-06 梅特康有限责任公司 Electrolyte solution and electropolishing method
CN102234834A (en) * 2010-04-20 2011-11-09 深圳富泰宏精密工业有限公司 Electrolytic stripping liquid, and method for removing titanium-containing film by using electrolytic stripping liquid
US8580103B2 (en) 2010-11-22 2013-11-12 Metcon, Llc Electrolyte solution and electrochemical surface modification methods
EP3899110B1 (en) * 2018-12-17 2022-10-05 Safran Aircraft Engines Electrolyte for electrochemical machining of gamma-gamma prime type nickel-based superalloys

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163677A (en) * 1961-08-07 1964-12-29 American Cyanamid Co Process for preparing n, n, o-trisubstituted hydroxyl amines and n, n-disubstituted nitroxides and products
US3253015A (en) * 1962-06-13 1966-05-24 American Cyanamid Co N, n-disubstituted nitroxides and process for preparing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2075359A (en) * 1930-10-16 1937-03-30 Du Pont Insecticide
US1915334A (en) * 1930-10-16 1933-06-27 Du Pont Fluosilicate of organic heterocyclic bases and process of making it
US2939825A (en) * 1956-04-09 1960-06-07 Cleveland Twist Drill Co Sharpening, shaping and finishing of electrically conductive materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163677A (en) * 1961-08-07 1964-12-29 American Cyanamid Co Process for preparing n, n, o-trisubstituted hydroxyl amines and n, n-disubstituted nitroxides and products
US3253015A (en) * 1962-06-13 1966-05-24 American Cyanamid Co N, n-disubstituted nitroxides and process for preparing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853914A (en) * 1971-01-11 1974-12-10 Syva Co Ligand determination of spin labeled compounds by receptor displacement
US3959287A (en) * 1972-07-10 1976-05-25 Syva Company Ligand determination of spin labeled compounds by receptor displacement
US3887698A (en) * 1973-03-12 1975-06-03 Univ Leland Stanford Junior Sacs with epitopic sites on walls enclosing stable free radicals
US4240797A (en) * 1977-10-18 1980-12-23 The Governing Council Of The University Of Toronto Assay for reserve bilirubin binding capacity
US4231750A (en) * 1977-12-13 1980-11-04 Diagnostic Reagents, Inc. Methods for performing chemical assays using fluorescence and photon counting
WO1984002643A1 (en) * 1983-01-10 1984-07-19 Robert Thomas Gordon Method for enhancing nmr imaging; and diagnostic use
US5164297A (en) * 1990-05-03 1992-11-17 Advanced Magnetics Inc. Solvent mediated relaxation assay system
US5254460A (en) * 1990-05-03 1993-10-19 Advanced Magnetics, Inc. Solvent mediated relaxation assay system
US10022812B2 (en) 2014-10-09 2018-07-17 General Electric Company Methods for the electroerosion machining of high-performance metal alloys

Also Published As

Publication number Publication date
GB1154559A (en) 1969-06-11
GB1169872A (en) 1969-11-05
DE1496814A1 (en) 1969-07-17
DE1620411A1 (en) 1970-04-30
US3489522A (en) 1970-01-13
BE686616A (en) 1967-02-15
US3409522A (en) 1968-11-05
US3481952A (en) 1969-12-02

Similar Documents

Publication Publication Date Title
US3453288A (en) Electron spin resonance labels for biomolecules
US4714763A (en) Novel oxazine-ureas and thiazine urea chromophors as fluorescent labels
US5532171A (en) Phenothiazine derivatives, their production and use
US5877310A (en) Glycoconjugated fluorescent labeling reagents
US5304645A (en) Resorufin derivatives
JPH07179428A (en) Leminescent compound
EP2454329B1 (en) Fluorescent dyes and uses thereof
GB1570532A (en) Reagent suitable for enzyme immuno assay
KR920012063A (en) Acid labile linker molecules
JPS62116592A (en) Difunctional linker
JPH05180845A (en) Labelled complex and analysis using this
EP0747447B1 (en) Novel oxazine dyes and their use as fluorescent label
EP0330050A2 (en) Special chemiluminescent acridine derivatives and their use in luminescence immunoassays
US4650771A (en) Immunogens, antibodies, labeled conjugates, and related derivatives for lidocaine and analogs thereof
Reines et al. New fluorescent hydrazide reagents for the oxidized 3'-terminus of RNA
EP1317511A1 (en) Oxazine derivatives
US5955612A (en) Fluorescent labeling reagents
US3507876A (en) Pyrrolidine and piperidine nitroxide spin labelling compounds
US4822878A (en) Cyclic anhydride derivatives of chromophors
Keum et al. Synthesis and characterization of bis-indolinospirobenzopyrans, new photo-and thermochromic dyes
US4906749A (en) Cyclic anhydride derivatives of chromophors
US4780535A (en) Maleic and phthalic diamides
US20020147354A1 (en) Fluorescent dyes for the labeling of biological substrates
US4873318A (en) Oxazine-ureas and thiazine urea chromophors
US4789742A (en) Isomaleimide and isophthalimide derivatives of chromophors