US3460537A - Stereotactic guide for use in the creation of destructive brain lesions - Google Patents

Stereotactic guide for use in the creation of destructive brain lesions Download PDF

Info

Publication number
US3460537A
US3460537A US581793A US3460537DA US3460537A US 3460537 A US3460537 A US 3460537A US 581793 A US581793 A US 581793A US 3460537D A US3460537D A US 3460537DA US 3460537 A US3460537 A US 3460537A
Authority
US
United States
Prior art keywords
cannula
guide
attaching element
skull
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US581793A
Inventor
Donald C Zeis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DONALD C ZEIS
Original Assignee
DONALD C ZEIS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DONALD C ZEIS filed Critical DONALD C ZEIS
Application granted granted Critical
Publication of US3460537A publication Critical patent/US3460537A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints

Definitions

  • This invention relates to a stereotactic guide for holding and adjusting a cannula with maximum accuracy and a positive finite degree, for use by surgeons in the cryosurgical treatment of Parkinsons disease, deep seated brain tumors, hyperkinetic disorders and other maladies of the human brain, in which an accurately placed destructive cryosurgical lesion is desired in the form of treatment.
  • the present invention comprises a cannula holder and guide for the purpose specified, which is small, compact,
  • the stereotactic guide for cannulas is so designed and constructed that it may be attached directly to the skull of a patient without any accessory devices and embodies means to rigidly hold the guide in place on the patients skull, whereby movement of the patients head or body will not affect the positioning of the cannula.
  • stereotatic guide embodies means whereby when the cannula is in position in and anchored to the guide, the cannula may be moved in conjunction with its holding element in controlled micromatic movement in a substantially longitudinal plane through an arc of three hundred and sixty degrees (360) to provide substantially infinite positioning of the brain treating end of the cannula within such range and also provides means for firmly locking the cannula in such position, while permitting limited longitudinal movement of the cannula.
  • FIGURE 1 is a top plan view of the stereotactic guide.
  • FIGURE 2 is a side elevation of the stereotactic guide.
  • FIGURE 3 is a bottom plan view of the guide.
  • FIGURE 4 is a side elevation of the stereotactic guide taken at right angles to the view shown in FIGURE 2 and showing a cannula in place in the guide.
  • FIGURE 5 is a fragmentary vertical section through the guide taken on the line 5-5 of FIGURE 1.
  • FIGURE 6 is a detail vertical section through the attaching element of the ring and taken on the line 6-6 of FIGURE 1.
  • FIGURE 7 is a fragmentary longitudinal section taken on line 7-7 of FIGURE 4.
  • FIGURE 8 is a cross section taken on line 83 of FIG- URE 4.
  • cryosurgical treatment of Parkinsons disease, deep seated brain tumors, hyperkinetic disorders and other maladies of the human brain the seat or source of the ailment in the brain is destroyed or treated by a cryosurgical lesion created by the use of a cannula inserted into the brain to the exact point of the seat or source of the malady and it is necessary that no other part of the brain be affected by the lesion, therefore extreme accuracy and positive minimum of movement of the cannula is necessary.
  • any movement of the head of the patient may prove fatal to him, and consequently expensive complicated apparatus is required, which is also very diflicult to sterilize.
  • the stereotactic guide for cannulas is so designed and is rigidly attached to the skull of the patient and is moveaole as a whole with any movement of the head of the patient, thereby eliminating liability of a damaging accident due to movement of the patients head or body.
  • the guide embodies an attaching element 1 which includes the main body 2 having a tapered ring 3 depending therefrom.
  • An inserting ring or collar 4 is formed on the outer end of the tapered ring'3.
  • the inserting ring 4 is of a width equal to the thickness of a human skull.
  • the ring or collar 4 is inserted in a skull trephination of such size and shape that the outer surface or wall of the collar 4 will fit fairly snugly therein, and the collar 4 terminates, at its junction with the ring 3, in a shoulder 5 which forms a stop for limiting the insertion of the ring 4 into the patients skull.
  • Anchoring means are provided for firmly anchoring the attaching element to the patients skull in such manner as to prohibit possible independent movement of the skull and attaching element, and since the entire stereotactic guide is rigidly carried by the attaching element (as hereinafter described) any movement, as a Whole, of the guide relative to the head of the patient will be prevented and vice versa.
  • FIGURE 6 of the drawings One such anchoring means is shown in FIGURE 6 of the drawings, and while the structure shown has been found satisfactory in actual use, it is to be understood that this invention is not to be limited to the sp cific anchoring means shown and hereafter described except only as limited by the claims hereof.
  • the attaching element 1 has a plurality of openings 7 therein, located at circumferentially spaced points about its vertical axis which openings 7 open out through the ring 3 and collar 4 at their outer sides.
  • Skull gripping pins 8 are inserted in the openings 7 and extend up into the enlarged portions 9 of the openings 7, wherein the upper diameter-reduced portions 10 of the pins 8 are engaged by the adjusting screws 11.
  • the adjusting screws 11 are threaded in the attaching element 1 and threaded movement of the screws 11 move the pins 8 on fulcrums at the point of contact of the pins 8 with the walls of the openings 7 at the upper terminus of the portions of the openings 7 which open out through the outer walls of the tapered rings 3.
  • the pins 8 extend upwardly into the openings at a slight angle to the vertical while the adjusting screws are inclined at a slight angle to the horizontal, thus when the adjusting screws are threaded inwardly the lower ends of the pins 8 will be moved outwardly for engagement, through the openings in the inserting ring or collar 4 with the wall of the opening in the skull of the patient.
  • the surfaces of the pins 8 which engage the wall of the skull opening are roughened as by threading, knurling or in any other suitable manner to firmly grip the walls of the skull opening and prevent any movement whatever of the attaching element relative to the patients head.
  • the body 2 of the attaching element 1 has an axial bore 12 intermediate the ends of which is formed a seat 14, the walls of which are curved to form a seat for the ball 15 which is formed on the lower end of the cannula guiding and holding tube 16.
  • the bore 12 tapers outwardly as it extends upwardly from and downwardly from the seat 14 as clearly shown in FIGURE 6 of the drawings.
  • the tube 16 slidably passes through a ball 16' which engages in a seat 17' formed in the collar 17.
  • a spring 35 is mounted upon the tube 16 and its ends engage the balls 15 and 16' to spring load these balls and maintain them in their seats, thereby eliminating any misalignment.
  • This structure will also compensate for the slight variation in the radial arc links generated in the movement of the tube 16 during positioning of a cannula as will be hereinafter described.
  • This manner of mounting of the tube 16 will also eliminate any play in its movement, which might affect adversely the positioning of a cannula.
  • brackets 20 which are pivotally attached to the attach ing element 1 such as by screws 21", or in any other suitable manner.
  • the trunnion 19 is threaded and has a thumb nut 21 threaded upon its outer end.
  • the hub 22 of the nut 21 engages the bracket 20 so that when the nut 21 is rotated the trunnion will be moved longitudinally in either direction depending upon the direction of rotation of the nut 21.
  • the trunnion 18 will also move longitudinally, sliding in its bearing in the bracket 20, and thus the tube 16 will be moved on, its pivot point formed by the ball 15 in the socket 14, in paths such as indicated by the dot and dash lines A and B in FIGURE of the drawings.
  • a shoulder 23 is formed upon the trunnion 18 and provides a stop for the pivotal movement of the tube 16 in its direction indicated by arrow C by its contact with the bracket 20.
  • the hub 21' of the nut 21 extends through the bracket 20 and its inner end forms a stop for limiting the pivotal or swinging movement in the direction indicated by the arrow A. These stops are necessary as to prevent a cannula carried by the tube 16 (see FIGURE 4 of the drawings) from engaging the walls of the tapered opening 12, because the cannula is a very delicate instrument and such contact might injure it.
  • a collar 24 is mounted on the hub 21' adjacent to the bracket 20 and it has a threaded stem 25 attached thereto and extending substantially at right angles to the trunnion 19.
  • the outer end of the threaded stem 25 is supported by a bracket 26 attached to and extending upwardly from the attaching element 1.
  • a nut 27 is mounted on the stem 25 and engages the bracket 26 so that when the nut 27 is rotated the trunnions 18 and 19 will move longitudinally and consequently the tube 16 will be moved upon the pivots provided by the screws 21' in a path at right angles to the path of movement provided by rotation of the nut 21. Any suitable stops (not shown) may be provided to limit the movement of the tube 16 by the stem 25 and nut 27.
  • cannula indicated at 30 in FIGURE 4 of the drawings may be moved in small increments provided by alternate rotation of the nuts 21 and 27 into infinite positions within the 360 degree radius permitted by the ball and socket 14 and confined by the walls of the tapered opening 12 in the attaching element 1.
  • the cannula which forms no part of this invention has a stop collar 31 mounted thereon which carries a locking screw 31', so that a surgeon may tighten the stop collar at the desired position on the cannula to insure the proper length of the portion of the cannula which projects beyond the collar 4.
  • a steadying or bracing rod 37 is carried by the brackets 20 and engages the collar 17 as clearly shown in FIG- URE 1 of the drawings, to prevent rotation or rocking of the collar 17 and the trunnions 18 and 19 while the nut 21 or 27 is being rotated or adjusted.
  • Cannula are made in different diameters, and to compensate for slight variances in the dameter of one cannula from another, the upper end of the sleeve 16 is split as shown at 50 in FIGURE 5 for a short distance inwardly from its end and a clamping collar 38 is mounted thereon by means of which the split end of the sleeve 16 may be pinched into tight clamping engagement with a cannula.
  • a sleeve 40 is provided which slides into the sleeve 16 when needed and which is tightly clamped in the sleeve 16 by the clamping nut 38.
  • the sleeve 40 is also split for a short distance inwardly from its receiving end and has a clamping nut 44 thereon to clamp a cannula tightly in position in the sleeve 40.
  • the threads on the trunnion 19, stem 25, and nuts 21 and 27 provide micrometer adjustment of the angles of the position of the sleeve 16 and by knowledge of this and the degree of movement provided by each turn or partial turn of the nuts 21 and 27, a surgeon may in conjunction with X-ray place the cannula in the exact spot to treat the affected part of a human brain, without liability of slippage or mispositioning of the cannula.
  • a stereotacetic guide for use in cryosurgical treatment of a brain, an attaching element for direct attachment to the skull of a patient, a cannula carrying guide carried by said attaching element and means supported from said attaching element to provide substantially infinite adjusted positioning of a cannula carried by the guide, a collar formed on said attaching element for fitting in an opening in a skull, and means on said collar to limit the degree of insertion of the collar into the opening in the skull, means carried by the attaching element for projection beyond the circumference of said collar to grip the walls of a skull opening, and means for moving said gripping means into and out of gripping position.
  • a stereotactic guide as claimed in claim 1, wherein said attaching element has an axial bore extending therethrough with an intermediate portion shaped to form a concave curved seat, a ball formed on the lower end of said cannula guide and seated in the seat formed in the attaching element, the portion of the bore extending outwardly from said seat being tapered to form substantially a conical space opening out through the lower end of the attaching element.
  • an attaching element for direct attachment to the skull of a patient, a cannula carrying guide carried by said attaching element and means supported from said attaching element to provide substantially infinite adjusted positioning of a cannula carried by the guide
  • said attaching element has an axial bore extending therethrough with an intermediate portion shaped to form a concave curved seat, a ball formed of the lower end of said cannula guide and seated in the seat formed in the attaching element, the portion of the bore extending outwardly from said seat being tapered to form substantially a conical space opening out through the lower end of the attachment element the outer surface of said attaching element being smooth for sliding into the opening in a skull, and means carried by said attaching element for projection beyond its outer smooth surface for gripping the wall of the skull at separated points about the wall of the opening, and means for moving said skull walled gripping means into and out of gripping position.

Description

STEREOTACTIC GUIDE FbR USE IN THE CREATION Aug. 12, 1969 0 c ZEIZIS 3,460,537
OF DESTRUCTIVEZ BRAIN LESIONS Filed Sept. 26. 1966 2 Sheets-$heet l INVENTOR DONALD C.ZE|S
Aug. 12, 1969 ms 3,460,537
STEREOTAGTIG GU FOR USE IN THE CREATION TRUCTIVE BRAIN LESIONS Filed Sept. 26. 1966 OF DES 2 Sheets-Sheet 2 "1R "WWII/IA 2o l7 2 24 I 35 I5 2o g ill!!!" United States Patent 3,460,537 STEREOTACTIC GUIDE FOR USE IN THE CREA- TION 0F DESTRUCTIVE BRAIN LESIONS Donald C. Zeis, 2122 Roselawn St., Sarasota, Fla. 33581 Filed Sept. 26, 1966, Ser. No. 581,793 Int. Cl. A61b 17/32; A61n 3/00 US. Cl. 128-303 3 Claims ABSTRACT OF THE DISCLOSURE This invention relates to a stereotactic guide for holding and adjusting a cannula with maximum accuracy and a positive finite degree, for use by surgeons in the cryosurgical treatment of Parkinsons disease, deep seated brain tumors, hyperkinetic disorders and other maladies of the human brain, in which an accurately placed destructive cryosurgical lesion is desired in the form of treatment.
The present invention comprises a cannula holder and guide for the purpose specified, which is small, compact,
is easy to sterilize and store when not in use, one which is a single compact structure embodying no parts which must be removed for storage or added when applying it to a patient.
The stereotactic guide for cannulas is so designed and constructed that it may be attached directly to the skull of a patient without any accessory devices and embodies means to rigidly hold the guide in place on the patients skull, whereby movement of the patients head or body will not affect the positioning of the cannula.
Further the stereotatic guide embodies means whereby when the cannula is in position in and anchored to the guide, the cannula may be moved in conjunction with its holding element in controlled micromatic movement in a substantially longitudinal plane through an arc of three hundred and sixty degrees (360) to provide substantially infinite positioning of the brain treating end of the cannula within such range and also provides means for firmly locking the cannula in such position, while permitting limited longitudinal movement of the cannula.
In the drawings:
FIGURE 1 is a top plan view of the stereotactic guide.
FIGURE 2 is a side elevation of the stereotactic guide.
FIGURE 3 is a bottom plan view of the guide.
FIGURE 4 is a side elevation of the stereotactic guide taken at right angles to the view shown in FIGURE 2 and showing a cannula in place in the guide.
FIGURE 5 is a fragmentary vertical section through the guide taken on the line 5-5 of FIGURE 1.
FIGURE 6 is a detail vertical section through the attaching element of the ring and taken on the line 6-6 of FIGURE 1. a
"Ice
FIGURE 7 is a fragmentary longitudinal section taken on line 7-7 of FIGURE 4.
FIGURE 8 is a cross section taken on line 83 of FIG- URE 4.
In cryosurgical treatment of Parkinsons disease, deep seated brain tumors, hyperkinetic disorders and other maladies of the human brain the seat or source of the ailment in the brain is destroyed or treated by a cryosurgical lesion created by the use of a cannula inserted into the brain to the exact point of the seat or source of the malady and it is necessary that no other part of the brain be affected by the lesion, therefore extreme accuracy and positive minimum of movement of the cannula is necessary. With the apparatus in use today by surgeons performing such operations any movement of the head of the patient may prove fatal to him, and consequently expensive complicated apparatus is required, which is also very diflicult to sterilize.
The stereotactic guide for cannulas is so designed and is rigidly attached to the skull of the patient and is moveaole as a whole with any movement of the head of the patient, thereby eliminating liability of a damaging accident due to movement of the patients head or body.
To permit rigid attachment of the guide to a patients head the guide embodies an attaching element 1 which includes the main body 2 having a tapered ring 3 depending therefrom. An inserting ring or collar 4 is formed on the outer end of the tapered ring'3. The inserting ring 4 is of a width equal to the thickness of a human skull. The ring or collar 4 is inserted in a skull trephination of such size and shape that the outer surface or wall of the collar 4 will fit fairly snugly therein, and the collar 4 terminates, at its junction with the ring 3, in a shoulder 5 which forms a stop for limiting the insertion of the ring 4 into the patients skull.
Anchoring means are provided for firmly anchoring the attaching element to the patients skull in such manner as to prohibit possible independent movement of the skull and attaching element, and since the entire stereotactic guide is rigidly carried by the attaching element (as hereinafter described) any movement, as a Whole, of the guide relative to the head of the patient will be prevented and vice versa.
One such anchoring means is shown in FIGURE 6 of the drawings, and while the structure shown has been found satisfactory in actual use, it is to be understood that this invention is not to be limited to the sp cific anchoring means shown and hereafter described except only as limited by the claims hereof.
The attaching element 1 has a plurality of openings 7 therein, located at circumferentially spaced points about its vertical axis which openings 7 open out through the ring 3 and collar 4 at their outer sides. Skull gripping pins 8 are inserted in the openings 7 and extend up into the enlarged portions 9 of the openings 7, wherein the upper diameter-reduced portions 10 of the pins 8 are engaged by the adjusting screws 11. The adjusting screws 11 are threaded in the attaching element 1 and threaded movement of the screws 11 move the pins 8 on fulcrums at the point of contact of the pins 8 with the walls of the openings 7 at the upper terminus of the portions of the openings 7 which open out through the outer walls of the tapered rings 3. The pins 8 extend upwardly into the openings at a slight angle to the vertical while the adjusting screws are inclined at a slight angle to the horizontal, thus when the adjusting screws are threaded inwardly the lower ends of the pins 8 will be moved outwardly for engagement, through the openings in the inserting ring or collar 4 with the wall of the opening in the skull of the patient. The surfaces of the pins 8 which engage the wall of the skull opening are roughened as by threading, knurling or in any other suitable manner to firmly grip the walls of the skull opening and prevent any movement whatever of the attaching element relative to the patients head.
The body 2 of the attaching element 1 has an axial bore 12 intermediate the ends of which is formed a seat 14, the walls of which are curved to form a seat for the ball 15 which is formed on the lower end of the cannula guiding and holding tube 16. The bore 12 tapers outwardly as it extends upwardly from and downwardly from the seat 14 as clearly shown in FIGURE 6 of the drawings.
The tube 16 slidably passes through a ball 16' which engages in a seat 17' formed in the collar 17. A spring 35 is mounted upon the tube 16 and its ends engage the balls 15 and 16' to spring load these balls and maintain them in their seats, thereby eliminating any misalignment. This structure will also compensate for the slight variation in the radial arc links generated in the movement of the tube 16 during positioning of a cannula as will be hereinafter described. This manner of mounting of the tube 16 will also eliminate any play in its movement, which might affect adversely the positioning of a cannula.
The trunnions 18 and 19 are slidably supported by brackets 20 which are pivotally attached to the attach ing element 1 such as by screws 21", or in any other suitable manner.
The trunnion 19 is threaded and has a thumb nut 21 threaded upon its outer end. The hub 22 of the nut 21 engages the bracket 20 so that when the nut 21 is rotated the trunnion will be moved longitudinally in either direction depending upon the direction of rotation of the nut 21. At the time of longitudinal movement of the trunnion 19 the trunnion 18 will also move longitudinally, sliding in its bearing in the bracket 20, and thus the tube 16 will be moved on, its pivot point formed by the ball 15 in the socket 14, in paths such as indicated by the dot and dash lines A and B in FIGURE of the drawings. A shoulder 23 is formed upon the trunnion 18 and provides a stop for the pivotal movement of the tube 16 in its direction indicated by arrow C by its contact with the bracket 20.
The hub 21' of the nut 21 extends through the bracket 20 and its inner end forms a stop for limiting the pivotal or swinging movement in the direction indicated by the arrow A. These stops are necessary as to prevent a cannula carried by the tube 16 (see FIGURE 4 of the drawings) from engaging the walls of the tapered opening 12, because the cannula is a very delicate instrument and such contact might injure it.
A collar 24 is mounted on the hub 21' adjacent to the bracket 20 and it has a threaded stem 25 attached thereto and extending substantially at right angles to the trunnion 19. The outer end of the threaded stem 25 is supported by a bracket 26 attached to and extending upwardly from the attaching element 1. A nut 27 is mounted on the stem 25 and engages the bracket 26 so that when the nut 27 is rotated the trunnions 18 and 19 will move longitudinally and consequently the tube 16 will be moved upon the pivots provided by the screws 21' in a path at right angles to the path of movement provided by rotation of the nut 21. Any suitable stops (not shown) may be provided to limit the movement of the tube 16 by the stem 25 and nut 27. Thus by rotation of the nuts 21 and 27 a cannula indicated at 30 in FIGURE 4 of the drawings may be moved in small increments provided by alternate rotation of the nuts 21 and 27 into infinite positions within the 360 degree radius permitted by the ball and socket 14 and confined by the walls of the tapered opening 12 in the attaching element 1.
The cannula which forms no part of this invention has a stop collar 31 mounted thereon which carries a locking screw 31', so that a surgeon may tighten the stop collar at the desired position on the cannula to insure the proper length of the portion of the cannula which projects beyond the collar 4.
A steadying or bracing rod 37 is carried by the brackets 20 and engages the collar 17 as clearly shown in FIG- URE 1 of the drawings, to prevent rotation or rocking of the collar 17 and the trunnions 18 and 19 while the nut 21 or 27 is being rotated or adjusted.
Cannula are made in different diameters, and to compensate for slight variances in the dameter of one cannula from another, the upper end of the sleeve 16 is split as shown at 50 in FIGURE 5 for a short distance inwardly from its end and a clamping collar 38 is mounted thereon by means of which the split end of the sleeve 16 may be pinched into tight clamping engagement with a cannula.
For the purpose of permitting use of cannulas of small diameter, a sleeve 40 is provided which slides into the sleeve 16 when needed and which is tightly clamped in the sleeve 16 by the clamping nut 38. The sleeve 40 is also split for a short distance inwardly from its receiving end and has a clamping nut 44 thereon to clamp a cannula tightly in position in the sleeve 40.
The threads on the trunnion 19, stem 25, and nuts 21 and 27 provide micrometer adjustment of the angles of the position of the sleeve 16 and by knowledge of this and the degree of movement provided by each turn or partial turn of the nuts 21 and 27, a surgeon may in conjunction with X-ray place the cannula in the exact spot to treat the affected part of a human brain, without liability of slippage or mispositioning of the cannula.
While various specific structures to provide the desired degrees of adjustment, locking of elements in position, etc. are shown and described herein, it is to be understood that the invention is not limited to the structure shown and described, but may be varied as practice may dictate without departing from the invention, so long as such structures are embraced in the claims hereto appended.
What is claimed is:
1. In a stereotacetic guide for use in cryosurgical treatment of a brain, an attaching element for direct attachment to the skull of a patient, a cannula carrying guide carried by said attaching element and means supported from said attaching element to provide substantially infinite adjusted positioning of a cannula carried by the guide, a collar formed on said attaching element for fitting in an opening in a skull, and means on said collar to limit the degree of insertion of the collar into the opening in the skull, means carried by the attaching element for projection beyond the circumference of said collar to grip the walls of a skull opening, and means for moving said gripping means into and out of gripping position.
2. In a stereotactic guide, as claimed in claim 1, wherein said attaching element has an axial bore extending therethrough with an intermediate portion shaped to form a concave curved seat, a ball formed on the lower end of said cannula guide and seated in the seat formed in the attaching element, the portion of the bore extending outwardly from said seat being tapered to form substantially a conical space opening out through the lower end of the attaching element.
3. In a stereotactic guide for use in cryosurgical treatment of a brain, an attaching element for direct attachment to the skull of a patient, a cannula carrying guide carried by said attaching element and means supported from said attaching element to provide substantially infinite adjusted positioning of a cannula carried by the guide, said attaching element has an axial bore extending therethrough with an intermediate portion shaped to form a concave curved seat, a ball formed of the lower end of said cannula guide and seated in the seat formed in the attaching element, the portion of the bore extending outwardly from said seat being tapered to form substantially a conical space opening out through the lower end of the attachment element the outer surface of said attaching element being smooth for sliding into the opening in a skull, and means carried by said attaching element for projection beyond its outer smooth surface for gripping the wall of the skull at separated points about the wall of the opening, and means for moving said skull walled gripping means into and out of gripping position.
References Cited UNITED STATES PATENTS L. W. TRAPP, Primary Examiner
US581793A 1966-09-26 1966-09-26 Stereotactic guide for use in the creation of destructive brain lesions Expired - Lifetime US3460537A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US58179366A 1966-09-26 1966-09-26

Publications (1)

Publication Number Publication Date
US3460537A true US3460537A (en) 1969-08-12

Family

ID=24326581

Family Applications (1)

Application Number Title Priority Date Filing Date
US581793A Expired - Lifetime US3460537A (en) 1966-09-26 1966-09-26 Stereotactic guide for use in the creation of destructive brain lesions

Country Status (1)

Country Link
US (1) US3460537A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939841A (en) * 1974-03-06 1976-02-24 Dohring Albert A Acupuncture needle guide and restraint
FR2403062A1 (en) * 1977-09-15 1979-04-13 Ki Gi Cryogenic surgical instrument for body cavities - has telescopic end tubes with insulating sleeve and probe at tip
US5380336A (en) * 1993-04-16 1995-01-10 John Misko Method and apparatus for stereotactic radiosurgery and fractionated radiation therapy
US5993463A (en) * 1997-05-15 1999-11-30 Regents Of The University Of Minnesota Remote actuation of trajectory guide
US6152933A (en) * 1997-11-12 2000-11-28 Stereotaxis, Inc. Intracranial bolt and method of placing and using an intracranial bolt to position a medical device
US6195577B1 (en) 1998-10-08 2001-02-27 Regents Of The University Of Minnesota Method and apparatus for positioning a device in a body
US20020010479A1 (en) * 2000-04-07 2002-01-24 Skakoon James G. Medical device introducer
US20020049451A1 (en) * 2000-08-17 2002-04-25 Kari Parmer Trajectory guide with instrument immobilizer
US6572624B2 (en) * 2000-04-13 2003-06-03 Hoi Sang U Stereotaxic detachable needle extension
WO2003077784A1 (en) * 2002-03-12 2003-09-25 Gill Steven Streatfield Stereoguide for clamping neurosurgical instruments
US6752812B1 (en) 1997-05-15 2004-06-22 Regent Of The University Of Minnesota Remote actuation of trajectory guide
US7497863B2 (en) 2004-12-04 2009-03-03 Medtronic, Inc. Instrument guiding stage apparatus and method for using same
US7559935B2 (en) 2003-02-20 2009-07-14 Medtronic, Inc. Target depth locators for trajectory guide for introducing an instrument
US20090306501A1 (en) * 2008-06-06 2009-12-10 Flint Alexander C Method and apparatus for directed device placement in the cerebral ventricles or other intracranial targets
US7636596B2 (en) 2002-12-20 2009-12-22 Medtronic, Inc. Organ access device and method
US7658879B2 (en) 2003-02-20 2010-02-09 Medtronic, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US7704260B2 (en) 2002-09-17 2010-04-27 Medtronic, Inc. Low profile instrument immobilizer
US7744606B2 (en) 2004-12-04 2010-06-29 Medtronic, Inc. Multi-lumen instrument guide
WO2014204954A1 (en) * 2013-06-17 2014-12-24 Alcyone Lifesciences, Inc. Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters
US8992458B2 (en) 2012-12-18 2015-03-31 Alcyone Lifesciences, Inc. Systems and methods for reducing or preventing backflow in a delivery system
US10086193B2 (en) 2004-02-13 2018-10-02 Medtronic, Inc. Apparatus for securing a therapy delivery device within a burr hole and method for making same
US10137244B2 (en) 2011-08-01 2018-11-27 Alcyone Lifesciences, Inc. Microfluidic drug delivery devices with venturi effect
US10441770B2 (en) 2013-07-31 2019-10-15 Alcyone Lifesciences, Inc. Systems and methods for drug delivery, treatment, and monitoring
US10531882B2 (en) 2016-01-04 2020-01-14 Alcyone Lifesciences, Inc. Methods and devices for treating stroke
US10806396B2 (en) 2015-01-26 2020-10-20 Alcyone Lifesciences, Inc. Drug delivery methods with tracer
US11589997B2 (en) 2018-09-07 2023-02-28 Sunnybrook Research Institute Systems and methods for surgical implant guidance and positioning with optical surface imaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017887A (en) * 1960-01-19 1962-01-23 William T Heyer Stereotaxy device
US3135263A (en) * 1960-10-05 1964-06-02 Smiths America Corp Surgical instrument positioning device
US3262452A (en) * 1963-04-17 1966-07-26 Hardy Wayne Goniometer apparatus for brain surgery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017887A (en) * 1960-01-19 1962-01-23 William T Heyer Stereotaxy device
US3135263A (en) * 1960-10-05 1964-06-02 Smiths America Corp Surgical instrument positioning device
US3262452A (en) * 1963-04-17 1966-07-26 Hardy Wayne Goniometer apparatus for brain surgery

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939841A (en) * 1974-03-06 1976-02-24 Dohring Albert A Acupuncture needle guide and restraint
FR2403062A1 (en) * 1977-09-15 1979-04-13 Ki Gi Cryogenic surgical instrument for body cavities - has telescopic end tubes with insulating sleeve and probe at tip
US5380336A (en) * 1993-04-16 1995-01-10 John Misko Method and apparatus for stereotactic radiosurgery and fractionated radiation therapy
US5634929A (en) * 1993-04-16 1997-06-03 Oregon Neuro-Medical Technology, Inc. Apparatus for stereotactic radiosurgery and fractionated radiation therapy
US6752812B1 (en) 1997-05-15 2004-06-22 Regent Of The University Of Minnesota Remote actuation of trajectory guide
US5993463A (en) * 1997-05-15 1999-11-30 Regents Of The University Of Minnesota Remote actuation of trajectory guide
US6206890B1 (en) 1997-05-15 2001-03-27 Regents Of The University Of Minnesota Remote actuation of trajectory guide
US6267770B1 (en) 1997-05-15 2001-07-31 Regents Of The University Of Minnesota Remote actuation of trajectory guide
US6368329B1 (en) 1997-05-15 2002-04-09 Regents Of The University Of Minnesota Method of using trajectory guide
US6152933A (en) * 1997-11-12 2000-11-28 Stereotaxis, Inc. Intracranial bolt and method of placing and using an intracranial bolt to position a medical device
US6195577B1 (en) 1998-10-08 2001-02-27 Regents Of The University Of Minnesota Method and apparatus for positioning a device in a body
US6782288B2 (en) 1998-10-08 2004-08-24 Regents Of The University Of Minnesota Method and apparatus for positioning a device in a body
US7833231B2 (en) 2000-04-07 2010-11-16 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US7660621B2 (en) 2000-04-07 2010-02-09 Medtronic, Inc. Medical device introducer
US10300268B2 (en) 2000-04-07 2019-05-28 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US8911452B2 (en) 2000-04-07 2014-12-16 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US8845656B2 (en) 2000-04-07 2014-09-30 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US7204840B2 (en) 2000-04-07 2007-04-17 Image-Guided Neurologics, Inc. Deep organ access device and method
US7235084B2 (en) 2000-04-07 2007-06-26 Image-Guided Neurologics, Inc. Deep organ access device and method
US7857820B2 (en) 2000-04-07 2010-12-28 Medtronic, Inc. Sheath assembly for an access device and method therefor
US20020010479A1 (en) * 2000-04-07 2002-01-24 Skakoon James G. Medical device introducer
US7828809B2 (en) 2000-04-07 2010-11-09 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US7815651B2 (en) 2000-04-07 2010-10-19 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US6572624B2 (en) * 2000-04-13 2003-06-03 Hoi Sang U Stereotaxic detachable needle extension
US7637915B2 (en) 2000-08-17 2009-12-29 Medtronic, Inc. Trajectory guide with instrument immobilizer
US6902569B2 (en) 2000-08-17 2005-06-07 Image-Guided Neurologics, Inc. Trajectory guide with instrument immobilizer
US20020049451A1 (en) * 2000-08-17 2002-04-25 Kari Parmer Trajectory guide with instrument immobilizer
US8192445B2 (en) 2000-08-17 2012-06-05 Medtronic, Inc. Trajectory guide with instrument immobilizer
US7329262B2 (en) 2002-03-12 2008-02-12 Renishaw Plc Stereoguide for clamping neurosurgical instruments
WO2003077784A1 (en) * 2002-03-12 2003-09-25 Gill Steven Streatfield Stereoguide for clamping neurosurgical instruments
US20080045973A1 (en) * 2002-03-12 2008-02-21 Gill Steven S Stereoguide for clamping neurosurgical instruments
EP1769820A1 (en) * 2002-03-12 2007-04-04 Renishaw plc Stereoguide for clamping neurosurgical instruments
US10058681B2 (en) 2002-09-17 2018-08-28 Medtronic, Inc. Low profile instrument immobilizer
US10974029B2 (en) 2002-09-17 2021-04-13 Medtronic, Inc. Low profile instrument immobilizer
US7704260B2 (en) 2002-09-17 2010-04-27 Medtronic, Inc. Low profile instrument immobilizer
US9901713B2 (en) 2002-09-17 2018-02-27 Medtronic, Inc. Low profile instrument immobilizer
US8116850B2 (en) 2002-12-20 2012-02-14 Medtronic, Inc. Organ access device and method
US7636596B2 (en) 2002-12-20 2009-12-22 Medtronic, Inc. Organ access device and method
US7896889B2 (en) 2003-02-20 2011-03-01 Medtronic, Inc. Trajectory guide with angled or patterned lumens or height adjustment
US7981120B2 (en) 2003-02-20 2011-07-19 University Of South Florida Trajectory guide with angled or patterned guide lumens or height adjustment
US7658879B2 (en) 2003-02-20 2010-02-09 Medtronic, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US7559935B2 (en) 2003-02-20 2009-07-14 Medtronic, Inc. Target depth locators for trajectory guide for introducing an instrument
US7699854B2 (en) 2003-02-20 2010-04-20 Medtronic, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US11938312B2 (en) 2004-02-13 2024-03-26 Medtronic, Inc. Apparatus for securing a therapy delivery device within a burr hole and method for making same
US10086193B2 (en) 2004-02-13 2018-10-02 Medtronic, Inc. Apparatus for securing a therapy delivery device within a burr hole and method for making same
US20090118743A1 (en) * 2004-12-04 2009-05-07 Medtronic, Inc. Instrument For Guiding Stage Apparatus And Method For Using Same
US7744606B2 (en) 2004-12-04 2010-06-29 Medtronic, Inc. Multi-lumen instrument guide
US7803163B2 (en) 2004-12-04 2010-09-28 Medtronic, Inc. Multiple instrument retaining assembly and methods therefor
US7497863B2 (en) 2004-12-04 2009-03-03 Medtronic, Inc. Instrument guiding stage apparatus and method for using same
US7867242B2 (en) 2004-12-04 2011-01-11 Medtronic, Inc. Instrument for guiding stage apparatus and method for using same
US9039615B2 (en) 2008-06-06 2015-05-26 Bedrock Inventions, Llc Method and apparatus for directed device placement in the cerebral ventricles or other intracranial targets
US9408629B2 (en) 2008-06-06 2016-08-09 Bedrock Inventions, Llc Method and apparatus for directed device placement in the cerebral ventricles or other intracranial targets
US20090306501A1 (en) * 2008-06-06 2009-12-10 Flint Alexander C Method and apparatus for directed device placement in the cerebral ventricles or other intracranial targets
US10434251B2 (en) 2011-08-01 2019-10-08 Alcyone Lifesciences, Inc. Multi-directional microfluidic drug delivery device
US10137244B2 (en) 2011-08-01 2018-11-27 Alcyone Lifesciences, Inc. Microfluidic drug delivery devices with venturi effect
US10363394B2 (en) 2012-12-18 2019-07-30 Alcyone Lifesciences, Inc. Systems and methods for reducing or preventing backflow in a delivery system
US8992458B2 (en) 2012-12-18 2015-03-31 Alcyone Lifesciences, Inc. Systems and methods for reducing or preventing backflow in a delivery system
US11260201B2 (en) 2012-12-18 2022-03-01 Alcyone Lifesciences, Inc. Systems and methods for reducing or preventing backflow in a delivery system
US9919129B2 (en) 2012-12-18 2018-03-20 Alcyone Lifesciences, Inc. Systems and methods for reducing or preventing backflow in a delivery system
US11213653B2 (en) 2012-12-18 2022-01-04 Alcyone Lifesciences, Inc. Systems and methods for reducing or preventing backflow in a delivery system
US10065016B2 (en) 2012-12-18 2018-09-04 Alcyone Lifesciences, Inc. Systems and methods for reducing or preventing backflow in a delivery system
EP3010574A4 (en) * 2013-06-17 2016-12-14 Alcyone Lifesciences Inc Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters
CN110215595B (en) * 2013-06-17 2022-04-12 亚克安娜治疗学有限公司 Catheter tip protection system and stereotactic fixation device
WO2014204954A1 (en) * 2013-06-17 2014-12-24 Alcyone Lifesciences, Inc. Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters
US10456533B2 (en) 2013-06-17 2019-10-29 Alcyone Lifesciences, Inc. Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters
US11602375B2 (en) 2013-06-17 2023-03-14 Alcyone Therapeutics, Inc. Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters
CN105517617A (en) * 2013-06-17 2016-04-20 亚克安娜生命科学有限公司 Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters
CN110215595A (en) * 2013-06-17 2019-09-10 亚克安娜生命科学有限公司 For protecting the method and apparatus of catheter tip and for the stereo directed fixing device of microtubular
CN105517617B (en) * 2013-06-17 2019-06-21 亚克安娜生命科学有限公司 For protecting the method and apparatus of catheter tip and for the stereo directed fixing device of microtubular
AU2014281682B2 (en) * 2013-06-17 2019-03-21 Alcyone Therapeutics, Inc. Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters
US11534592B2 (en) 2013-07-31 2022-12-27 Alcyone Therapeutics, Inc. Systems and methods for drug delivery, treatment, and monitoring
US10441770B2 (en) 2013-07-31 2019-10-15 Alcyone Lifesciences, Inc. Systems and methods for drug delivery, treatment, and monitoring
US10806396B2 (en) 2015-01-26 2020-10-20 Alcyone Lifesciences, Inc. Drug delivery methods with tracer
US10531882B2 (en) 2016-01-04 2020-01-14 Alcyone Lifesciences, Inc. Methods and devices for treating stroke
US11589997B2 (en) 2018-09-07 2023-02-28 Sunnybrook Research Institute Systems and methods for surgical implant guidance and positioning with optical surface imaging

Similar Documents

Publication Publication Date Title
US3460537A (en) Stereotactic guide for use in the creation of destructive brain lesions
US3115140A (en) Apparatus for stereotaxic brain operations
US5263956A (en) Ball joint for neurosurgery
EP1048320B1 (en) Adjustable medical lead fixation system
US4108426A (en) Device for holding the head of a patient
US4390011A (en) Adjustable surgical arm rest and instrument platform
US7135024B2 (en) Lumbar spine fixation device
SU745515A1 (en) Stereotaxic apparatus
US4457300A (en) Surgical retractor
US7832035B2 (en) Surgical support for patient limb
US5207716A (en) Surgical head supporting and immobilizing apparatus
US5423826A (en) Anterior cervical plate holder/drill guide and method of use
US3357431A (en) Neurosurgical apparatus
US3196865A (en) Self-retaining retractor
JP2015507972A (en) Implant insertion device having a continuously adjustable targeting assembly
US2434431A (en) Surgical pin guide
JP2001517530A (en) Apparatus and method for setting stereotactically and endoscopically positioned appliances
WO2016125013A2 (en) System and method for invasive and non-invasive head fixation
JPH07506038A (en) Medical devices and methods
JPH10502265A (en) Microdrive used in stereotaxic surgery
JPH05211985A (en) Endoscope guide apparatus for cerebral ventricle
US3320948A (en) Positioning instrument clamp for use with speculum
US2454680A (en) Post-adjusting means for wire and nail directing apparatus
US7493155B2 (en) Non-invasive medical treatment installation
US6290196B1 (en) Holding device for a surgical instrument