US3474791A - Multiple conductor electrode - Google Patents

Multiple conductor electrode Download PDF

Info

Publication number
US3474791A
US3474791A US537031A US3474791DA US3474791A US 3474791 A US3474791 A US 3474791A US 537031 A US537031 A US 537031A US 3474791D A US3474791D A US 3474791DA US 3474791 A US3474791 A US 3474791A
Authority
US
United States
Prior art keywords
electrode
core
sheath
conductors
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US537031A
Inventor
Itzhak E Bentov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brunswick Corp
Sherwood Medical Co
Original Assignee
Brunswick Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brunswick Corp filed Critical Brunswick Corp
Application granted granted Critical
Publication of US3474791A publication Critical patent/US3474791A/en
Assigned to SHERWOOD MEDICAL COMPANY reassignment SHERWOOD MEDICAL COMPANY MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SHERWOOD MEDICAL INDUSTRIES INC. (INTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium

Definitions

  • An electrode having high break-resistance and flexibility and particularly suitable for implantation in a human body for conducting heart stimulating electrical currents from a suitable current supply to the heart muscle.
  • the electrode structure comprises a plurality of flexible electrical conductors wrapped longitudinally and coaxially around a break-resistant, flexible, electrically conductive core, with the opposite ends of the conductors electrically connected to the core.
  • the conductors and core are enclosed by an outer coaxial flexible insulating sheath arranged to expose the conductors at a point intermediate their ends.
  • This invention relates to electrical conductors and in particular to an electrode for use such as a cardiac pacer.
  • a number of devices have been developed heretofore for external electrical stimulation of a heart which has stopped beating or which is beating improperly as one which is fibrillating.
  • An early example of such a device is that shown in Hyman et al. Patent No. 1,913,595.
  • the present invention comprehends an improved electrode structure for conducting heart stimulating electrical currents from a suitable current supply to the heart muscle in such pacer apparatus.
  • a principal feature of the present invention is the provision of a new and improved electrode structure.
  • Another feature of the invention is the provision of such an electrode structure comprising an improved heart pacer electrode.
  • a further feature of the invention is the provision of such an electrode structure having new and improved construction providing long life at relatively low cost.
  • Still another feature of the invention is the provision of such an electrode structure providing improved circuit redundancy for improved maintained conductive functioning of the electrode.
  • a yet further feature of the invention is the provision of such an electrode structure having new and improved means for facilitating connection thereof to the heart muscle by the implanting surgeon.
  • Another feature of the invention is the provision of such an electrode structure having new and improved means for preventing deterioration thereof by body fluids and the like.
  • Another feature of the invention is the provision of such an electrode structure having a new and improved axial core construction providing improved functioning thereof.
  • a further feature of the invention is the provision of such an electrode structure wherein the core construction is formed of a plurality of extremely fine metal filaments.
  • FIGURE 1 is a fragmentary elevation of an electrode structure embodying the invention electrically connected between a suitable electrical current supply and a heart muscle;
  • FIGURE 2 is a fragmentary enlarged view of a portion of the electrode implanted in the heart muscle
  • FIGURE 3 is a broken diametric section of the electrode prior to the installation of the stitching needle to one end thereof;
  • FIGURE 4 is a fragmentary, enlarged isometric view of a mid-portion of the electrode
  • FIGURE 5 is a transverse section taken substantially along the line 55 of FIGURE 3;
  • FIGURE 6 is a fragmentary side elevation of the stitching needle attached to the end of the electrode with portions thereof shown in diametric section; and with a severing means shown fragmentarily for removing the stitching needle from the electrode upon completion of the implantation of the electrode in the heart muscle; and
  • FIGURE 7 is a schematic electrical wiring diagram of the circuit arrangement of the electrode.
  • an electrode generally designated 10 is shown to comprise an elongated flexible structure having one end 11 connected by a suitable connector 12 to an electrical power supply 13 for providing suitable electrical current through the electrode 10 to a heart muscle, such as muscle 14.
  • a heart muscle such as muscle 14.
  • the opposite end 15 of the electrode is secured to the heart muscle 14 as by stitching 16.
  • a pair of electrodes 10 is provided for conducting the electrical current both to the heart muscle and back to the power supply 13; each of the electrodes is substantially identical and thus the following specific description thereof will be limited to a single electrode.
  • the electrode 10 includes an axial elongated core 17 formed of a flexible, breakresistant material.
  • core 17 comprises a 300 end yarn formed of an electrically conductive material, such as 304 stainless steel filaments each having a cross-section of approximately 12 microns with the filaments having approximately 5 to 7 turns per inch twist therein.
  • the filaments are impregnated with an elastomer, such as silicone rubber, which may be suitably cured as by heating in an oven at approximately 400 F.
  • the core may be of suitable length, and in the illustrated embodiment, is approximately 28 inches long.
  • a silicone rubber sheath 18 is then provided over the core. As shown in FIGURE 3, a first end 19 of the sheath is spaced from one end 20 of the core to provide an exposed outer end 21 of the core, and the opposite end 22 of the sheath 18 is spaced from the opposite end 23 of the core. The end 23 may be twisted back upon itself to define an enlarged end suitable for connection thereto of a stitching needle, such as needle 24 shown in FIGURE 6.
  • the silicone rubber sheath 18 may be provided on the yarn in any suitable conventional manner such as by extrusion thereonto, or by providing the sheath in a form of a tube which may be suitably cemented to the core after being drawn thereover.
  • the sheath preferably is fixedly retained against axial slippage on the core.
  • a plurality of electrically conductive cables are wound helically about the sheath, herein a pair of cables 25 and 26 are provided degrees apart.
  • Cable 25 has a first end 27 secured in electrical contact with the core 17, and cable 26 has a first end 28 secured in electrical contact with the core adjacent first cable end 27.
  • Cable 25 has a second end 29 secured in electrical contact with the core end 23, and cable 26 has a second end 30 secured in electrical contact with the core end 23 adjacent cable end 29.
  • cables 25 and 26 are formed of platinum and comprise seven strand cables wherein each strand has a diameter of approximately .001 inch.
  • the electrode further includes an outer sheath 31 having an outer end 32 coplanar with end 19 of sheath 18 and an inner end 32' spaced inwardly of the inner end 22 of the sheath 18 with the connections 29 and 30 of the platinum cables being disposed within the outer sheath 31 inwardly of the inner sheath end 22 and with the end 23 of the core extending outwardly therefrom.
  • the outer sheath 31 is provided with a gap 33 at a point outwardly of the inner sheath end 22.
  • the gap 33 may be approximately four inches outwardly of sheath ing to the right from gap 33 and portion 31b extending to the left therefrom.
  • the sheath portions may be suitably provided as by extrusion thereof onto the subassembly of the core 17, sheath 18, and conductors and 26,
  • FIGURES 1 through 3 means are provided for indicating the location of the gap 33, herein in the form of a pair of black marks 34 and adjacent gap 33 on sheath 18 to be viewable through portions 31a and 31b respectively of sheath 31.
  • the electrode 10 may be provided with a stitching needle 24 secured to the end 23 of core 17 thereof for use by the surgeon in implanting the electrode suitably in the heart muscle .14.
  • the needle may comprise an arcuate needle having an attaching end 36 provided with an axial outwardly opening recess 37.
  • An electrically conductive ferrule 38 is secured to the end 23 of the electrode core as by soldering and the core end 23 with the ferrule 38 secured thereto is retained in the recess 37 as by crimping of the needle end 36 illustratively shown at 39.
  • the electrode 10 may be utilized as follows. The surgeon may firstly install the power supply 13 under the patients skin in the abdomen or upper left chest cavity with the ends 11 of the electrode suitably secured to the connectors 12. The electrodes are drawn through the space between the internal organs of the patient and the rib cage to adjacent the heart. As shown in FIGURE 1, the distal ends of the electrodes are then stitched into the heart muscle 14 by means of the needle 24 to dispose the exposed cables 25 and 26 at gap 33 within the heart muscle thereby making electrical contact therewith. As shown in FIGURE 1, the ends of the electrodes are brought out from the heart muscle whereby the black marks 34 and 35 indicate to the surgeon the accurate centering of the gap 33 in the heart muscle.
  • the exposed portions of the electrode adjacent the heart muscle may be suitably stitched thereto by surgical sutures 16.
  • the needle 24 is removed from the end of the electrode as by cutting the end 15 by suitable means such as scissor blades as shown in FIGURE 6.
  • the cut end of the electrode may be suitably capped if desired as by insulating cap 41.
  • a loop is retained in the electrodes adjacent the heart to preclude tugging of the electrodes by the heart movements.
  • the heart muscle 14 is the left ventricle portion of the heart with the ends 15 of the electrodes extending toward the apex 42 thereof.
  • the power supply 13 may provide a current pulse of approximately 14 milliamperes at 6 to 7 volts and of approximately 2 millisecond duration.
  • the current pulse is delivered to the exposed conductors 25 and 26 at gap 33 by three separate paths, thereby providing an improved long life characteristic of the electrode as a result of the circuit redundancy. More specifically, the current pulse may flow to the exposed portion of the wire 25 at gap 33 from the power supply 13 through the core portion 17 to the contact 4 27- and thence through the conductor 25. Similarly,'the current pulse may be delivered to the exposed portion of the conductor 26 at gap 33 by delivery of the current from power supply 13 through core 17 to the contact 28 and thence through the conductor 26.
  • a plurality of additional current flow paths to the exposed portions of the wires 25 and 26 is provided. More specifically, should a break in the wire 25 occur between the gap 33 and the point 27 the pulse could still be delivered to the portion of the conductor 25 at gap 33 through the core 17 to contact 30 and thence back to the exposed portion of the conductor at gap 33, as well as from the conductor 26 through contact 29 to contact 30. A similar supply of the current pulse to the exposed portion of conductor 26 at gap 33 would be provided in the event of a break in the conductor 26 between gap 33 and contact 28.
  • electrode 10 provides an improved low cost, high reliability electrode adapted for use in such critical applications as heart pacer conductors.
  • An electrode comprising: an elongated core of flexible, break-resistant, electrically conductive material; a plurality of flexible electrical conductors extending longitudinally of and coaxially about said core and electrically connected to said core at opposite end portions of said conductors; and an outer sheath of flexible insulating material coaxially about said core and electrical conductors and arranged to expose said electrical conductors at a point intermediate said opposite end portions of said conductors.
  • said core is formed of a plurality of filaments having a diameter of under approximately one-half mil.
  • said electrical conductors comprise a pair of conductive elements extending helically degrees apart.
  • the electrode of claim 1 further including means adjacent said point at which said electrical conductors are exposed for indicating the location of the exposed portion References Cited of said electrical conductors.
  • the electrode of claim 1 further including a con- UNITED STATES PATENTS t 1 t 11 M h H t dt nd 1,687,912 10/1928 Wheeler 174-115 X iltezrgcrfe ec r1ca y a mec amca y connec e 0 one e 2,581,213 1952 pp 174 115 X 10.
  • said outer sheath 5 3,035,583 5/1962 Hlrsch et 128418 X is formed of two spaced portions defining between them 3,216,424 11/1965 Chadack 128-418 said point at which said electrical conductors are exposed.

Description

6- 28, 1969 l. E. BENTOV MULTIPLE CONDUCTOR ELECTRODE Filed March 24, 1966 J5EE III/I0" jnuenz orx- Ill United States Patent 3,474,791 MULTIPLE CONDUCTOR ELECTRODE Itzhak E. Bentov, Belmont, Mass., assignor to Brunswick Corporation, a corporation of Delaware Filed Mar. 24, 1966, Ser. No. 537,031
Int. Cl. A61n 1/04; H01b 7/04 US. Cl. 128-418 11 Claims ABSTRACT OF THE DISCLOSURE An electrode having high break-resistance and flexibility and particularly suitable for implantation in a human body for conducting heart stimulating electrical currents from a suitable current supply to the heart muscle. The electrode structure comprises a plurality of flexible electrical conductors wrapped longitudinally and coaxially around a break-resistant, flexible, electrically conductive core, with the opposite ends of the conductors electrically connected to the core. The conductors and core are enclosed by an outer coaxial flexible insulating sheath arranged to expose the conductors at a point intermediate their ends.
This invention relates to electrical conductors and in particular to an electrode for use such as a cardiac pacer.
A number of devices have been developed heretofore for external electrical stimulation of a heart which has stopped beating or which is beating improperly as one which is fibrillating. An early example of such a device is that shown in Hyman et al. Patent No. 1,913,595. The present invention comprehends an improved electrode structure for conducting heart stimulating electrical currents from a suitable current supply to the heart muscle in such pacer apparatus.
Thus, a principal feature of the present invention is the provision of a new and improved electrode structure.
Another feature of the invention is the provision of such an electrode structure comprising an improved heart pacer electrode.
A further feature of the invention is the provision of such an electrode structure having new and improved construction providing long life at relatively low cost.
Still another feature of the invention is the provision of such an electrode structure providing improved circuit redundancy for improved maintained conductive functioning of the electrode.
A yet further feature of the invention is the provision of such an electrode structure having new and improved means for facilitating connection thereof to the heart muscle by the implanting surgeon.
Another feature of the invention is the provision of such an electrode structure having new and improved means for preventing deterioration thereof by body fluids and the like.
Another feature of the invention is the provision of such an electrode structure having a new and improved axial core construction providing improved functioning thereof.
A further feature of the invention is the provision of such an electrode structure wherein the core construction is formed of a plurality of extremely fine metal filaments.
Other features and advantages of the invention will be apparent from the following description taken in connection with the accompanying drawing wherein:
FIGURE 1 is a fragmentary elevation of an electrode structure embodying the invention electrically connected between a suitable electrical current supply and a heart muscle;
FIGURE 2 is a fragmentary enlarged view of a portion of the electrode implanted in the heart muscle;
FIGURE 3 is a broken diametric section of the electrode prior to the installation of the stitching needle to one end thereof;
FIGURE 4 is a fragmentary, enlarged isometric view of a mid-portion of the electrode;
FIGURE 5 is a transverse section taken substantially along the line 55 of FIGURE 3;
FIGURE 6 is a fragmentary side elevation of the stitching needle attached to the end of the electrode with portions thereof shown in diametric section; and with a severing means shown fragmentarily for removing the stitching needle from the electrode upon completion of the implantation of the electrode in the heart muscle; and
FIGURE 7 is a schematic electrical wiring diagram of the circuit arrangement of the electrode.
In the exemplary embodiment of the invention as disclosed in the drawing, an electrode generally designated 10 is shown to comprise an elongated flexible structure having one end 11 connected by a suitable connector 12 to an electrical power supply 13 for providing suitable electrical current through the electrode 10 to a heart muscle, such as muscle 14. As shown in FIGURE 1, the opposite end 15 of the electrode is secured to the heart muscle 14 as by stitching 16. In the illustrated embodiment, a pair of electrodes 10 is provided for conducting the electrical current both to the heart muscle and back to the power supply 13; each of the electrodes is substantially identical and thus the following specific description thereof will be limited to a single electrode.
Referring now more specifically to FIGURES 2 through 5, the electrode 10 includes an axial elongated core 17 formed of a flexible, breakresistant material. In the illustrated embodiment, core 17 comprises a 300 end yarn formed of an electrically conductive material, such as 304 stainless steel filaments each having a cross-section of approximately 12 microns with the filaments having approximately 5 to 7 turns per inch twist therein. The filaments are impregnated with an elastomer, such as silicone rubber, which may be suitably cured as by heating in an oven at approximately 400 F. The core may be of suitable length, and in the illustrated embodiment, is approximately 28 inches long.
A silicone rubber sheath 18 is then provided over the core. As shown in FIGURE 3, a first end 19 of the sheath is spaced from one end 20 of the core to provide an exposed outer end 21 of the core, and the opposite end 22 of the sheath 18 is spaced from the opposite end 23 of the core. The end 23 may be twisted back upon itself to define an enlarged end suitable for connection thereto of a stitching needle, such as needle 24 shown in FIGURE 6. The silicone rubber sheath 18 may be provided on the yarn in any suitable conventional manner such as by extrusion thereonto, or by providing the sheath in a form of a tube which may be suitably cemented to the core after being drawn thereover. The sheath preferably is fixedly retained against axial slippage on the core.
A plurality of electrically conductive cables are wound helically about the sheath, herein a pair of cables 25 and 26 are provided degrees apart. Cable 25 has a first end 27 secured in electrical contact with the core 17, and cable 26 has a first end 28 secured in electrical contact with the core adjacent first cable end 27. Cable 25 has a second end 29 secured in electrical contact with the core end 23, and cable 26 has a second end 30 secured in electrical contact with the core end 23 adjacent cable end 29. Herein, cables 25 and 26 are formed of platinum and comprise seven strand cables wherein each strand has a diameter of approximately .001 inch.
The electrode further includes an outer sheath 31 having an outer end 32 coplanar with end 19 of sheath 18 and an inner end 32' spaced inwardly of the inner end 22 of the sheath 18 with the connections 29 and 30 of the platinum cables being disposed within the outer sheath 31 inwardly of the inner sheath end 22 and with the end 23 of the core extending outwardly therefrom. As best seen in FIGURES 2 and 3, the outer sheath 31 is provided with a gap 33 at a point outwardly of the inner sheath end 22. In the illustrated embodiment, the gap 33 may be approximately four inches outwardly of sheath ing to the right from gap 33 and portion 31b extending to the left therefrom. The sheath portions may be suitably provided as by extrusion thereof onto the subassembly of the core 17, sheath 18, and conductors and 26,
or by drawing of preformed tubular sheath structures onto the subassembly for positive retention thereon as by cementing. As shown in FIGURES 1 through 3, means are provided for indicating the location of the gap 33, herein in the form of a pair of black marks 34 and adjacent gap 33 on sheath 18 to be viewable through portions 31a and 31b respectively of sheath 31.
As indicated above, the electrode 10 may be provided with a stitching needle 24 secured to the end 23 of core 17 thereof for use by the surgeon in implanting the electrode suitably in the heart muscle .14. As best seen in FIGURE 6, the needle may comprise an arcuate needle having an attaching end 36 provided with an axial outwardly opening recess 37. An electrically conductive ferrule 38 is secured to the end 23 of the electrode core as by soldering and the core end 23 with the ferrule 38 secured thereto is retained in the recess 37 as by crimping of the needle end 36 illustratively shown at 39.
The electrode 10 may be utilized as follows. The surgeon may firstly install the power supply 13 under the patients skin in the abdomen or upper left chest cavity with the ends 11 of the electrode suitably secured to the connectors 12. The electrodes are drawn through the space between the internal organs of the patient and the rib cage to adjacent the heart. As shown in FIGURE 1, the distal ends of the electrodes are then stitched into the heart muscle 14 by means of the needle 24 to dispose the exposed cables 25 and 26 at gap 33 within the heart muscle thereby making electrical contact therewith. As shown in FIGURE 1, the ends of the electrodes are brought out from the heart muscle whereby the black marks 34 and 35 indicate to the surgeon the accurate centering of the gap 33 in the heart muscle. The exposed portions of the electrode adjacent the heart muscle may be suitably stitched thereto by surgical sutures 16. The needle 24 is removed from the end of the electrode as by cutting the end 15 by suitable means such as scissor blades as shown in FIGURE 6. The cut end of the electrode may be suitably capped if desired as by insulating cap 41. A loop is retained in the electrodes adjacent the heart to preclude tugging of the electrodes by the heart movements. In the illustrated embodiment, the heart muscle 14 is the left ventricle portion of the heart with the ends 15 of the electrodes extending toward the apex 42 thereof.
Illustratively, the power supply 13 may provide a current pulse of approximately 14 milliamperes at 6 to 7 volts and of approximately 2 millisecond duration. Referring to FIGURE 7, the current pulse is delivered to the exposed conductors 25 and 26 at gap 33 by three separate paths, thereby providing an improved long life characteristic of the electrode as a result of the circuit redundancy. More specifically, the current pulse may flow to the exposed portion of the wire 25 at gap 33 from the power supply 13 through the core portion 17 to the contact 4 27- and thence through the conductor 25. Similarly,'the current pulse may be delivered to the exposed portion of the conductor 26 at gap 33 by delivery of the current from power supply 13 through core 17 to the contact 28 and thence through the conductor 26. As the opposite ends of the conductors 25 and 26 are also electrically connected to the core 17 at points 29 and 30, a plurality of additional current flow paths to the exposed portions of the wires 25 and 26 is provided. More specifically, should a break in the wire 25 occur between the gap 33 and the point 27 the pulse could still be delivered to the portion of the conductor 25 at gap 33 through the core 17 to contact 30 and thence back to the exposed portion of the conductor at gap 33, as well as from the conductor 26 through contact 29 to contact 30. A similar supply of the current pulse to the exposed portion of conductor 26 at gap 33 would be provided in the event of a break in the conductor 26 between gap 33 and contact 28. Still further, should a pair of breaks occur, one each in conductors 25 and 26 between gap 33 and contact points 27 and 28, the current pulse could still nevertheless be delivered to the exposed portions of the conductors 25 and 26 at gap 33 by delivery thereof through the core 17 and thence through contact points 29 and 30 tothe exposed portions of the conductors. Still further, by virtue of the improved redundancy circuitry of the electrode, a break in one of the conductors 25 and 26 between the gap 33 and the contact point 29 or 30 thereof, in addition to breaks in each of the conductors between the gap 33 and the contacts 27 and 28 would still permit current flow to the other of the conductors in gap 33 through the core 17 and thence through the unbroken portion of the conductor extending backwardly to the gap 33.
Thus, electrode 10 provides an improved low cost, high reliability electrode adapted for use in such critical applications as heart pacer conductors.
While I have shown and described one embodiment of my invention, it is to be understood that it is capable of many modifications. Changes, therefore, in the constructions and arrangement may be made Without departing from the spirit and scope of the invention as defined in the appended claims.
I claim:
1. An electrode comprising: an elongated core of flexible, break-resistant, electrically conductive material; a plurality of flexible electrical conductors extending longitudinally of and coaxially about said core and electrically connected to said core at opposite end portions of said conductors; and an outer sheath of flexible insulating material coaxially about said core and electrical conductors and arranged to expose said electrical conductors at a point intermediate said opposite end portions of said conductors.
2. The electrode of claim 1 wherein said core is formed of a plurality of filaments having a diameter of under approximately one-half mil.
3. The electrode of claim 1 wherein said core comprises a yarn of metal filaments impregnated with an elastomer.
4. The electrode of claim 1 wherein said electrical conductors comprise a plurality of stranded cables.
5. The electrode of claim 1 wherein an intermediate sheath of flexible insulating material is disposed coaxially about said core, said electrical conductors being wrapped about said intermediate sheath.
6. The electrode of claim 1 wherein said conductors extend helically and are spaced from each other intermediate said end portions thereof.
7. The electrode of claim 1 wherein said electrical conductors comprise a pair of conductive elements extending helically degrees apart.
8. The electrode of claim 1 further including means adjacent said point at which said electrical conductors are exposed for indicating the location of the exposed portion References Cited of said electrical conductors.
9. The electrode of claim 1 further including a con- UNITED STATES PATENTS t 1 t 11 M h H t dt nd 1,687,912 10/1928 Wheeler 174-115 X iltezrgcrfe ec r1ca y a mec amca y connec e 0 one e 2,581,213 1952 pp 174 115 X 10. The electrode of claim 1 wherein said outer sheath 5 3,035,583 5/1962 Hlrsch et 128418 X is formed of two spaced portions defining between them 3,216,424 11/1965 Chadack 128-418 said point at which said electrical conductors are exposed. 3367339 2/1968 Sesslons 128418 11. The electrode of claim 10 wherein an intermediate sheath of flexible insulating material is disposed coaxially 1O WILLIAM KAMM Pnmary Exammer about said core, said electrical conductors being wrapped US, Cl, X R about said intermediate sheath. 174-114, 115
US537031A 1966-03-24 1966-03-24 Multiple conductor electrode Expired - Lifetime US3474791A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53703166A 1966-03-24 1966-03-24

Publications (1)

Publication Number Publication Date
US3474791A true US3474791A (en) 1969-10-28

Family

ID=24140886

Family Applications (1)

Application Number Title Priority Date Filing Date
US537031A Expired - Lifetime US3474791A (en) 1966-03-24 1966-03-24 Multiple conductor electrode

Country Status (4)

Country Link
US (1) US3474791A (en)
DE (1) DE1589507A1 (en)
FR (1) FR1515484A (en)
GB (1) GB1174297A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3664347A (en) * 1968-07-27 1972-05-23 Dietrich Harmjanz Electric heart stimulation method and electrode
US3683933A (en) * 1970-06-22 1972-08-15 Peter B Mansfield Implantable tissue stimulator with a porous anchoring enclosure
US3731376A (en) * 1968-04-03 1973-05-08 Electro Catheter Corp Method of making a catheter
US3750650A (en) * 1970-12-15 1973-08-07 Hewlett Packard Gmbh Double spiral electrode for intra-cavity attachment
US3760812A (en) * 1971-03-19 1973-09-25 Univ Minnesota Implantable spiral wound stimulation electrodes
US3769984A (en) * 1971-03-11 1973-11-06 Sherwood Medical Ind Inc Pacing catheter with frictional fit lead attachment
USRE28990E (en) * 1972-12-04 1976-10-05 Corometrics Medical Systems, Inc. Bipolar electrode structure for monitoring fetal heartbeat and the like
US4010756A (en) * 1975-02-14 1977-03-08 Ethicon, Inc. Heart pacer lead wire with break-away needle
US4033355A (en) * 1975-11-28 1977-07-05 Cardiac Pacemakers, Inc. Electrode lead assembly for implantable devices and method of preparing same
US4161952A (en) * 1977-11-01 1979-07-24 Mieczyslaw Mirowski Wound wire catheter cardioverting electrode
US4338947A (en) * 1980-11-03 1982-07-13 Medtronic, Inc. Positive fixation heart wire
US4341226A (en) * 1980-09-22 1982-07-27 Medtronic, Inc. Temporary lead with insertion tool
WO1985002779A1 (en) * 1983-12-27 1985-07-04 Board Of Trustees Of Leland Stanford Junior Univer Catheter for treatment of tumors and method for using same
US4530368A (en) * 1984-05-24 1985-07-23 Cordis Corporation Temporary bipolar pacing lead
US4538624A (en) * 1982-12-08 1985-09-03 Cordis Corporation Method for lead introduction and fixation
US4541440A (en) * 1984-11-14 1985-09-17 Cordis Corporation Bipolar epicardial temporary pacing lead
US4549556A (en) * 1982-12-08 1985-10-29 Cordis Corporation Implantable lead
US4630617A (en) * 1980-10-09 1986-12-23 American Cyanamid Company Heart pacer lead wire with pull-away needle
US4735205A (en) * 1986-02-24 1988-04-05 Medtronic, Inc. Method and apparatus including a sliding insulation lead for cardiac assistance
US4817634A (en) * 1987-06-18 1989-04-04 Medtronic, Inc. Epicardial patch electrode
US4832051A (en) * 1985-04-29 1989-05-23 Symbion, Inc. Multiple-electrode intracochlear device
US4971070A (en) * 1987-06-18 1990-11-20 Medtronic, Inc. Epicardial patch electrode
US5014721A (en) * 1988-11-14 1991-05-14 Siemens Aktiengesellschaft Bipolar electrode lead for medical applications
US5217027A (en) * 1991-05-30 1993-06-08 Medtronic, Inc. Temporary cardiac lead
US5241957A (en) * 1991-11-18 1993-09-07 Medtronic, Inc. Bipolar temporary pacing lead and connector and permanent bipolar nerve wire
US5300106A (en) * 1991-06-07 1994-04-05 Cardiac Pacemakers, Inc. Insertion and tunneling tool for a subcutaneous wire patch electrode
US5366496A (en) * 1993-04-01 1994-11-22 Cardiac Pacemakers, Inc. Subcutaneous shunted coil electrode
US5403353A (en) * 1993-07-30 1995-04-04 Incontrol, Inc. Post-heart surgery cardioverting system and method
US5423876A (en) * 1993-12-09 1995-06-13 Medtronic, Inc. Intramuscular lead having improved insertion
US5489294A (en) * 1994-02-01 1996-02-06 Medtronic, Inc. Steroid eluting stitch-in chronic cardiac lead
US5928277A (en) * 1998-02-19 1999-07-27 Medtronic, Inc. One piece defibrillation lead circuit
US5935465A (en) * 1996-11-05 1999-08-10 Intermedics Inc. Method of making implantable lead including laser wire stripping
US5954759A (en) * 1997-04-21 1999-09-21 Medtronic, Inc. Fracture resistant medical electrical lead
US6018683A (en) * 1997-04-21 2000-01-25 Medtronic, Inc. Medical electrical lead having coiled and stranded conductors
US6434431B1 (en) 2000-01-20 2002-08-13 Medtronic, Inc. Intramuscular medical electrical lead with fixation member
US20020183817A1 (en) * 2000-12-07 2002-12-05 Paul Van Venrooij Directional brain stimulation and recording leads
US20030229387A1 (en) * 2000-02-08 2003-12-11 Medtronic, Inc. Surgical lead body
US6785576B2 (en) 1997-04-21 2004-08-31 Medtronic, Inc. Medical electrical lead
US20050033394A1 (en) * 2003-08-08 2005-02-10 Medtronic, Inc. Medical electrical lead anchoring
US20050033395A1 (en) * 2003-08-08 2005-02-10 Medtronic, Inc. Medical electrical lead anchoring
US20050033396A1 (en) * 2003-04-10 2005-02-10 Peter Ospyka Cardiac electrode anchoring system
US20050113900A1 (en) * 2003-10-24 2005-05-26 Cardiac Pacemakers, Inc. Myocardial lead with fixation mechanism
US20050137674A1 (en) * 2003-10-24 2005-06-23 Cardiac Pacemakers, Inc. Distal or proximal fixation of over-the-tether myocardial leads
US20060089695A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with helical reinforcement
US20060089691A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with axially oriented coiled wire conductors
US20060089697A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead
US20060089692A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with stylet guide tube
US20060168805A1 (en) * 2005-01-31 2006-08-03 Michael Hegland Method of manufacturing a medical lead
US20060253180A1 (en) * 2005-05-06 2006-11-09 Cardiac Pacemakers, Inc. Cable electrode assembly for a lead terminal and method therefor
US20070142890A1 (en) * 2005-12-19 2007-06-21 Cardiac Pacemakers, Inc. Interconnections of implantable lead conductors and electrodes and reinforcement therefor
US20080046059A1 (en) * 2006-08-04 2008-02-21 Zarembo Paul E Lead including a heat fused or formed lead body
US20080057784A1 (en) * 2006-08-31 2008-03-06 Cardiac Pacemakers, Inc. Lead assembly including a polymer interconnect and methods related thereto
US20080146894A1 (en) * 2006-12-19 2008-06-19 Cherik Bulkes Signal sensing in an implanted apparatus with an internal reference
US8442648B2 (en) 2008-08-15 2013-05-14 Cardiac Pacemakers, Inc. Implantable medical lead having reduced dimension tubing transition
US9764127B2 (en) 2014-12-19 2017-09-19 Cardiac Pacemakers, Inc. Medical lead anchoring
RU2641062C1 (en) * 2017-04-11 2018-01-15 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр сердечно-сосудистой хирургии имени А.Н. Бакулева" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ССХ им. А.Н. Бакулева" Минздрава России) Electrode for temporary cardiac pacing
CN109243681A (en) * 2018-10-11 2019-01-18 东莞市科圆电子有限公司 A kind of braided wire and its processing technology of band elasticity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1955517B2 (en) * 1968-11-18 1972-01-05 Medtronic Inc., Minneapolis, Minn. (V.St.A.) ELECTRODE ARRANGEMENT FOR IMPLANTATION IN THE BODY
DE4402058C1 (en) * 1994-01-25 1995-04-13 Andreas Dr Med Asch Implantable temporary electrode cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1687912A (en) * 1924-03-27 1928-10-16 Western Electric Co Insulated conductor
US2581213A (en) * 1949-12-15 1952-01-01 Gen Electric Temperature responsive signaling and locating system
US3035583A (en) * 1959-05-27 1962-05-22 Hirsch Winfred Conductive sutures
US3216424A (en) * 1962-02-05 1965-11-09 William M Chardack Electrode and lead
US3367339A (en) * 1964-10-09 1968-02-06 Robert W. Sessions Implantable nerve stimulating electrode and lead

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1687912A (en) * 1924-03-27 1928-10-16 Western Electric Co Insulated conductor
US2581213A (en) * 1949-12-15 1952-01-01 Gen Electric Temperature responsive signaling and locating system
US3035583A (en) * 1959-05-27 1962-05-22 Hirsch Winfred Conductive sutures
US3216424A (en) * 1962-02-05 1965-11-09 William M Chardack Electrode and lead
US3367339A (en) * 1964-10-09 1968-02-06 Robert W. Sessions Implantable nerve stimulating electrode and lead

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731376A (en) * 1968-04-03 1973-05-08 Electro Catheter Corp Method of making a catheter
US3664347A (en) * 1968-07-27 1972-05-23 Dietrich Harmjanz Electric heart stimulation method and electrode
US3683933A (en) * 1970-06-22 1972-08-15 Peter B Mansfield Implantable tissue stimulator with a porous anchoring enclosure
US3750650A (en) * 1970-12-15 1973-08-07 Hewlett Packard Gmbh Double spiral electrode for intra-cavity attachment
US3769984A (en) * 1971-03-11 1973-11-06 Sherwood Medical Ind Inc Pacing catheter with frictional fit lead attachment
US3760812A (en) * 1971-03-19 1973-09-25 Univ Minnesota Implantable spiral wound stimulation electrodes
USRE28990E (en) * 1972-12-04 1976-10-05 Corometrics Medical Systems, Inc. Bipolar electrode structure for monitoring fetal heartbeat and the like
US4010756A (en) * 1975-02-14 1977-03-08 Ethicon, Inc. Heart pacer lead wire with break-away needle
US4033355A (en) * 1975-11-28 1977-07-05 Cardiac Pacemakers, Inc. Electrode lead assembly for implantable devices and method of preparing same
US4161952A (en) * 1977-11-01 1979-07-24 Mieczyslaw Mirowski Wound wire catheter cardioverting electrode
US4341226A (en) * 1980-09-22 1982-07-27 Medtronic, Inc. Temporary lead with insertion tool
US4630617A (en) * 1980-10-09 1986-12-23 American Cyanamid Company Heart pacer lead wire with pull-away needle
US4338947A (en) * 1980-11-03 1982-07-13 Medtronic, Inc. Positive fixation heart wire
US4549556A (en) * 1982-12-08 1985-10-29 Cordis Corporation Implantable lead
US4538624A (en) * 1982-12-08 1985-09-03 Cordis Corporation Method for lead introduction and fixation
WO1985002779A1 (en) * 1983-12-27 1985-07-04 Board Of Trustees Of Leland Stanford Junior Univer Catheter for treatment of tumors and method for using same
US4763671A (en) * 1983-12-27 1988-08-16 Stanford University Method of treating tumors using selective application of heat and radiation
US4530368A (en) * 1984-05-24 1985-07-23 Cordis Corporation Temporary bipolar pacing lead
US4541440A (en) * 1984-11-14 1985-09-17 Cordis Corporation Bipolar epicardial temporary pacing lead
US4832051A (en) * 1985-04-29 1989-05-23 Symbion, Inc. Multiple-electrode intracochlear device
US4735205A (en) * 1986-02-24 1988-04-05 Medtronic, Inc. Method and apparatus including a sliding insulation lead for cardiac assistance
US4817634A (en) * 1987-06-18 1989-04-04 Medtronic, Inc. Epicardial patch electrode
US4971070A (en) * 1987-06-18 1990-11-20 Medtronic, Inc. Epicardial patch electrode
US5014721A (en) * 1988-11-14 1991-05-14 Siemens Aktiengesellschaft Bipolar electrode lead for medical applications
US5217027A (en) * 1991-05-30 1993-06-08 Medtronic, Inc. Temporary cardiac lead
US5300106A (en) * 1991-06-07 1994-04-05 Cardiac Pacemakers, Inc. Insertion and tunneling tool for a subcutaneous wire patch electrode
US5241957A (en) * 1991-11-18 1993-09-07 Medtronic, Inc. Bipolar temporary pacing lead and connector and permanent bipolar nerve wire
US5314463A (en) * 1991-11-18 1994-05-24 Medtronic, Inc. Bipolar nerve electrode
US5366496A (en) * 1993-04-01 1994-11-22 Cardiac Pacemakers, Inc. Subcutaneous shunted coil electrode
US5403353A (en) * 1993-07-30 1995-04-04 Incontrol, Inc. Post-heart surgery cardioverting system and method
USRE35779E (en) * 1993-07-30 1998-04-28 Incontrol, Inc. Post-heart surgery cardioverting system and method
US5423876A (en) * 1993-12-09 1995-06-13 Medtronic, Inc. Intramuscular lead having improved insertion
US5489294A (en) * 1994-02-01 1996-02-06 Medtronic, Inc. Steroid eluting stitch-in chronic cardiac lead
US5935465A (en) * 1996-11-05 1999-08-10 Intermedics Inc. Method of making implantable lead including laser wire stripping
US6326587B1 (en) 1996-11-05 2001-12-04 Intermedics Inc. Apparatus for removing an insulating layer from a portion of a conductor
US6265691B1 (en) 1996-11-05 2001-07-24 Intermedics Inc. Method of making implantable lead including laser wire stripping
US6119042A (en) * 1996-12-19 2000-09-12 Medtronic, Inc. Medical electrical lead
US7660635B1 (en) * 1996-12-19 2010-02-09 Medtronic, Inc. Medical electrical lead
US6785576B2 (en) 1997-04-21 2004-08-31 Medtronic, Inc. Medical electrical lead
US5954759A (en) * 1997-04-21 1999-09-21 Medtronic, Inc. Fracture resistant medical electrical lead
US6285910B1 (en) * 1997-04-21 2001-09-04 Medtronic, Inc. Medical electrical lead
US6018683A (en) * 1997-04-21 2000-01-25 Medtronic, Inc. Medical electrical lead having coiled and stranded conductors
US6061598A (en) * 1997-04-21 2000-05-09 Medtronic, Inc. Fracture resistant medical electrical lead
US5928277A (en) * 1998-02-19 1999-07-27 Medtronic, Inc. One piece defibrillation lead circuit
US6434431B1 (en) 2000-01-20 2002-08-13 Medtronic, Inc. Intramuscular medical electrical lead with fixation member
US20060184222A1 (en) * 2000-01-20 2006-08-17 Medtronic, Inc. Medical electrical lead with interchangeable fixation member
US20030229387A1 (en) * 2000-02-08 2003-12-11 Medtronic, Inc. Surgical lead body
US7319904B2 (en) 2000-02-08 2008-01-15 Medtronic, Inc. Percutaneous Surgical lead body
US20020183817A1 (en) * 2000-12-07 2002-12-05 Paul Van Venrooij Directional brain stimulation and recording leads
US7212867B2 (en) 2000-12-07 2007-05-01 Medtronic, Inc. Directional brain stimulation and recording leads
US9220891B2 (en) 2003-04-10 2015-12-29 Cardiac Pacemakers, Inc. Cardiac electrode anchoring system
US20050033396A1 (en) * 2003-04-10 2005-02-10 Peter Ospyka Cardiac electrode anchoring system
US8868214B2 (en) 2003-04-10 2014-10-21 Cardiac Pacemakers, Inc. Cardiac electrode anchoring system
US20060247752A1 (en) * 2003-04-10 2006-11-02 Cardiac Pacemakers, Inc. Cardiac electrode anchoring system
US20050033395A1 (en) * 2003-08-08 2005-02-10 Medtronic, Inc. Medical electrical lead anchoring
US7184842B2 (en) 2003-08-08 2007-02-27 Medtronic, Inc. Medical electrical lead anchoring
US20050033394A1 (en) * 2003-08-08 2005-02-10 Medtronic, Inc. Medical electrical lead anchoring
US7187982B2 (en) 2003-08-08 2007-03-06 Medtronic, Inc. Medical electrical lead anchoring
US20050119718A1 (en) * 2003-10-24 2005-06-02 Cardiac Pacemakers, Inc. Absorbable myocardial lead fixation system
US7499759B2 (en) 2003-10-24 2009-03-03 Cardiac Pacemakers, Inc. Distal or proximal fixation of over-the-tether myocardial leads
US20050113901A1 (en) * 2003-10-24 2005-05-26 Cardiac Pacemakers, Inc. Myocardial lead attachment system
US20050137672A1 (en) * 2003-10-24 2005-06-23 Cardiac Pacemakers, Inc. Myocardial lead
US7499757B2 (en) 2003-10-24 2009-03-03 Cardiac Pacemakers, Inc. Absorbable myocardial lead fixation system
US20080249596A1 (en) * 2003-10-24 2008-10-09 Jason Alan Shiroff Myocardial lead with fixation mechanism
US7418298B2 (en) 2003-10-24 2008-08-26 Cardiac Pacemakers, Inc. Myocardial lead with fixation mechanism
US20050137674A1 (en) * 2003-10-24 2005-06-23 Cardiac Pacemakers, Inc. Distal or proximal fixation of over-the-tether myocardial leads
US20050113900A1 (en) * 2003-10-24 2005-05-26 Cardiac Pacemakers, Inc. Myocardial lead with fixation mechanism
US7519432B2 (en) 2004-10-21 2009-04-14 Medtronic, Inc. Implantable medical lead with helical reinforcement
US20060089697A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead
US20060089691A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with axially oriented coiled wire conductors
US7761170B2 (en) 2004-10-21 2010-07-20 Medtronic, Inc. Implantable medical lead with axially oriented coiled wire conductors
US20060089692A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with stylet guide tube
US20060089695A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with helical reinforcement
US7831311B2 (en) 2004-10-21 2010-11-09 Medtronic, Inc. Reduced axial stiffness implantable medical lead
US8000808B2 (en) 2005-01-31 2011-08-16 Medtronic, Inc. Medical lead with segmented electrode
US20060173262A1 (en) * 2005-01-31 2006-08-03 Medtronic, Inc. Medical lead with segmented electrode
US7761985B2 (en) 2005-01-31 2010-07-27 Medtronic, Inc. Method of manufacturing a medical lead
US20060168805A1 (en) * 2005-01-31 2006-08-03 Michael Hegland Method of manufacturing a medical lead
US8739403B2 (en) 2005-01-31 2014-06-03 Medtronic, Inc. Method of manufacturing a medical lead
US7571010B2 (en) 2005-05-06 2009-08-04 Cardiac Pacemakers, Inc. Cable electrode assembly for a lead terminal and method therefor
US20060253180A1 (en) * 2005-05-06 2006-11-09 Cardiac Pacemakers, Inc. Cable electrode assembly for a lead terminal and method therefor
US20070142890A1 (en) * 2005-12-19 2007-06-21 Cardiac Pacemakers, Inc. Interconnections of implantable lead conductors and electrodes and reinforcement therefor
US7546165B2 (en) 2005-12-19 2009-06-09 Cardiac Pacemakers, Inc. Interconnections of implantable lead conductors and electrodes and reinforcement therefor
US20090222074A1 (en) * 2005-12-19 2009-09-03 Zarembo Paul E Interconnections of implantable lead conductors and electrodes and reinforcement therefor
US8055354B2 (en) 2005-12-19 2011-11-08 Cardiac Pacemakers, Inc. Interconnections of implantable lead conductors and electrodes and reinforcement therefor
US20080046059A1 (en) * 2006-08-04 2008-02-21 Zarembo Paul E Lead including a heat fused or formed lead body
US8923989B2 (en) 2006-08-31 2014-12-30 Cardiac Pacemakers, Inc. Lead assembly including a polymer interconnect and methods related thereto
US8364282B2 (en) 2006-08-31 2013-01-29 Cardiac Pacemakers, Inc. Lead assembly including a polymer interconnect and methods related thereto
US7917229B2 (en) 2006-08-31 2011-03-29 Cardiac Pacemakers, Inc. Lead assembly including a polymer interconnect and methods related thereto
US20110112616A1 (en) * 2006-08-31 2011-05-12 Zarembo Paul E Lead assembly including a polymer interconnect and methods related thereto
US8738152B2 (en) 2006-08-31 2014-05-27 Cardiac Pacemakers, Inc. Lead assembly including a polymer interconnect and methods related thereto
US20080057784A1 (en) * 2006-08-31 2008-03-06 Cardiac Pacemakers, Inc. Lead assembly including a polymer interconnect and methods related thereto
US20080146894A1 (en) * 2006-12-19 2008-06-19 Cherik Bulkes Signal sensing in an implanted apparatus with an internal reference
US8565893B2 (en) 2008-08-15 2013-10-22 Cardiac Pacemakers, Inc. Implantable medical lead having reduced dimension tubing transition
US8442648B2 (en) 2008-08-15 2013-05-14 Cardiac Pacemakers, Inc. Implantable medical lead having reduced dimension tubing transition
US9764127B2 (en) 2014-12-19 2017-09-19 Cardiac Pacemakers, Inc. Medical lead anchoring
RU2641062C1 (en) * 2017-04-11 2018-01-15 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр сердечно-сосудистой хирургии имени А.Н. Бакулева" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ССХ им. А.Н. Бакулева" Минздрава России) Electrode for temporary cardiac pacing
CN109243681A (en) * 2018-10-11 2019-01-18 东莞市科圆电子有限公司 A kind of braided wire and its processing technology of band elasticity
CN109243681B (en) * 2018-10-11 2024-03-12 东莞市科圆电子有限公司 Elastic braided wire and processing technology thereof

Also Published As

Publication number Publication date
DE1589507A1 (en) 1970-04-09
GB1174297A (en) 1969-12-17
FR1515484A (en) 1968-03-01

Similar Documents

Publication Publication Date Title
US3474791A (en) Multiple conductor electrode
CA1150775A (en) Trailing tine electrode lead
US4355646A (en) Transvenous defibrillating lead
US3416533A (en) Conductive catheter
US5324328A (en) Conductor for a defibrillator patch lead
US5483022A (en) Implantable conductor coil formed from cabled composite wire
EP1984069B1 (en) Medical electrical lead having improved inductance
US4444207A (en) Method of anchoring a temporary cardiac pacing lead
US4328812A (en) Ring electrode for pacing lead
US6456888B1 (en) Geometry for coupling and electrode to a conductor
US5324321A (en) Medical electrical lead having sigmoidal conductors and non-circular lumens
US5330520A (en) Implantable electrode and sensor lead apparatus
US6066166A (en) Medical electrical lead
JP2788251B2 (en) Multi-pole coaxial lead implantable in the body
US6925334B1 (en) Implantable medical lead having multiple, jointly insulated electrical conductors
US4026303A (en) Endocardial pacing electrode
US5016646A (en) Thin electrode lead and connections
US7174220B1 (en) Construction of a medical electrical lead
US6978185B2 (en) Multifilar conductor for cardiac leads
US5928277A (en) One piece defibrillation lead circuit
US6254425B1 (en) Electrical connector for cardiac devices
US6253111B1 (en) Multi-conductor lead
US5571157A (en) Endocardial lead with reduced diameter tip portion and method for making such lead
WO1993009840A1 (en) Bipolar temporary pacing lead and connector and permanent bipolar nerve wire
US9968776B2 (en) Multiple-cable lead with interrupted cable and crimp configuration

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHERWOOD MEDICAL COMPANY

Free format text: MERGER;ASSIGNOR:SHERWOOD MEDICAL INDUSTRIES INC. (INTO);REEL/FRAME:004123/0634

Effective date: 19820412