US3476660A - Method of sequentially adjusting the anodes in a mercury-cathode cell - Google Patents

Method of sequentially adjusting the anodes in a mercury-cathode cell Download PDF

Info

Publication number
US3476660A
US3476660A US620889A US3476660DA US3476660A US 3476660 A US3476660 A US 3476660A US 620889 A US620889 A US 620889A US 3476660D A US3476660D A US 3476660DA US 3476660 A US3476660 A US 3476660A
Authority
US
United States
Prior art keywords
anode
cell
anodes
tool
conductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US620889A
Inventor
Tadeusz Ryszard Selwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB12854/66A external-priority patent/GB1146466A/en
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Application granted granted Critical
Publication of US3476660A publication Critical patent/US3476660A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/04Regulation of the inter-electrode distance

Definitions

  • the present invention relates to a method of electrolysis. More particularly it relates to a method for the electrolysis of alkali metal chloride solution in cells having flowing mercury cathodes and is a modification of the method described and claimed in co-pending application No. 472,907 filed July 19, 1965, hereinafter referred to as the main application.
  • the present invention we provide a method of setting sequentially the anodes in accurately-spaced relationship to the cathode of a mercury-cathode cell producing chlorine by electrolysis of alkali metal chloride solution wherein the position of each anode relative to the cathode is adjusted in the working cell so that the electrical conductance of the electrolyte gap between each anode and the cathode is brought to a predetermined value, in accordance with the main application, which is characterized by feeding electrical data determining the existing electrolyte gap conductance for each anode and electrical data fixing the area co-ordinates of each anode with respect to the cell cover area into a selector switching arrangement, the selector position of said switching arrangement at any time being determined by a signal from a sequential controller so as to feed out from the switching arrangement the gap-conductance and area-coordinate data corresponding to a selected anode, feeding the area-coordinate data from the selector switching arrangement together with electrical data defining the position of a mechanically-operated anode
  • a sequential controller we mean a combination of logic circuits, interval timing circuits, micro-switches and limit switches programmed to carry out a sequence of switching operations in such a manner that no one operation can begin until the previous operation of the sequence has been completed.
  • a digital computer with associated mechanical switching devices programmed to carry out the sequential switching operations.
  • the electrolysing current can most suitably be deduced by measuring the potential drop caused by this current in a fixed length of bus-bar whose cross-sectional area and resistivity are 'known.
  • the resistive potential drop across the electrolyte gap may be found by measuring the voltage between the cell baseplate and a probe attached to the anode as described in the aforesaid main application, and subtracting from this voltage the sum of the known reversible electrode potentials of the Working cell and the chlorine overvoltage.
  • the electrolyte gap conductance may be determined from these measurements by employing the circuitry of the apparatus described in co-pending application No. 472,908 filed July 19, 1965, now Patent No. 3,372,332, particularly the circuitry of FIG. 2 of the said application. It can then quite simply be arranged for the said apparatus to provide a voltage output signal proportional to the gap conductance value, for instance by tapping off a voltage from a potentiometer carrying a fixed current.
  • the two measurements of potential drop the one between the anode and cell baseplate and the other measured along a length of anode bus-bar to characterise the anode current, will constitute the gap conductance data for each anode which are fed into the conductance measuring circuit by way of the selector switching arrangement.
  • FIG. 1 of the drawings represents schematically a single anode arranged in this way and one embodiment of apparatus for carrying out the step of the invention wherein the anode is adjusted in response to electrolyte gap conductance data
  • 1 indicates the cell baseplate on the upper surface of which flows the mercury cathode film.
  • 2 indicates an anode, which is suspended on current conductor 3 passing through sealing means 4 in the cell cover 5.
  • 6 is the anode-adjusting nut resting on fixed bearing surface 7 and being rotatable on screw thread 8 cut in the upper end of current conductor 3.
  • 9 is an adjusting tool which is shaped to engage adjusting nut 6 and can be rotated by servomotor M, through a flexible drive 10.
  • the anode-cathode voltage is fed to the electrical conductance-measuring apparatus 11 by means of a connection 12 to the cell baseplate and a probe 13 attached to the anode, and a voltage proportional to the electrolysing current is tapped-off from bus-bar 14 which feeds the anode with current by connections 15 and 16 and is also fed into the conductance-measuring apparatus 11, as shown at 17, 18, 19, 20.
  • a voltage signal proportional to the value of the electrical conductance of the electrolyte gap is produced by the measuring apparatus 11 and fed to servo-controller 21 as indicated at 22.
  • Controller 21 is also fed with a voltage signal proportional to the desired value of the electrolyte gap conductance as indicated at 23 so that servomotor M, is driven by any output 24 from the servo-controller which is always proportional to the difference between inputs 22 and 23.
  • FIG. 2 represents in plan view two multi-anode cells 27, the anode-supporting current conductors being indicated as 28.
  • FIG. 3 represents a side elevation of one cell 27. 31 is a crane which can be moved across the cell on the rolling-way 3 2, and 33 is a carriage which can run on the crane along the length of the cell. The anodeadjusting tool is shown centered over one of the anodesupporting current conductors 28 and is mounted on the carriage 33.
  • FIGS. 4 A method of automatically selecting the conductance data corresponding to any one anode in a row of anodes along the cell and positioning the tool carriage over the appropriate anode in the row is illustrated in FIGS. 4
  • FIG. 4 represents a selector switching arrangement in the form of a multi-gang, multi-position switch, operated by motor M
  • the conductance data for each anode is fed into the switch by connecting the four terminals corresponding to 12, 13, 15, 16 of FIG. 1 each to one peripheral contact on a separate gang of the switch as shown.
  • the switch has suflicient peripheral contacts to accommodate the data for each anode on a separate position
  • the extra gang 39 of the switch 38 shown in FIG. 4 is employed for positioning the adjusting tool carriage over the appropriate anode.
  • a chain of resistors 40 is wired across the peripheral contacts of the gang 39 of .the switch as shown in FIG. 5, the switch positions being indicated as I-N to correspond with a number of anodes in a row.
  • An appropriate voltage is placed across the ends of the chain of resistors as shown so that the switch wiper 41 will tap-off different voltages corresponding to the position of rotation of the multi-gang switch.
  • a multiturn feedback potentiometer 42 is electrically-connected i p llelwith the chain of re s ors 40 a d s Wiper 43 is mechanically connected to the tool carriage 33 as indicated by the dashed line so that the mechanical position of the carriage is directly related to the voltage tapped-off by the wiper 43 of the feedback potentiometer.
  • the wipers 41 and 43 are connected to a servo-control amplifier 44 which actuates the motor drive unit 45 and moves the carriage by means of servomotor M when there is a difference between the potentials of the two wipers until there is very little error remaining between these two potentials.
  • the adjusting tool on its carriage is always moved into position above the anode to which the data-gang wipers 17, 18, 19 and 20 of the multi-gang switch are connected at any time.
  • the switch motor M is controlled by a sequential controller shown ms in FIG. 4, which causes the switch 38 to be rotated through all the anode positions I-N in turn and is also programmed to bring into action the rotational anode adjustment mechanism shown in FIG. 1 through operation of the servomotor M turning the adjusting tool 9 at each anode position before rotating the switch 38 of FIGURE 4 to the next anode position.
  • a further servomotor (indicated as M in FIG. 1) is provided by means of which the tool is lowered and raised under control of the sequential controller at each anode position.
  • the tool may be suspended on a self-centering flexible drive 10 and the adjusting tool support may be shaped into a conical, frusto-conical or bell-shaped section 25 so as to guide the tool on to the adjusting nut or collar by contact with a protruding spindle 26 fixed to the upper end of the conductor supporting the anode.
  • FIG. 7 A vertical section through the centre of a preferred form of self-centering anode-adjusting tool is shown in the accompanying drawing, FIG. 7.
  • the tool is suitably of all metal construction, e.g. steel.
  • A- section of truncated conical shape 58 (most suitably of apex angle) terminates at its upper end in a short hollow cylindrical section 59 of suitable internal diameter to accept as a loose fit the upper end of a cylindrical stalk extending upwards from the centre of the upper end of an anode-supporting rod of an electrolytic cell (not shown) when the tool is lowered on to the stalk.
  • the conical section 58 terminates at its lower end in hexagonal skirt 60 forming a keying member adapted to engage with a hexagonal adjusting nut running on an anode-supporting rod (not shown).
  • the upper end of the hollow cylindrical section 59 is locked on to a lower drive spindle 61 of a flexible rotational drive coupling by nut 62.
  • the flexible coupling comprises a circular plate 63 attached at its centre to the upper end of spindle 61, and a hollow cylinder 64.
  • the plate and cylinder are connected by the long bolts 65 and nuts 66 and-are held in contact in flexible manner by the loading springs 67 acting between the bolt heads and cylinder 64.
  • FIG. 6 A method by which the adjusting tool may be moved from one row of anodes to another across the cell is illustrated in FIG. 6.
  • the whole crane body 31 of FIG. 3 is moved by another servo-position-control system which operates on the same principle as that described for moving the tool carriage 33, the only difference being in the number of positions of the rotary switches 48 and 49 shown in FIGS. 4 and 6, which positions need to be only as many as there are rows of anodes in the cell.
  • motor-operated switch 48 with its chain of resistors across its peripheral contacts and the parallel-connected feedback potentiometer 50 with its wiper 51 mechanically linked to one end of the crane 31 control the positioning of that end of the crane by feeding difference signals into the servo-system 52, 53 so as to operate servomotor M and thus adjust the crane position when switch 48 is rotated to a new position.
  • the corresponding parts 49, 54, 55, 56, 57 and servo-motor M move the opposite end of the crane in response to rotation of switch 49.
  • the switches 48 and 49 are ganged together and are rotated by motor M under control of sequential controller S.
  • this sequential controller will be programmed to operate motor M and thus move the crane so as to position the adjusting tool over the next row of anodes when all the anodes in one row have been adjusted.
  • the sequential controller will disconnect from the conductance measuring apparatus 11 of FIG. 1 the conductance data wipers 17, 18, 19, 20 shown in FIG. 4 which relate to the completed row of anodes and will switch in the similar wipers of a further four gangs (not shown) on the data switch 38 to which the conductance data from the next row of anodes are fed.
  • This switching can conveniently be arranged in the form of further gangs (not shown) added to the anode row selector switches 48-49.
  • the foregoing description has covered the automatic adjustment of the anodes of a single cell with a single adjusting tool.
  • the method described may, however, be extended to a number of cells by providing for the crane carrying the tool to be moved over each cell in turn, and transfer of the crane from cell to cell may be controlled automatically in the same way as transfer from one row of anodes to another of the same cell.
  • the inter-electrode gap conductance data for all the cells can, if desired, be permanently wired into selector switches mounted centrally in the cell room and the sequential controller can be made to select the switch corresponding to the cell and the particular row of anodes under adjustment.
  • This arrangement does, however, require a large number of wires passing from the'cells to the switching centre as well as a large amount of additional equipment amplifying low-level signals and it is preferred to tolerate some measure of manual control whereby only one cell at a time is automatically adjusted so that the conductance data and crane and tool carriage position data selector switches, which my then be most suitably mounted on the crane along with the sequential controller and the servosystems, require only the number of contacts applicable to a single cell.
  • the four wires defining the conductance data for each anode of one cell may be taken to multipoint sockets fixed on the cell structure as shown at 29 in FIG. 2.
  • the number of wires taken to each socket and hence the most suitable number of sockets will depend on the layout of the cell.
  • the conductance data can then be picked-up from each of these sockets by a matching plug 34 (see FIG. 3) connected to one end of a multicore cable 35, the other end of the cable being connected into the multi-gang, multi-position data switches mounted on the crane.
  • the electrolysing current and interelectrode potential information from each anode may be fed to a logic circuit, most suitably mounted on the crane with the other control equipment, which is programmed to recognise fault conditions and then to transmit overriding control signals to the sequential controller and other parts of the control system so as to prevent adjustment of the anode concerned. It is desirable then to known which anodes have not been adjusted. This information can be obtained from the tool position data and be passed to a printer for permanent recording. The most suitable position for the printer will usually be in the cell control room so that easy access can be had to its records. To operate this arrangement the printer may be connected to a number of sockets strategically positioned within the cell room, for instance on the walls of the room as indicated at 30 in FIG. 3, and the information on anodes which have not been adjusted may be transmitted to the printer by a multi-core cable, suspended from the crane, and plugged into one of the sockets as shown at 37.
  • the logic circuit will recognise it and initiate the following action.
  • the printer will print out the faulty anode identification co-ordinates together with its gap-conductance data.
  • the faulty anode will not be adjusted and the sequential controller will move the adjusting tool to the next anode.
  • this system it can be arranged for an alarm to be sounded and for all the control systems to be rendered inactive if one or more of the servo-systems develop a fault and the sequence of operations on any anode does not take place within a prescribed time, so that the operator can switch the apparatus to manual control and remedy the fault. It can also be arranged for an alarm to be sounded when all the anodes of a cell have been automatically adjusted so that the operator will know that the apparatus may be transferred to another cell.
  • all the anodes of a cell may be adjusted to the same value of inter-electrode gap conductance in order to obtain a very uniform current distribution between the anodes as taught in the main application; and this can be arranged by feeding a constant value control signal into the conductance controller at 23 in FIG. 1 of the drawings.
  • a constant value control signal into the conductance controller at 23 in FIG. 1 of the drawings.
  • this may be arranged by programming the sequential controller to send an appropriate desired value signal into the conductance controller for each anode.
  • a practical realisation of this may for example be achieved by wiring a chain of resistors across the peripheral contacts of an additional gang of the multi-gang, multi-position, motor-operated switch 38 of FIG. 4 and placing an appropriate voltage across the ends of the chain.
  • the switch wiper will then tap off dilferent voltages depending on the resistor values and the rotational position of the switch, and these voltages will be related to specific anodes of a row through operation of the tool-positioning servo-mechanism.
  • all that is necessary to form a defined pattern of desired value is to make the correct choice of resistors and to connect the wiper of the switch to the desired value input of the conductance controller.
  • the invention has been described with reference to the use of a single mechanically-operated tool to adjust all the anodes of one or more multi-anode cells. If, however, it is desired to reduce the time taken to deal with each cell, several tools may be mounted on the same carriage to work concurrently so that several anodes are adjusted at the same time under the control of a sequential controller while the carriage is at any one location.
  • a suitable arrangement is for instance to provide the same number of tools as there are rows of anodes in the cell, and this slightly simplifies the crane-positioning control system since it is no longer necessary to transfer a tool automatically from row to row and to switch over to the corresponding anode data.
  • a method of setting sequentially the anodes in accurately-spaced relationship to the cathode of a mercury-cathode cell producing chlorine by electrolysis of alkali metal chloride solution wherein the position of each anode relative to the cathode is adjusted in the working cell so that the electrical conductance of the electrolyte gap between each anode and the cathode is brought to a predetermined value which is characterised by feeding electrical data determining the existing electrolyte'gap conductance for each anode and electrical data fixing the area co-ordinates of each anode with respect to the cell cover area into a selector switching arrangement, the selector position of said switching arrangement at any time being determined by a signal from a sequential controller so as to feed out from the switching arrangement sponding to a selected anode, feeding the area-coordinate data from the selector switching arrangement together with electrical data defining the position of a mechanically-operated anode-adjusting tool to a first servo-controller connected to the said tool so that in response to
  • a method according to claim 1 wherein the output of the second servo-controlled is employed to rotate the tool about a vertical axis when the tool is in engagement with a rotatable adjusting means running on a threaded stem supporting the anode.
  • a method according to claim 5 wherein the carriage is moved across the cell on another rolling way to carry the tool from one row of anodes to another by means of a fourth servo-controller or by means of a combination of a fourth and a fifth servo-controller each operating to adjust the position of opposite ends of the carriage respectively, activation of these servo-controllers being under control of the sequential controller.
  • each tool is carried horizontally above a corresponding row of anodes on1 a single carriage travelling from end to end of the ce 1.
  • a method wherein as data determining the existing electrolyte gap conductance for each anode in a row of anodes there are fed into a multiposition multi-gang switch the voltage existing between the anode and the cathode of the cell across corresponding fixed contacts on two gangs of the switch and a voltage proportional to the electrolysing current flowing'in the anode across two corresponding fixed contacts on two other gangs of the switch and the data for any one anode are selected from the switch by moving the movable contacts of the switch to the appropriate position.
  • each anode in the said row of anodes is defined by placing a resistor across each neighbouring pair of fixed contacts on a separate gang of the said multigang switch and applying a fired voltage across the ends of the chain of resistors whereby a defining voltage is tapped off by the movable contacts at each position of the switch.
  • a method wherein the data determining the existing electrolyte gap conductance for FOREIGN PATENTS each anode are fed to a logic circuit which is adapted to 5 3 23 309 19 1 Japan exercise overriding control over the sequential controller to prevent adjustment of an anode when the data re- JOHN H, MACK, Primary Examiner ceived therefrom 1s outslde prescribed llmlts.

Description

T. R. SELWA "NOW l, 1 969, 3,476,660
METHOD 9? SEQUENTIALLY ADJUSTING THE- ANODES IN A filledj'larch e, 1967 MERCURY-CATHQDE CELL 5 Sheets-Sheet 2 vOOOOOO fine-nave 24 PEI/6'2 Zmznev 622x44 v Filed March 6, 1967 METHOD OF SEQUENTIALLY ADJUSTING THE ANODES IN A MERCURY-CATHODE CELL 5 Sheets-Sheet G name l I 45 v 1 L l I 43 l inn [Mme M/ @QWS M 1N 4, 1969 T. R. SELW-A 3,476,660
'METHOD OF SEQUENTIALLY ADJUSTING THE ANODES IN A MERCURY-CATHODE CELL Filed March 6, 1967 5 Sheets-Sheet 4 Nov.4, 1969' T R. SELWA 3,476,660
1 Filed March 6, 1967' METHOD OF SEQUENTIALLY ADJUSTING THE ANODES IN A MERCURY-CATHODE CELL 5 Sheets-Sheet 5 v .Z/w f vrwe 7525a? 1345mm 5221144 A, ,iewy f:
United States Patent Ofiice US. Cl. 204-128 12 Claims ABSTRACT OF THE DISCLOSURE A method of adjusting sequentially each anode-cathode gap of a working mercury-cathode electrolytic cell by carrying out automatically in appropriate sequence (1) selection of an anode-cathode gap for adjustment, (2) positioning a servo-operated anode-adjusting tool over the appropriate anode, (3) bringing the tool into and out of engagement with an adjusting means on the anode support, (4) measuring the electrical conductance of the anode-cathode gap, (5) adjusting the anode setting to a predetermined value of gap-conductance, and repeating the sequence on each anode, all operations being under control of a sequential controller programmed to adjust automatically all the anode-cathode gaps in the cell, and arrangement of apparatus therefor.
The present invention relates to a method of electrolysis. More particularly it relates to a method for the electrolysis of alkali metal chloride solution in cells having flowing mercury cathodes and is a modification of the method described and claimed in co-pending application No. 472,907 filed July 19, 1965, hereinafter referred to as the main application.
In said main application there is described and claimed a method of setting an anode in accurately-spaced relationship to the cathode surface of a mercury-cathode cell producing chlorine by electrolysis of alkali metal chloride solution which comprises measuring the electrical conductance across the electrolyte gap between the said anode and the cathode of the working cell and adjusting the spacing of the anode from the cathode surface so that the said conductance is brought to a predetermined value.
According to the present invention we provide a method of setting sequentially the anodes in accurately-spaced relationship to the cathode of a mercury-cathode cell producing chlorine by electrolysis of alkali metal chloride solution wherein the position of each anode relative to the cathode is adjusted in the working cell so that the electrical conductance of the electrolyte gap between each anode and the cathode is brought to a predetermined value, in accordance with the main application, which is characterized by feeding electrical data determining the existing electrolyte gap conductance for each anode and electrical data fixing the area co-ordinates of each anode with respect to the cell cover area into a selector switching arrangement, the selector position of said switching arrangement at any time being determined by a signal from a sequential controller so as to feed out from the switching arrangement the gap-conductance and area-coordinate data corresponding to a selected anode, feeding the area-coordinate data from the selector switching arrangement together with electrical data defining the position of a mechanically-operated anode-adjusting tool to a first servo-controller connected to the said tool so that in response to the area-coordinate data the servo-controller moves the tool over the corresponding anode to en- 3,476,660 Patented Nov. 4, 1969 gage with an adjusting means attached thereto, feeding the electrolyte gap conductance data from the selector switching arrangement into a conductance measuring circuit, feeding therefrom an electrical signal proportional to the measured gap conductance together with an electrical signal proportional to the desired value of the said gap conductance to a second servo-controller, employing the output of the second servo-controller to operate the mechanically-operated tol so that the position of the anode is adjusted until the measured value of the gap conductance corresponds with the desired value, and programming the sequential controller to select data corresponding to another anode in the cell each time adjustment of the anode has become completed, whereby all the anodes in the cell are adjusted in sequence.
By a sequential controller we mean a combination of logic circuits, interval timing circuits, micro-switches and limit switches programmed to carry out a sequence of switching operations in such a manner that no one operation can begin until the previous operation of the sequence has been completed. Within this definition we include what is commonly termed a digital computer with associated mechanical switching devices programmed to carry out the sequential switching operations.
In order to produce a signal proportional to the electrical conductance of the electrolyte gap between an anode and the cathode of the working cell it is necessary to relate the resistive potential drop between the anode and the cathode to the electrolysing current flowing in the anode. The electrolysing current can most suitably be deduced by measuring the potential drop caused by this current in a fixed length of bus-bar whose cross-sectional area and resistivity are 'known. The resistive potential drop across the electrolyte gap may be found by measuring the voltage between the cell baseplate and a probe attached to the anode as described in the aforesaid main application, and subtracting from this voltage the sum of the known reversible electrode potentials of the Working cell and the chlorine overvoltage. Very suitably the electrolyte gap conductance may be determined from these measurements by employing the circuitry of the apparatus described in co-pending application No. 472,908 filed July 19, 1965, now Patent No. 3,372,332, particularly the circuitry of FIG. 2 of the said application. It can then quite simply be arranged for the said apparatus to provide a voltage output signal proportional to the gap conductance value, for instance by tapping off a voltage from a potentiometer carrying a fixed current. When working in this manner according to the invention, the two measurements of potential drop, the one between the anode and cell baseplate and the other measured along a length of anode bus-bar to characterise the anode current, will constitute the gap conductance data for each anode which are fed into the conductance measuring circuit by way of the selector switching arrangement.
In general, the anodes of mercury cathode cells are suspended on current conductors which pass through sealing means in the cell cover, and lowering or raising of an anode is effected by rotation of a nut or collar running on a screw thread on the upper end of the current conductor and resting on a fixed bearing surface. FIG. 1 of the drawings represents schematically a single anode arranged in this way and one embodiment of apparatus for carrying out the step of the invention wherein the anode is adjusted in response to electrolyte gap conductance data,
but omitting for the sake of clarity the selector switching arrangement which is needed for sequential adjustment of a plurality of anodes. In the figure, 1 indicates the cell baseplate on the upper surface of which flows the mercury cathode film. 2 indicates an anode, which is suspended on current conductor 3 passing through sealing means 4 in the cell cover 5. 6 is the anode-adjusting nut resting on fixed bearing surface 7 and being rotatable on screw thread 8 cut in the upper end of current conductor 3. 9 is an adjusting tool which is shaped to engage adjusting nut 6 and can be rotated by servomotor M, through a flexible drive 10. The anode-cathode voltage is fed to the electrical conductance-measuring apparatus 11 by means of a connection 12 to the cell baseplate and a probe 13 attached to the anode, and a voltage proportional to the electrolysing current is tapped-off from bus-bar 14 which feeds the anode with current by connections 15 and 16 and is also fed into the conductance-measuring apparatus 11, as shown at 17, 18, 19, 20. A voltage signal proportional to the value of the electrical conductance of the electrolyte gap is produced by the measuring apparatus 11 and fed to servo-controller 21 as indicated at 22. Controller 21 is also fed with a voltage signal proportional to the desired value of the electrolyte gap conductance as indicated at 23 so that servomotor M, is driven by any output 24 from the servo-controller which is always proportional to the difference between inputs 22 and 23.
Commercial cells usually contain long rows of anodes running the length of the cell, several parallel rows being arranged across the cell. According to the invention all the anodes of such a cell are set automatically by sequentially positioning the mechanically-operated adjusting tool over each anode and switching in the corresponding conductance data to the tool-control servosystem, which has already been described with reference to FIG. 1 of the drawings. A suitable way of transferring the tool from one anode to another of the cell is to mount the tool on a carriage which can run the length of the cell on a crane which can itself be moved on an overhead rollingway across the cell and to control the position of the carriage automatically. Suitable control and switching arrangements are illustrated schematically in FIGS. 2-6.
FIG. 2 represents in plan view two multi-anode cells 27, the anode-supporting current conductors being indicated as 28. FIG. 3 represents a side elevation of one cell 27. 31 is a crane which can be moved across the cell on the rolling-way 3 2, and 33 is a carriage which can run on the crane along the length of the cell. The anodeadjusting tool is shown centered over one of the anodesupporting current conductors 28 and is mounted on the carriage 33.
A method of automatically selecting the conductance data corresponding to any one anode in a row of anodes along the cell and positioning the tool carriage over the appropriate anode in the row is illustrated in FIGS. 4
and 5. In FIG. 4, 38 represents a selector switching arrangement in the form of a multi-gang, multi-position switch, operated by motor M The conductance data for each anode is fed into the switch by connecting the four terminals corresponding to 12, 13, 15, 16 of FIG. 1 each to one peripheral contact on a separate gang of the switch as shown. The switch has suflicient peripheral contacts to accommodate the data for each anode on a separate position The wipers of the four gangs 17, 18, 19, 20
are now connectedtothe corresponding inputs of .the conductance-measuringapparatus 11 of FIG. 1 so that as the switch is rotated by motor M the conductance ,data for each anode is fed in sequence into the measuring apparatus 11. I
The extra gang 39 of the switch 38 shown in FIG. 4 is employed for positioning the adjusting tool carriage over the appropriate anode. A chain of resistors 40 is wired across the peripheral contacts of the gang 39 of .the switch as shown in FIG. 5, the switch positions being indicated as I-N to correspond with a number of anodes in a row. An appropriate voltage is placed across the ends of the chain of resistors as shown so that the switch wiper 41 will tap-off different voltages corresponding to the position of rotation of the multi-gang switch. A multiturn feedback potentiometer 42 is electrically-connected i p llelwith the chain of re s ors 40 a d s Wiper 43 is mechanically connected to the tool carriage 33 as indicated by the dashed line so that the mechanical position of the carriage is directly related to the voltage tapped-off by the wiper 43 of the feedback potentiometer. The wipers 41 and 43 are connected to a servo-control amplifier 44 which actuates the motor drive unit 45 and moves the carriage by means of servomotor M when there is a difference between the potentials of the two wipers until there is very little error remaining between these two potentials. By correct choice of resistor values and arrangement of this servo system the adjusting tool on its carriage is always moved into position above the anode to which the data- gang wipers 17, 18, 19 and 20 of the multi-gang switch are connected at any time. In order to adjust all the anodes of a row in turn, the switch motor M is controlled by a sequential controller shown ms in FIG. 4, which causes the switch 38 to be rotated through all the anode positions I-N in turn and is also programmed to bring into action the rotational anode adjustment mechanism shown in FIG. 1 through operation of the servomotor M turning the adjusting tool 9 at each anode position before rotating the switch 38 of FIGURE 4 to the next anode position. Furthermore, since the adjusting tool must engage the adjusting nut of each anode in turn before it can be rotated to raise or lower the anode, a further servomotor (indicated as M in FIG. 1) is provided by means of which the tool is lowered and raised under control of the sequential controller at each anode position. Thus in adjusting a whole row of anodes the repeating sequence of operations for which the controller is programmed amounts to (l) turns switch 38 to the next anode position by means of motor M thus causing the servo-system of FIG. 5 to move the tool on its carriage over the appropriate anode by means of motor M (2) lower the tool on to the anode adjusting nut by operation of motor M (3) bring motor M into action so that the anode is adjusted by the servo-system of FIG. 1 in response to the electrolyte gap conductance data relating to the anode, (4) inactivate motor M (5) lift the tool from the anode-adjusting nut by operation of motor M In order to cater for slight misalignment of adjusting nut centres and to ensure that the adjusting tool correctly engages the adjusting nut or collar, special guiding facilities may be incorporated. For example, as shown in FIG. 1, the tool may be suspended on a self-centering flexible drive 10 and the adjusting tool support may be shaped into a conical, frusto-conical or bell-shaped section 25 so as to guide the tool on to the adjusting nut or collar by contact with a protruding spindle 26 fixed to the upper end of the conductor supporting the anode.
A vertical section through the centre of a preferred form of self-centering anode-adjusting tool is shown in the accompanying drawing, FIG. 7. The tool is suitably of all metal construction, e.g. steel. A- section of truncated conical shape 58 (most suitably of apex angle) terminates at its upper end in a short hollow cylindrical section 59 of suitable internal diameter to accept as a loose fit the upper end of a cylindrical stalk extending upwards from the centre of the upper end of an anode-supporting rod of an electrolytic cell (not shown) when the tool is lowered on to the stalk. The conical section 58 terminates at its lower end in hexagonal skirt 60 forming a keying member adapted to engage with a hexagonal adjusting nut running on an anode-supporting rod (not shown). The upper end of the hollow cylindrical section 59 is locked on to a lower drive spindle 61 of a flexible rotational drive coupling by nut 62. The flexible coupling comprises a circular plate 63 attached at its centre to the upper end of spindle 61, and a hollow cylinder 64. The plate and cylinder are connected by the long bolts 65 and nuts 66 and-are held in contact in flexible manner by the loading springs 67 acting between the bolt heads and cylinder 64. There are eight spring-loaded bolts 65 (only two shown) in borings equally spaced around the walls of cylinder 64 and free to slide in their borings. An upper drive spindle 68 is locked to the centre of the end wall of cylinder 64 by nut 69, and the whole tool is adapted for rotation about its vertical axis by means of a motor (not shown) connected to the upper end of spindle 68.
A method by which the adjusting tool may be moved from one row of anodes to another across the cell is illustrated in FIG. 6. In this case the whole crane body 31 of FIG. 3 is moved by another servo-position-control system which operates on the same principle as that described for moving the tool carriage 33, the only difference being in the number of positions of the rotary switches 48 and 49 shown in FIGS. 4 and 6, which positions need to be only as many as there are rows of anodes in the cell. In order to cater for misalignment of cell structures, particularly when the whole apparatus is moved from one cell to another, it is preferred to control with separate servo-systems the positioning of opposite ends of the crane. Thus, as shown in FIG. 6, motor-operated switch 48 with its chain of resistors across its peripheral contacts and the parallel-connected feedback potentiometer 50 with its wiper 51 mechanically linked to one end of the crane 31 control the positioning of that end of the crane by feeding difference signals into the servo- system 52, 53 so as to operate servomotor M and thus adjust the crane position when switch 48 is rotated to a new position. The corresponding parts 49, 54, 55, 56, 57 and servo-motor M move the opposite end of the crane in response to rotation of switch 49. As indicated in FIG. 4, the switches 48 and 49 are ganged together and are rotated by motor M under control of sequential controller S. Thus this sequential controller will be programmed to operate motor M and thus move the crane so as to position the adjusting tool over the next row of anodes when all the anodes in one row have been adjusted. At the same time the sequential controller will disconnect from the conductance measuring apparatus 11 of FIG. 1 the conductance data wipers 17, 18, 19, 20 shown in FIG. 4 which relate to the completed row of anodes and will switch in the similar wipers of a further four gangs (not shown) on the data switch 38 to which the conductance data from the next row of anodes are fed. This switching can conveniently be arranged in the form of further gangs (not shown) added to the anode row selector switches 48-49.
The foregoing description has covered the automatic adjustment of the anodes of a single cell with a single adjusting tool. The method described may, however, be extended to a number of cells by providing for the crane carrying the tool to be moved over each cell in turn, and transfer of the crane from cell to cell may be controlled automatically in the same way as transfer from one row of anodes to another of the same cell. The inter-electrode gap conductance data for all the cells can, if desired, be permanently wired into selector switches mounted centrally in the cell room and the sequential controller can be made to select the switch corresponding to the cell and the particular row of anodes under adjustment. This arrangement does, however, require a large number of wires passing from the'cells to the switching centre as well as a large amount of additional equipment amplifying low-level signals and it is preferred to tolerate some measure of manual control whereby only one cell at a time is automatically adjusted so that the conductance data and crane and tool carriage position data selector switches, which my then be most suitably mounted on the crane along with the sequential controller and the servosystems, require only the number of contacts applicable to a single cell.
In order to render this arrangement of apparatus easily transferable from one cell to another, the four wires defining the conductance data for each anode of one cell may be taken to multipoint sockets fixed on the cell structure as shown at 29 in FIG. 2. The number of wires taken to each socket and hence the most suitable number of sockets will depend on the layout of the cell. The conductance data can then be picked-up from each of these sockets by a matching plug 34 (see FIG. 3) connected to one end of a multicore cable 35, the other end of the cable being connected into the multi-gang, multi-position data switches mounted on the crane.
In the foregoing discussion it has been assumed that all the anodes will be in good working order. In practice, however, individual anodes can become defective through wear and other reasons so that automatic setting to a gap-com ductance figure is no longer desirable for the best results. Also, with a large amount of control wiring attached to the cells, broken wires can occur so that conductance data supplied to the measuring circuits can become faulty. In order to ensure that under such fault conditions no undesirable anode adjustment is made by the automatic control system, the conductance data, i.e. the electrolysing current and interelectrode potential information from each anode, may be fed to a logic circuit, most suitably mounted on the crane with the other control equipment, which is programmed to recognise fault conditions and then to transmit overriding control signals to the sequential controller and other parts of the control system so as to prevent adjustment of the anode concerned. It is desirable then to known which anodes have not been adjusted. This information can be obtained from the tool position data and be passed to a printer for permanent recording. The most suitable position for the printer will usually be in the cell control room so that easy access can be had to its records. To operate this arrangement the printer may be connected to a number of sockets strategically positioned within the cell room, for instance on the walls of the room as indicated at 30 in FIG. 3, and the information on anodes which have not been adjusted may be transmitted to the printer by a multi-core cable, suspended from the crane, and plugged into one of the sockets as shown at 37.
The simplest method of operating this system is as follows. When a cell requires adjustment an operator manually controls the movement of the crane and tool carriage to position the tool over the first anode of a cell. He places the plugs attached to the conductance data input cables of the crane in the appropriate sockets on the cell structure and connects the crane to the printer cable by plugging into the nearest socket outlet on the cable. He sets the switches carrying the anode-identifying voltages to indicate the first anode, locks these to the carriage mechanism and switches the apparatus to automatic control. The anodes of the cell are then adjusted in sequence under control of the sequential controller. If, during this operation, one of the anodes or the wiring system is at fault, giving faulty information to the inter-electrode conductance measuring circuit, the logic circuit will recognise it and initiate the following action. The printer will print out the faulty anode identification co-ordinates together with its gap-conductance data. The faulty anode will not be adjusted and the sequential controller will move the adjusting tool to the next anode. With this system it can be arranged for an alarm to be sounded and for all the control systems to be rendered inactive if one or more of the servo-systems develop a fault and the sequence of operations on any anode does not take place within a prescribed time, so that the operator can switch the apparatus to manual control and remedy the fault. It can also be arranged for an alarm to be sounded when all the anodes of a cell have been automatically adjusted so that the operator will know that the apparatus may be transferred to another cell.
If it is desired to adjust the anodes of a plurality of cells without human intervention, this can quite readily be achieved with a single automatic adjusting tool using the above-described plug and socket arrangement for connecting the equipment to the cells in turn. However, in order to do this it is necessary to motorise the insertion and withdrawal of plugs and to place these operations under the control of the sequential controller. For this to be successful it is necessary firstly to distribute the sockets in a regular pattern in two-dimensional co-ordimates and secondly to incorporate guiding facilities similar to those described for location of the anode-adjusting tool to overcome small errors in location of the sockets when the plugs are being inserted. In general it is preferred to tolerate some measure of manual control by inserting the plugs manually and manually referencing the adjusting tool on to the first anode of each cell.
In connection with the foregoing description it should be understood that all the anodes of a cell may be adjusted to the same value of inter-electrode gap conductance in order to obtain a very uniform current distribution between the anodes as taught in the main application; and this can be arranged by feeding a constant value control signal into the conductance controller at 23 in FIG. 1 of the drawings. In practice, however, we have found that there is often an advantage in increased energy efiiciency in the cell if the anodes are adjusted to a defined pattern over a range of gap-conductance values so as to take account of the variation of operational parameters with the position of an anode in the cell. Within the scope of the invention this may be arranged by programming the sequential controller to send an appropriate desired value signal into the conductance controller for each anode. A practical realisation of this may for example be achieved by wiring a chain of resistors across the peripheral contacts of an additional gang of the multi-gang, multi-position, motor-operated switch 38 of FIG. 4 and placing an appropriate voltage across the ends of the chain. The switch wiper will then tap off dilferent voltages depending on the resistor values and the rotational position of the switch, and these voltages will be related to specific anodes of a row through operation of the tool-positioning servo-mechanism. Hence all that is necessary to form a defined pattern of desired value is to make the correct choice of resistors and to connect the wiper of the switch to the desired value input of the conductance controller.
The invention has been described with reference to the use of a single mechanically-operated tool to adjust all the anodes of one or more multi-anode cells. If, however, it is desired to reduce the time taken to deal with each cell, several tools may be mounted on the same carriage to work concurrently so that several anodes are adjusted at the same time under the control of a sequential controller while the carriage is at any one location. A suitable arrangement is for instance to provide the same number of tools as there are rows of anodes in the cell, and this slightly simplifies the crane-positioning control system since it is no longer necessary to transfer a tool automatically from row to row and to switch over to the corresponding anode data.
What we claim is:
1. A method of setting sequentially the anodes in accurately-spaced relationship to the cathode of a mercury-cathode cell producing chlorine by electrolysis of alkali metal chloride solution wherein the position of each anode relative to the cathode is adjusted in the working cell so that the electrical conductance of the electrolyte gap between each anode and the cathode is brought to a predetermined value which is characterised by feeding electrical data determining the existing electrolyte'gap conductance for each anode and electrical data fixing the area co-ordinates of each anode with respect to the cell cover area into a selector switching arrangement, the selector position of said switching arrangement at any time being determined by a signal from a sequential controller so as to feed out from the switching arrangement sponding to a selected anode, feeding the area-coordinate data from the selector switching arrangement together with electrical data defining the position of a mechanically-operated anode-adjusting tool to a first servo-controller connected to the said tool so that in response to the area-coordinate data the servo controller moves the tool over the corresponding anode to engage with an adjusting means attached thereto, feeding the electrolyte gap conductance data from the selector switching arrangement into a conductance measuring circuit, feeding therefrom an electrical signal proportional to the measured gap conductance together with an electrical signal proportional to the desired value of the said gap conductance to a second servo-controller, employing the output of the second servo-controller to operate the mechanically-operated tool so that the position of the anode is adjusted until the measured value of the gap conductance corresponds with the desired value, and programming the sequential controller to select da'a corresponding to another anode in the cell each timeadjustment of one anode has been com pleted, whereby all the anodes in the cell are adjusted in sequence.
2. A method according to claim 1 wherein the tool is brought into and out of engagement with an adjusting means attached to the selected anode by means of a third servo-controller under control of the sequential controller.
3. A method according to claim 1 wherein the output of the second servo-controlled is employed to rotate the tool about a vertical axis when the tool is in engagement with a rotatable adjusting means running on a threaded stem supporting the anode.
4. A method according to claim 1 wherein the output of the first servo-controller is employed to move the tool sequentially from each anode to the next along a row of anodes in the cell.
5. A method according to claim 4 wherein the tool is moved along a row of anodes on a carriage running along a rolling-way.
6. A method according to claim 5 wherein the carriage is moved across the cell on another rolling way to carry the tool from one row of anodes to another by means of a fourth servo-controller or by means of a combination of a fourth and a fifth servo-controller each operating to adjust the position of opposite ends of the carriage respectively, activation of these servo-controllers being under control of the sequential controller.
7. A method according to any of claims 1-3 wherein a plurality of anode-adjusting tools, one for each row of anodes in the cell, is operated to adjust concurrently an anode in each row in response to electrolyte gap conductance data which is selected concurrently from each row of anodes by the sequential controller.
8. A method according to claim 7 wherein each tool is carried horizontally above a corresponding row of anodes on1 a single carriage travelling from end to end of the ce 1.
9. A method according to claim 1 wherein as data determining the existing electrolyte gap conductance for each anode in a row of anodes there are fed into a multiposition multi-gang switch the voltage existing between the anode and the cathode of the cell across corresponding fixed contacts on two gangs of the switch and a voltage proportional to the electrolysing current flowing'in the anode across two corresponding fixed contacts on two other gangs of the switch and the data for any one anode are selected from the switch by moving the movable contacts of the switch to the appropriate position.
10. A method according to claim 9 wherein the geometrical position of each anode in the said row of anodes is defined by placing a resistor across each neighbouring pair of fixed contacts on a separate gang of the said multigang switch and applying a fired voltage across the ends of the chain of resistors whereby a defining voltage is tapped off by the movable contacts at each position of the switch.
11. A method according to claim 10 wherein the data defining the position of the mechanically-operated tool employed for adjusting the said row of anodes are obtained in the form of a characterising voltage by tapping off a voltage from a multi-turn potentiometer electrically connected in parallel with the said chain of resistors by 9 10 means of a movable contact mechanically linked to the 3,361,654 1/1968 DePrez et al. 20499 tool carriage. 3,396,095 8/1968 Van Diest et al 204225 12. A method according to claim 11 wherein the data determining the existing electrolyte gap conductance for FOREIGN PATENTS each anode are fed to a logic circuit which is adapted to 5 3 23 309 19 1 Japan exercise overriding control over the sequential controller to prevent adjustment of an anode when the data re- JOHN H, MACK, Primary Examiner ceived therefrom 1s outslde prescribed llmlts. H. M. FLOURNOY Assistant Examiner References Cited 10 US CL XR. UNITED STATES PATENTS 204 219 228 2,508,523 5/1950 Krebs 204219
US620889A 1966-03-23 1967-03-06 Method of sequentially adjusting the anodes in a mercury-cathode cell Expired - Lifetime US3476660A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB12854/66A GB1146466A (en) 1964-08-12 1966-03-23 Anode adjustment of mercury-cathode electrolytic cells

Publications (1)

Publication Number Publication Date
US3476660A true US3476660A (en) 1969-11-04

Family

ID=10012366

Family Applications (2)

Application Number Title Priority Date Filing Date
US620889A Expired - Lifetime US3476660A (en) 1966-03-23 1967-03-06 Method of sequentially adjusting the anodes in a mercury-cathode cell
US840576*A Expired - Lifetime US3654118A (en) 1966-03-23 1969-05-06 Electrolysis

Family Applications After (1)

Application Number Title Priority Date Filing Date
US840576*A Expired - Lifetime US3654118A (en) 1966-03-23 1969-05-06 Electrolysis

Country Status (4)

Country Link
US (2) US3476660A (en)
JP (1) JPS4944876B1 (en)
BE (1) BE695771A (en)
FI (1) FI54746C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723285A (en) * 1969-10-16 1973-03-27 Montedison Spa System for protecting electrolytic cells against short circuits
US3775274A (en) * 1970-06-30 1973-11-27 Hughes Aircraft Co Electrolytic anticompromise process
US3902983A (en) * 1974-01-07 1975-09-02 Olin Corp Method and apparatus for preventing voltage extremes in an electrolytic cell having automatic adjusting of the anode-cathode spacing
US4004989A (en) * 1974-04-18 1977-01-25 Olin Corporation Method for automatic adjustment of anodes based upon current density and current
FR2491958A1 (en) * 1980-10-13 1982-04-16 Costes Jean Adjustment of anode:cathode distance - in electrolysis cells using mercury cathode, so substantial savings in electricity consumption can be achieved

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873430A (en) * 1972-07-17 1975-03-25 Olin Corp Method for automatic adjustment of anodes
US4080277A (en) * 1976-05-21 1978-03-21 Olin Corporation Short circuit protection for horizontal mercury electrolytic cells
DE3124108C2 (en) * 1981-06-19 1986-01-09 Heraeus Elektroden GmbH, 6450 Hanau Monitoring and control device for electrolysis cells with mercury cathodes
ITMI20111668A1 (en) * 2011-09-16 2013-03-17 Industrie De Nora Spa PERMANENT SYSTEM FOR THE CONTINUOUS EVALUATION OF THE CURRENT DISTRIBUTION IN INTERCONNECTED ELECTROLYTIC CELLS.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2508523A (en) * 1946-09-11 1950-05-23 Krebs & Co Device for the protection of the cathodes of electrolytic cells
US3361654A (en) * 1957-02-09 1968-01-02 Deprez Charles Method for automatic regulation of the distance between electrodes in electrolytic cells for a mobile cathode
US3396095A (en) * 1964-01-24 1968-08-06 Solvay Method and apparatus for the continuous regulation of the distance between the electrodes of electrolytic cells with liquid mecury cathodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2508523A (en) * 1946-09-11 1950-05-23 Krebs & Co Device for the protection of the cathodes of electrolytic cells
US3361654A (en) * 1957-02-09 1968-01-02 Deprez Charles Method for automatic regulation of the distance between electrodes in electrolytic cells for a mobile cathode
US3396095A (en) * 1964-01-24 1968-08-06 Solvay Method and apparatus for the continuous regulation of the distance between the electrodes of electrolytic cells with liquid mecury cathodes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723285A (en) * 1969-10-16 1973-03-27 Montedison Spa System for protecting electrolytic cells against short circuits
US3775274A (en) * 1970-06-30 1973-11-27 Hughes Aircraft Co Electrolytic anticompromise process
US3902983A (en) * 1974-01-07 1975-09-02 Olin Corp Method and apparatus for preventing voltage extremes in an electrolytic cell having automatic adjusting of the anode-cathode spacing
US4004989A (en) * 1974-04-18 1977-01-25 Olin Corporation Method for automatic adjustment of anodes based upon current density and current
FR2491958A1 (en) * 1980-10-13 1982-04-16 Costes Jean Adjustment of anode:cathode distance - in electrolysis cells using mercury cathode, so substantial savings in electricity consumption can be achieved

Also Published As

Publication number Publication date
JPS4944876B1 (en) 1974-11-30
FI54746C (en) 1979-02-12
US3654118A (en) 1972-04-04
FI54746B (en) 1978-10-31
BE695771A (en) 1967-09-20

Similar Documents

Publication Publication Date Title
US3476660A (en) Method of sequentially adjusting the anodes in a mercury-cathode cell
US3706651A (en) Apparatus for electroplating a curved surface
EP1895311B1 (en) Load calculation control method and apparatus
JPH05132799A (en) Electroplating method and apparatus therefor
EP2961865B1 (en) Measurement of electric current in an individual electrode in an electrolysis system
EP3124652B1 (en) Arrangement for measuring electric current flowing in an individual electrode in an electrolysis system
KR20220118367A (en) Apparatus for measuring condition of electroplating cell components and associated methods
US3761379A (en) Aluminum production apparatus
US4390770A (en) Automatic welding apparatus for solar cells
US3071758A (en) Potentiometers
US4448660A (en) Monitoring apparatus
EP0157132B1 (en) Reactor monitoring assembly
US4155829A (en) Apparatus for regulating anode-cathode spacing in an electrolytic cell
CN213417044U (en) Electroplating apparatus
JPH07280656A (en) Method and apparatus for locating abnormal temperature point
US4287655A (en) End effector position and identification system for steam generator servicing machine
US3334028A (en) Method of electroplating selected areas
US3417008A (en) Switch for electrochemical processes
SE410242B (en) INSTALLATION FOR TRANSMISSION AND EVALUATION OF METHODS APPEARING AT SEVERAL METHODS
CN113549982A (en) Cylindrical part electroplating device and electroplating method
US3288698A (en) Electrode for electrolytic cavity sinking
EP3492851A1 (en) Industrial electric furnace and monitoring method and monitoring device for electrical insulation of an industrial electric furnace
GB1146466A (en) Anode adjustment of mercury-cathode electrolytic cells
US4677727A (en) Anode button facing machine
US4035268A (en) Process for the control of mercury cathode electrolysis cells