US3477058A - Magnesia insulated heating elements and methods of production - Google Patents

Magnesia insulated heating elements and methods of production Download PDF

Info

Publication number
US3477058A
US3477058A US702474A US3477058DA US3477058A US 3477058 A US3477058 A US 3477058A US 702474 A US702474 A US 702474A US 3477058D A US3477058D A US 3477058DA US 3477058 A US3477058 A US 3477058A
Authority
US
United States
Prior art keywords
magnesia
percent
pyrophyllite
additive
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US702474A
Inventor
Willem Vedder
John Schultz Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3477058A publication Critical patent/US3477058A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • Y10T29/49089Filling with powdered insulation

Definitions

  • the present invention relates generally to tubular, electrical-resistance, heating elements and is more particularly concerned with novel sheathed elements having superior performance characteristics, With a method of making these novel elements, and with a new magnesia-base composition having special utility as thermally-conducting, electrically-insulating, packing material in these elements.
  • Heating elements of the type comprising an inner, electrically-resistive conductor, a surrounding layer of magnesia, electrical insulation and an outermost protective jacket are widely used in many industrial heating devices as well as in devices such as domestic ranges, dishwashers and water heaters.
  • This type of heating element is much more durable than, for example, exposed resistance wire. Structurally, it usually includes: (1) a coiled resistance wire composed of alloys such as those made up of 20 percent chromium and 80 percent nickel; (2) compacted magnesia powder containing minor amounts of impurities surrounding the resistance coil as an insulator; and (3) an outer protective metal jacket.
  • tubular heating elements having superior operating characteristics attributable to our achievement of the foregoing objectives can be produced consistently. Moreover, no substantial modification of the principal operations involved in commercial production is required in the manufacture of these elements.
  • This invention in its method, article and composition aspects is predicated upon our discovery that certain materials in particulate form, when added in amounts as small as 0.1 percent to granular, fused magnesia, increase electrical resistivity in accordance with the foregoing objectives and improve thermal conductance.
  • these additive substances which preferably will be used in amounts of approximately 2.0 percent, but may. be used in amounts up to 5.0 percent, have in common the characteristic that they exist in layer-structure crystal form.
  • non-swelling layer silicates such as pyrophyllites, talcs and non-silicate layer-structure materials such as boron nitride are useful as additives in accordance with this invention, except that those having impurities, such as iron or alkali metals, in significant quantities (generally of the order of more than 5.0 percent in the aggregate) are unsuited for this purpose because of the appreciable electronic or ionic electrical conductivity which they would impart to the resulting magnesia mixture.
  • impurities such as iron or alkali metals
  • the additives of the present invention function to increase the electrical resistivity of magnesia powder used as packing in tubular heating elements, having apparently a physical-chemical effect at high temperature manifesting itself in the form of substantially increased electrical resistivity of the magnesia insulation. This increase is suprising in that the resistivity of the combined materials is substantially greater than that of either material alone. Additionally, these platey powder additives apparently act as lubricants in the compaction operation, thereby functioning to increase the compaction density and the thermal conductivity of the magnesia insulation.
  • This invention in its composition aspect accordingly in general comprises a uniform powder mixture of granular, fused magnesia and from 0.1 percent to 5.0 percent of an electrically non-conducting additive of layer-structure crystal form.
  • This composition is further characterized in that at about percent of theoretical density, it has a specific impedance of at least 50 megohm-in. at 830 C.
  • the composition of this invention will preferably contain about 2.0 percent of a non-swelling layer-structure silicate additive such as a pyrophyllite or a talc.
  • a layer structure non-silicate such as boron nitride may be the additive in part or whole.
  • the mixture may include a wide variety of particle sizes both of magnesia and the additive material, the magnesia preferably, however; being a mixture of particle sizes from 40-mesh to below 325-mesh (US. Standard screen sizes).
  • the add tive'particulate material is suitably of a size or a mix ture of sizes within that range.
  • the additive material preferably will not be of particle size larger than that of the largest magnesia particles of the mixture at the outset of the compaction operation.
  • a mixture of additives may be employed providing they meet the foregoing requirements and providing further that the aggregate amount of the additives is within the range stated above. We have discovered, in fact, that mixtures of pyrophyllite and boron nitride are especially effective additives for the purposes of this invention.
  • a tubular heating element including a metal sheath, a coaxial coiled resistor in the sheath and a compacted, polycrystalline mass of a magnesia composition of this invention filling the space between the resistor and the sheath.
  • this invention involves the use of the novel composition described above in the production of a tubular heating element including particularly the step of filling the metal sheath with that novel material.
  • this method centers in a use concept which in itself has novelty independently of the uniqueness of the composition per se.
  • FIGURE 1 is an enlarged, side-elevational view of the heating element of this invention, portions being broken away for purposes of illustration; and,
  • FIGURE 2 is a chart bearing curves comparing the specific impedance of typical magnesia insulation with magnesia insulation of this invention, impedance being plotted on a semi-logarithmic scale as a function of temperature.
  • the heating element of FIGURE 1 resembles the heretofore conventional tubular heaters in that it is made up of three principal parts.
  • a coiled resistance wire 1 is disposed within an outer protective metal jacket 2 and is embedded in and spaced from the jacket by compacted magnesia powder 3 which serves both as a thermal conductor and electrical insulator.
  • magnesia powder which has uniquely high electrical resistivity and may also have superior thermal conductivity because of the presence in it of a minor amount of a layer-structure susbtance such as pyrophyllite.
  • FIGURE 1 element is suitably fabricated in accordance with the usual practice in the art, the parts being assembled and the element being conditioned at elevated temperature.
  • tales and pyrophyllites in their natural forms are hydro-silicates which can be dehydrated upon heating.
  • they When used in natural form in preparing the mixtures of this invention, they are dehydrated during the normal annealing or heat-treating operation after fabrication of the heating element or possibly during initial operation of the finished unit if such a preliminary heating operation is not involved.
  • the additives can be dehydrated by heating prior to loading the insulation mixture into the heating unit or even prior to the time that these materials are mixed with magnesia.
  • the eifects obtained as described above and the special advantages of this invention are realized independently of how and when this dehydration step is carried out.
  • the plate-like powder additives of this invention can act as compaction aids during forming operations in the course of fabricating heating elements and thus result in improved density of the insulation, the principal benefits described above can be achieved in certain instances without effecting a substantial increase in compaction density of the material.
  • EXAMPLE I To 100 grams of magnesia of minus 40-mesh particle size are added two grams of pyrophyllite A of minus 200- mesh particle size. A portion of the resulting powder mixture is introduced into a nickel-chromealloy sheath containing a nickel-chrome electrical resistance element, and the powder is compacted therein to a density of 3.05 grams per centimeter, i.e. about percent theoretical density. The resulting element is then annealed at about 1,970 F. for from 10 to 15 minutes, at which time it is ready for test. Results of insulation impedance and thermal conductance tests on this element and on an element which differs only in that the magnesia powder contains no additive are set out as the first and third items in Table I below.
  • EXAMPLE II Another portion of the mixture prepared in accordance with the description'in Example I is mixed with an additional amount of minus ZOO-mesh pyrophyllite 'A to bring the pyrophyllite content to approximately four percent. On test, a heating element made with this mixture as described in Example I yields insulation impedance and thermal conductance values set out as the fourth item in Table I.
  • EXAMPLE 111 To another 100-gram portion of minus 40-mesh magnesia is added 0.10 gram of 325-mesh boron nitride. A heating element test specimen prepared as described 6 EXAMPLE IX Pyrophyllite B mixed together with magnesia and used to provide a heating unit as described above yields the test results stated in the ninth entry in Table I. Again above through the use of the resulting mixture yields test 5 the materials are of the powder sizes stated in Example results as set forth in the sixth entry in Table I.
  • magnesia and pyrophyllite B and boron nitride powders are mixed together as stated in the foregoing examples to provide a composition containing 97.9 percent MgO particle size of minus -mesh pyrophyllite B (minus ZOO-mesh) 2.0 percent and 0.1 percent boron nitride (minus 325-mesh).
  • EXAMPLE VI A magnesia (minus 40-mesh)-0.5 percent pyrophyllite A powder mixture (minus ZOO-mesh) prepared as described in Example I is tested in a heating element test specimen produced as also described in Example I. As indicated by the second entry in Table I, the insulation impedance of this mixture is substantially better than that of the magnesia powder alone and thermal conductance is slightly improved.
  • EXAMPLE VII Talc D of minus 325-mesh particle size is mixed with magnesia of minus 40-mesh particle size to provide a heating unit magnesia mixture containing about two percent talc. Upon test in a heating unit made as described above, this mixture is found to have insulation impedance greater than standard magnesia alone and a thermal conductance comparing favorably with the compositions of Examples I-IV as shown by the fifth entry of Table I.
  • EXAMPLE VIII A magnesia mixture prepared by mixing together 100 grams of magnesia of -40-mesh particle size and two grams of 200-mesh pyrophyllite C is used to produce a heating unit as described above. Upon tests this product shows substantial improvement in both insulation impedance and thermal conductance as reported in the eighth entry in Table I.
  • non-swelling as used herein and in the appended claims is meant the property of layer silicates like micas of maintaining the distance between layers of the layer structure in the presence of pure water.
  • a tubular heating element including a metal sheath and a coaxial coiled resistor enclosed in the sheath
  • a compacted polycrystalline electrical insulating mass filling the space in the sheath between the resistor and the sheath and comprising fused magnesia and from 0.1 percent to 5.0 percent of an electrically nonconducting additive of layer-structure crystal form, said polycrystalline mass having a density of at least percent of theoretical density of pure magnesia and a specific impedance of at least 50 megohm-in. at 830 C.
  • a tubular heating element including the step of positioning a coiled resistor coaxially within a metal sheath, the combination of the step of filling the metal sheath and embedding the coiled resistor with a polycrystalline, electrically-insulating mixture of magnesia and from 0.1 percent to 5.0 percent of an electrically non conducting additive of layer-structure crystal form, said mixture at 85 percent of theoretical density having a specific impedance of at least 50 megohm-in. at 830 C.

Description

Nov. 4, 1969 w. VEDDER ETAL MAGNESIA INSULATED HEATING ELEMENTS AND METHODS OF PRODUCTION Filed Feb. 1, 1968 Fig.
M60 1 2 Pyrophy/li/e Tempera/ure "f Inventor VV/llem l edaer; Jo/v .Sc/w fz, Jr. 7 S U Afiorn United States Patent U.S. Cl. 338238 8 Claims ABSTRACT OF THE DISCLOSUREj Compacted, granular, fused magnesia used as thermallyconducting electrical insulation in tubular, electrical resistance elements is substantially improved both in compaction density and electrical resistivity through the addition of 0.1 to 5.0 percent of any of a variety of substances of layer-structure crystal form such as pyrophyllites.
The present invention relates generally to tubular, electrical-resistance, heating elements and is more particularly concerned with novel sheathed elements having superior performance characteristics, With a method of making these novel elements, and with a new magnesia-base composition having special utility as thermally-conducting, electrically-insulating, packing material in these elements.
Heating elements of the type comprising an inner, electrically-resistive conductor, a surrounding layer of magnesia, electrical insulation and an outermost protective jacket are widely used in many industrial heating devices as well as in devices such as domestic ranges, dishwashers and water heaters. This type of heating element is much more durable than, for example, exposed resistance wire. Structurally, it usually includes: (1) a coiled resistance wire composed of alloys such as those made up of 20 percent chromium and 80 percent nickel; (2) compacted magnesia powder containing minor amounts of impurities surrounding the resistance coil as an insulator; and (3) an outer protective metal jacket.
Over the long period in which such elements have been in general use, they have been developed and improved to a state of good performance and service life, meeting high safety standards and competing with consistent success with gas and high-frequency current heating devices. At the same time, however, it has long been recognized that a substantial increase in the thermal conductivity of the magnesia insulation employed in these elements would be desirable, and that a sizable increase in the electrical resistivity of this material would be even more important. Each of these objectives, however, would have to be realized without incurring any substantial offsetting disadvantage of cost of production or operation or impairment of efliciency of these elements. To the best of our knowledge, no one heretofore has achieved either of these objectives.
In accordance with this invention based upon our discovery subsequently to be described, tubular heating elements having superior operating characteristics attributable to our achievement of the foregoing objectives can be produced consistently. Moreover, no substantial modification of the principal operations involved in commercial production is required in the manufacture of these elements.
This invention in its method, article and composition aspects is predicated upon our discovery that certain materials in particulate form, when added in amounts as small as 0.1 percent to granular, fused magnesia, increase electrical resistivity in accordance with the foregoing objectives and improve thermal conductance. We have also found that these additive substances, which preferably will be used in amounts of approximately 2.0 percent, but may. be used in amounts up to 5.0 percent, have in common the characteristic that they exist in layer-structure crystal form. Thus non-swelling layer silicates such as pyrophyllites, talcs and non-silicate layer-structure materials such as boron nitride are useful as additives in accordance with this invention, except that those having impurities, such as iron or alkali metals, in significant quantities (generally of the order of more than 5.0 percent in the aggregate) are unsuited for this purpose because of the appreciable electronic or ionic electrical conductivity which they would impart to the resulting magnesia mixture.
As disclosed and claimed in a copending application filed: of even date herewith in the name of Louis Balint and assigned to the assignee hereof the foregoing new results and advantages can be obtained through the use of layer-structure clay minerals and, alternatively, through the use of quartz in comparatively small amounts.
Compaction densities approximating those of the compositions of this invention can also be obtained without the use of any of the foregoing additives by surface hydration of the magnesia powder before compacting it in a heating element in the usual manner. This additional discovery or invention is disclosed and claimed in copending application Ser. No. 809,149, filed Mar. 21, 1969 in the name of Willem Vedder and assigned to the assignee hereof and entitled Tubular Heating Elements and Magnesia Insulation Therefor and Method of Production.
In some way, not totally understood, the additives of the present invention function to increase the electrical resistivity of magnesia powder used as packing in tubular heating elements, having apparently a physical-chemical effect at high temperature manifesting itself in the form of substantially increased electrical resistivity of the magnesia insulation. This increase is suprising in that the resistivity of the combined materials is substantially greater than that of either material alone. Additionally, these platey powder additives apparently act as lubricants in the compaction operation, thereby functioning to increase the compaction density and the thermal conductivity of the magnesia insulation.
This invention in its composition aspect accordingly in general comprises a uniform powder mixture of granular, fused magnesia and from 0.1 percent to 5.0 percent of an electrically non-conducting additive of layer-structure crystal form. This composition is further characterized in that at about percent of theoretical density, it has a specific impedance of at least 50 megohm-in. at 830 C.
More in detail, the composition of this invention, as indicated above, will preferably contain about 2.0 percent of a non-swelling layer-structure silicate additive such as a pyrophyllite or a talc. Alternatively, a layer structure non-silicate such as boron nitride may be the additive in part or whole. Further, the mixture may include a wide variety of particle sizes both of magnesia and the additive material, the magnesia preferably, however; being a mixture of particle sizes from 40-mesh to below 325-mesh (US. Standard screen sizes). The add tive'particulate material is suitably of a size or a mix ture of sizes within that range. In any case, the additive material preferably will not be of particle size larger than that of the largest magnesia particles of the mixture at the outset of the compaction operation. Also, as indicated above, a mixture of additives may be employed providing they meet the foregoing requirements and providing further that the aggregate amount of the additives is within the range stated above. We have discovered, in fact, that mixtures of pyrophyllite and boron nitride are especially effective additives for the purposes of this invention.
In its article aspect, this invention, generally described,
comprises a tubular heating element including a metal sheath, a coaxial coiled resistor in the sheath and a compacted, polycrystalline mass of a magnesia composition of this invention filling the space between the resistor and the sheath. Those skilled in the art will understand that this description of the article applies to the article at the intermediate stage of its production when the composition of this invention has been introduced into the sheath but prior to the time when the article has been thermally cycled to the extent that the identity of the additive may no longer be readily detected.
Finally, in its method aspect, this invention, described broadly, involves the use of the novel composition described above in the production of a tubular heating element including particularly the step of filling the metal sheath with that novel material. Thus, this method centers in a use concept which in itself has novelty independently of the uniqueness of the composition per se.
Referring to the drawings accompanying and forming a part of this specification:
FIGURE 1 is an enlarged, side-elevational view of the heating element of this invention, portions being broken away for purposes of illustration; and,
FIGURE 2 is a chart bearing curves comparing the specific impedance of typical magnesia insulation with magnesia insulation of this invention, impedance being plotted on a semi-logarithmic scale as a function of temperature.
The heating element of FIGURE 1 resembles the heretofore conventional tubular heaters in that it is made up of three principal parts. Thus, a coiled resistance wire 1 is disposed within an outer protective metal jacket 2 and is embedded in and spaced from the jacket by compacted magnesia powder 3 which serves both as a thermal conductor and electrical insulator. In contrast to the prior devices, however, the heating element of FIGURE 1 incorporates magnesia powder which has uniquely high electrical resistivity and may also have superior thermal conductivity because of the presence in it of a minor amount of a layer-structure susbtance such as pyrophyllite.
The FIGURE 1 element is suitably fabricated in accordance with the usual practice in the art, the parts being assembled and the element being conditioned at elevated temperature.
Thus, essentially the only significant departure from prior practice in terms of the fabrication operation consists in the use of the new magnesia compositions of this invention, these being substituted for magnesia used in accordance with the prior art practices in order to obtain the special new results and advantages stated above.
Three pyrophyllites and a tale preferred for use in this invention have analyses as follows:
PYROPHYLLITE A 4 PYROPHYLLITE C Percent SiO, 62.9 A1 0 23.8 CaO 3.0 MgO n 0.8 F6203 0.7 Ign. loss -a 5.1
Total 96.3
TALC D Percent Si0 51.0 A1 0 7.3 F6 0 1.4 MgO 32.5 CaO 0.2 Ign. loss 7.3
Total 99.7
Those skilled in the art will understand that tales and pyrophyllites in their natural forms are hydro-silicates which can be dehydrated upon heating. When used in natural form in preparing the mixtures of this invention, they are dehydrated during the normal annealing or heat-treating operation after fabrication of the heating element or possibly during initial operation of the finished unit if such a preliminary heating operation is not involved. Alternatively, the additives can be dehydrated by heating prior to loading the insulation mixture into the heating unit or even prior to the time that these materials are mixed with magnesia. The eifects obtained as described above and the special advantages of this invention are realized independently of how and when this dehydration step is carried out.
Those skilled in the art will also recognize that although the plate-like powder additives of this invention can act as compaction aids during forming operations in the course of fabricating heating elements and thus result in improved density of the insulation, the principal benefits described above can be achieved in certain instances without effecting a substantial increase in compaction density of the material.
The following illustrative, but not limiting, examples are offered in the interest of insuring a full and clear understanding of this invention by those skilled in the art and enabling their practice of it without the necessity for experiment to obtain the new results and advantages stated above:
EXAMPLE I' To 100 grams of magnesia of minus 40-mesh particle size are added two grams of pyrophyllite A of minus 200- mesh particle size. A portion of the resulting powder mixture is introduced into a nickel-chromealloy sheath containing a nickel-chrome electrical resistance element, and the powder is compacted therein to a density of 3.05 grams per centimeter, i.e. about percent theoretical density. The resulting element is then annealed at about 1,970 F. for from 10 to 15 minutes, at which time it is ready for test. Results of insulation impedance and thermal conductance tests on this element and on an element which differs only in that the magnesia powder contains no additive are set out as the first and third items in Table I below.
EXAMPLE II Another portion of the mixture prepared in accordance with the description'in Example I is mixed with an additional amount of minus ZOO-mesh pyrophyllite 'A to bring the pyrophyllite content to approximately four percent. On test, a heating element made with this mixture as described in Example I yields insulation impedance and thermal conductance values set out as the fourth item in Table I.
5 EXAMPLE 111 To another 100-gram portion of minus 40-mesh magnesia is added 0.10 gram of 325-mesh boron nitride. A heating element test specimen prepared as described 6 EXAMPLE IX Pyrophyllite B mixed together with magnesia and used to provide a heating unit as described above yields the test results stated in the ninth entry in Table I. Again above through the use of the resulting mixture yields test 5 the materials are of the powder sizes stated in Example results as set forth in the sixth entry in Table I.
I for both the magnesia and the additive.
TABLE I Insulation Thermal Impedance Conductance (1,700 F.), (1,625 F. megohms mean), B.t.u. in.
MgO, no additive 0. 45 11.0 MgO plus 0.5% pyrophyllite A... 1. 85 11. 2 MgO plus 2% pyrophyllite A- 1. 60 1. 20 MgO plus 4% pyrophyllite A... 0. 65 14. MgO plus 2% talc 0. 60 13. 5 MgO plus 0.1% boron nitride 0. 65 12. 0 MgO plus 3% boron nitride. 0. B7 20. 0 MgO plus 2% Dyroplryllite 0-- 0. 65 12. 9 MgO plus 4% pyrophylhte B 0. 61 12. 7 MgO plus 2% pyrophyllite B plus 0.1 boron nitride 1. 10 12. 7
EXAMPLE IV Boron nitride of minus 325-mesh is added to magnesia to produce a uniform powder mixture containing three percent boron nitride as described in Example I. A test heating element prepared as described in Example I using this mixture is tested with results stated in the seventh entry in Table I.
EXAMPLE V In still another operation, magnesia and pyrophyllite B and boron nitride powders are mixed together as stated in the foregoing examples to provide a composition containing 97.9 percent MgO particle size of minus -mesh pyrophyllite B (minus ZOO-mesh) 2.0 percent and 0.1 percent boron nitride (minus 325-mesh).
Again, on test of a heating unit prepared as described in Example I, it is found that the thermal conductivity of this mixture is superior to that of the standard magnesia and that the insulation resistance and the current leakage resistance of this mixture are far superior to those properties of the standard magnesia. These test results appear as the final entry in Table 1.
EXAMPLE VI A magnesia (minus 40-mesh)-0.5 percent pyrophyllite A powder mixture (minus ZOO-mesh) prepared as described in Example I is tested in a heating element test specimen produced as also described in Example I. As indicated by the second entry in Table I, the insulation impedance of this mixture is substantially better than that of the magnesia powder alone and thermal conductance is slightly improved.
EXAMPLE VII Talc D of minus 325-mesh particle size is mixed with magnesia of minus 40-mesh particle size to provide a heating unit magnesia mixture containing about two percent talc. Upon test in a heating unit made as described above, this mixture is found to have insulation impedance greater than standard magnesia alone and a thermal conductance comparing favorably with the compositions of Examples I-IV as shown by the fifth entry of Table I.
EXAMPLE VIII A magnesia mixture prepared by mixing together 100 grams of magnesia of -40-mesh particle size and two grams of 200-mesh pyrophyllite C is used to produce a heating unit as described above. Upon tests this product shows substantial improvement in both insulation impedance and thermal conductance as reported in the eighth entry in Table I.
As illustrated in FIGURE 2, specific impedance of a magnesia insulation containing 2. 0 percent of pyrophyllite A" compared very favorably with the same magnesia containing no additive over the temperature range from about 1600 to about 1800 F. Thus, at each specific temperature over that range, the specific impedance of the pyrophyllite magnesia mixture additive approached an order of magnitude greater than that of the magnesia containing no such additive and consisting essentially of magnesia powder.
Wherever in this specification and in the appended claims reference is made to percentages or proportions, reference is had to the weight basis rather than the volume basis unless otherwise specifically stated.
By the term non-swelling as used herein and in the appended claims is meant the property of layer silicates like micas of maintaining the distance between layers of the layer structure in the presence of pure water.
Although the present invention has been described in connection with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention, as those skilled in the art will readily understand. Such modifications and variations are considered to be Within the purview and scope of the invention and the appended claims.
What We claim as new and desire to secure by Letters Patent of the United States is:
1. In a tubular heating element including a metal sheath and a coaxial coiled resistor enclosed in the sheath, the combination of a compacted polycrystalline electrical insulating mass filling the space in the sheath between the resistor and the sheath and comprising fused magnesia and from 0.1 percent to 5.0 percent of an electrically nonconducting additive of layer-structure crystal form, said polycrystalline mass having a density of at least percent of theoretical density of pure magnesia and a specific impedance of at least 50 megohm-in. at 830 C.
2. In the method of making a tubular heating element including the step of positioning a coiled resistor coaxially within a metal sheath, the combination of the step of filling the metal sheath and embedding the coiled resistor with a polycrystalline, electrically-insulating mixture of magnesia and from 0.1 percent to 5.0 percent of an electrically non conducting additive of layer-structure crystal form, said mixture at 85 percent of theoretical density having a specific impedance of at least 50 megohm-in. at 830 C.
3. The heating element of claim 1 in which the additive is present in the amount of about two percent.
4. The method of claim 2 in which the amount of the additive is about two percent.
7 5. The heating element of claim 1 in which the additive is a non-swelling layer silicate which is present in the amount of about two percent.
6. The method of claim 2 in which the additive is a pyrophyllite.
7. The method of claim 2 in which the additive is a talc. 5
8. The heating element of claim 1 in which the additive consists of 2.0 percent of a pyrophyllite and 0.1 percent of boron nitride.
8 References Cited UNITED STATES PATENTS 2,280,517 4/1942 Ridgway 338-238 X 3,201,738 8/1965 Mitofi 338238 E. A. GOLDBERG, Primary Examiner US. Cl. X.R.
US702474A 1968-02-01 1968-02-01 Magnesia insulated heating elements and methods of production Expired - Lifetime US3477058A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US70247468A 1968-02-01 1968-02-01

Publications (1)

Publication Number Publication Date
US3477058A true US3477058A (en) 1969-11-04

Family

ID=24821361

Family Applications (1)

Application Number Title Priority Date Filing Date
US702474A Expired - Lifetime US3477058A (en) 1968-02-01 1968-02-01 Magnesia insulated heating elements and methods of production

Country Status (6)

Country Link
US (1) US3477058A (en)
JP (1) JPS49301B1 (en)
DE (1) DE1904873B2 (en)
FR (1) FR2001103A1 (en)
GB (1) GB1260316A (en)
SE (1) SE347598B (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621204A (en) * 1969-04-29 1971-11-16 Dynamit Nobel Ag Electrical heating element with fused magnesia insulation
US3622755A (en) * 1969-03-21 1971-11-23 Gen Electric Tubular heating elements and magnesia insulation therefor and method of production
US3658587A (en) * 1970-01-02 1972-04-25 Allegheny Ludlum Steel Electrical insulation coating saturated with magnesium and/or calcium ions
US3678435A (en) * 1970-11-09 1972-07-18 Allis Chalmers Mfg Co Electrical resistor
US3761859A (en) * 1971-07-27 1973-09-25 Philips Corp Heating element having a high heating current
US4129774A (en) * 1975-08-28 1978-12-12 Hitachi Heating Appliances Co., Ltd. Filling materials for heating elements
US4234786A (en) * 1979-02-12 1980-11-18 General Electric Company Magnesia insulated heating elements and method of making the same
US4506251A (en) * 1981-05-19 1985-03-19 Matsushita Electric Industrial Co., Ltd. Sheathed resistance heater
US4586020A (en) * 1981-05-18 1986-04-29 Matsushita Electric Industrial Company, Limited Sheathed resistance heater
US5977519A (en) * 1997-02-28 1999-11-02 Applied Komatsu Technology, Inc. Heating element with a diamond sealing material
US20020029881A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20030062164A1 (en) * 2000-04-24 2003-04-03 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20030062154A1 (en) * 2000-04-24 2003-04-03 Vinegar Harold J. In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030066644A1 (en) * 2000-04-24 2003-04-10 Karanikas John Michael In situ thermal processing of a coal formation using a relatively slow heating rate
US20030075318A1 (en) * 2000-04-24 2003-04-24 Keedy Charles Robert In situ thermal processing of a coal formation using substantially parallel formed wellbores
US20030085034A1 (en) * 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
US20030130136A1 (en) * 2001-04-24 2003-07-10 Rouffignac Eric Pierre De In situ thermal processing of a relatively impermeable formation using an open wellbore
US7040397B2 (en) 2001-04-24 2006-05-09 Shell Oil Company Thermal processing of an oil shale formation to increase permeability of the formation
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US20100126727A1 (en) * 2001-10-24 2010-05-27 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20110124228A1 (en) * 2009-10-09 2011-05-26 John Matthew Coles Compacted coupling joint for coupling insulated conductors
US20110132661A1 (en) * 2009-10-09 2011-06-09 Patrick Silas Harmason Parallelogram coupling joint for coupling insulated conductors
US20110134958A1 (en) * 2009-10-09 2011-06-09 Dhruv Arora Methods for assessing a temperature in a subsurface formation
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US8485256B2 (en) 2010-04-09 2013-07-16 Shell Oil Company Variable thickness insulated conductors
US8586866B2 (en) 2010-10-08 2013-11-19 Shell Oil Company Hydroformed splice for insulated conductors
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US20140138373A1 (en) * 2011-06-29 2014-05-22 Bosch Corporation Ceramic heater-type glow plug
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9080917B2 (en) 2011-10-07 2015-07-14 Shell Oil Company System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US20150211942A1 (en) * 2012-10-19 2015-07-30 Okazaki Manufacturing Company Cryogenic temperature measuring resistor element
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
CN108219508A (en) * 2018-02-07 2018-06-29 大石桥市美尔镁制品有限公司 A kind of barrier material and its preparation method and application
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2525441C3 (en) * 1975-06-07 1981-04-16 Dynamit Nobel Ag, 5210 Troisdorf Electrically insulating filling for an electric tubular heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280517A (en) * 1942-04-21 Electrical insulation of modified
US3201738A (en) * 1962-11-30 1965-08-17 Gen Electric Electrical heating element and insulation therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280517A (en) * 1942-04-21 Electrical insulation of modified
US3201738A (en) * 1962-11-30 1965-08-17 Gen Electric Electrical heating element and insulation therefor

Cited By (266)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622755A (en) * 1969-03-21 1971-11-23 Gen Electric Tubular heating elements and magnesia insulation therefor and method of production
US3621204A (en) * 1969-04-29 1971-11-16 Dynamit Nobel Ag Electrical heating element with fused magnesia insulation
US3658587A (en) * 1970-01-02 1972-04-25 Allegheny Ludlum Steel Electrical insulation coating saturated with magnesium and/or calcium ions
US3678435A (en) * 1970-11-09 1972-07-18 Allis Chalmers Mfg Co Electrical resistor
US3761859A (en) * 1971-07-27 1973-09-25 Philips Corp Heating element having a high heating current
US4129774A (en) * 1975-08-28 1978-12-12 Hitachi Heating Appliances Co., Ltd. Filling materials for heating elements
US4234786A (en) * 1979-02-12 1980-11-18 General Electric Company Magnesia insulated heating elements and method of making the same
US4586020A (en) * 1981-05-18 1986-04-29 Matsushita Electric Industrial Company, Limited Sheathed resistance heater
US4506251A (en) * 1981-05-19 1985-03-19 Matsushita Electric Industrial Co., Ltd. Sheathed resistance heater
US5977519A (en) * 1997-02-28 1999-11-02 Applied Komatsu Technology, Inc. Heating element with a diamond sealing material
US6191390B1 (en) 1997-02-28 2001-02-20 Applied Komatsu Technology, Inc. Heating element with a diamond sealing material
US20030164234A1 (en) * 2000-04-24 2003-09-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US20020170708A1 (en) * 2000-04-24 2002-11-21 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20020029884A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US20020033280A1 (en) * 2000-04-24 2002-03-21 Schoeling Lanny Gene In situ thermal processing of a coal formation with carbon dioxide sequestration
US20020034380A1 (en) * 2000-04-24 2002-03-21 Maher Kevin Albert In situ thermal processing of a coal formation with a selected moisture content
US20020033256A1 (en) * 2000-04-24 2002-03-21 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US20020035307A1 (en) * 2000-04-24 2002-03-21 Vinegar Harold J. In situ thermal processing of a coal formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020033255A1 (en) * 2000-04-24 2002-03-21 Fowler Thomas David In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US20020033257A1 (en) * 2000-04-24 2002-03-21 Shahin Gordon Thomas In situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020036089A1 (en) * 2000-04-24 2002-03-28 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using distributed combustor heat sources
US20020036103A1 (en) * 2000-04-24 2002-03-28 Rouffignac Eric Pierre De In situ thermal processing of a coal formation by controlling a pressure of the formation
US20020036084A1 (en) * 2000-04-24 2002-03-28 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US20020036083A1 (en) * 2000-04-24 2002-03-28 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US20020038705A1 (en) * 2000-04-24 2002-04-04 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20020039486A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US20020038711A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020038712A1 (en) * 2000-04-24 2002-04-04 Vinegar Harold J. In situ production of synthesis gas from a coal formation through a heat source wellbore
US20020040173A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US20020038708A1 (en) * 2000-04-24 2002-04-04 Wellington Scott Lee In situ thermal processing of a coal formation to produce a condensate
US20020038710A1 (en) * 2000-04-24 2002-04-04 Maher Kevin Albert In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US20020040177A1 (en) * 2000-04-24 2002-04-04 Maher Kevin Albert In situ thermal processing of a hydrocarbon containig formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020038709A1 (en) * 2000-04-24 2002-04-04 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20020040781A1 (en) * 2000-04-24 2002-04-11 Keedy Charles Robert In situ thermal processing of a hydrocarbon containing formation using substantially parallel wellbores
US20020040779A1 (en) * 2000-04-24 2002-04-11 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a mixture containing olefins, oxygenated hydrocarbons, and/or aromatic hydrocarbons
US20020043365A1 (en) * 2000-04-24 2002-04-18 Berchenko Ilya Emil In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043366A1 (en) * 2000-04-24 2002-04-18 Wellington Scott Lee In situ thermal processing of a coal formation and ammonia production
US20020043405A1 (en) * 2000-04-24 2002-04-18 Vinegar Harold J. In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US20020043367A1 (en) * 2000-04-24 2002-04-18 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020046839A1 (en) * 2000-04-24 2002-04-25 Vinegar Harold J. In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US20020046832A1 (en) * 2000-04-24 2002-04-25 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US20020049358A1 (en) * 2000-04-24 2002-04-25 Vinegar Harold J. In situ thermal processing of a coal formation using a distributed combustor
US20020052297A1 (en) * 2000-04-24 2002-05-02 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US20020050356A1 (en) * 2000-04-24 2002-05-02 Vinegar Harold J. In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US20020050357A1 (en) * 2000-04-24 2002-05-02 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US20020050353A1 (en) * 2000-04-24 2002-05-02 Berchenko Ilya Emil In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US20020053436A1 (en) * 2000-04-24 2002-05-09 Vinegar Harold J. In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US20020053429A1 (en) * 2000-04-24 2002-05-09 Stegemeier George Leo In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020053432A1 (en) * 2000-04-24 2002-05-09 Berchenko Ilya Emil In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US20020053435A1 (en) * 2000-04-24 2002-05-09 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US20020057905A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020056551A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US20020062051A1 (en) * 2000-04-24 2002-05-23 Wellington Scott L. In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020062961A1 (en) * 2000-04-24 2002-05-30 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation and ammonia production
US20020062959A1 (en) * 2000-04-24 2002-05-30 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US20020066565A1 (en) * 2000-04-24 2002-06-06 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US20020077515A1 (en) * 2000-04-24 2002-06-20 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020074117A1 (en) * 2000-04-24 2002-06-20 Shahin Gordon Thomas In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US20020084074A1 (en) * 2000-04-24 2002-07-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020096320A1 (en) * 2000-04-24 2002-07-25 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US20020104654A1 (en) * 2000-04-24 2002-08-08 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20020108753A1 (en) * 2000-04-24 2002-08-15 Vinegar Harold J. In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US20020117303A1 (en) * 2000-04-24 2002-08-29 Vinegar Harold J. Production of synthesis gas from a hydrocarbon containing formation
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US20020191968A1 (en) * 2000-04-24 2002-12-19 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US20020191969A1 (en) * 2000-04-24 2002-12-19 Wellington Scott Lee In situ thermal processing of a coal formation in reducing environment
US20030006039A1 (en) * 2000-04-24 2003-01-09 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US20030019626A1 (en) * 2000-04-24 2003-01-30 Vinegar Harold J. In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio
US20030024699A1 (en) * 2000-04-24 2003-02-06 Vinegar Harold J. In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US20030051872A1 (en) * 2000-04-24 2003-03-20 De Rouffignac Eric Pierre In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US20030062164A1 (en) * 2000-04-24 2003-04-03 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20030062154A1 (en) * 2000-04-24 2003-04-03 Vinegar Harold J. In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030066644A1 (en) * 2000-04-24 2003-04-10 Karanikas John Michael In situ thermal processing of a coal formation using a relatively slow heating rate
US20030075318A1 (en) * 2000-04-24 2003-04-24 Keedy Charles Robert In situ thermal processing of a coal formation using substantially parallel formed wellbores
US20030085034A1 (en) * 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030141065A1 (en) * 2000-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of hydrocarbons within a relatively permeable formation
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030164238A1 (en) * 2000-04-24 2003-09-04 Vinegar Harold J. In situ thermal processing of a coal formation using a controlled heating rate
US20030213594A1 (en) * 2000-04-24 2003-11-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20040015023A1 (en) * 2000-04-24 2004-01-22 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US20020029882A1 (en) * 2000-04-24 2002-03-14 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US20020062052A1 (en) * 2000-04-24 2002-05-23 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US20040069486A1 (en) * 2000-04-24 2004-04-15 Vinegar Harold J. In situ thermal processing of a coal formation and tuning production
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US20040108111A1 (en) * 2000-04-24 2004-06-10 Vinegar Harold J. In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6994168B2 (en) 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020029881A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US20090101346A1 (en) * 2000-04-24 2009-04-23 Shell Oil Company, Inc. In situ recovery from a hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030130136A1 (en) * 2001-04-24 2003-07-10 Rouffignac Eric Pierre De In situ thermal processing of a relatively impermeable formation using an open wellbore
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US7040397B2 (en) 2001-04-24 2006-05-09 Shell Oil Company Thermal processing of an oil shale formation to increase permeability of the formation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20100126727A1 (en) * 2001-10-24 2010-05-27 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8485847B2 (en) 2009-10-09 2013-07-16 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US20110124228A1 (en) * 2009-10-09 2011-05-26 John Matthew Coles Compacted coupling joint for coupling insulated conductors
US8257112B2 (en) 2009-10-09 2012-09-04 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US8816203B2 (en) 2009-10-09 2014-08-26 Shell Oil Company Compacted coupling joint for coupling insulated conductors
US20110134958A1 (en) * 2009-10-09 2011-06-09 Dhruv Arora Methods for assessing a temperature in a subsurface formation
US20110132661A1 (en) * 2009-10-09 2011-06-09 Patrick Silas Harmason Parallelogram coupling joint for coupling insulated conductors
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
US20110124223A1 (en) * 2009-10-09 2011-05-26 David Jon Tilley Press-fit coupling joint for joining insulated conductors
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8485256B2 (en) 2010-04-09 2013-07-16 Shell Oil Company Variable thickness insulated conductors
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US8859942B2 (en) 2010-04-09 2014-10-14 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8967259B2 (en) 2010-04-09 2015-03-03 Shell Oil Company Helical winding of insulated conductor heaters for installation
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9755415B2 (en) 2010-10-08 2017-09-05 Shell Oil Company End termination for three-phase insulated conductors
US9337550B2 (en) 2010-10-08 2016-05-10 Shell Oil Company End termination for three-phase insulated conductors
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US8586867B2 (en) 2010-10-08 2013-11-19 Shell Oil Company End termination for three-phase insulated conductors
US8586866B2 (en) 2010-10-08 2013-11-19 Shell Oil Company Hydroformed splice for insulated conductors
US8732946B2 (en) 2010-10-08 2014-05-27 Shell Oil Company Mechanical compaction of insulator for insulated conductor splices
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US20140138373A1 (en) * 2011-06-29 2014-05-22 Bosch Corporation Ceramic heater-type glow plug
US9080917B2 (en) 2011-10-07 2015-07-14 Shell Oil Company System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US9464947B2 (en) * 2012-10-19 2016-10-11 Okazaki Manufacturing Company Cryogenic temperature measuring resistor element
US20150211942A1 (en) * 2012-10-19 2015-07-30 Okazaki Manufacturing Company Cryogenic temperature measuring resistor element
CN108219508A (en) * 2018-02-07 2018-06-29 大石桥市美尔镁制品有限公司 A kind of barrier material and its preparation method and application
CN108219508B (en) * 2018-02-07 2021-03-30 大石桥市美尔镁制品有限公司 Moisture-proof material and preparation method and application thereof

Also Published As

Publication number Publication date
DE1904873A1 (en) 1969-09-11
FR2001103A1 (en) 1969-09-26
DE1904873B2 (en) 1980-01-31
SE347598B (en) 1972-08-07
GB1260316A (en) 1972-01-12
JPS49301B1 (en) 1974-01-07

Similar Documents

Publication Publication Date Title
US3477058A (en) Magnesia insulated heating elements and methods of production
US2375058A (en) Electrical heating element and process for producing the same
US3582616A (en) Electrical heaters
US3681737A (en) Electric resistance heater
US2864884A (en) Resistor and spark plug embodying same
US3592771A (en) Tubular heating elements and magnesia insulation therefor and method of production
US4144474A (en) Low noise resistance containing spark plug
US2669636A (en) Sheathed electric heater insulating material
US1787749A (en) Electrical resistance element and process of manufacturing the same
US6759592B1 (en) Kaolin additive in mineral insulated metal sheathed cables
US4280932A (en) Magnesia insulated heating elements
US2280367A (en) Electric heater
US3621204A (en) Electrical heating element with fused magnesia insulation
US2292065A (en) Magnesium oxide insulation
US4234786A (en) Magnesia insulated heating elements and method of making the same
US3622755A (en) Tubular heating elements and magnesia insulation therefor and method of production
US2515790A (en) Ceramic dielectric material and method of making
US4087777A (en) Electrical heating assembly having a thermally conductive refractory electrical insulating embedding composition between an electrically conductive member and a jacket
US3247132A (en) Spark plug seal
US3959001A (en) Method of preparing an electrically insulating embedding composition
EP0079385B1 (en) A shielded heating element and a method of manufacturing the same
US2846537A (en) Electric heaters
JPS6030076B2 (en) Sheathed heater and its manufacturing method
JPS6021448B2 (en) Electrical insulating material for burying metal heater wires and method for manufacturing the same
US1127042A (en) Manufacture of high-potential porcelain and glass insulators.