US3490145A - Orthodontic method - Google Patents

Orthodontic method Download PDF

Info

Publication number
US3490145A
US3490145A US775948A US3490145DA US3490145A US 3490145 A US3490145 A US 3490145A US 775948 A US775948 A US 775948A US 3490145D A US3490145D A US 3490145DA US 3490145 A US3490145 A US 3490145A
Authority
US
United States
Prior art keywords
bracket
copolymer
tooth
teeth
brackets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US775948A
Inventor
George O Charrier
John W Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEORGE O CHARRIER
JOHN W FISCHER
Original Assignee
GEORGE O CHARRIER
JOHN W FISCHER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEORGE O CHARRIER, JOHN W FISCHER filed Critical GEORGE O CHARRIER
Application granted granted Critical
Publication of US3490145A publication Critical patent/US3490145A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/30Compositions for temporarily or permanently fixing teeth or palates, e.g. primers for dental adhesives

Definitions

  • Orthodontia is the branch of dentistry that is concerned with the straightening of teeth.
  • straightening of teeth is frequently accomplished through the use of arch wires that are secured to orthodontic devices that are in turn secured to the teeth.
  • the conventional orthodontic method includes the step of encircling selected teeth with bands.
  • Such tooth bands have been frequently made from stainless steel.
  • To the tooth bands are secured small brackets to which the arch wire is connected.
  • the stainless steel tooth bands have given rise to several problems. First of all, a supply of various size bands must be kept on hand to suit particular requirements. The requisite supply is oftentimes very large, sometimes consisting of several thousand dollars worth of bands. Secondly, the bands provide a site for decay to form. Thirdly, the bands hamper efiicient cleaning of the teeth. And lastly, the bands require a certain amount of space between the teeth, space that later must be filled in.
  • Brackets can be secured directly to a tooth through the use of a thin film of an ionic hydrocarbon copolymer that is interposed between the tooth and bracket, melted and allowed to solidify.
  • the bands and their attendant problems are altogether eliminated.
  • Brackets can be rapidly secured to teeth and there is, practically speaking, no setting time required for the ionic hydrocarbon copolymer.
  • Brackets so secured withstand the stresses and forces to which they are normally subjected.
  • the brackets can be easily removed when desired by merely remelting the ionic hydrocarbon copolymer. With this method the time and cost of orthodontia are greatly reduced.
  • hydrocarbon polymers commonly referred to as ionic hydrocarbon polymers, so named because they contain ionic crosslinks.
  • the polymers and the specific methods by which they may be prepared are fully described and claimed in U.S. Patent No. 3,264; 272, the disclosure of which is incorporated by reference herein.
  • a polymer is manufactured by the assignee of said patent, the E. I. du Pont de Nemours & Co., Inc., and sold under the trademark Surlyn A 1601. This polymer is well adapted for use in my process since it is non-toxic and can be safely used in the mouth.
  • induction heating To melt the ionic hydrocarbon polymer after it has been positioned between the tooth and bracket we prefer to heat the surface of the bracket by means of induction heating.
  • induction heating The principles of induction heating are very well known. It is the characteristic of induction heating that only the metal surface is heated. Therefore, by using this method we apply heat precisely at the location required. Briefly, this type of heating makes use of the physical phenomena that when alternating current flows through a conductor, a symmetrical electromagnetic field is established around the conductor. When the conductor assumes the shape of a coil, the electromagnetic field is intensified. The intensity of the field is dependent upon the magnitude of the current passing through the conductor and the number of turns in the coil.
  • an electrically conductive material as for instance a stainless steel tooth bracket
  • current is caused to flow through the bracket.
  • the magnitude of the induced current is determined by the intensity of the magnetic field and by the spacing of the bracket with respect to the coil.
  • the resistance of the bracket to the induced current causes the surface of the bracket to heat up.
  • This heating is therefore referred to as induction heating.
  • This type of heating is especially useful in the practice of my method since the temperature of the bracket can be accurately controlled and the heat generated can be confined to the surface of the bracket. While I do prefer to use induction heating it would, of course, be possible to practice my process by using resistance heating of the bracket or even to heat the bracket by means of a laser beam.
  • An induction heating coil that we have used is one made from a flat, spiral wound inch outside diameter copper tube.
  • the coil consisted of 3 coils and was water cooled.
  • An RF current was induced in the spiral oscillating at 1.3 megacycles. In practice similar equipment would cost less than the inventory of bands currently required.
  • brackets to teeth in the following manner.
  • the brackets that were used were made from stainless steel. Their bases ranged in size from 3 /2 mm. wide and 5 mm. long to 7 /2 mm. wide and 5 mm long. They were approximately 5 thousandths of an inch thick.
  • Surlyn A 1601 film strips having a thickness of between 1 and 3 mils were cut so as to provide pieces having the approximate size of the bracket bases.
  • the bases of the brackets were placed against the teeth with the Surlyn film strips placed there between.
  • the induction heating coil described above was used to heat the surface of the brackets to about 500 F. At this temperature the film strips melted. The heating was discontinued and the brackets were then allowed to cool while in pressure contact with the teeth. Upon solidifying, the film secured the bracket to the tooth. The bond between the brackets and the teeth was such that arch wires could have been secured thereto in conventional fashion.
  • a method for securing a bracket to a tooth which comprises:
  • an ionic copolymer of an a-olcfin having the formula RCH CH where R is a radical selected from the class consisting of hydrogen and alkyl radicals from 1 to 8 carbon atoms and a,b-ethylenically unsaturated carboxylic acids having from 3 to 8 carbon atoms, said copolymers having from 10% to 90% of the carboxylic acid groups onized by neutralization with metal ions uniformly distributed throughout the copolymer, said copolymer being a direct copolymer of the a-olefin and the unsaturated carboxylic acid in which the carboxylic acid groups are randomly distributed over all molecules and in which (1) the a-olefin content of the copolymer is at least 50 mol percent, based on the a-olefin-acid copolymer, (2) the unsaturated carboxylic acid content of the copolymer is from 0.2 to 25 mol percent, based on the a-olefin
  • an ionic copolymer of ethylene and an a,B-unsaturated monocarboxylic acid having from 3 to 8 carbon atoms said copolymers having from to of the carboxylic acid groups ionized by neutralization with metal ions having an ionized valence of from one to three inclusive uniformly distributed throughout the copolymer, said metal ions being selected from the group consisting of uncomplexed and complexed metal ions, said copolymer being a direct copolymer of ethylene and the unsaturated monocarboxylic acid in which the carboxylic acid groups are randomly distributed over all molecules and in which the ethylene content of the copolymer is from to 99 mol percent, based on the ethyleneacid copolymer, and the unsaturated monocarboxylic acid content of the copolymer is a complementary amount from 10 to 1 mol percent, based on the ethylene-acid copolymer, said ionic copolymers having solid state properties

Description

United States Patent O 3,490,145 ORTHODONTIC METHOD George 0. Charrier, 3306 Epworth Ave. 45266, and John W. Fischer, 4966 Glenway Ave. 45238, both of Cincinnati, Ohio No Drawing. Filed Nov. 14, 1968, Ser. No. 775,948 Int. Cl. A61c 7/00 US. Cl. 32-14 6 Claims ABSTRACT OF THE DISCLOSURE This invention relates to a method of securing brackets to teeth and more particularly, to a method whereby the brackets are secured directly to the teeth rather than to tooth bands, by using an ionic hydrocarbon copolymer film. The brackets can be easily removed when desired by merely remelting the ionic hydrocarbon copolymer.
BACKGROUND OF THE INVENTION Orthodontia is the branch of dentistry that is concerned with the straightening of teeth. In practice, straightening of teeth is frequently accomplished through the use of arch wires that are secured to orthodontic devices that are in turn secured to the teeth. By properly tensioning the arch wires the crooked teeth can be straightened. The conventional orthodontic method includes the step of encircling selected teeth with bands. Such tooth bands have been frequently made from stainless steel. To the tooth bands are secured small brackets to which the arch wire is connected.
The stainless steel tooth bands have given rise to several problems. First of all, a supply of various size bands must be kept on hand to suit particular requirements. The requisite supply is oftentimes very large, sometimes consisting of several thousand dollars worth of bands. Secondly, the bands provide a site for decay to form. Thirdly, the bands hamper efiicient cleaning of the teeth. And lastly, the bands require a certain amount of space between the teeth, space that later must be filled in.
We are familiar with several prior orthodontic methods that have attempted to eliminate tooth bands. In such methods organic adhesives, such as epoxy resins, have been used to secure the brackets to the teeth. However, these methods, while eliminating the use of tooth bands and their attendant problems, have also presented several new problems.
OBJECTIVES OF THE INVENTION It has been the objective of this invention to provide a method for rapidly securing brackets directly to teeth whereby an almost instantaneous bond between tooth and bracket is obtained. It has also been an objective of this invention to provide such a method where the brackets can be easily removed from the teeth. Another objective has been to provide such a method that is easy to practice and that provides a tenacious bond between the bracket and the tooth.
SUMMARY OF THE INVENTION We have found that a bracket can be secured directly to a tooth through the use of a thin film of an ionic hydrocarbon copolymer that is interposed between the tooth and bracket, melted and allowed to solidify. By using our method the bands and their attendant problems are altogether eliminated. Brackets can be rapidly secured to teeth and there is, practically speaking, no setting time required for the ionic hydrocarbon copolymer. Brackets so secured withstand the stresses and forces to which they are normally subjected. The brackets can be easily removed when desired by merely remelting the ionic hydrocarbon copolymer. With this method the time and cost of orthodontia are greatly reduced.
In practicing our orthodontic method we use as the bonding medium between the tooth and bracket, a plastic film formed from a class of hydrocarbon polymers commonly referred to as ionic hydrocarbon polymers, so named because they contain ionic crosslinks. The polymers and the specific methods by which they may be prepared are fully described and claimed in U.S. Patent No. 3,264; 272, the disclosure of which is incorporated by reference herein. A polymer is manufactured by the assignee of said patent, the E. I. du Pont de Nemours & Co., Inc., and sold under the trademark Surlyn A 1601. This polymer is well adapted for use in my process since it is non-toxic and can be safely used in the mouth.
To melt the ionic hydrocarbon polymer after it has been positioned between the tooth and bracket we prefer to heat the surface of the bracket by means of induction heating. The principles of induction heating are very well known. It is the characteristic of induction heating that only the metal surface is heated. Therefore, by using this method we apply heat precisely at the location required. Briefly, this type of heating makes use of the physical phenomena that when alternating current flows through a conductor, a symmetrical electromagnetic field is established around the conductor. When the conductor assumes the shape of a coil, the electromagnetic field is intensified. The intensity of the field is dependent upon the magnitude of the current passing through the conductor and the number of turns in the coil. If an electrically conductive material, as for instance a stainless steel tooth bracket, is placed within the coil, then current is caused to flow through the bracket. The magnitude of the induced current is determined by the intensity of the magnetic field and by the spacing of the bracket with respect to the coil. The resistance of the bracket to the induced current causes the surface of the bracket to heat up. This heating is therefore referred to as induction heating. This type of heating is especially useful in the practice of my method since the temperature of the bracket can be accurately controlled and the heat generated can be confined to the surface of the bracket. While I do prefer to use induction heating it would, of course, be possible to practice my process by using resistance heating of the bracket or even to heat the bracket by means of a laser beam.
A discussion of induction heating may be found at pages 352 and 353 of The Encyclopedia of Electronics published in 1962 by Reinhold Publishing Co. There may also be found there several equations that may be helpful in determining the magnitude of the current needed etc. which are, of course, known in this art.
An induction heating coil that we have used is one made from a flat, spiral wound inch outside diameter copper tube. The coil consisted of 3 coils and was water cooled. An RF current was induced in the spiral oscillating at 1.3 megacycles. In practice similar equipment would cost less than the inventory of bands currently required.
PREFERRED EMBODIMENT In practice I have secured brackets to teeth in the following manner. The brackets that were used were made from stainless steel. Their bases ranged in size from 3 /2 mm. wide and 5 mm. long to 7 /2 mm. wide and 5 mm long. They were approximately 5 thousandths of an inch thick. Surlyn A 1601 film strips having a thickness of between 1 and 3 mils were cut so as to provide pieces having the approximate size of the bracket bases. The bases of the brackets were placed against the teeth with the Surlyn film strips placed there between. The induction heating coil described above was used to heat the surface of the brackets to about 500 F. At this temperature the film strips melted. The heating was discontinued and the brackets were then allowed to cool while in pressure contact with the teeth. Upon solidifying, the film secured the bracket to the tooth. The bond between the brackets and the teeth was such that arch wires could have been secured thereto in conventional fashion.
Having thus described our invention we claim: 1. A method for securing a bracket to a tooth which comprises:
interposing between said tooth and said bracket an ionic copolymer of an a-olcfin having the formula RCH=CH where R is a radical selected from the class consisting of hydrogen and alkyl radicals from 1 to 8 carbon atoms and a,b-ethylenically unsaturated carboxylic acids having from 3 to 8 carbon atoms, said copolymers having from 10% to 90% of the carboxylic acid groups onized by neutralization with metal ions uniformly distributed throughout the copolymer, said copolymer being a direct copolymer of the a-olefin and the unsaturated carboxylic acid in which the carboxylic acid groups are randomly distributed over all molecules and in which (1) the a-olefin content of the copolymer is at least 50 mol percent, based on the a-olefin-acid copolymer, (2) the unsaturated carboxylic acid content of the copolymer is from 0.2 to 25 mol percent, based on the a-olefin-acid copolymer, and (3) any other monomer component optionally copolymerizcd in said copolymer is monoethylenically unsaturated, and said metal ions having an ionized valence of from one to three inclusive when the unsaturated acid is a monocarboxylic acid and an ionized valence of one when the unsaturated acid is a dicarboxylic acid and said metal ions being selected from the group consisting of uncomplexed and complexed metal ions, said ionic copolymers having solid state properties characteristic of crosslinked polymers and melt-fabricability properties characteristic of uncrosslinked, thermoplastic polymers. heating said ionic copolymer to a temperature sufiicient to melt it, holding said bracket against said tooth, and allowing said ionic copolymer to cool and solidify. 2. A method of securing a bracket to a tooth that comprises:
interposing between said tooth and said bracket an ionic copolymer of ethylene and an a,B-unsaturated monocarboxylic acid having from 3 to 8 carbon atoms, said copolymers having from to of the carboxylic acid groups ionized by neutralization with metal ions having an ionized valence of from one to three inclusive uniformly distributed throughout the copolymer, said metal ions being selected from the group consisting of uncomplexed and complexed metal ions, said copolymer being a direct copolymer of ethylene and the unsaturated monocarboxylic acid in which the carboxylic acid groups are randomly distributed over all molecules and in which the ethylene content of the copolymer is from to 99 mol percent, based on the ethyleneacid copolymer, and the unsaturated monocarboxylic acid content of the copolymer is a complementary amount from 10 to 1 mol percent, based on the ethylene-acid copolymer, said ionic copolymers having solid state properties characteristic of crosslinked polymers and melt-fabricability properties characteristic of uncrosslinked, thermoplastic polymers,
heating said bracket to a temperature sufiicient to melt said ionic copolymer,
holding said bracket against said tooth,
discontinuing said heating, and
allowing said ionic copolymer to solidify.
3. The method of claim 2 wherein said bracket is heated by induction heating to a temperature of approximately 500 F.
4. The method of claim 3 wherein said ionic copolymer is in the form of a film.
5. The method of claim 4 wherein said ionic copolymer film has a thickness of about 1 to 3 mils.
6. The method of claim 2 wherein said olefin is ethylene and the a,B-ethylenically unsaturated carboxylic acid is monocarboxylic.
References Cited UNITED STATES PATENTS 3,345,745 10/1967 Miiller ROBERT PESHOCK, Primary Examiner
US775948A 1968-11-14 1968-11-14 Orthodontic method Expired - Lifetime US3490145A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77594868A 1968-11-14 1968-11-14

Publications (1)

Publication Number Publication Date
US3490145A true US3490145A (en) 1970-01-20

Family

ID=25106028

Family Applications (1)

Application Number Title Priority Date Filing Date
US775948A Expired - Lifetime US3490145A (en) 1968-11-14 1968-11-14 Orthodontic method

Country Status (1)

Country Link
US (1) US3490145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155164A (en) * 1977-01-21 1979-05-22 White Velton C Apparatus for applying dental brace brackets
US4204325A (en) * 1978-05-12 1980-05-27 Arroyo Research and Consulting Company Orthodontic bracket bonding system
US20100185215A1 (en) * 2005-04-14 2010-07-22 Ethicon Endo-Surgery, Inc. Surgical clip applier ratchet mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345745A (en) * 1964-02-20 1967-10-10 Muller Gerhard Orthodontic fastening means and method of applying the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345745A (en) * 1964-02-20 1967-10-10 Muller Gerhard Orthodontic fastening means and method of applying the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155164A (en) * 1977-01-21 1979-05-22 White Velton C Apparatus for applying dental brace brackets
US4204325A (en) * 1978-05-12 1980-05-27 Arroyo Research and Consulting Company Orthodontic bracket bonding system
US20100185215A1 (en) * 2005-04-14 2010-07-22 Ethicon Endo-Surgery, Inc. Surgical clip applier ratchet mechanism

Similar Documents

Publication Publication Date Title
US3490145A (en) Orthodontic method
DE69422087T2 (en) Semiconductor electric radiator and process for its manufacture
GB9400844D0 (en) Dental bonding
DE2916349C2 (en) Method for producing one or more contact connections between an enamel-insulated wire and one or more contact parts of an electrical component
JP2000119472A5 (en)
ES451166A1 (en) Composition and method for dispersing high molecular weight flocculant polymers in water
US3452436A (en) Orthodontic appliance and method
DE734805T1 (en) Device and method for producing wire electrodes for spark-erosive cutting and wire produced thereafter
US4249060A (en) Method for intraorally welding dental appliances
US3781513A (en) Fusion braid weld
JPS5229848A (en) Vinyl chloride resin composition
US449258A (en) Method of and apparatus for electric soldering
EP0452881A3 (en) Method for incorporating metal salts of alpha,beta-ethylenically unsaturated carboxylic acids in polymers
JPS6455227A (en) Bristle setting process of metallic pile
US3485993A (en) Method of resistance soldering attachment wires to orthodontic arch wires
SU623682A1 (en) Resistance spot-welding method
JPS629150B2 (en)
SU1611945A1 (en) Inductor for continuous surface heat treatment of ferromagnetic steel
JPS5968334A (en) Production of polyamide resin molding
SU1514525A1 (en) Method of electric discharge machining
SE406285B (en) KIT AND DEVICE FOR REGULATION OF LIGHT BAG WELDING
US4569882A (en) Thermoplastic synthetic resin-covered metal wire
JPS5712531A (en) Wire bonding method
ATE224759T1 (en) METHOD AND DEVICE FOR CONCENTRATING FLUID MIXTURES BY OMIC HEATING
SU384902A1 (en) DEVICE FOR THERMAL TREATMENT OF WELDED JOINTS HORIZONTALLY POSITIONED