US3501201A - Method of producing shale oil from a subterranean oil shale formation - Google Patents

Method of producing shale oil from a subterranean oil shale formation Download PDF

Info

Publication number
US3501201A
US3501201A US771961A US3501201DA US3501201A US 3501201 A US3501201 A US 3501201A US 771961 A US771961 A US 771961A US 3501201D A US3501201D A US 3501201DA US 3501201 A US3501201 A US 3501201A
Authority
US
United States
Prior art keywords
fluid
well
fracture
oil
boreholes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US771961A
Inventor
Philip J Closmann
Ronald P Nordgren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Application granted granted Critical
Publication of US3501201A publication Critical patent/US3501201A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/281Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent using heat

Definitions

  • Claims ansrascr or run mscLos A method of recovering shale oil from a normally impermeable subterranean oil shale formation by extending at least a pair of well boreholes into at least one layer of water-soluble minerals disposed in the formation and forming generally vertical fractures extending along generally parallel paths from each of the boreholes. Hot fluid is injected throughat least one of the-well boreholes until flow into at least oneof the fractures therein is thermally closed by the swelling-shut of the walls of the fracture.
  • Fluidin at least one borehole in which at least one fracture has been thermally closed is pressurized until at least one new fracture is formed and the steps of injecting hot fluid and the pressurizing of fluid are repeated at successively higher temperatures and pressures until the resultant fractures form a channel interconnecting the well boreholes through which fluid can flow from'one well borehole to another.
  • the walls of the fractures interconnecting the boreholes are leached at a controlled temperature until channels provided between the well boreholes are capable of remaining open while hot fluid is circulated between the boreholes.
  • a leaching fluid is injected into the well-interconnected fracture channel into'a fracture and fluid is produced from another of the boreholes opening into the fracture channel, with the fluid'being injected at a temperature below that at which the last fracture was opened into the well borehole into which the circulating fluid is injected but above that at which the last fracture was thermally closed within the well borehole into which the circulating fiuidis injected so that most of the'injected fluid is conveyed through the channels interconnecting the boreholes.
  • This invention relates to a method for recovering shale oil from a normally impermeable oil shale formation normally subject to vertical fracturing and having at least one layerof water-solublp minerals disposed therein.
  • shale oil is produced from an oil shale formassh-.201
  • Fluid in at least one borehole in hich at least one fracture has been thermally closed is ressurized until at least one new fracture is formed and re steps of injecting hot fluid and the pressurizing of fluid re repeated at successively higher temperatures and presrres until the resultant fractures form a channel inter-' onnecting the well boreholes, through which channel uid can flow from one borehole to another.
  • the walls of re fracture interconnecting the boreholes are leached at controlled temperature until channels provided between he well boreholes are capable of remaining open while lot fluid is circulated between the broeholes.
  • the path when such a flow path is opened between a pair of wells, the path may be kept open by lowering the temperature of the fluid pumped through the path to a temperature that is less than that at which the last fracture was formed but greater than that a which the next pre-- ceding fracture was thermally closed.
  • the effective permeability of the flow path between the well boreholes is then increased by circulating through it a fluid that removes solid components from the walls of the channels, the flow path is converted to one through which the flow of fluid from one well borehole to the other remains effieient at whatever temperature is subsequently imparted to the fluid.
  • the attainment of a significant increase in the effective permeability of such a flow path may be 'detected by an increase in the rate of flow in response to the injection pressure that was initially required to displace fluid from one well borehole to another. If the temperature of the circulating fluid is too high relative to the rate which permeability is being increased, this may be detected by a reduction in the flow rate. If the temperature is too low relative to the rate at which the permeability is being increased, this may be detected by a decrease in the rateof outflow from the production well borehole without. a corresponding decrease in rate of inflow into the injection well borehole. Where'the temperature is too high, the thermal closing of the last-opened fracture throttles the flow and where the temperatures is too low, a thermal opening of previously closed fractures diverts the flow of the injected fluid.
  • FIGURE 1 is a vertical sectional view of a subterranean oil shale formation in accordance with the teaching of my invention
  • FIGURE 2 is a top plan diagrammatic view of a preferred arrangement of well boreholes in accordance with the teachings of my invention.
  • FIGURE 3 is a vertical sectional view of a well borehole extending into the oil shale formation of FIGURE 1;
  • FIGURES 4 through 6 are vertical sectional views of preferred arrangements for producing shale oil from the well borehole formation of FIGURES 2;'and
  • FIGURE 7 is a vertical sectional view of an alternate method of treating the oil shale formation of FIGURES 4 through 6.
  • an oil shale formation 11 having at least one minerals such as nahcolite layers 12 and 12 disposed therein.
  • the distance D between such layers may be on the order of 300 feet or so.
  • Such layers 12 and 13 may, again for example, be on the order of two to three feet thick and underly a large portion of oil shale formation 11.
  • Layers 12 and 13 may be utilized in order to form in-' tercommunication between at least a pair of well boreholes extending into a subterranean earth formation.
  • a pattern of five well'boreholes such as production well boreholes 14 through 17 and centrally located injectionwell borehole 18, may be drilled by means well known in the art'into shil formation 11 to points communicating with layers 12. and 13 (FIGURE 3).
  • Injection well borehole 18 may be fractured hydraulically so as to develop a generally vertical fracture 19 (FIGURE 2).
  • Such fractures may be formed such as by applying a fluid pressure above the breakdown pressure of oil shale formation 11.
  • Well borehole 14 may then be hydraulically fractured so as to develop a generally vertical fracture 20 generally parallel to fracture 19.
  • Hot fluid such as hot water, steam, or hot gas is next injected down well borehole 14 causing the fracture 20 to close and a new generally vertical fracture to develop in some other direction, as for example, fracture 2 1.
  • This procedure may be continued in well borehole 14 until a generally vertical fracture, such as fracture 22, is formed which communicates with the fracture 19 extending from central injection well borehole 18 thus inter-connecting well boreholes 14 and 18.
  • These steps are carried out at each well borehole 15, 16 and 17 until all the well hereholes develop generally vertical fractures communicating with the centrally located fracture 19 extending from well borehole 18, as for example, generally vertical fractures 23, 24 and 25, respectively.
  • the water-soluble mineral layers 12 and 13 are partially dissolved or leached out successively at the four corners of the well borehole pattern of FIGURE 2 leaving substantially void spaces therein.
  • This may be accomplished by lowering a flexible tubing 26 down tubing string 27 disposed in well borehole 14, for example, (FIG- URE 3).
  • Well borehole 14 may be cased as at casing 28 with casing 28 cemented therein as is well known in the art.
  • the water-soluble minerals in layer 12 are then dissolved by jet action from an aqueous leaching or solution-mining liquid.
  • the aqueous liquid may comprise water and/or steam or aqueous solutions of acid or acidforming materials and is circulated at pressures either above or below the overburden pressure.
  • the circulating aqueous liquid dissolves the water-soluble minerals in layer 12 and mineral by-products thereof are recovered from the fluid flowing out of well borehole 14 by conventional evaporation and/or precipitation procedures.
  • Layer 13 may be treated in the same manner with well boreholes 15, 16 and 17 also treated accordingly.
  • the vertical fracture 20 already developed in well borehole 14 may be used to inject a water-soluble mineral fluid into layers 12 and 13.
  • the leached void spaces or zones (indicated by the outlined areas of FIGURE 2) of layers 12 and 13 tend to be relatively narrow channels, however, following more or less the line of the fractures. These channels are widened by a continuation of the leaching action, and the rate of the widening can be enhanced by an intermittent flow and/or alternately reversed-direction flow of the leaching fluid.
  • Hot fluid such as hot water, steam or hot gas
  • Hot fluid is next injected down the corner well boreholes 14 through 17 to flow through fractures 22 through 25 and out of injection well borehole 18.
  • such fluid may be either injected down well borehole 18 to flow through the fractures and out of the corner well boreholes or a combination of both procedures.
  • Such hot fluid flows through the interconnecting fractures and void spaces, causing the oil shale contacted therein to be heated and to expand into the void spaces developed in the water-soluble mineral layers 12 and 13.
  • the channels formed by the fractures and void spaces may be maintained permeable long enough to permit significant heating and thermal expansion of the oil shale into the void spaces formed by the leaching layers 12 and 13.
  • spalling may take place into the void spaces due to expansion and/or pyrolysis of the oil shale near the free spaces of the void spaces.
  • the thermal expansion of the oil shale permits the development of many horizontal fissures 29 (FIGURE 4) along the bedding planes of oil shale formation 11.
  • hot fluid is injected down tubing string 27 disposed in well borehole 14 and flows through perforations 30 therein, through the vertical fracture 22 formed between well borehole 14 and 18, through perforations 31 and out of well borehole 18.
  • All the well boreholes may include conventional equipment for injecting. heating, and separating such fluids as is well known in the art.
  • Well borehole 18 may also be cased at casing 32.
  • heating phase may be replaced by a production phase in which hot recovery fluid may be injected. or an underground combustion process conducted, as is well known in the art. If bypassing at the void space is too great. the injected reacting fluids may be injected over only limited intervals away from the permeable void channels. Alternatively, as illustrated in FIGURE 5 wherein like elements equal like parts of FIGURE 4, the reacting fluids may be injected through perforations 33 in .well borehole 14 and into the bottom layer 13 and allowed to move upwardly through the oil shale to be produced at the top of the oil shale out through perforations 34 in well borehole 18.
  • both top and bottom voids l2 and 13 may be partially filled by a material such as coarse formation 11 between the well boreholes as illustrated in FIGURES 5 and 6.
  • the composition of the reaction fluid is preferably adjusted to the extent required to circulate fluid that removes solid materials from the walls of the interconnecting channels without a significant reduction in the average rate of flowbetween the well boreholes so that the fluid flowing through the interconnecting channels, as for example fractures 19 and 22 and leached-out layers 12 and 13, is increased relative to fluid flowing between well boreholes 14 and 18.
  • Solid-material removing components may be incorporated into the reacting fluid being circulated through the interconnecting channels without interrupting the flow to 'an extent that permits the channels to close and reseal.
  • Such components may comprise hot benzene, steam, or other solvent. or nitric acid, of a lower temperature than the hot fracturing fluid.
  • Nitric acid has the advantage of reacting with the organic matter as well as the carbonate present in the subterranean earth formation.
  • the injection of such a reacting fluid leaches out part of the kerogen adjoining the faces of the interconnecting channels.
  • the injection at a lower temperature and at substantially the same injection pressure permits the channels to open slightly for better passage of the fluids.
  • the temperature of the solid-material-removing fluid may be increased as the permeability of the interconnecting channels, fractures 19 and 22 and layers. 12 and .13, for example, is increased until the circulating fluid becomes hot enough to liquify the oil shale components of the subterranean oil shale formation 11.
  • acid may be injected to react with part of the rock matrix along the fracture walls. This acid injection renders the channels even more permeable.
  • an underground combustion process as discussed hereinabove and is well known in the art, which develops considerably higher temperatures, may be undertaken.
  • the steps of leaching out part of the kerogen and the rock generally make closure of the fracture paths during combustion very unlikely. In this manner, it is possible to treat a substantial part of the formation by underground combustion.
  • the method of claim 1 including the step of adjusting the composition of said circulating hot fluid to the extent required to circulate fluid that removed solid materials from the walls of the channels interconnecting said well boreholes without a significant reduction in the average rate of flow between the well boreholes so that the ef fective permeability of fractures interconnecting said well boreholes is increased relative to that of other fractures.
  • the method of claim 2 including the step of increasing the temperature of the circulating hot fluid as the permeability of said well-interconnecting fracture channel increases to the extent required to circulate fluid that is hot enough to liquefy the oil shale components of the solid materials removed from the Walls of said fracture channel.
  • the method of claim 3 including the step of recovering hydrocarbons from the oil shale components of the circulating fluid.
  • the method of claim 3 including the step of initiating an underground combustion within said subterranean earth formation.
  • step of adjusting the composition of said circulating fluid includes the step of incorporating aqueous acidic components into said circulating fluid.
  • the method of claim 1 including the step of recovering water-soluble mineral components from outflowing portions of said circulating aqueous fluid.
  • step of circulating said hot fluid includes circulating said hot fluid down said plurality of well boreholes, through said well-interconnecting fracture channel and out said central well borehole.
  • step of circulating said hot fluid includes circulating hot fluid down said central well borehole, through said well-interconnecting fracture channel and out said plurality of well boreholes.
  • step of circulating said aqueous fluid includes the step of injecting said aqueous fluid down at least one of said well boreholes through at least one mineral layer disposed at substantially the bottom of said oil shale formation, upwardly through said fracture channel, through at least one mineral layer disposed at substantially to top of said oil shale formation and out at least another of said well boreholes.
  • step of circulating said aqueous fluid includes the step of injecting said circulating fluid down at least one of said well boreholes, through at least one mineral layer disposed at substantially the top of said oil shale formation, downwardly through said fracture channel, through at least one mineral layer disposed at substantially the bottom of said oil shale formation and out at least another of said well boreholes.
  • step of extending at least a pair of well boreholes into said oil shale formation includes the steps of:

Description

March 17, 1970 P. J. CLOSMAl NN ETAL 3,501,201
METHOD OF PRODUCING SHALE OIL FROM A SUBTERRANEAN OIL SHALE FORMATION Filed Oct. 30, 1968 3 Sheets-Sheet 1 INVENTORSI P. J. CLOSMANN R. P. NORDGREN BYI w THEIR ATTORNEY March 17, 1970 J CLOSMANN ETAL 3,501,201
METHOD OF PRODUCING SHALE OIL FROM A SUBTERRANEAN OIL SHALE FORMATION Filed Oct. 30, 1968 3 Sheets-Sheet 2 INVENTORSZ P. J. CLOSMANN FIG. 4 R. P. NORDGREN BYI M THEIR ATTORNEY March 17, 1970 R CLOSMANN ETAL 3,501,20
METHOD OF PRODUCING SHALE OIL FROM A SUBTERRANEAN OIL SHALE FORMATION Filed Oct. 30, 1968 3 Sheets-Sheet 5 INVENTORSI P. J. CLOSMANN FIG 6 R. P. NORDGREN THElR ATTORNEY Int. Cl. E211) 43/24, 43/26, 43/28 U.S. Cl. 299-4 13 Claims ansrascr or run mscLos A method of recovering shale oil from a normally impermeable subterranean oil shale formation by extending at least a pair of well boreholes into at least one layer of water-soluble minerals disposed in the formation and forming generally vertical fractures extending along generally parallel paths from each of the boreholes. Hot fluid is injected throughat least one of the-well boreholes until flow into at least oneof the fractures therein is thermally closed by the swelling-shut of the walls of the fracture. Fluidin at least one borehole in which at least one fracture has been thermally closed is pressurized until at least one new fracture is formed and the steps of injecting hot fluid and the pressurizing of fluid are repeated at successively higher temperatures and pressures until the resultant fractures form a channel interconnecting the well boreholes through which fluid can flow from'one well borehole to another. The walls of the fractures interconnecting the boreholes are leached at a controlled temperature until channels provided between the well boreholes are capable of remaining open while hot fluid is circulated between the boreholes. Finally, a leaching fluid is injected into the well-interconnected fracture channel into'a fracture and fluid is produced from another of the boreholes opening into the fracture channel, with the fluid'being injected at a temperature below that at which the last fracture was opened into the well borehole into which the circulating fluid is injected but above that at which the last fracture was thermally closed within the well borehole into which the circulating fiuidis injected so that most of the'injected fluid is conveyed through the channels interconnecting the boreholes.
BACKGROUND or THE INVENTION Field of the invention This invention relates to a method for recovering shale oil from a normally impermeable oil shale formation normally subject to vertical fracturing and having at least one layerof water-solublp minerals disposed therein.
Description of the prior art It isknownthat it is extremely dit'ficult to recover liquifiable components from deposits of various subterranean impermeable formations such as oil shale, coral beds,v deposits of cinnabar, etc. under conditions in which thedeposits are normally present in these formations. Various proposals have been made, such as described in a U.S. Patent No. 3,284,281, to recover oil from oil shale.
Therein shale oil. is produced from an oil shale formassh-.201
Patented Mar. 17, 1970 In certain situations, particularly at relatively shallow depths, a heating procedure can be utilized to cause the swelling tendencies of the earth formations to create horizontal stresses that exceed the vertical stresses. By such a procedure, pairs of wells can be interconnected by means of a horizontal fracture that can be kept open by hydraulically lifting or compressing the overlying earth formations. Such a procedure, in which the heating is accomplished by injecting a liquid while maintaining a specified rate of fluid flow and temperature increase, is described in a copending applicationto Matthews et al.,
Ser. No. 578,533, filed Sept. 12, 1966, now Patent No. 3,455,391.
However, normally, horizontal fractures cannot feasibly be formed by thermally increasing the horizontal stresses. Generally, heating oil shale formations causes the vertical stresses to increase at a rate comparable to that at which the horizontal stresses are increased and this prevents the formation of a horizontal fracture. Although communication between Wells might be established by repetitively heating and fracturing at successively higher pressures and temperatures, as proposed in the aforementioned U.S. patent, this would result in excessively high operating costs and the production and maintenance of higher pressures and temperatures than are actually required. Y
When the regional tectonics are such that verticaffracturesform and propagate" along generally, parallel paths when fluid is injected into adjacent wells at about the normal subsurface temperature at pressures and rates su'flicient to form and extend the fractures, the use of the successively higher pressures and temperatures is apt to form a succession of numerousdiiferentlyoriented vertical fractures at pressures whichdonot become high enoughto produce a horizontal fractureHIhe pressure necessary to form a horizontal fracture is generally about equal to or slightly less than one p.s.i. per foot of depth.
. and extension of a subsequent fracture from the second well is apt to cause the fractures to intersect so that fluidcan flow from one well to the other. o'wever, if the fluid pumped through such intersecting .iactures 'is heatedg at 'oriabove the temperature at which' the last fracture was formed, the walls of the fracture will swell and the flow path will close. I
Recent geological investigations have disclosed the presence of substantial amounts of water-soluble minerals (such as alkali or a lens of halite and nahcolitetinbertain subsurface oil shaleformations suchas in the'Greeu River formation in the Colorado area ofthe United States: Such minerals have been mined commercially in the past by solution-mining by pumping a liquid solvent, 'e.g., aqueous acidic solutions, into the vein orfbedin which the mineral is found and returning e saturated mined solution preferable as.a mineral-con aining solution to the surface of the earth and extracting the minerals from the solution by any suitable means. For example, it has recentlybeen found that layers of nahcolite, each two to three feet deep, underlie a large portion of the Green River Formationot'the liceanee Creek Basin in Colorado; In addition to the value of nahcolite as a mineral, these layers provide a means of contacting a significant portion of the oil'shale deposit.
SUMMARY OF THE INvENHON it is an object of this invention to provide-a of recovering shale oil from a normally impermeable oil shale formation by extending generally vertical fractures tween wells extending into water-soluble mineral layers posed in the formation.
It is a further object of this invention to provide a methof interconnecting wells extending into normally imrrneable oil shale formations by forming generally veral fractures between such wells.
it is a still further object of this invention to interconct wells extending into oil shale formations by means generally vertical fractures which remain open so that lid flow remains unrestricted between such wells.
These objects are preferably attained by forming genally vertical fractures extending along generally parallel rths from at least a pair of well boreholes extending into normally impermeable subterranean oil shaleformain. Hot fluid is injected through at least one of the well ireholes until flow into at least one of the fractures .erein is thermally closed by the swelling-shut of the alls of the fracture. Fluid in at least one borehole in hich at least one fracture has been thermally closed is ressurized until at least one new fracture is formed and re steps of injecting hot fluid and the pressurizing of fluid re repeated at successively higher temperatures and presrres until the resultant fractures form a channel inter-' onnecting the well boreholes, through which channel uid can flow from one borehole to another. The walls of re fracture interconnecting the boreholes are leached at controlled temperature until channels provided between he well boreholes are capable of remaining open while lot fluid is circulated between the broeholes. This is acomplished by injecting a leaching fluid into one of the oreholes opening into the well-interconnecting fracture :hannel and producing fluid from another of the boreholes rpening into the fracture channel, with the fluid being njected at a temperature below that at which the last racture was opened into the well borehole into which the :irculaing fluid is injected but above that at which the sat fracture was thermally closed within the well boreiole into which the circulating fluid is injected so that most of the injected fluid is conveyed through the channels interconnecting the boreholes.
Thus, when such a flow path is opened between a pair of wells, the path may be kept open by lowering the temperature of the fluid pumped through the path to a temperature that is less than that at which the last fracture was formed but greater than that a which the next pre-- ceding fracture was thermally closed. In addition, if the effective permeability of the flow path between the well boreholes is then increased by circulating through it a fluid that removes solid components from the walls of the channels, the flow path is converted to one through which the flow of fluid from one well borehole to the other remains effieient at whatever temperature is subsequently imparted to the fluid.
The attainment of a significant increase in the effective permeability of such a flow path may be 'detected by an increase in the rate of flow in response to the injection pressure that was initially required to displace fluid from one well borehole to another. If the temperature of the circulating fluid is too high relative to the rate which permeability is being increased, this may be detected by a reduction in the flow rate. If the temperature is too low relative to the rate at which the permeability is being increased, this may be detected by a decrease in the rateof outflow from the production well borehole without. a corresponding decrease in rate of inflow into the injection well borehole. Where'the temperature is too high, the thermal closing of the last-opened fracture throttles the flow and where the temperatures is too low, a thermal opening of previously closed fractures diverts the flow of the injected fluid.
BRIEF DESCRIPTION OF THE DRAWING FIGURE 1 is a vertical sectional view of a subterranean oil shale formation in accordance with the teaching of my invention;
FIGURE 2 is a top plan diagrammatic view of a preferred arrangement of well boreholes in accordance with the teachings of my invention.
FIGURE 3 is a vertical sectional view of a well borehole extending into the oil shale formation of FIGURE 1;
FIGURES 4 through 6 are vertical sectional views of preferred arrangements for producing shale oil from the well borehole formation of FIGURES 2;'and
FIGURE 7 is a vertical sectional view of an alternate method of treating the oil shale formation of FIGURES 4 through 6.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIGURE 1, an oil shale formation 11 is shown having at least one minerals such as nahcolite layers 12 and 12 disposed therein. The distance D between such layers, for example, may be on the order of 300 feet or so. Such layers 12 and 13 may, again for example, be on the order of two to three feet thick and underly a large portion of oil shale formation 11.
Layers 12 and 13 may be utilized in order to form in-' tercommunication between at least a pair of well boreholes extending into a subterranean earth formation. For example, as illustrated in FIGURE 2, a pattern of five well'boreholes, such as production well boreholes 14 through 17 and centrally located injectionwell borehole 18, may be drilled by means well known in the art'into shil formation 11 to points communicating with layers 12. and 13 (FIGURE 3). Injection well borehole 18 may be fractured hydraulically so as to develop a generally vertical fracture 19 (FIGURE 2).
Such fractures may be formed such as by applying a fluid pressure above the breakdown pressure of oil shale formation 11. Well borehole 14 may then be hydraulically fractured so as to develop a generally vertical fracture 20 generally parallel to fracture 19. Hot fluid, such as hot water, steam, or hot gas is next injected down well borehole 14 causing the fracture 20 to close and a new generally vertical fracture to develop in some other direction, as for example, fracture 2 1. This procedure may be continued in well borehole 14 until a generally vertical fracture, such as fracture 22, is formed which communicates with the fracture 19 extending from central injection well borehole 18 thus inter-connecting well boreholes 14 and 18. These steps are carried out at each well borehole 15, 16 and 17 until all the well hereholes develop generally vertical fractures communicating with the centrally located fracture 19 extending from well borehole 18, as for example, generally vertical fractures 23, 24 and 25, respectively.
Next, the water-soluble mineral layers 12 and 13 are partially dissolved or leached out successively at the four corners of the well borehole pattern of FIGURE 2 leaving substantially void spaces therein. This may be accomplished by lowering a flexible tubing 26 down tubing string 27 disposed in well borehole 14, for example, (FIG- URE 3). Well borehole 14 may be cased as at casing 28 with casing 28 cemented therein as is well known in the art. The water-soluble minerals in layer 12 are then dissolved by jet action from an aqueous leaching or solution-mining liquid. The aqueous liquid may comprise water and/or steam or aqueous solutions of acid or acidforming materials and is circulated at pressures either above or below the overburden pressure. The circulating aqueous liquid dissolves the water-soluble minerals in layer 12 and mineral by-products thereof are recovered from the fluid flowing out of well borehole 14 by conventional evaporation and/or precipitation procedures. Layer 13 may be treated in the same manner with well boreholes 15, 16 and 17 also treated accordingly.
As an alternative to tubing 26, the vertical fracture 20 already developed in well borehole 14 may be used to inject a water-soluble mineral fluid into layers 12 and 13. I
bed or layer of water-soluble by any known technique The leached void spaces or zones (indicated by the outlined areas of FIGURE 2) of layers 12 and 13 tend to be relatively narrow channels, however, following more or less the line of the fractures. These channels are widened by a continuation of the leaching action, and the rate of the widening can be enhanced by an intermittent flow and/or alternately reversed-direction flow of the leaching fluid.
Hot fluid, such as hot water, steam or hot gas, is next injected down the corner well boreholes 14 through 17 to flow through fractures 22 through 25 and out of injection well borehole 18. Alternatively, such fluid may be either injected down well borehole 18 to flow through the fractures and out of the corner well boreholes or a combination of both procedures. I
Such hot fluid flows through the interconnecting fractures and void spaces, causing the oil shale contacted therein to be heated and to expand into the void spaces developed in the water-soluble mineral layers 12 and 13.
If the fractures tend to close due to thermal expansion,
they may be partially leached out with hot solvent, acid or other reacting fluid which removes both organic matter and mineral content. In this manner. the channels formed by the fractures and void spaces may be maintained permeable long enough to permit significant heating and thermal expansion of the oil shale into the void spaces formed by the leaching layers 12 and 13. In addition,
spalling may take place into the void spaces due to expansion and/or pyrolysis of the oil shale near the free spaces of the void spaces. The thermal expansion of the oil shale permits the development of many horizontal fissures 29 (FIGURE 4) along the bedding planes of oil shale formation 11. As can be seen in FIGURE 4, hot fluid is injected down tubing string 27 disposed in well borehole 14 and flows through perforations 30 therein, through the vertical fracture 22 formed between well borehole 14 and 18, through perforations 31 and out of well borehole 18. All the well boreholes may include conventional equipment for injecting. heating, and separating such fluids as is well known in the art. Well borehole 18 may also be cased at casing 32. with casing 32 cemented therein as is well known in the art. The vertical arrows within the vertically fractured portion 22 of oil shale formation 11 indicate the spalling and expansion of the oil shale into the void spaces formed by the leaching of layers 12 and 13.
Upon the development of a significant number of hori- 'zontal fissures 29, heating phase may be replaced by a production phase in which hot recovery fluid may be injected. or an underground combustion process conducted, as is well known in the art. If bypassing at the void space is too great. the injected reacting fluids may be injected over only limited intervals away from the permeable void channels. Alternatively, as illustrated in FIGURE 5 wherein like elements equal like parts of FIGURE 4, the reacting fluids may be injected through perforations 33 in .well borehole 14 and into the bottom layer 13 and allowed to move upwardly through the oil shale to be produced at the top of the oil shale out through perforations 34 in well borehole 18. Note that well boreholes 14 and 18 are packed off at packers 35 and 36, respectively. Also. the reacting fluid may be introduced at the top and produced at the bottom of oil shale formation 22 as illustrated in FIGURE 6. Thus, the reacting fluid is injected down tubing string 27 above packer 37 and out perforations 30, adjacent void layer 12, down through oil shale formation 11 and back into production well borehole 18 through perforations 31. Finally. both top and bottom voids l2 and 13 may be partially filled by a material such as coarse formation 11 between the well boreholes as illustrated in FIGURES 5 and 6.
The composition of the reaction fluid is preferably adjusted to the extent required to circulate fluid that removes solid materials from the walls of the interconnecting channels without a significant reduction in the average rate of flowbetween the well boreholes so that the fluid flowing through the interconnecting channels, as for example fractures 19 and 22 and leached-out layers 12 and 13, is increased relative to fluid flowing between well boreholes 14 and 18. Solid-material removing components may be incorporated into the reacting fluid being circulated through the interconnecting channels without interrupting the flow to 'an extent that permits the channels to close and reseal. Such components may comprise hot benzene, steam, or other solvent. or nitric acid, of a lower temperature than the hot fracturing fluid. Nitric acid has the advantage of reacting with the organic matter as well as the carbonate present in the subterranean earth formation. The injection of such a reacting fluid leaches out part of the kerogen adjoining the faces of the interconnecting channels. The injection at a lower temperature and at substantially the same injection pressure permits the channels to open slightly for better passage of the fluids. The temperature of the solid-material-removing fluid may be increased as the permeability of the interconnecting channels, fractures 19 and 22 and layers. 12 and .13, for example, is increased until the circulating fluid becomes hot enough to liquify the oil shale components of the subterranean oil shale formation 11.
Following the hot solvent injection as discussed hereinabove, acid may be injected to react with part of the rock matrix along the fracture walls. This acid injection renders the channels even more permeable.
After all the steps discussed hereinabove are carried out, an underground combustion process, as discussed hereinabove and is well known in the art, which develops considerably higher temperatures, may be undertaken. The steps of leaching out part of the kerogen and the rock generally make closure of the fracture paths during combustion very unlikely. In this manner, it is possible to treat a substantial part of the formation by underground combustion.
We claim as our invention:
1. In a method of recovering shale oil from a normally impermeable substerranean oil shale formation having at least one water-soluble mineral layer disposed therein comprising the steps of z extending at least a pair of well boreholes into said oil shale formations into communication with said mineral layers: forming generally vertical fractures extending along generally parallel paths from each of said pair of well boreholes: injecting hot fluid through at least one of the well bore,-
holes until flow into at least one of the fractures therein is thermally closed by theswelling-shutiof the walls of said fracture; pressurizing fluid in at least one well borehole in which at least one fracture has been thermally closed until at least one new fracture is formed: v repeating the steps of injecting hot fluid and the pres surizing of fluid at successively higher temperatures and pressures until the resultant fractures from a channel interconnecting said well boreholes through which fluid flows from one well borehole to another:
circulating hot fluid by injecting it into one of said well.
boreholes opening into said fracture channel and producing it from another of said well boreholes opening to said fracture channel at a temperature below that at which the last fracture was opened into the well borehole into which said hot fluid is injected but above that at which the last fracture was thermally closed within the well borehole into which said hot fluid is injected so that most of the injected fluid is conveyed through said fracture channel from one well borehole to another;
leaching portions of said Water-soluble mineral layers that are exposed along said fracture channel by circulating aqueous fluid through said fracture channel; and
producing shale oil by circulating fluid capable of converting kerogen to fluid petroleum materials through said subterranean oil shale formation and recovering petroleum materials from the outflowing fluid.
2. The method of claim 1 including the step of adjusting the composition of said circulating hot fluid to the extent required to circulate fluid that removed solid materials from the walls of the channels interconnecting said well boreholes without a significant reduction in the average rate of flow between the well boreholes so that the ef fective permeability of fractures interconnecting said well boreholes is increased relative to that of other fractures.
3. The method of claim 2 including the step of increasing the temperature of the circulating hot fluid as the permeability of said well-interconnecting fracture channel increases to the extent required to circulate fluid that is hot enough to liquefy the oil shale components of the solid materials removed from the Walls of said fracture channel.
4. The method of claim 3 including the step of recovering hydrocarbons from the oil shale components of the circulating fluid.
5. The method of claim 3 including the step of initiating an underground combustion within said subterranean earth formation.
6. The method of claim 2 wherein the step of adjusting the composition of said circulating fluid includes the step of incorporating aqueous acidic components into said circulating fluid.
7. The method of claim 1 including the step of recovering water-soluble mineral components from outflowing portions of said circulating aqueous fluid.
8. The method of claim 7 including the step of at least partially filling said leached-out mineral layers with fragments of oil shale that are detached from the surrounding oil shale formation.
9. The method of claim 8 wherein the step of circulating said hot fluid includes circulating said hot fluid down said plurality of well boreholes, through said well-interconnecting fracture channel and out said central well borehole.
10. The method of claim 8 wherein the step of circulating said hot fluid includes circulating hot fluid down said central well borehole, through said well-interconnecting fracture channel and out said plurality of well boreholes.
11. The method of claim 1 wherein the step of circulating said aqueous fluid includes the step of injecting said aqueous fluid down at least one of said well boreholes through at least one mineral layer disposed at substantially the bottom of said oil shale formation, upwardly through said fracture channel, through at least one mineral layer disposed at substantially to top of said oil shale formation and out at least another of said well boreholes.
12. The method of claim 1 wherein the step of circulating said aqueous fluid includes the step of injecting said circulating fluid down at least one of said well boreholes, through at least one mineral layer disposed at substantially the top of said oil shale formation, downwardly through said fracture channel, through at least one mineral layer disposed at substantially the bottom of said oil shale formation and out at least another of said well boreholes.
13. The method of claim 1 wherein the step of extending at least a pair of well boreholes into said oil shale formation includes the steps of:
extending a central well borehole into said formation;
and
extending a plurality of well boreholes into said formation whereby said plurality of well boreholes form a substantially geometric pattern in said formation with said central well borehole located substantially at the center of said pattern.
References Cited UNITED STATES PATENTS CHARLES E. OCONNELL, Primary Examiner JAN A. CALVERT, Assistant Examiner U.S. Cl. X.R.
US771961A 1968-10-30 1968-10-30 Method of producing shale oil from a subterranean oil shale formation Expired - Lifetime US3501201A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77196168A 1968-10-30 1968-10-30

Publications (1)

Publication Number Publication Date
US3501201A true US3501201A (en) 1970-03-17

Family

ID=25093464

Family Applications (1)

Application Number Title Priority Date Filing Date
US771961A Expired - Lifetime US3501201A (en) 1968-10-30 1968-10-30 Method of producing shale oil from a subterranean oil shale formation

Country Status (1)

Country Link
US (1) US3501201A (en)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572838A (en) * 1969-07-07 1971-03-30 Shell Oil Co Recovery of aluminum compounds and oil from oil shale formations
US3613785A (en) * 1970-02-16 1971-10-19 Shell Oil Co Process for horizontally fracturing subsurface earth formations
US3682246A (en) * 1971-01-19 1972-08-08 Shell Oil Co Fracturing to interconnect wells
US3687197A (en) * 1970-11-25 1972-08-29 Canadian Fina Oil Ltd Method for extracting bitumen from tar sands
US3700280A (en) * 1971-04-28 1972-10-24 Shell Oil Co Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US3709295A (en) * 1971-06-24 1973-01-09 Dow Chemical Co Fracturing of subterranean formations
US3759328A (en) * 1972-05-11 1973-09-18 Shell Oil Co Laterally expanding oil shale permeabilization
US3804172A (en) * 1972-10-11 1974-04-16 Shell Oil Co Method for the recovery of oil from oil shale
US3804169A (en) * 1973-02-07 1974-04-16 Shell Oil Co Spreading-fluid recovery of subterranean oil
US3810510A (en) * 1973-03-15 1974-05-14 Mobil Oil Corp Method of viscous oil recovery through hydraulically fractured wells
US3835928A (en) * 1973-08-20 1974-09-17 Mobil Oil Corp Method of creating a plurality of fractures from a deviated well
US3863709A (en) * 1973-12-20 1975-02-04 Mobil Oil Corp Method of recovering geothermal energy
US3967853A (en) * 1975-06-05 1976-07-06 Shell Oil Company Producing shale oil from a cavity-surrounded central well
FR2316430A1 (en) * 1975-07-01 1977-01-28 Us Energy SELECTIVE ORIENTATION PROCESS FOR FRACTURES CAUSED IN UNDERGROUND GEOLOGICAL FORMATIONS
US4026359A (en) * 1976-02-06 1977-05-31 Shell Oil Company Producing shale oil by flowing hot aqueous fluid along vertically varied paths within leached oil shale
US4148359A (en) * 1978-01-30 1979-04-10 Shell Oil Company Pressure-balanced oil recovery process for water productive oil shale
US4176717A (en) * 1978-04-03 1979-12-04 Hix Harold A Cementing tool and method of utilizing same
US4408665A (en) * 1977-05-03 1983-10-11 Equity Oil Company In situ recovery of oil and gas from water-flooded oil shale formations
US4458757A (en) * 1983-04-25 1984-07-10 Exxon Research And Engineering Co. In situ shale-oil recovery process
US4545891A (en) * 1981-03-31 1985-10-08 Trw Inc. Extraction and upgrading of fossil fuels using fused caustic and acid solutions
US4633948A (en) * 1984-10-25 1987-01-06 Shell Oil Company Steam drive from fractured horizontal wells
US4817714A (en) * 1987-08-14 1989-04-04 Mobil Oil Corporation Decreasing total fluid flow in a fractured formation
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4889186A (en) * 1988-04-25 1989-12-26 Comdisco Resources, Inc. Overlapping horizontal fracture formation and flooding process
US5025859A (en) * 1987-03-31 1991-06-25 Comdisco Resources, Inc. Overlapping horizontal fracture formation and flooding process
US5059307A (en) * 1981-03-31 1991-10-22 Trw Inc. Process for upgrading coal
US5085764A (en) * 1981-03-31 1992-02-04 Trw Inc. Process for upgrading coal
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5645322A (en) * 1995-03-14 1997-07-08 Tarim Associates For Scientific Mineral & Oil Exploration In-situ chemical reactor for recovery of metals and salts
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20020033256A1 (en) * 2000-04-24 2002-03-21 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US20040140096A1 (en) * 2002-10-24 2004-07-22 Sandberg Chester Ledlie Insulated conductor temperature limited heaters
US20050164894A1 (en) * 2004-01-24 2005-07-28 Eoff Larry S. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
US20070289733A1 (en) * 2006-04-21 2007-12-20 Hinson Richard A Wellhead with non-ferromagnetic materials
US20080087427A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
WO2008048455A2 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US20080173443A1 (en) * 2003-06-24 2008-07-24 Symington William A Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US20080230219A1 (en) * 2007-03-22 2008-09-25 Kaminsky Robert D Resistive heater for in situ formation heating
US20080283241A1 (en) * 2007-05-15 2008-11-20 Kaminsky Robert D Downhole burner wells for in situ conversion of organic-rich rock formations
US20080289819A1 (en) * 2007-05-25 2008-11-27 Kaminsky Robert D Utilization of low BTU gas generated during in situ heating of organic-rich rock
US20090050319A1 (en) * 2007-05-15 2009-02-26 Kaminsky Robert D Downhole burners for in situ conversion of organic-rich rock formations
US20090145598A1 (en) * 2007-12-10 2009-06-11 Symington William A Optimization of untreated oil shale geometry to control subsidence
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US20090321071A1 (en) * 2007-04-20 2009-12-31 Etuan Zhang Controlling and assessing pressure conditions during treatment of tar sands formations
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US20100089575A1 (en) * 2006-04-21 2010-04-15 Kaminsky Robert D In Situ Co-Development of Oil Shale With Mineral Recovery
US20100089585A1 (en) * 2006-10-13 2010-04-15 Kaminsky Robert D Method of Developing Subsurface Freeze Zone
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
US20100155070A1 (en) * 2008-10-13 2010-06-24 Augustinus Wilhelmus Maria Roes Organonitrogen compounds used in treating hydrocarbon containing formations
US20100181066A1 (en) * 2003-04-24 2010-07-22 Shell Oil Company Thermal processes for subsurface formations
US20100218946A1 (en) * 2009-02-23 2010-09-02 Symington William A Water Treatment Following Shale Oil Production By In Situ Heating
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US20110132600A1 (en) * 2003-06-24 2011-06-09 Robert D Kaminsky Optimized Well Spacing For In Situ Shale Oil Development
US20110146982A1 (en) * 2009-12-17 2011-06-23 Kaminsky Robert D Enhanced Convection For In Situ Pyrolysis of Organic-Rich Rock Formations
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9410406B2 (en) 2013-08-14 2016-08-09 BitCan Geosciences & Engineering Inc. Targeted oriented fracture placement using two adjacent wells in subterranean porous formations
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9624760B2 (en) 2013-05-31 2017-04-18 Bitcan Geosciences + Engineering Method for fast and uniform SAGD start-up enhancement
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
CN108571305A (en) * 2018-03-18 2018-09-25 西南石油大学 A kind of high temperature heat shock method promoting the microcrack creation of tight gas wells hydraulic fracture face
CN109838218A (en) * 2019-03-05 2019-06-04 西南石油大学 It is a kind of to simulate the experimental provision exploited after the bored well of multistage pressure break horizontal gas well and method
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10570729B2 (en) 2015-06-03 2020-02-25 Geomec Engineering Limited Thermally induced low flow rate fracturing
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
US11634978B2 (en) * 2020-02-18 2023-04-25 Canatech Management Services Inc. Methods for recovering a mineral from a mineral-bearing deposit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2813583A (en) * 1954-12-06 1957-11-19 Phillips Petroleum Co Process for recovery of petroleum from sands and shale
US3284281A (en) * 1964-08-31 1966-11-08 Phillips Petroleum Co Production of oil from oil shale through fractures
US3346044A (en) * 1965-09-08 1967-10-10 Mobil Oil Corp Method and structure for retorting oil shale in situ by cycling fluid flows
US3352355A (en) * 1965-06-23 1967-11-14 Dow Chemical Co Method of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3379250A (en) * 1966-09-09 1968-04-23 Shell Oil Co Thermally controlling fracturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2813583A (en) * 1954-12-06 1957-11-19 Phillips Petroleum Co Process for recovery of petroleum from sands and shale
US3284281A (en) * 1964-08-31 1966-11-08 Phillips Petroleum Co Production of oil from oil shale through fractures
US3352355A (en) * 1965-06-23 1967-11-14 Dow Chemical Co Method of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3346044A (en) * 1965-09-08 1967-10-10 Mobil Oil Corp Method and structure for retorting oil shale in situ by cycling fluid flows
US3379250A (en) * 1966-09-09 1968-04-23 Shell Oil Co Thermally controlling fracturing

Cited By (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572838A (en) * 1969-07-07 1971-03-30 Shell Oil Co Recovery of aluminum compounds and oil from oil shale formations
US3613785A (en) * 1970-02-16 1971-10-19 Shell Oil Co Process for horizontally fracturing subsurface earth formations
US3687197A (en) * 1970-11-25 1972-08-29 Canadian Fina Oil Ltd Method for extracting bitumen from tar sands
US3682246A (en) * 1971-01-19 1972-08-08 Shell Oil Co Fracturing to interconnect wells
US3700280A (en) * 1971-04-28 1972-10-24 Shell Oil Co Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US3709295A (en) * 1971-06-24 1973-01-09 Dow Chemical Co Fracturing of subterranean formations
US3759328A (en) * 1972-05-11 1973-09-18 Shell Oil Co Laterally expanding oil shale permeabilization
US3804172A (en) * 1972-10-11 1974-04-16 Shell Oil Co Method for the recovery of oil from oil shale
US3804169A (en) * 1973-02-07 1974-04-16 Shell Oil Co Spreading-fluid recovery of subterranean oil
US3810510A (en) * 1973-03-15 1974-05-14 Mobil Oil Corp Method of viscous oil recovery through hydraulically fractured wells
US3835928A (en) * 1973-08-20 1974-09-17 Mobil Oil Corp Method of creating a plurality of fractures from a deviated well
US3863709A (en) * 1973-12-20 1975-02-04 Mobil Oil Corp Method of recovering geothermal energy
US3967853A (en) * 1975-06-05 1976-07-06 Shell Oil Company Producing shale oil from a cavity-surrounded central well
FR2316430A1 (en) * 1975-07-01 1977-01-28 Us Energy SELECTIVE ORIENTATION PROCESS FOR FRACTURES CAUSED IN UNDERGROUND GEOLOGICAL FORMATIONS
US4005750A (en) * 1975-07-01 1977-02-01 The United States Of America As Represented By The United States Energy Research And Development Administration Method for selectively orienting induced fractures in subterranean earth formations
US4026359A (en) * 1976-02-06 1977-05-31 Shell Oil Company Producing shale oil by flowing hot aqueous fluid along vertically varied paths within leached oil shale
US4408665A (en) * 1977-05-03 1983-10-11 Equity Oil Company In situ recovery of oil and gas from water-flooded oil shale formations
US4148359A (en) * 1978-01-30 1979-04-10 Shell Oil Company Pressure-balanced oil recovery process for water productive oil shale
US4176717A (en) * 1978-04-03 1979-12-04 Hix Harold A Cementing tool and method of utilizing same
US5059307A (en) * 1981-03-31 1991-10-22 Trw Inc. Process for upgrading coal
US4545891A (en) * 1981-03-31 1985-10-08 Trw Inc. Extraction and upgrading of fossil fuels using fused caustic and acid solutions
US5085764A (en) * 1981-03-31 1992-02-04 Trw Inc. Process for upgrading coal
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4458757A (en) * 1983-04-25 1984-07-10 Exxon Research And Engineering Co. In situ shale-oil recovery process
US4633948A (en) * 1984-10-25 1987-01-06 Shell Oil Company Steam drive from fractured horizontal wells
US5025859A (en) * 1987-03-31 1991-06-25 Comdisco Resources, Inc. Overlapping horizontal fracture formation and flooding process
US4817714A (en) * 1987-08-14 1989-04-04 Mobil Oil Corporation Decreasing total fluid flow in a fractured formation
US4889186A (en) * 1988-04-25 1989-12-26 Comdisco Resources, Inc. Overlapping horizontal fracture formation and flooding process
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
USRE35696E (en) * 1992-06-12 1997-12-23 Shell Oil Company Heat injection process
US5645322A (en) * 1995-03-14 1997-07-08 Tarim Associates For Scientific Mineral & Oil Exploration In-situ chemical reactor for recovery of metals and salts
US20020104654A1 (en) * 2000-04-24 2002-08-08 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20020084074A1 (en) * 2000-04-24 2002-07-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020033257A1 (en) * 2000-04-24 2002-03-21 Shahin Gordon Thomas In situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020034380A1 (en) * 2000-04-24 2002-03-21 Maher Kevin Albert In situ thermal processing of a coal formation with a selected moisture content
US20020038709A1 (en) * 2000-04-24 2002-04-04 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20020038710A1 (en) * 2000-04-24 2002-04-04 Maher Kevin Albert In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US20020038711A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020043365A1 (en) * 2000-04-24 2002-04-18 Berchenko Ilya Emil In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043367A1 (en) * 2000-04-24 2002-04-18 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020046838A1 (en) * 2000-04-24 2002-04-25 Karanikas John Michael In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US20020053431A1 (en) * 2000-04-24 2002-05-09 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas
US20020053432A1 (en) * 2000-04-24 2002-05-09 Berchenko Ilya Emil In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US20020053429A1 (en) * 2000-04-24 2002-05-09 Stegemeier George Leo In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020057905A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020056551A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020062051A1 (en) * 2000-04-24 2002-05-23 Wellington Scott L. In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020077515A1 (en) * 2000-04-24 2002-06-20 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20030164234A1 (en) * 2000-04-24 2003-09-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US20030213594A1 (en) * 2000-04-24 2003-11-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20040108111A1 (en) * 2000-04-24 2004-06-10 Vinegar Harold J. In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20020033256A1 (en) * 2000-04-24 2002-03-21 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994168B2 (en) 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US20080314593A1 (en) * 2001-04-24 2008-12-25 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US6997518B2 (en) * 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US7040397B2 (en) 2001-04-24 2006-05-09 Shell Oil Company Thermal processing of an oil shale formation to increase permeability of the formation
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20040145969A1 (en) * 2002-10-24 2004-07-29 Taixu Bai Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US20040177966A1 (en) * 2002-10-24 2004-09-16 Vinegar Harold J. Conductor-in-conduit temperature limited heaters
US8200072B2 (en) 2002-10-24 2012-06-12 Shell Oil Company Temperature limited heaters for heating subsurface formations or wellbores
US20040140096A1 (en) * 2002-10-24 2004-07-22 Sandberg Chester Ledlie Insulated conductor temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US20040144541A1 (en) * 2002-10-24 2004-07-29 Picha Mark Gregory Forming wellbores using acoustic methods
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US20100181066A1 (en) * 2003-04-24 2010-07-22 Shell Oil Company Thermal processes for subsurface formations
US20110132600A1 (en) * 2003-06-24 2011-06-09 Robert D Kaminsky Optimized Well Spacing For In Situ Shale Oil Development
US20100078169A1 (en) * 2003-06-24 2010-04-01 Symington William A Methods of Treating Suberranean Formation To Convert Organic Matter Into Producible Hydrocarbons
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US20080173443A1 (en) * 2003-06-24 2008-07-24 Symington William A Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US7631691B2 (en) 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US7563750B2 (en) * 2004-01-24 2009-07-21 Halliburton Energy Services, Inc. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US20050164894A1 (en) * 2004-01-24 2005-07-28 Eoff Larry S. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US20080017370A1 (en) * 2005-10-24 2008-01-24 Vinegar Harold J Temperature limited heater with a conduit substantially electrically isolated from the formation
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US7559368B2 (en) * 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
AU2006306414B2 (en) * 2005-10-24 2010-08-05 Shell Internationale Research Maatschappij B.V. Solution mining methods for treating hydrocarbon-containing formations
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US20100089575A1 (en) * 2006-04-21 2010-04-15 Kaminsky Robert D In Situ Co-Development of Oil Shale With Mineral Recovery
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US20070289733A1 (en) * 2006-04-21 2007-12-20 Hinson Richard A Wellhead with non-ferromagnetic materials
CN101558216B (en) * 2006-10-13 2013-08-07 埃克森美孚上游研究公司 Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
WO2008048455A2 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
WO2008048455A3 (en) * 2006-10-13 2008-07-03 Exxonmobil Upstream Res Co Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US20080087427A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US20100319909A1 (en) * 2006-10-13 2010-12-23 Symington William A Enhanced Shale Oil Production By In Situ Heating Using Hydraulically Fractured Producing Wells
AU2007313395B2 (en) * 2006-10-13 2013-11-07 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US20100089585A1 (en) * 2006-10-13 2010-04-15 Kaminsky Robert D Method of Developing Subsurface Freeze Zone
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
CN101558216A (en) * 2006-10-13 2009-10-14 埃克森美孚上游研究公司 Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US20080230219A1 (en) * 2007-03-22 2008-09-25 Kaminsky Robert D Resistive heater for in situ formation heating
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
AU2008227164B2 (en) * 2007-03-22 2014-07-17 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
WO2008115356A1 (en) * 2007-03-22 2008-09-25 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US20090321071A1 (en) * 2007-04-20 2009-12-31 Etuan Zhang Controlling and assessing pressure conditions during treatment of tar sands formations
US20080283241A1 (en) * 2007-05-15 2008-11-20 Kaminsky Robert D Downhole burner wells for in situ conversion of organic-rich rock formations
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US20090050319A1 (en) * 2007-05-15 2009-02-26 Kaminsky Robert D Downhole burners for in situ conversion of organic-rich rock formations
US20080289819A1 (en) * 2007-05-25 2008-11-27 Kaminsky Robert D Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8240774B2 (en) * 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US20090145598A1 (en) * 2007-12-10 2009-06-11 Symington William A Optimization of untreated oil shale geometry to control subsidence
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US20100155070A1 (en) * 2008-10-13 2010-06-24 Augustinus Wilhelmus Maria Roes Organonitrogen compounds used in treating hydrocarbon containing formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
US20100218946A1 (en) * 2009-02-23 2010-09-02 Symington William A Water Treatment Following Shale Oil Production By In Situ Heating
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US20110146982A1 (en) * 2009-12-17 2011-06-23 Kaminsky Robert D Enhanced Convection For In Situ Pyrolysis of Organic-Rich Rock Formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9624760B2 (en) 2013-05-31 2017-04-18 Bitcan Geosciences + Engineering Method for fast and uniform SAGD start-up enhancement
US9410406B2 (en) 2013-08-14 2016-08-09 BitCan Geosciences & Engineering Inc. Targeted oriented fracture placement using two adjacent wells in subterranean porous formations
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation
US10385257B2 (en) 2015-04-09 2019-08-20 Highands Natural Resources, PLC Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10385258B2 (en) 2015-04-09 2019-08-20 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10570729B2 (en) 2015-06-03 2020-02-25 Geomec Engineering Limited Thermally induced low flow rate fracturing
US10570730B2 (en) 2015-06-03 2020-02-25 Geomec Engineering Limited Hydrocarbon filled fracture formation testing before shale fracturing
US10641089B2 (en) 2015-06-03 2020-05-05 Geomec Engineering, Ltd. Downhole pressure measuring tool with a high sampling rate
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
CN108571305A (en) * 2018-03-18 2018-09-25 西南石油大学 A kind of high temperature heat shock method promoting the microcrack creation of tight gas wells hydraulic fracture face
CN109838218A (en) * 2019-03-05 2019-06-04 西南石油大学 It is a kind of to simulate the experimental provision exploited after the bored well of multistage pressure break horizontal gas well and method
CN109838218B (en) * 2019-03-05 2021-03-16 西南石油大学 Experimental device and method for simulating multi-section fractured horizontal gas well stuffy well post-mining
US11634978B2 (en) * 2020-02-18 2023-04-25 Canatech Management Services Inc. Methods for recovering a mineral from a mineral-bearing deposit

Similar Documents

Publication Publication Date Title
US3501201A (en) Method of producing shale oil from a subterranean oil shale formation
US3500913A (en) Method of recovering liquefiable components from a subterranean earth formation
US3515213A (en) Shale oil recovery process using heated oil-miscible fluids
US3692111A (en) Stair-step thermal recovery of oil
US5215146A (en) Method for reducing startup time during a steam assisted gravity drainage process in parallel horizontal wells
US3741306A (en) Method of producing hydrocarbons from oil shale formations
US3386508A (en) Process and system for the recovery of viscous oil
US4633948A (en) Steam drive from fractured horizontal wells
US3804169A (en) Spreading-fluid recovery of subterranean oil
US3739851A (en) Method of producing oil from an oil shale formation
US3280909A (en) Method of producing an oil bearing formation
US4390067A (en) Method of treating reservoirs containing very viscous crude oil or bitumen
US3759328A (en) Laterally expanding oil shale permeabilization
CA1130201A (en) Method for continuously producing viscous hydrocarbons by gravity drainage while injecting heated fluids
US3967853A (en) Producing shale oil from a cavity-surrounded central well
US4116275A (en) Recovery of hydrocarbons by in situ thermal extraction
US3779601A (en) Method of producing hydrocarbons from an oil shale formation containing nahcolite
US2813583A (en) Process for recovery of petroleum from sands and shale
US3346044A (en) Method and structure for retorting oil shale in situ by cycling fluid flows
US3537529A (en) Method of interconnecting a pair of wells extending into a subterranean oil shale formation
US3682246A (en) Fracturing to interconnect wells
US20080164030A1 (en) Process for two-step fracturing of oil shale formations for production of shale oil
US4878539A (en) Method and system for maintaining and producing horizontal well bores
US4612989A (en) Combined replacement drive process for oil recovery
US4026359A (en) Producing shale oil by flowing hot aqueous fluid along vertically varied paths within leached oil shale