US3522179A - Lubricating composition containing esters of hydrocarbon-substituted succinic acid - Google Patents

Lubricating composition containing esters of hydrocarbon-substituted succinic acid Download PDF

Info

Publication number
US3522179A
US3522179A US567052A US3522179DA US3522179A US 3522179 A US3522179 A US 3522179A US 567052 A US567052 A US 567052A US 3522179D A US3522179D A US 3522179DA US 3522179 A US3522179 A US 3522179A
Authority
US
United States
Prior art keywords
hydrocarbon
acid
ester
alcohol
succinic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US567052A
Inventor
William M Le Suer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Application granted granted Critical
Publication of US3522179A publication Critical patent/US3522179A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/08Polyoxyalkylene derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/1817Compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/95Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/54Amines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/025Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/101Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/102Polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • C10M2209/111Complex polyesters having dicarboxylic acid centres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/044Acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/08Halogenated waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/02Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/20Containing nitrogen-to-oxygen bonds
    • C10M2215/202Containing nitrogen-to-oxygen bonds containing nitro groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • C10M2217/023Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • C10M2223/121Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy of alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines

Definitions

  • This invention relates to novel compositions of matter and processes for preparing the same.
  • this invention relates to composition useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.
  • an ester of a substantially saturated hydrocarbon-substituted succinic acid wherein the substantially hydrocarbon substituent has at least about aliphatic carbon atoms is provided.
  • a critical aspect of this inven- 1 tion is the size and the chemical constitution of the substantially hydrocarbon substituent of the succinic radical.
  • esters of substituted succinic acids in which the substituent is substantially saturated and has at least about 50 aliphatic carbon atoms are contemplated as being within the scope of this invention.
  • This lower limit for the size of the substituent is based upon a consideration not only of the oil-solubility of the esters but also of their effectiveness in applications contemplated by this invention.
  • the substantially hydrocarbon substituent of the succinic radical may contain polar groups, provided, however, that the polar groups are not present in proportions sufficiently large to alter significantly the hydrocarbon character of the substituent.
  • the polar groups are exemplified by the chloro, bromo, keto, ether, aldehyde, nitro, etc.
  • the upper limit With-respect to the portion of such polar groups in the substituent is approximately 10% based on the Weight of the hydrocarbon portion of the substituent.
  • the sources of the substantially hydrocarbon substituent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of mono-olefins having from 2 to 30 carbon atoms.
  • the especially useful polymers are the polymers of l-rnonoolefins such as ethylene, propene, l-butene, isobutene, 1-
  • interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins.
  • Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; l-hexene with 1,3-hexadiene; 1-
  • octene with l-hexene l-heptene with l-pentene; 3-methyll-butene with l-octene; 3,3-dimethyl-1-pentene with 1- hexene; isobutene with styrene and piperylene; etc.
  • the relative proportions of the mono-olefins to the other monomers in the inter-polymers influence the stability and oil solubility of the final products derived from such interpolymers.
  • the interpolymers contemplated for use in this invention should be substantially aliphatic andsubstantially saturated, i.e., they should contain at least about 80%, preferably at least about 95%, on a weight basis, of units derived from the aliphatic mono-olefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be less than about 2% of the total number of carbon-tocarbon covalent linkages.
  • interpolymers include the copolymer of 95% (by weight) of isobutene with 5% of styrene; the terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; the terpolymer of 95 of isobutene with 2% of l-butene and 3% of l-hexene; the terpolymer of 80% of isobutene with of 1- pentene and 10% of l-octene; the copolymer of 80% of l-hexene and of l-heptene; the terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propene; and the copolymer of 80% of ethylene and 20% of propene.
  • Another source of the substantially hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.
  • olefin polymers having molecular weights of about 700-5000 are preferred.
  • Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart viscosity index improving properties to the final products of this invention.
  • the use of such higher molecular weight olefin polymers often is desirable.
  • esters of this invention are those of the above described succinic acids with hydroxy compounds which may be aliphatic compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols.
  • the aromatic hydroxy compounds from which the esters of this invention may be derived are illustrated by the following specific examples: phenol, beta-naphthol, alpha-naphthol, cresol, resorcinol, catechol, p,p dihydroxybiphenyl, 2-chlorophenol, 2,4-dibutylphenol, propene tetramer-substituted phenol, didodecylphenol, 4,4'-methylene bis phenol, alpha-decyl-betanaphthol, polyisobutene(molecular weight of 1000)-substituted phenol, the condensation product of heptylphenol with 0.5 mole of formaldehyde, the condensation product of octylphenol with ace
  • the alcohols from which the esters may be derived preferably contain up to about 40 aliphatic carbon atoms. They may be monohydric alcohols such as methanol, ethanol, isooctanol, dodecanol, cyclohexanol, cyclopentanol, behenyl alcohol, hexatriacontanol, neopentyl alcohol, isobutyl alcohol, benzyl alcohol, beta-phenylethyl alcohol, 2-methylcyclohexanol, beta-chloroethanol, monomethyl ether of ethyene glycol, monobutyl ether of ethylene glycol, monopropyl ether of diethylene glycol, monododecyl ether of triethylene glycol, mono-oleate of ethylene glycol, monostearate of diethylene glycol, sec-pentyl alcohol, tert-butyl alcohol, 5-bromo-dodecanol, nitrooctade
  • the polyhydric alcohols preferably contain from 2 to about 10 hydroxy radicals. They are illustrated by, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glyco, dibutylene glycol, tributylene glycol, and other alkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms.
  • polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, monomethlyl ether of glycerol, pentaerythritol, 9,10- dihydroxy stearic acid, methyl ether of 9,10-dihydroxy stearic acid, 1,2-butanediol, 2,3-hexanediol, 2,4-hexanediol, pinacol, erythritol, arabitol, sorbitol, mannitol, 1,2- cyclo-hexanediol, and xylylene glycol.
  • Carbohydrates such as sugars, starches, celluloses, etc., likewise may yield the esters of this invention.
  • the carbohydrates may be exemplified by a glucose, fructose, sucrose, rharnose, mannose, glyceraldehyde, and galactose.
  • An especially preferred class of polyhydric alcohols are those having at least three hydroxy radicals, some of which have been esterified with a monocarboxylic acid having from about 8 to about 30 carbon atoms such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid, or tall oil acid.
  • a monocarboxylic acid having from about 8 to about 30 carbon atoms
  • octanoic acid oleic acid
  • stearic acid stearic acid
  • linoleic acid dodecanoic acid
  • tall oil acid such partially esterified polyhydric alcohols
  • examples of such partially esterified polyhydric alcohols are the mono-oleate of sorbitol, distearate of sorbitol, mono-oleate of glycerol, monostearate of glycerol, di-dodecanoate of erythritol.
  • the esters of this invention may also be derived from unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, l-cyclohexen-S-ol, an oleyl alcohol.
  • unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, l-cyclohexen-S-ol, an oleyl alcohol.
  • Still other classes of the alcohols capable of yielding the esters of this invention comprises the ether-alcohols and amino-alcohols including, for example, the oxy-alkylene-, oXy-arylene-, amino-alkylene-, and amino-arylene-su'bstituted alcohols having one or more oxy-alkylene, aminoalkylene or amino-arylene oxy-arylene radicals.
  • ether-alcohols having up to about 150 oxy-alkylene radicals in which the alkylene radical contains from 1 to about 8 carbon atoms are preferred.
  • esters of this invention may be di-esters of succinic acids or acidic esters, i.e., partially esterified succinic acids; as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcoholic or phenolic hydroxyl radicals. Mixtures of the above-illustrated esters likewise are contemplated within the scope of this invention.
  • a suitable class of esters for use in the lubricating compositions of this invention are those diesters of succinic acid and an alcohol having up to about nine aliphatic carbon atoms and having at least one substituent selected from the class consisting of amino and carboxy groups wherein the hydrocarbon substituent of the succinic acid is a polymerized butene substituent having a molecular weight of from about 700 to about 5000.
  • the esters of this invention may be prepared by one of several methods.
  • the method which is preferred because of convenience and superior properties of the esters it produces, involves the reaction of a suitable alcohol or phenol with a substantially hydrocarbon-substituted succinic anhydride.
  • the esterification is usually carried out at a temperature above about C., preferably between C. and 300 C.
  • the water formed as a by-product is removed by distillation as the esterification proceeds.
  • a solvent may be used in the esterification to facilitate mixing and temperature control. It also facilitates the removal of water from the reaction mixture.
  • the useful solvents include xylene, toluene, diphenyl ether, chlorobenzene, and mineral oil.
  • the esterification is illustrated by the reaction of ethylene glycol with a substituted succinic anhydride as represented by the equations below.
  • R is a substantialy hydrocarbon radical having at least about 50 aliphatic carbon atoms.
  • R is a substantialy hydrocarbon radical having at least about 50 aliphatic carbon atoms.
  • a modification of the above process involves the replacement of the substituted succinic anhydride with the corresponding succinic acid.
  • succinic acids readily undergo dehydration at temperatures above about 100 C. and are thus converted to their anhydrides which are then esterified by the reaction with the alcohol reactant.
  • succinic acids appear to be the substantial equivalent of their anhydrides in the process.
  • the relative proportions of the succinic reactant and the hydroxy reactant which are to be used depend to a large measure upon the type of the product desired and the number of hydroxyl groups present in the molecule of the hydroxy reactant.
  • the formation of a half ester of a succinic acid i.e., one in which only one of the two acid radicals is esterified, involves the use of one mole of a monohydric alcohol for each mole of the substituted succinic acid reactant, whereas the formation of a diestcr of a succinic acid involves the use of two moles of the alcohol for each mole of the acid.
  • one mole of a hexahydric alcohol may combine with as many as six moles of a succinic acid to form an ester in which each of the six hydroxyl radicals of the alcohol is esterified with one of the two acid radicals of the succinic acid.
  • the maximum proportion of the succinic acid to be used with a polyhydric alcohol is determined by the number of hydroxyl groups present in the molecule of the hydroxy reactant. For the purposes of this invention, it has been found that esters obtained by the reaction of equi-molar amounts of the succinic acid reactant and hydroxy reactant have superior properties and are therefore preferred.
  • esterification in the presence of a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst.
  • a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst.
  • the amount of the catalyst in the reaction may be as little as 0.01% (by weight of the reaction mixture), more often from about 0.1% to about 5%.
  • the esters of this invention likewise may be obtained by the reaction of a substituted succinic acid or anhydride with an epoxide or a mixture of an epoxide and water. Such reaction is similar to one involving the acid or anhydride with a glycol.
  • the product represented by the structural Formula I above may be prepared by the reaction of a substituted succinic acid with one mole of ethylene oxide.
  • the product of Formula II may be obtained by the reaction of a substituted succinic acid with two moles of ethylene oxide.
  • epoxides which are commonly available for use in such reaction include, for example, propylene oxide, styrene oxide, 1,2-butylene oxide, 2,3-butylene oxide, epichlorohydrin, cyclohexene oxide, 1,2-octylene oxide, epoxidized soya bean oil, methyl ester of 9,1'0-epoxystearic acid, and butadiene mono-epoxide.
  • the epoxides are the alkylene oxides in which the alkylene radical has from 2 to about 8 carbon atoms; or the epoxidized fatty acid esters in which the fatty acid radical has up to about 30 carbon atoms and the ester radical is derived from a lower alcohol having up to about 8 carbon atoms.
  • a substituted succinic acid halide may be used in the processes illustrated above for preparing the esters of this invention.
  • Such acid halides may be acid dibromides, acid dichlorides, acid monochlorides, and acid monobromides.
  • the substituted succinic anhydrides and acids can be prepared by, for example, the reaction of maleic anhydride with a high molecular weight olefin or a halogenated hydrocarbon such as is obtained by the chlorination of an olefin polymer described previously. The reaction involves merely heating the reactants at a temperature preferably from about C. to about 250 C. The product from such a reaction is an alkenyl succinic anhydride.
  • the alkenyl group may be hydrogenated to an alkyl group.
  • the anhydride may be hydrolyzed by treatment with water or steam to the corresponding acid.
  • Another method useful for preparing the succinic acids or anhydrides involves the reaction of itaconic acid or anhydride with an olefin or a chlorinated hydrocarbon at a temperature usually within the range from about 100 C. to about 250 C.
  • the succinic acid halides can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
  • esters of this invention may be obtained by the reaction of maleic acid or anhydride with an alcohol such as is illustrated above to form a mono or di-ester of maleic acid and then the reaction of this ester with an olefin or a chlorinated hydrocarbon such as is illustrated above. They may also be obtained by first esterifying itaconic anhydride or acid and subsequently reacting the ester intermediate with an olefin or a chlorinated hydrocarbon under conditions similar to those described hereinabove.
  • Still another method of preparing the esters of this invention involves the reaction of a substituted succinic acid or anhydride with a halogenated alcohol or epoxide such as 2-chloro-ethanol, 3-bromopropanol, 2-chlorocyclohexanol, epichlorohydrin, p-benzyl alcohol or the like.
  • the resulting ester has a halogen substituent which is susceptible to modification by reaction with an amino compound such as ammonia, aniline, toluidine, methylamine, dimethylamine, cyclohexylamine, N-methyldodecylamine, N-methylaniline ethylenediamine, diethylene triamine, pentaethylene hexamine, behenylamine, etc.
  • the modification results in the replacement of the halogen group with an amino group so that the ester is characterized by the presence of an amino hydrocarbon-containing ester group.
  • amino hydrocarbon-substituted esters especially those in which the amino radical is an unsubstituted amino radical or one having hydrocarbon substituents or one being free of any high molecular weight succinic radical attached directly to the amino nitrogen atom, are especially useful for the purpose of the present invention.
  • esters of this invention illustrate the esters of this invention and the processes for preparing such esters.
  • a substantially hydrocarbon-substituted succinic anhydride is prepared by chlorinating a polyisobutene having a molecular weight of 1000 to a chlorine content of 4.5% and then heating the chlorinated polyisobutene with 1.2 molar proportions of maleic anhydride at a temperature of 150-220 C.
  • the succinic anhydride thus obtained has an acid number of 130.
  • a mixture of 874 grams (1 mole) of the succinic anhydride and 104 grams (1 mole) of neopentyl glycol is mixed at 240250 C./30 mm. for 12 hours.
  • the residue is a mixture of the esters resulting from the esterification of one and both hydroxy radicals of the glycol. It has a saponification number of 101 and an alcoholic hydroxyl content of 0.2%
  • EXAMPLE 2 The di-methyl ester of the substantially hydrocarbonsubstituted succinic anhydride of Example 1 is prepared by heating a mixture of 2185 grams of the anhydride, 480 grams of methanol, and 1000 cc. of toluene at 5065 C. while hydrogen chloride is bubbled through the reaction mixture for 3 hours. The mixture is then heated at 60- 65 C. for 2 hours, dissolved in benzene, Washed with water, dried and filtered. The filtrate is heated at 150 C./ 60 mm. to rid it of volatile components. The residue is the defined di-methyl ester.
  • EXAMPLE 3 The substantially hydrocarbon-substituted succinic anhydride of Example 1 is partially esterified with an etheralcohol as follows. A mixture of 550 grams (0.63 mole) of the anhydride and 190 grams (0.32 mole) of a commercial polyethylene glycol having a molecular weight of 600 is heated at 240250 C. for 8 hours at atmospheric pressure and 12 hours at a pressure of 30 mm. Hg until the acid number of the reaction mixture is reduced to 28. The residue is an acidic ester having a saponification number of 85.
  • EXAMPLE 4 A mixture of 926 grams of a polyisobutene-substituted succinic anhydride having an acid number of 121, 1023 grams of mineral oil, and 124 grams (2 moles per mole of the anhydride) of ethylene glycol is heated at 50- 170 C. while hydrogen chloride is bubbled through the reaction mixture for 1.5 hours. The mixture is then heated 8 to 250 C./ 30 mm. and the residue is purified by washing with aqueous sodium hydroxide followed by washing with water, then dried and filtered. The filtrate is a 50% oil solution of an ester having a saponification number of 48.
  • EXAMPLE 5 A mixture of 438 grams of the polyisobutene-substituted succinic anhydride prepared as is described in Example 1 and 333 grams of a commercial polybutylene glycol having a molecular weight of 1000 is heated for 10 hours at 150-160 C. The residue is an ester having a saponification number of 73 and an alcoholic hydroxyl content of 0.7%.
  • EXAMPLE 6 The acidic ester of Example 3 (250 grams) is neutralized by mixing with 11 grams (10% excess on a chemical equivalent basis) of barium oxide, 20 grams of methanol, and 267 grams of mineral oil at 50 60 C. The mixture is then heated to 150 C. to distill off volatile components and the residue is filtered. The filtrate is a mineral oil solution of a mixed ester-metal salt having a saponification number of 17 and a barium sulfate ash content of 4.6%.
  • EXAMPLE 7 A mixture of 645 grams of the substantially hydro carbon-substituted succinic anhydride prepared as is described in Example 1 and 44 grams of tetramethylene glycol is heated at 130 C. for 2 hours. To this mixture there is added 51 grams of acetic anhydride (esterification catalyst) and the resulting mixture is heated under reflux at 160 C. for 2.5 hours. Thereafter the volatile components of the mixture are distilled by heating the mixture to 196-270 C./30 mm. and then at 240 C./O.15 mm. for 10 hours. The residue is an acidic ester having a saponification number of 121 and an acid number of 58.
  • a mixed ester-metal salt is prepared as follows. A mixture of 1545 grams (1.5 moles) of the substituted succinic anhydride having an acid number of 110 and prepared as is described in Example 1 and 46 grams (0.5 mole) of glycerol is heated at l20150 C. for 3 hours whereupon the acid number of the reaction mixture is reduced to 68. It is then heated at 190 C. until the acid number is reduced to 53. To this mixture there is added portionwise 125 grams (1.63 moles) of barium oxide together with 1500 grams of mineral oil and 50 cc. of water. The resulting mixture is heated to 90- 100 C., diluted with 25 cc. isopropyl alcohol and 100 cc.
  • the filtrate is a mineral oil solution of the mixed ester-barius salt having a barium sulfate content of 5.6%.
  • EXAMPLE 9 A mixed ester-metal salt is prepared by the procedure of Example 8 except that pentaerythritol (51 grams, 0.38 mole) is used in place of glycerol. The product has a barium sulfate ash content of 4.9%.
  • a mixed ester-metal salt is prepared as follows. A mixture is prepared from 1545 grams (1.5 moles) of a polyisobutene-substituted succinic anhydride having an acid number of 110 and 152 grams (0.19 mole) of an ether-alcohol prepared by the reaction of sucrose with 8 moles of propylene oxide. The mixture is heated at l39180 C. for 3 hours whereupon the acid number of the mixture is reduced to 45. It is diluted with 320 grams of mineral oil and heated at 195 C. for 3.5 hours until the acid number is 42. To this mixture there are added 1180 grams of mineral oil, 50 grams of water, 50 cc.
  • the resulting mixture is heated at 90-105 C. for 3 hours and dried at 158 C.
  • the residue is filtered.
  • the filtrate is a mineral oil solution of the mixed ester-barium salt having a barium sulfate ash content of 5.6%.
  • EXAMPLE 11 A mixture of 456 grams of a polyisobutene-substituted succinic anhydride prepared as is described in Example 1 and 350 grams (0.35 mole) of the monophenyl ether of a polyethylene glycol having a molecular weight of 1000 is heated at 150155 C. for 2 hours. The product is an ester having a saponification number of 71, an acid number of 53, and an alcoholic hydroxyl content of 0.52%.
  • EXAMPLE 12 An ester is prepared by heating at the reflux temperature for hours a xylene solution of an equi-molar mixture of the polyisobutene-substituted succinic anhydride of Example 1 and a commercial polystyrene oxide having a molecular weight of 500 while water is removed by azeotropic distillation. The mixture is then heated to 160 C./ 18 mm. The residue is an ester having a saponification number of 67, an acid number of 45, and an alcoholic hydroxyl content of 1.2%.
  • a di-oleyl ester is prepared as follows: A mixture of 1 mole of a polyisobutene-substituted succinic anhydride, 2 moles of a commercial oleyl alcohol, 305 grams of xylene, and 5 grams of p-toluene sulfonic acid (esterification catalyst) is heated at 150173 C. for 4 hours whereupon 18 grams of water is collected as the distillate. The residue is washed with water and the organic layer dried and filtered. The filtrate is heated to 175 C./20 mm. and the residue is the defined ester.
  • EXAMPLE 14 A di-oleyl ester is prepared by the procedure of Example 13 except that the substituted succinic anhydride used is prepared by the reaction of a chlorinated petroleum oil having a molecular weight of 800 with maleic anhydride.
  • EXAMPLE 15 An ether-alcohol is prepared by the reaction of 9 moles of ethylene oxide with 0.9 mole of a polyisobutenesubstituted phenol in which the polyisobutene substituent has a molecular weight of 1000.
  • a substantially hydrocarbon-substituted succinic acid ester of this ether-alcohol is prepared by heating a xylene solution of an equi-molar mixture of the two reactants in the presence of a catalytic amount of p-toluene sulfonic acid at 157 C. The ester is found to have a saponification number of and an acid number of 10.
  • a polyhydric alcohol is prepared by copolymerizing equimolar proportions of styrene and allyl alcohol to a copolymer having a molecular weight of 1150 and containing an average of 5 hydroxyl radicals per mole.
  • An ester of this alcohol is prepared as follows. A mixture of 340 grams (0.3 mole) of the alcohol and 1.5 moles of a polyisobutene-substituted succinic anhydride as is prepared in Example 1 in 500 grams of xylene is heated at 80 -115 C., diluted with mineral oil, then heated to distill off xylene, and filtered. The filtrate is further esterified by heating with propylene oxide (one equivalent per equivalent of the unesterified anhydride) at 70150 'C. under reflux. The product is diluted with oil to an oil solution having an oil content of 40%.
  • EXAMPLE 17 A substantially hydrocarbon-substituted succinic acid lecular weight of 50,000 to a chlorine content of 3.9%,
  • EXAMPLE 18 An ester of an ether-alcohol is prepared by heating a toluene solution of an equi-molar mixture of the substantially hydrocarbon-substituted succinic anhydride of Example 1 and a commercial polyethylene glycol at 97 102 C. for 6 hours and then at C./16 mm.
  • the ester has a saponification number of 37 and an acid member of 26.
  • EXAMPLE 19 A di-(hydroxypropyl)ester is prepared as follows: propylene oxide (58 grams, 1 mole) is added dropwise to a mixture of 0.5 mole of the substantially hydrocarbonsubstituted succinic anhydride of Example 1 and 8 grams (0.1 mole, esterification catalyst) of pyridine at 80-90 C. The mixture is heated at reflux for 1 hour, diluted with 400 grams of mineral oil and heated to 170 C./40 mm. The residue is filtered. The filtrate is a 40% mineral oil solution of the defined ester.
  • EXAMPLE 20 An ester is obtained by heating a mixture of 525 grams of the substantially hydrocarbon-substituted succinic anhydride of Example 1, 422 grams of butyl 9,10-epoxystearate, and 9.5 grams of pyridine (esterification catalyst) at 100200 C. for 2.5 hours. The mixture is diluted with 630 grams of mineral oil and heated to 210 C./20 mm. The residue is a mineral oil solution of the ester having a saponification number of 70, an acid number of 1.4, and an alcoholic hydroxyl content of 0.3%.
  • EXAMPLE 21 An ester is prepared by the procedure of Example 20 except that the butyl 9,10-epoxystearate is replaced with dipentene di-epoxide (0.64 mole per mole of the anhydride used). A 40% mineral oil solution of the ester obtained has a saponification number of 54 and an acid number of 0.4.
  • EXAMPLE 22 A partial ester of sorbitol is obtained by heating a xylene solution containing the substantially hydrocarbon substituted succinic anhydride of Example 1 and sorbitol (0.5 mole per mole of the anhydride) at -155 C. for 6 hours while water is removed by azeotropic distillation. The residue is filtered and the filtrate is heated at C./11 mm. to distill off volatile components. The residue is an ester having a saponification number of 97 and an alcoholic hydroxyl content of 1.5%.
  • EXAMPLE 23 An ester is obtained by heating an equi-molar mixture of dibutyl itaconate and chlorinated polyisobutene having a chlorine content of 4.7% and a molecular weight of 700 at 220 C. for 7 hours and then at 200 C./3 mm. The residue is filtered. The filtrate is the ester having a saponification number of 74.
  • EXAMPLE 24 An ester is obtained by the further esterification of sorbitol mono-oleate with a substituted succinic anhydride as follows: a mixture of 126 grams of sorbitol mono-oleate, 770 grams of the substantially hydrocarbon substituted succinic anhydride of Example 1, 588 grams of mineral oil, 500 cc. of xylene and 9 grams of ptoluene sulfonic acid (esterification catalyst) is heated at 11 140 C. while water is removed by azeotropic distillation. The residue is washed with water and dried at 150 C./20 mm. The product is a 40% mineral oil solution of an ester having a saponification number of 68.
  • EXAMPLE 25 An ester is obtained by the procedure of Example 24 except that sorbitol tri-oleate (272 grams) is used in place of sorbitan mono-oleate. The product is a 40% oil solution of the ester having a saponification number of 79.
  • EXAMPLE 26 A substantially hydrocarbon-substituted succinic anhydride is prepared as is described in Example 1 except that a copolymer of 90 Weight percent of isobutene and weight percent of piperylene having a molecular weight of 66,000 is used in lieu of the polyisobutene used.
  • the anhydride has an acid number of 22.
  • An ester is prepared by heating a toluene solution of an equi-molar mixture of the above anhydride and a commercial alkanol consisting substantially of C1244 alcohols at the reflux temperature for 7 hours while water is removed by azeotropic distillation. The residue is heated at 150 C./3 mm. to remove volatile components and diluted with mineral oil. A 50% oil solution of the ester is found to have a saponification number of 17 and an acid number of 5.7.
  • a substantially hydrocarbon-substituted succinic anhydride having an acid number of 25 is obtained from maleic anhydride and a copolymer of 90 weight percent of isobutene With 10 weight percent of piperylene having a molecular weight of 20,000.
  • An ester of the above anhydride with allyl alcohol is prepared by heating a toluene solution containing the anhydride and allyl alcohol (4 moles per mole of the anhydride) in the presence of a catalytic amount of p-toluene sulfonic acid at 1l0-125 C. The residue is then treated with calcium hydroxide and filtered. The solvent is then removed from the filtrate and the residue is dissolved in a mineral oil to make up a 50% oil solution.
  • EXAMPLE 28 An ester is obtained by the procedure of Example 24 except that 234 grams of a poly(oxyethylene)substituted sorbitol mono-oleate having a molecular weight of 234 is used in place of sorbitol mono-oleate.
  • the ester has a saponification number of 53.
  • esters of this invention are useful for a wide variety of purposes, as pesticides, plasticizers, rust-inhibiting agents, corrosion-inhibiting agents, extreme pressure agents, detergents, etc.
  • esters are additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose the esters depend for their effectiveness upon the size of the substantially hydrocarbon substituent in the succinic radical. More particularly, it has been found that esters in which the substantially hydrocarbon substituent contain more than about 50 aliphatic carbon atoms are effective to impart detergent properties to a lubricant, especially under low temperature, or intermittently high and low temperature, service conditions. It has been further found that the de tergent properties of the esters diminish sharply when the size of this substituent is less than about 50 aliphatic carbon atoms, so that esters having less than about 35 aliphatic carbon atoms in this substituent are relatively ineffective for the purposes of this invention.
  • the lubricating oils in which the esters of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily, mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be pre- 12 ferred. For instance, synthetic polyester oils such as didodecyl adipate and di-2-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about 40 Saybolt Universal seconds at F. to about 200 Saybolt Universal seconds at 210 F.
  • the concentration of the esters as additives in lubricants usually ranges from about 0.01% to about 10% by weight.
  • the optimum concentration for a particular application depends to a large extent upon the type of service to which the lubricants are to be subjected.
  • lubricants for use in gasoline engines may contain from about 0.5 to about 5% of the additive whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the additive.
  • additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents.
  • the ash-containing detergents are exemplified by .oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
  • olefin polymer e.g., polyisobutene having a molecular weight of 1000
  • a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide phosphorus pentasulfide,
  • the term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
  • the commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass.
  • a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide
  • Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance, alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, Carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl beta naphthyl-amine, and dodecylamine.
  • a particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60200 C.
  • the preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
  • a polyisobutene having a molecular weight of 50,000 is mixed with 10% by Weight of phosphorus pentasulfide at 200 C. for 6 hours.
  • the resulting product is hydrolyzed by treatment with steam at C. to produce an acidic intermediate.
  • EXAMPLE VII SAE W-30 mineral lubricating oil containing 1.5% of the product of Example 2 and 0.05% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.
  • EXAMPLE VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 26 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.
  • EXAMPLE XIII SAE 10 mineral lubricating oil containing 1.5% of the product of Example 14, 0.075% of phosphorus as the adduct obtained by heating zinc dinonylphosphorodithioate with 0.25 mole of 1,2-hexene oxide at 120 C., a sulfurized methyl ester of tall oil acid having a sulfur content of 6% of a polybutene viscosity index improver, 0.005% of a poly-(alkyl methacrylate) anti-foam agent, and 0.5% of lard oil.
  • EXAMPLE XVI SAE mineral lubricating oil containing 2% of the product of Example 20, 0.1% of phosphorus as zinc di-nhexylphosphorodithioate, 10% of a chlorinated parafiin Wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% oleyl amide, 0.003% of an anti-foam agent, 0.02% of a pour point depressant, and 3% of a viscosity index improver.
  • esters of this invention as deter- 13 intermediate is then converted to a basic salt by mixing with twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.
  • the esters of this invention are especialy adapted for i use in combination with extreme pressure and corrosionin which R and R are substantially hydrocarbon radicals.
  • the metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium.
  • the barium and zinc phosphorodithioates are especialy preferred.
  • the substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group.
  • Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl methylisobutyl carbinyl, heptyl, 2- ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc.
  • Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc.
  • Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals.
  • Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc.
  • Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
  • the availability of the phosphorodithioic acids from which the Group II metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorous pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C.
  • the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100 C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid.
  • the preparation of the zinc or barium salt of this acid may be effected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is suflicient to cause the reaction to take place and the resulting product is sufficiently pure for the purposes of this invention.
  • Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols.
  • the use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids.
  • a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate.
  • mixtures of simple phosphorodiothioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
  • Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide.
  • the metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates.
  • the epoxides may be alkylene oxides or arylalkylene oxides.
  • the arylalkylene oxides are exemplified by styrene oxide, p ethylstyrene oxide, alpha-methylstyrene oxide, 3-betanaphthyl-1,3-butylene oxide, m-dodecylstyrene oxide, and p-chlorostyrene oxide.
  • the alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms.
  • lower alkylene oxides examples include ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin.
  • epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.
  • the adduct may be obtained my simply mixing the phosphorodithioate and the epoxide,
  • the reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C.-Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction.
  • the reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane. 4
  • the chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
  • the lubricating compositions may contain metal detergent additives in amounts usually within the range of from about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
  • EXAMPLE H SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioc acid.
  • EXAMPLE IV SAE mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc salt of an equi-molar mixture of di-cyclohexylphosphorodithioic acid and di-isobutyl phosphorodithioic acid.
  • gent additives in lubricating compositions is shown by the results in Table I of the modified CRC-EX-3 engine test (the modification consists of extending the test period from the specified 96 hours to 144 hours, thus making the test more severe).
  • the test is recognized in the field as an important test by which lubricants can be evaluated for use under relatively light duty or intermittently high and low temperature service conditions such as are encountered in the operation of automobiles in urban use.
  • the lubricant is used in the crankcase of a 1954 6-cylinder Chrysler Power-Glide engine operated for 144 hours under recurring cyclic conditions, each cycle consisting of: 2 hours at engine speed of 500 r.p.m.
  • the lubricant is rated in terms of (1) the extent of piston filling, (2) the amount of sludge formed in the engine (rating scale of 80-0, 80 being indicative of no sludge and 0 being indicative of extremely heavy sludge), (3) the total amount of engine deposits, i.e., sludge and varnish formed in the engine (rating scale of 100-0, 100 being indicative of no deposit and 0 being indicative eof extremely heavy deposits).
  • the lubricating oil base used in the lubricants tested is a SAE 20 mineral lubricating oil.
  • the lubricating composition according to claim 9 wherein the hydrocarbon substituent is a polyisobutene substituent, the oil is a mineral lubricating oil, and the ester comprises from about 0.5% to about 5% by weight of the composition.
  • a lubricating composition comprising a major proportion of a lubricating oil and a minor proportion of an ester of hydrocarbon-substituted succinic acid suificient to improve the detergency of the lubricating composition
  • the hydrocarbon substituent has at least 50 aliphatic carbon atoms, optionally contains polar groups provided the polar groups in total do not exceed about 10% by weight of the hydrocarbon portion of the hydrocarbon substituent, and has no more than about 5% olefinic linkages based on the total number of carbon-tocarbon covalent linkages in said substituent, said ester being selected from the group consisting of acidic esters, diesters, and mixtures thereof, excluding esters having a nitrogen atom attached directly to a succinic radical.
  • a lubricating composition according to claim 2 wherein said ester is an ester of a polyhydric alcohol of from 2 to 10 hydroxy radicals and up to about forty aliphatic carbon atoms and said hydrocarbon substituent is derived from polymerized lower mono-olefin of a molecular weight of from about 700 to about 5000.
  • a lubricating composition according to claim 5 10% by weight of the composition and said oil is a mineral lubricating oil.
  • ester is an ester of an alcohol having at least one substituent selected from the class consisting of carboxy, and amino groups and wherein the hydrocarbon substituent is derived from a polymerized lower monoolefin having a molecular weight of about 700 to about 5000.
  • ester is a diester of an alcohol having up to about nine aliphatic carbon atoms and having at least one substituent selected from the class consisting of amino and carboxy groups and a butene polymer substituted succinic acid.
  • a composition according to claim 18 wherein the 19 ester comprises from about 0.01% to about 10% by weight of the composition.
  • a lubricating composition comprising a major pro portion of a lubricating oil and a minor proportion of an ester sufiicient to improve the detergency of the lubricating composition produced by reacting at a temperature above about 100 C.

Abstract

Additives for lubricating oils, hydrocarbon oils and power transmitting fluids are oil-soluble esters of hydrocarbon substituted succinic acid, the hydrocarbon being saturated and being a polymer containing at least 50 aliphatic carbon atoms. Examples of the ester are the dimethyl ester of polyisobutene succinic anhydride, the polyisobutene succinic anhydride which has been esterified with polyethylene glycol and further reacted with barium oxide to produce a mixed ester-metal salt and the polyisobutene succinic anhydride which has been esterified with a styrene-allyl alcohol copolymer and then reacted with propylene oxide. Examples are given of the addition of these esters to SAE mineral lubricating oils which may also include the usual additives especially the metal phosphor dithioates and their epoxide adducts.ALSO:The invention comprises an oil-soluble ester of a hydrocarbon-substituted succinic acid, the hydrocarbon being saturated and being a polymer containing at least 50 aliphatic carbon atoms. The ester may be prepared by reacting an alcohol or phenol with a hydrocarbon-substituted succinic anhydride or acid, preferably at 150 DEG to 300 DEG C. and in the presence of an esterification catalyst, by reacting an epoxide or a mixture of an epoxide and water with a hydrocarbon substituted succinic anhydride or acid or acid halide, by reacting maleic acid or anhydride with an alcohol and reacting the obtained mono- or di-ester of maleic acid with the polyolefin, and, finally by esterifying itaconic anhydride or acid and then reacting with the polyolefin. The preferred method is by reacting a polyhydric alcohol having 2-10 OH radicals with 0.5-10 moles of hydrocarbon-substituted succinic anhydride, the hydrocarbon being a polymer of a C2- 6 mono-olefin having a M.Wt. of 700-5000. The examples relate to the treatment of polyisobutene succinic anhydride and of the succinic anhydride of the copolymer of 90 isobutene and 10 piperylene. The esters may be used as lubricant addititives.

Description

United States Patent 3,522,179 LUBRICATING COMPOSITION CONTAINING ESTERS OF HYDROCARBON-SUBSTITUTED SUCCINIC ACID William M. Le Suer, Cleveland, Ohio, assignor to The Lubrizol Corporation, Wicklitfe, Ohio, a corporation of Ohio No Drawing. Continuation-in-part of application Ser. No. 274,905, Apr. 23, 1963. This application July 22, 1966, Ser. No. 567,052
Int. Cl. ClOm 1/32, 1/26 U.S. Cl. 252-515 25 Claims ABSTRACT OF THE DISCLOSURE This is a continuation-in-part of application Ser. No. 274,905, filed Apr. 23, 1963, now abandoned.
This invention relates to novel compositions of matter and processes for preparing the same. In a more particular sense this invention relates to composition useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.
Deterioration of lubricating oils, especially mineral oils, has been a great concern in the formulation of lubricating compositions for use in itnernal combustion engines, transmissions, gears, etc. Deterioration of the oil results in the formation of products which are corrosive to the metal surfaces with which the oil comes into contact. It also results in the formation of products which agglomerate to form sludgeand varnish-like deposits. The deposits cause sticking of the moving metal parts and obstruct their free movement. They are a principal cause of malfunctioning and premature break-down of the equipment which the oil lubricates.
It is known that water is a common contaminant in the crankcase lubricant of an engine. It may result from the decomposition of the lubricating oil or come from the combustion chamber as a blow-by product of the burning of the fuel. The presence of water in the lubricant seems to promote the deposition of a mayonnaise-like sludge. This type of sludge is more objectionable because it clings tenaciously to metal surfaces and is not removed by oil filters. If the engine is operated under conditions such that the crankcase lubricant temperature is continuously high the water will be eliminated about as fast as it accumulates and only a very small amount of the mayonnaise-like sludge will be formed. On the other hand, if the crankcase lubricant temperature is intermittently high and low or consistently low the water will accumulate and a substantial quantity of the mayonnaise-like sludge will be deposited in the engine.
High operating temperatures are characteristic of an engine that is run consistently at a relatively high speed. However, where an automobile is used primarily for trips of short distance such as is characteristic of urban, home to work use, a significant portion of the operation occurs before the engine has reached its optimum high temperature. An ideal environment thus obtains for the accumulation of water in the lubricant. In this type of operation the problem of mayonnaise-like sludge has been especially troublesome. Its solution has been approached by the use in the lubricant of detergents such as metal phenates and sulfonates which have been known to be effective in reducing deposits in engines operated primarily at high temperatures. Unfortunately, such known detergents have not been particularly effective in solving the problems associated with low temperature operation particularly those problems which are associated with crankcase lubricants in engines operated at low or intermittently high and low temperatures.
It is accordingly a principal object of this invention to provide novel compositions of matter.
It is also an object of this invention to provide compositions which are suitable for use as additives in hydrocarbon oils. I
It is also an object of this invention to provide compositions which are effective as additives in lubricating compositions.
It is another object of this invention to provide compositions elfective as detergents in lubricating compositions intended for use in engines operated at low or intermittently high and low temperatures.
It is another object of this invention to provide a process of preparing additives useful as additives in hydrocarbon oils and lubricating compositions.
It is another object of this invention to provide lubricating compositions. V
It is further an object of this invention to provide fuel compositions.
These and other objects are attained in accordance with this invention by means of an ester of a substantially saturated hydrocarbon-substituted succinic acid wherein the substantially hydrocarbon substituent has at least about aliphatic carbon atoms. A critical aspect of this inven- 1 tion is the size and the chemical constitution of the substantially hydrocarbon substituent of the succinic radical. Thus, only the esters of substituted succinic acids in which the substituent is substantially saturated and has at least about 50 aliphatic carbon atoms are contemplated as being within the scope of this invention. This lower limit for the size of the substituent is based upon a consideration not only of the oil-solubility of the esters but also of their effectiveness in applications contemplated by this invention.
The substantially hydrocarbon substituent of the succinic radical may contain polar groups, provided, however, that the polar groups are not present in proportions sufficiently large to alter significantly the hydrocarbon character of the substituent. The polar groups are exemplified by the chloro, bromo, keto, ether, aldehyde, nitro, etc. The upper limit With-respect to the portion of such polar groups in the substituent is approximately 10% based on the Weight of the hydrocarbon portion of the substituent.
The sources of the substantially hydrocarbon substituent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of mono-olefins having from 2 to 30 carbon atoms. The especially useful polymers are the polymers of l-rnonoolefins such as ethylene, propene, l-butene, isobutene, 1-
hexene, l-octene, 2-methyl-1-heptene, 3-cyclohexyl-1- butene, and 2 methyl-S-propyl-l-hexene. Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are helpful. They are illustrated by 2-butene, 3-pentene, and 4-octene.
Also useful are the interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins. Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; l-hexene with 1,3-hexadiene; 1-
octene with l-hexene; l-heptene with l-pentene; 3-methyll-butene with l-octene; 3,3-dimethyl-1-pentene with 1- hexene; isobutene with styrene and piperylene; etc.
The relative proportions of the mono-olefins to the other monomers in the inter-polymers influence the stability and oil solubility of the final products derived from such interpolymers. Thus, for reasons of oil-solubility and stability the interpolymers contemplated for use in this invention should be substantially aliphatic andsubstantially saturated, i.e., they should contain at least about 80%, preferably at least about 95%, on a weight basis, of units derived from the aliphatic mono-olefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be less than about 2% of the total number of carbon-tocarbon covalent linkages.
Specific examples of such interpolymers include the copolymer of 95% (by weight) of isobutene with 5% of styrene; the terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; the terpolymer of 95 of isobutene with 2% of l-butene and 3% of l-hexene; the terpolymer of 80% of isobutene with of 1- pentene and 10% of l-octene; the copolymer of 80% of l-hexene and of l-heptene; the terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propene; and the copolymer of 80% of ethylene and 20% of propene.
Another source of the substantially hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.
The use of olefin polymers having molecular weights of about 700-5000 is preferred. Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart viscosity index improving properties to the final products of this invention. The use of such higher molecular weight olefin polymers often is desirable.
The esters of this invention are those of the above described succinic acids with hydroxy compounds which may be aliphatic compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols. The aromatic hydroxy compounds from which the esters of this invention may be derived are illustrated by the following specific examples: phenol, beta-naphthol, alpha-naphthol, cresol, resorcinol, catechol, p,p dihydroxybiphenyl, 2-chlorophenol, 2,4-dibutylphenol, propene tetramer-substituted phenol, didodecylphenol, 4,4'-methylene bis phenol, alpha-decyl-betanaphthol, polyisobutene(molecular weight of 1000)-substituted phenol, the condensation product of heptylphenol with 0.5 mole of formaldehyde, the condensation product of octylphenol with acetone, di(hydroxyphenyl) oxide, di(hydroxyphenyl)sulfide, di(hydroxyphenyl)disulfide, and 4-cyclohexylphenol. Phenol and alkylated phenols having up to three alkyl substituents are preferred. Each of the alkyl substituents may contain 100 or more carbon atoms.
The alcohols from which the esters may be derived preferably contain up to about 40 aliphatic carbon atoms. They may be monohydric alcohols such as methanol, ethanol, isooctanol, dodecanol, cyclohexanol, cyclopentanol, behenyl alcohol, hexatriacontanol, neopentyl alcohol, isobutyl alcohol, benzyl alcohol, beta-phenylethyl alcohol, 2-methylcyclohexanol, beta-chloroethanol, monomethyl ether of ethyene glycol, monobutyl ether of ethylene glycol, monopropyl ether of diethylene glycol, monododecyl ether of triethylene glycol, mono-oleate of ethylene glycol, monostearate of diethylene glycol, sec-pentyl alcohol, tert-butyl alcohol, 5-bromo-dodecanol, nitrooctadecanol and dioleate of glycerol. The polyhydric alcohols preferably contain from 2 to about 10 hydroxy radicals. They are illustrated by, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glyco, dibutylene glycol, tributylene glycol, and other alkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms. Other useful polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, monomethlyl ether of glycerol, pentaerythritol, 9,10- dihydroxy stearic acid, methyl ether of 9,10-dihydroxy stearic acid, 1,2-butanediol, 2,3-hexanediol, 2,4-hexanediol, pinacol, erythritol, arabitol, sorbitol, mannitol, 1,2- cyclo-hexanediol, and xylylene glycol. Carbohydrates such as sugars, starches, celluloses, etc., likewise may yield the esters of this invention. The carbohydrates may be exemplified by a glucose, fructose, sucrose, rharnose, mannose, glyceraldehyde, and galactose.
An especially preferred class of polyhydric alcohols are those having at least three hydroxy radicals, some of which have been esterified with a monocarboxylic acid having from about 8 to about 30 carbon atoms such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid, or tall oil acid. Examples of such partially esterified polyhydric alcohols are the mono-oleate of sorbitol, distearate of sorbitol, mono-oleate of glycerol, monostearate of glycerol, di-dodecanoate of erythritol.
The esters of this invention may also be derived from unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, l-cyclohexen-S-ol, an oleyl alcohol. Still other classes of the alcohols capable of yielding the esters of this invention comprises the ether-alcohols and amino-alcohols including, for example, the oxy-alkylene-, oXy-arylene-, amino-alkylene-, and amino-arylene-su'bstituted alcohols having one or more oxy-alkylene, aminoalkylene or amino-arylene oxy-arylene radicals. They are exemplified by Cellosolve, Carbitol, phenoxy-ethanol, heptylphentyl- (oxypropylene) -H, octyl- (oxyethylene H, phenyl (oxyoctylene) H, mono (heptylphenyl-oxypropylene) substituted glycerol, poly(styrene oxide), aminoethanol, 3-amino ethylpentanol, di(hydroxyethyl) amine, p-aminophenol, tri(hydroxypropyl) amine, N-hydroxyethyl ethylene diamine, N,N,N',N-tetrahydroxytrimethylene diamine, and the like. For the most part, the ether-alcohols having up to about 150 oxy-alkylene radicals in which the alkylene radical contains from 1 to about 8 carbon atoms are preferred.
The esters of this invention may be di-esters of succinic acids or acidic esters, i.e., partially esterified succinic acids; as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcoholic or phenolic hydroxyl radicals. Mixtures of the above-illustrated esters likewise are contemplated within the scope of this invention.
A suitable class of esters for use in the lubricating compositions of this invention are those diesters of succinic acid and an alcohol having up to about nine aliphatic carbon atoms and having at least one substituent selected from the class consisting of amino and carboxy groups wherein the hydrocarbon substituent of the succinic acid is a polymerized butene substituent having a molecular weight of from about 700 to about 5000.
The esters of this invention may be prepared by one of several methods. The method which is preferred because of convenience and superior properties of the esters it produces, involves the reaction of a suitable alcohol or phenol with a substantially hydrocarbon-substituted succinic anhydride. The esterification is usually carried out at a temperature above about C., preferably between C. and 300 C.
The water formed as a by-product is removed by distillation as the esterification proceeds. A solvent may be used in the esterification to facilitate mixing and temperature control. It also facilitates the removal of water from the reaction mixture. The useful solvents include xylene, toluene, diphenyl ether, chlorobenzene, and mineral oil. The esterification is illustrated by the reaction of ethylene glycol with a substituted succinic anhydride as represented by the equations below.
wherein R is a substantialy hydrocarbon radical having at least about 50 aliphatic carbon atoms. It will be readily appreciated that the above equations are merely illustrative. Other products not represented by Formulas I, H, and III may be formed. Polymeric esters formed by the condensation of two or more molecules of each of the succinic acid reactant and the polyhydric alcohol reactant likewise may be formed. In most cases the product is a mixture of esters, the precise chemical composition and the relative proportions of which in the product are difficult to determine. Consequently, the product of such reaction is best described in terms of the process by which it is formed.
A modification of the above process involves the replacement of the substituted succinic anhydride with the corresponding succinic acid. However, succinic acids readily undergo dehydration at temperatures above about 100 C. and are thus converted to their anhydrides which are then esterified by the reaction with the alcohol reactant. In this regard, succinic acids appear to be the substantial equivalent of their anhydrides in the process.
The relative proportions of the succinic reactant and the hydroxy reactant which are to be used depend to a large measure upon the type of the product desired and the number of hydroxyl groups present in the molecule of the hydroxy reactant. For instance, the formation of a half ester of a succinic acid, i.e., one in which only one of the two acid radicals is esterified, involves the use of one mole of a monohydric alcohol for each mole of the substituted succinic acid reactant, whereas the formation of a diestcr of a succinic acid involves the use of two moles of the alcohol for each mole of the acid. On the other hand, one mole of a hexahydric alcohol may combine with as many as six moles of a succinic acid to form an ester in which each of the six hydroxyl radicals of the alcohol is esterified with one of the two acid radicals of the succinic acid. Thus, the maximum proportion of the succinic acid to be used with a polyhydric alcohol is determined by the number of hydroxyl groups present in the molecule of the hydroxy reactant. For the purposes of this invention, it has been found that esters obtained by the reaction of equi-molar amounts of the succinic acid reactant and hydroxy reactant have superior properties and are therefore preferred.
In some instances it is advantageous to carry out the esterification in the presence of a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst. The amount of the catalyst in the reaction may be as little as 0.01% (by weight of the reaction mixture), more often from about 0.1% to about 5%.
The esters of this invention likewise may be obtained by the reaction of a substituted succinic acid or anhydride with an epoxide or a mixture of an epoxide and water. Such reaction is similar to one involving the acid or anhydride with a glycol. For instance, the product represented by the structural Formula I above may be prepared by the reaction of a substituted succinic acid with one mole of ethylene oxide. Similarly, the product of Formula II may be obtained by the reaction of a substituted succinic acid with two moles of ethylene oxide. Other epoxides which are commonly available for use in such reaction include, for example, propylene oxide, styrene oxide, 1,2-butylene oxide, 2,3-butylene oxide, epichlorohydrin, cyclohexene oxide, 1,2-octylene oxide, epoxidized soya bean oil, methyl ester of 9,1'0-epoxystearic acid, and butadiene mono-epoxide. For the most part, the epoxides are the alkylene oxides in which the alkylene radical has from 2 to about 8 carbon atoms; or the epoxidized fatty acid esters in which the fatty acid radical has up to about 30 carbon atoms and the ester radical is derived from a lower alcohol having up to about 8 carbon atoms.
In lieu of the succinic acid or anhydride, a substituted succinic acid halide may be used in the processes illustrated above for preparing the esters of this invention. Such acid halides may be acid dibromides, acid dichlorides, acid monochlorides, and acid monobromides. The substituted succinic anhydrides and acids can be prepared by, for example, the reaction of maleic anhydride with a high molecular weight olefin or a halogenated hydrocarbon such as is obtained by the chlorination of an olefin polymer described previously. The reaction involves merely heating the reactants at a temperature preferably from about C. to about 250 C. The product from such a reaction is an alkenyl succinic anhydride. The alkenyl group may be hydrogenated to an alkyl group. The anhydride may be hydrolyzed by treatment with water or steam to the corresponding acid. Another method useful for preparing the succinic acids or anhydrides involves the reaction of itaconic acid or anhydride with an olefin or a chlorinated hydrocarbon at a temperature usually within the range from about 100 C. to about 250 C. The succinic acid halides can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride. These and other methods of preparing the succinic compounds are well known in the art and need not be illustrated in further detail here.
Still other methods of preparing the esters of this invention are available. For instance, the esters may be obtained by the reaction of maleic acid or anhydride with an alcohol such as is illustrated above to form a mono or di-ester of maleic acid and then the reaction of this ester with an olefin or a chlorinated hydrocarbon such as is illustrated above. They may also be obtained by first esterifying itaconic anhydride or acid and subsequently reacting the ester intermediate with an olefin or a chlorinated hydrocarbon under conditions similar to those described hereinabove.
Still another method of preparing the esters of this invention involves the reaction of a substituted succinic acid or anhydride with a halogenated alcohol or epoxide such as 2-chloro-ethanol, 3-bromopropanol, 2-chlorocyclohexanol, epichlorohydrin, p-benzyl alcohol or the like. The resulting ester has a halogen substituent which is susceptible to modification by reaction with an amino compound such as ammonia, aniline, toluidine, methylamine, dimethylamine, cyclohexylamine, N-methyldodecylamine, N-methylaniline ethylenediamine, diethylene triamine, pentaethylene hexamine, behenylamine, etc. The modification results in the replacement of the halogen group with an amino group so that the ester is characterized by the presence of an amino hydrocarbon-containing ester group. Such amino hydrocarbon-substituted esters, especially those in which the amino radical is an unsubstituted amino radical or one having hydrocarbon substituents or one being free of any high molecular weight succinic radical attached directly to the amino nitrogen atom, are especially useful for the purpose of the present invention.
The following examples illustrate the esters of this invention and the processes for preparing such esters.
EXAMPLE 1 A substantially hydrocarbon-substituted succinic anhydride is prepared by chlorinating a polyisobutene having a molecular weight of 1000 to a chlorine content of 4.5% and then heating the chlorinated polyisobutene with 1.2 molar proportions of maleic anhydride at a temperature of 150-220 C. The succinic anhydride thus obtained has an acid number of 130. A mixture of 874 grams (1 mole) of the succinic anhydride and 104 grams (1 mole) of neopentyl glycol is mixed at 240250 C./30 mm. for 12 hours. The residue is a mixture of the esters resulting from the esterification of one and both hydroxy radicals of the glycol. It has a saponification number of 101 and an alcoholic hydroxyl content of 0.2%
EXAMPLE 2 The di-methyl ester of the substantially hydrocarbonsubstituted succinic anhydride of Example 1 is prepared by heating a mixture of 2185 grams of the anhydride, 480 grams of methanol, and 1000 cc. of toluene at 5065 C. while hydrogen chloride is bubbled through the reaction mixture for 3 hours. The mixture is then heated at 60- 65 C. for 2 hours, dissolved in benzene, Washed with water, dried and filtered. The filtrate is heated at 150 C./ 60 mm. to rid it of volatile components. The residue is the defined di-methyl ester.
EXAMPLE 3 The substantially hydrocarbon-substituted succinic anhydride of Example 1 is partially esterified with an etheralcohol as follows. A mixture of 550 grams (0.63 mole) of the anhydride and 190 grams (0.32 mole) of a commercial polyethylene glycol having a molecular weight of 600 is heated at 240250 C. for 8 hours at atmospheric pressure and 12 hours at a pressure of 30 mm. Hg until the acid number of the reaction mixture is reduced to 28. The residue is an acidic ester having a saponification number of 85.
EXAMPLE 4 A mixture of 926 grams of a polyisobutene-substituted succinic anhydride having an acid number of 121, 1023 grams of mineral oil, and 124 grams (2 moles per mole of the anhydride) of ethylene glycol is heated at 50- 170 C. while hydrogen chloride is bubbled through the reaction mixture for 1.5 hours. The mixture is then heated 8 to 250 C./ 30 mm. and the residue is purified by washing with aqueous sodium hydroxide followed by washing with water, then dried and filtered. The filtrate is a 50% oil solution of an ester having a saponification number of 48.
EXAMPLE 5 A mixture of 438 grams of the polyisobutene-substituted succinic anhydride prepared as is described in Example 1 and 333 grams of a commercial polybutylene glycol having a molecular weight of 1000 is heated for 10 hours at 150-160 C. The residue is an ester having a saponification number of 73 and an alcoholic hydroxyl content of 0.7%.
EXAMPLE 6 The acidic ester of Example 3 (250 grams) is neutralized by mixing with 11 grams (10% excess on a chemical equivalent basis) of barium oxide, 20 grams of methanol, and 267 grams of mineral oil at 50 60 C. The mixture is then heated to 150 C. to distill off volatile components and the residue is filtered. The filtrate is a mineral oil solution of a mixed ester-metal salt having a saponification number of 17 and a barium sulfate ash content of 4.6%.
EXAMPLE 7 A mixture of 645 grams of the substantially hydro carbon-substituted succinic anhydride prepared as is described in Example 1 and 44 grams of tetramethylene glycol is heated at 130 C. for 2 hours. To this mixture there is added 51 grams of acetic anhydride (esterification catalyst) and the resulting mixture is heated under reflux at 160 C. for 2.5 hours. Thereafter the volatile components of the mixture are distilled by heating the mixture to 196-270 C./30 mm. and then at 240 C./O.15 mm. for 10 hours. The residue is an acidic ester having a saponification number of 121 and an acid number of 58.
EXAMPLE 8 A mixed ester-metal salt is prepared as follows. A mixture of 1545 grams (1.5 moles) of the substituted succinic anhydride having an acid number of 110 and prepared as is described in Example 1 and 46 grams (0.5 mole) of glycerol is heated at l20150 C. for 3 hours whereupon the acid number of the reaction mixture is reduced to 68. It is then heated at 190 C. until the acid number is reduced to 53. To this mixture there is added portionwise 125 grams (1.63 moles) of barium oxide together with 1500 grams of mineral oil and 50 cc. of water. The resulting mixture is heated to 90- 100 C., diluted with 25 cc. isopropyl alcohol and 100 cc. of benzene (solvent mixture), and heated under reflux for 3 hours. Volatile components are then removed by heating the mixture to C./35 mm. and the residue filtered. The filtrate is a mineral oil solution of the mixed ester-barius salt having a barium sulfate content of 5.6%.
EXAMPLE 9 A mixed ester-metal salt is prepared by the procedure of Example 8 except that pentaerythritol (51 grams, 0.38 mole) is used in place of glycerol. The product has a barium sulfate ash content of 4.9%.
EXAMPLE 10 A mixed ester-metal salt is prepared as follows. A mixture is prepared from 1545 grams (1.5 moles) of a polyisobutene-substituted succinic anhydride having an acid number of 110 and 152 grams (0.19 mole) of an ether-alcohol prepared by the reaction of sucrose with 8 moles of propylene oxide. The mixture is heated at l39180 C. for 3 hours whereupon the acid number of the mixture is reduced to 45. It is diluted with 320 grams of mineral oil and heated at 195 C. for 3.5 hours until the acid number is 42. To this mixture there are added 1180 grams of mineral oil, 50 grams of water, 50 cc. of isopropanol, and 128 grams (0.83 mole) 9 of barium oxide at 70 C. The resulting mixture is heated at 90-105 C. for 3 hours and dried at 158 C. The residue is filtered. The filtrate is a mineral oil solution of the mixed ester-barium salt having a barium sulfate ash content of 5.6%.
EXAMPLE 11 A mixture of 456 grams of a polyisobutene-substituted succinic anhydride prepared as is described in Example 1 and 350 grams (0.35 mole) of the monophenyl ether of a polyethylene glycol having a molecular weight of 1000 is heated at 150155 C. for 2 hours. The product is an ester having a saponification number of 71, an acid number of 53, and an alcoholic hydroxyl content of 0.52%.
EXAMPLE 12 An ester is prepared by heating at the reflux temperature for hours a xylene solution of an equi-molar mixture of the polyisobutene-substituted succinic anhydride of Example 1 and a commercial polystyrene oxide having a molecular weight of 500 while water is removed by azeotropic distillation. The mixture is then heated to 160 C./ 18 mm. The residue is an ester having a saponification number of 67, an acid number of 45, and an alcoholic hydroxyl content of 1.2%.
EXAMPLE 13 A di-oleyl ester is prepared as follows: A mixture of 1 mole of a polyisobutene-substituted succinic anhydride, 2 moles of a commercial oleyl alcohol, 305 grams of xylene, and 5 grams of p-toluene sulfonic acid (esterification catalyst) is heated at 150173 C. for 4 hours whereupon 18 grams of water is collected as the distillate. The residue is washed with water and the organic layer dried and filtered. The filtrate is heated to 175 C./20 mm. and the residue is the defined ester.
EXAMPLE 14 A di-oleyl ester is prepared by the procedure of Example 13 except that the substituted succinic anhydride used is prepared by the reaction of a chlorinated petroleum oil having a molecular weight of 800 with maleic anhydride.
EXAMPLE 15 An ether-alcohol is prepared by the reaction of 9 moles of ethylene oxide with 0.9 mole of a polyisobutenesubstituted phenol in which the polyisobutene substituent has a molecular weight of 1000. A substantially hydrocarbon-substituted succinic acid ester of this ether-alcohol is prepared by heating a xylene solution of an equi-molar mixture of the two reactants in the presence of a catalytic amount of p-toluene sulfonic acid at 157 C. The ester is found to have a saponification number of and an acid number of 10.
EXAMPLE 16 A polyhydric alcohol is prepared by copolymerizing equimolar proportions of styrene and allyl alcohol to a copolymer having a molecular weight of 1150 and containing an average of 5 hydroxyl radicals per mole. An ester of this alcohol is prepared as follows. A mixture of 340 grams (0.3 mole) of the alcohol and 1.5 moles of a polyisobutene-substituted succinic anhydride as is prepared in Example 1 in 500 grams of xylene is heated at 80 -115 C., diluted with mineral oil, then heated to distill off xylene, and filtered. The filtrate is further esterified by heating with propylene oxide (one equivalent per equivalent of the unesterified anhydride) at 70150 'C. under reflux. The product is diluted with oil to an oil solution having an oil content of 40%.
EXAMPLE 17 A substantially hydrocarbon-substituted succinic acid lecular weight of 50,000 to a chlorine content of 3.9%,
reacting the chlorinated polyisobutene with maleic anhydride to form a substituted succinic anhydride having an acid number of 20, and hydrolyzing the anhydride by treatment with steam at 102-133 C. to the corresponding acid. A mixture of 315 grams of the acid (0.06 mole) and 10 grams (0.17 mole) of propylene oxide is heated at 102 C. for 1 hour. The residue is then heated at -110 C./1 mm. The above treatment with propylene oxide is repeated twice. The final product is found to have a saponification number of 20.
EXAMPLE 18 An ester of an ether-alcohol is prepared by heating a toluene solution of an equi-molar mixture of the substantially hydrocarbon-substituted succinic anhydride of Example 1 and a commercial polyethylene glycol at 97 102 C. for 6 hours and then at C./16 mm. The ester has a saponification number of 37 and an acid member of 26.
EXAMPLE 19 A di-(hydroxypropyl)ester is prepared as follows: propylene oxide (58 grams, 1 mole) is added dropwise to a mixture of 0.5 mole of the substantially hydrocarbonsubstituted succinic anhydride of Example 1 and 8 grams (0.1 mole, esterification catalyst) of pyridine at 80-90 C. The mixture is heated at reflux for 1 hour, diluted with 400 grams of mineral oil and heated to 170 C./40 mm. The residue is filtered. The filtrate is a 40% mineral oil solution of the defined ester.
EXAMPLE 20 An ester is obtained by heating a mixture of 525 grams of the substantially hydrocarbon-substituted succinic anhydride of Example 1, 422 grams of butyl 9,10-epoxystearate, and 9.5 grams of pyridine (esterification catalyst) at 100200 C. for 2.5 hours. The mixture is diluted with 630 grams of mineral oil and heated to 210 C./20 mm. The residue is a mineral oil solution of the ester having a saponification number of 70, an acid number of 1.4, and an alcoholic hydroxyl content of 0.3%.
EXAMPLE 21 An ester is prepared by the procedure of Example 20 except that the butyl 9,10-epoxystearate is replaced with dipentene di-epoxide (0.64 mole per mole of the anhydride used). A 40% mineral oil solution of the ester obtained has a saponification number of 54 and an acid number of 0.4.
EXAMPLE 22 A partial ester of sorbitol is obtained by heating a xylene solution containing the substantially hydrocarbon substituted succinic anhydride of Example 1 and sorbitol (0.5 mole per mole of the anhydride) at -155 C. for 6 hours while water is removed by azeotropic distillation. The residue is filtered and the filtrate is heated at C./11 mm. to distill off volatile components. The residue is an ester having a saponification number of 97 and an alcoholic hydroxyl content of 1.5%.
EXAMPLE 23 An ester is obtained by heating an equi-molar mixture of dibutyl itaconate and chlorinated polyisobutene having a chlorine content of 4.7% and a molecular weight of 700 at 220 C. for 7 hours and then at 200 C./3 mm. The residue is filtered. The filtrate is the ester having a saponification number of 74.
EXAMPLE 24 An ester is obtained by the further esterification of sorbitol mono-oleate with a substituted succinic anhydride as follows: a mixture of 126 grams of sorbitol mono-oleate, 770 grams of the substantially hydrocarbon substituted succinic anhydride of Example 1, 588 grams of mineral oil, 500 cc. of xylene and 9 grams of ptoluene sulfonic acid (esterification catalyst) is heated at 11 140 C. while water is removed by azeotropic distillation. The residue is washed with water and dried at 150 C./20 mm. The product is a 40% mineral oil solution of an ester having a saponification number of 68.
EXAMPLE 25 An ester is obtained by the procedure of Example 24 except that sorbitol tri-oleate (272 grams) is used in place of sorbitan mono-oleate. The product is a 40% oil solution of the ester having a saponification number of 79.
EXAMPLE 26 A substantially hydrocarbon-substituted succinic anhydride is prepared as is described in Example 1 except that a copolymer of 90 Weight percent of isobutene and weight percent of piperylene having a molecular weight of 66,000 is used in lieu of the polyisobutene used. The anhydride has an acid number of 22. An ester is prepared by heating a toluene solution of an equi-molar mixture of the above anhydride and a commercial alkanol consisting substantially of C1244 alcohols at the reflux temperature for 7 hours while water is removed by azeotropic distillation. The residue is heated at 150 C./3 mm. to remove volatile components and diluted with mineral oil. A 50% oil solution of the ester is found to have a saponification number of 17 and an acid number of 5.7.
EXAMPLE 27 A substantially hydrocarbon-substituted succinic anhydride having an acid number of 25 is obtained from maleic anhydride and a copolymer of 90 weight percent of isobutene With 10 weight percent of piperylene having a molecular weight of 20,000. An ester of the above anhydride with allyl alcohol is prepared by heating a toluene solution containing the anhydride and allyl alcohol (4 moles per mole of the anhydride) in the presence of a catalytic amount of p-toluene sulfonic acid at 1l0-125 C. The residue is then treated with calcium hydroxide and filtered. The solvent is then removed from the filtrate and the residue is dissolved in a mineral oil to make up a 50% oil solution.
EXAMPLE 28 An ester is obtained by the procedure of Example 24 except that 234 grams of a poly(oxyethylene)substituted sorbitol mono-oleate having a molecular weight of 234 is used in place of sorbitol mono-oleate. The ester has a saponification number of 53.
The esters of this invention are useful for a wide variety of purposes, as pesticides, plasticizers, rust-inhibiting agents, corrosion-inhibiting agents, extreme pressure agents, detergents, etc.
A principal utility of the esters is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose the esters depend for their effectiveness upon the size of the substantially hydrocarbon substituent in the succinic radical. More particularly, it has been found that esters in which the substantially hydrocarbon substituent contain more than about 50 aliphatic carbon atoms are effective to impart detergent properties to a lubricant, especially under low temperature, or intermittently high and low temperature, service conditions. It has been further found that the de tergent properties of the esters diminish sharply when the size of this substituent is less than about 50 aliphatic carbon atoms, so that esters having less than about 35 aliphatic carbon atoms in this substituent are relatively ineffective for the purposes of this invention.
The lubricating oils in which the esters of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily, mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be pre- 12 ferred. For instance, synthetic polyester oils such as didodecyl adipate and di-2-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about 40 Saybolt Universal seconds at F. to about 200 Saybolt Universal seconds at 210 F.
The concentration of the esters as additives in lubricants usually ranges from about 0.01% to about 10% by weight. The optimum concentration for a particular application depends to a large extent upon the type of service to which the lubricants are to be subjected. Thus, for example, lubricants for use in gasoline engines may contain from about 0.5 to about 5% of the additive whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the additive.
This invention contemplates also the presence of other additives in the lubricating compositions. Such additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents.
The ash-containing detergents are exemplified by .oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.
The term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass. The use of a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance, alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, Carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl beta naphthyl-amine, and dodecylamine. A particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60200 C.
The preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
The preparation of a basic barium salt of a phosphorus acid is illustrated as follows: A polyisobutene having a molecular weight of 50,000 is mixed with 10% by Weight of phosphorus pentasulfide at 200 C. for 6 hours. The resulting product is hydrolyzed by treatment with steam at C. to produce an acidic intermediate. The acidic 1 EXAMPLE v1 SAE 20W30 mineral lubricating oil containing 5% of the product of Example 24.
EXAMPLE VII SAE W-30 mineral lubricating oil containing 1.5% of the product of Example 2 and 0.05% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.
EXAMPLE VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 26 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.
EXAMPLE IX SAE 10W-30 mineral lubricating oil containing 2% of the product of Example 2, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
EXAMPLE X SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 17, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product With steam at 150 C.
EXAMPLE XII SAE 10 mineral lubricating oil containing 2% of the product of Example 25, 0.075 of phosphorus as the adduct of zinc di-cyclohexylphosphorodithioate treated With 0.3 mole of ethylene oxide, 2% of a sulfurized sperm oil having a sulfur content of 10%, 3.5% of a poly- (alkyl methacrylate) viscosity index improver, 0.02% of a poly-(alkyl methacrylate) pour point depressant, 0.003% of a poly-(alkyl siloxane) anti-foam agent.
EXAMPLE XIII SAE 10 mineral lubricating oil containing 1.5% of the product of Example 14, 0.075% of phosphorus as the adduct obtained by heating zinc dinonylphosphorodithioate with 0.25 mole of 1,2-hexene oxide at 120 C., a sulfurized methyl ester of tall oil acid having a sulfur content of 6% of a polybutene viscosity index improver, 0.005% of a poly-(alkyl methacrylate) anti-foam agent, and 0.5% of lard oil.
EXAMPLE XIV SAE mineral lubricating oil containing 1.5% of the product of Example 2, 0.5% of di-dodecyl phosphite, 2% of the sulfurized sperm oil having a sulfur content of 9%, a basic calcium detergent prepared by carbonating a mixture comprising mineral oil, calcium mahogany sulfonate and 6 moles of calcium hydroxide in the presence of an equi-molar mixture (10% of the mixture) of methyl alcohol and n-butyl alcohol as the promoter at the reflux temperature,
16 EXAMPLE XV SAE 10 mineral lubricating oil containing 25% of the product of Example 9, 0.07% of phosphorus as zinc dioctylphosphorodithioate, 2% of a barium detergent prepared by neutralizing With barium hydroxide the hydrolyzed reaction product of a polypropylene (molecular Weight of 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (Weight) of decyl-methacrylate and 5% (weight) of diethylaminoethylacrylate.
EXAMPLE XVI SAE mineral lubricating oil containing 2% of the product of Example 20, 0.1% of phosphorus as zinc di-nhexylphosphorodithioate, 10% of a chlorinated parafiin Wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% oleyl amide, 0.003% of an anti-foam agent, 0.02% of a pour point depressant, and 3% of a viscosity index improver.
EXAMPLE XVII SAE 10 mineral lubricating oil containing 3%of the product of Example 2, 0.075% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equi-molar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at 150 C.
EXAMPLE XVIII SAE 20 mineral lubricating oil containing 2% of the product of Example 12 and 0.07% of phosphorus as zinc di-n-octylphosphorodithioate.
EXAMPLE XIX SAE 30 mineral lubricating oil containing 3% of the product of Example 14 and 0.1% of phosphorus as zinc di- (isobutylphenyl) -phospor0dithioate.
EXAMPLE XX SAE 50 mineral lubricating oil containing 2% of the product of Example 15.
EXAMPLE XXI SAE mineral lubricating oil containing 3% of the product of Example 18 and 0.2% of phosphorus as the reaction product of 4 moles of turpentine With 1 mole of phosphorus pentasulfide.
EXAMPLE XXII SAE 90 mineral lubricating oil containing 3% of the product of Example 19 and 0.2% of 4,4'-methylene-bis- (2,6-di-tert-butylphenol) EXAMPLE XXIII SAE 30 mineral lubricating oil containing 2% of the product of Example 22 and 0.1% of phosphorus as phenylethyl dicyclohexylphosphorodithioate.
EXAMPLE XXIV SAE 90 mineral lubricating oil containing 5% of the product of Example 2 and 1% of the calcium salt of the sulfurized phenol obtained by the reaction of 2 moles of heptylphenol with 1 mole of sulfur.
The above lubricants are merely illustrative and the scope of the invention includes the use of all of the additives previously illustrated as Well as others within the broad concept of this invention described herein.
The effectiveness of the esters of this invention as deter- 13 intermediate is then converted to a basic salt by mixing with twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.
The esters of this invention are especialy adapted for i use in combination with extreme pressure and corrosionin which R and R are substantially hydrocarbon radicals. The metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium. The barium and zinc phosphorodithioates are especialy preferred. The substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group. Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl methylisobutyl carbinyl, heptyl, 2- ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc. Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc. Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals. Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc. Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
The availability of the phosphorodithioic acids from which the Group II metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorous pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C. Thus the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100 C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid. The preparation of the zinc or barium salt of this acid may be effected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is suflicient to cause the reaction to take place and the resulting product is sufficiently pure for the purposes of this invention.
Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols. The use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids. Thus a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate. For the same reason mixtures of simple phosphorodiothioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide. The metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates. The epoxides may be alkylene oxides or arylalkylene oxides. The arylalkylene oxides are exemplified by styrene oxide, p ethylstyrene oxide, alpha-methylstyrene oxide, 3-betanaphthyl-1,3-butylene oxide, m-dodecylstyrene oxide, and p-chlorostyrene oxide. The alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms. Examples of such lower alkylene oxides are ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin. Other epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.
The adduct may be obtained my simply mixing the phosphorodithioate and the epoxide, The reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C.-Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction. The reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane. 4
The chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
The lubricating compositions may contain metal detergent additives in amounts usually within the range of from about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
The following examples are illustrative of the lubricating compositions of this invention: (all percentages are by weight).
EXAMPLE I SAE 20 mineral lubricating oil containing 0.5% of the product of Example 1.
EXAMPLE H SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioc acid.
EXAMPLE III SAE lOW-30 mineral lubricating oil containing 0.4% of the product of Example 3.
EXAMPLE IV SAE mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc salt of an equi-molar mixture of di-cyclohexylphosphorodithioic acid and di-isobutyl phosphorodithioic acid.
EXAMPLE V SAE 30 mineral lubricating oil containing 2% of the product of Example 12.
gent additives in lubricating compositions is shown by the results in Table I of the modified CRC-EX-3 engine test (the modification consists of extending the test period from the specified 96 hours to 144 hours, thus making the test more severe). The test is recognized in the field as an important test by which lubricants can be evaluated for use under relatively light duty or intermittently high and low temperature service conditions such as are encountered in the operation of automobiles in urban use. In this test, the lubricant is used in the crankcase of a 1954 6-cylinder Chevrolet Power-Glide engine operated for 144 hours under recurring cyclic conditions, each cycle consisting of: 2 hours at engine speed of 500 r.p.m. under no load, oil sump temperature of 10=0-125 F., and air:fuel ratio of 10: 1; and 2 hours at an engine speed of 2500 r.p.m. under a load of 40 brake horsepower, oil sump temperature of 240280 F., and an air:fuel ratio of 16:1. At the end of the test the lubricant is rated in terms of (1) the extent of piston filling, (2) the amount of sludge formed in the engine (rating scale of 80-0, 80 being indicative of no sludge and 0 being indicative of extremely heavy sludge), (3) the total amount of engine deposits, i.e., sludge and varnish formed in the engine (rating scale of 100-0, 100 being indicative of no deposit and 0 being indicative eof extremely heavy deposits). The lubricating oil base used in the lubricants tested is a SAE 20 mineral lubricating oil.
TABLE I Additive of this Invention 18 wherein said ester comprises from about 0.01 to about 10% by weight of the composition and said oil is a mineral lubricating oil.
7. A lubricating composition according to claim 5 wherein said hydrocarbon substituent is a polybutene substituent.
8. A lubricating composition according to claim 5 wherein said hydrocarbon substituent is a polyisobutene substituent.
9. A lubricating composition according to claim 5 wherein said ester is an ester of a member selected from a class consisting of neopentyl glycol, ethylene glycol, glycerol, pentaerythritol, and sorbitol.
10. The lubricating composition according to claim 9 wherein the hydrocarbon substituent is a polyisobutene substituent, the oil is a mineral lubricating oil, and the ester comprises from about 0.5% to about 5% by weight of the composition.
11. A lubricating composition according to claim 2 wherein the ester is an ester of an alcohol of at least three hydroxyl radicals, at least one hydroxyl radical being esterified with a monocarboxylic acid of 8 to carbon atoms and the hydrocarbon substituent is derived from polymerized lower mono-olefin having a molecular weight of about 700 to about 5000.
12. A lubricating composition according to claim 11 wherein the ester comprises from about 0.01% to about Engine Test Result Lubricant sample:
1.6% by weight of the product of Example 6 132% by weight of the product of Example 10 2% by weight of the product of Example 16 Percent ring Sludge Deposit filling rating rating What is claimed is:
1. A lubricating composition comprising a major proportion of a lubricating oil and a minor proportion of an ester of hydrocarbon-substituted succinic acid suificient to improve the detergency of the lubricating composition wherein the hydrocarbon substituent has at least 50 aliphatic carbon atoms, optionally contains polar groups provided the polar groups in total do not exceed about 10% by weight of the hydrocarbon portion of the hydrocarbon substituent, and has no more than about 5% olefinic linkages based on the total number of carbon-tocarbon covalent linkages in said substituent, said ester being selected from the group consisting of acidic esters, diesters, and mixtures thereof, excluding esters having a nitrogen atom attached directly to a succinic radical.
2. A lubricating composition according to claim 1 wherein said ester is an ester of said hydrocarbon-substituted succinic acid with a member selected from the class consisting of monohydric and polyhydric alcohols.
3. A lubricating composition according to claim 2 wherein said ester is an ester of a member selected from the class consisting of monohydric and polyhydric alcohols of up to forty aliphatic carbon atoms and said hydrocarbon substituent is derived from polymerized lower monoolefin having a molecular weight of from about 700 to about 5000.
4. A lubricating composition according to claim 3 wherein said ester comprises 0.01-10% by weight of the composition.
5. A lubricating composition according to claim 2 wherein said ester is an ester of a polyhydric alcohol of from 2 to 10 hydroxy radicals and up to about forty aliphatic carbon atoms and said hydrocarbon substituent is derived from polymerized lower mono-olefin of a molecular weight of from about 700 to about 5000.
6. A lubricating composition according to claim 5 10% by weight of the composition and said oil is a mineral lubricating oil.
13. A lubricating composition according to claim 11 wherein the ester is an ester of sorbitol mono-oleate and said hydrocarbon substituent is a polyisobutene substituerag having a molecular weight of about 700 to about 5 0.
14. A lubricating composition according to claim 12 wherein the ester is an ester of a polyoxyalkylene alcohol and wherein said hydrocarbon substituent is derived from polymerized lower mono-olefin having a molecular weight of from about 700 to about 5000.
15. A lubricating composition according to claim 14 wherein the ester comprises from about 0.01% to about 10% by weight of the composition.
16. A lubricating composition according to claim 2 wherein the ester is an ester of a mono-alkyl or a monoaryl ether of a poly(oxyalkylene) glycol and wherein the hydrocarbon substituent is derived from polymerized lower mono-olefin having a molecular weight of from about 700 to about 5000.
17. A lubricating composition according to claim 2 wherein the ester is an ester of an alcohol having at least one substituent selected from the class consisting of carboxy, and amino groups and wherein the hydrocarbon substituent is derived from a polymerized lower monoolefin having a molecular weight of about 700 to about 5000.
18. A lubricating composition according to claim 2 wherein the ester is a diester of an alcohol having up to about nine aliphatic carbon atoms and having at least one substituent selected from the class consisting of amino and carboxy groups and a butene polymer substituted succinic acid.
19. A composition according to claim 18 wherein the 19 ester comprises from about 0.01% to about 10% by weight of the composition.
20. A lubricating composition comprising a major pro portion of a lubricating oil and a minor proportion of an ester sufiicient to improve the detergency of the lubricating composition produced by reacting at a temperature above about 100 C. one mole of a polyhydric alcohol having 2 to about 10 hydroxy radicals with from about 0.5 to about 10 moles of a hydrocarbon-substituted succinic acid reactant wherein the hydrocarbon substituent has at least about 50 aliphatic carbon atoms, optionally contains polar groups provided the polar groups in total do not exceed about 10% by weight of the hydrocarbon portion of the substituent, and has no more than about 5% olefinic linkages based on the total number of carbon-to-carbon covalent linkages in said substituent and is derived from a polymerized lower monoolefin having a molecular weight of from about 700 to about 5000; said succinic acid reactant being selected from the class consisting of succinic acids, the anhydrides, and the halides thereof; said ester being selected from the group consisting of acidic esters, diesters, and mixtures thereof, excluding esters having a nitrogen atom attached directly to a succinic radical.
21. A lubricating composition according to claim 20 wherein the succinic acid reactant is an anhydride and the reaction temperature is from about 150 C. to about 300 C.
22. A lubricating composition according to claim 21 wherein said hydrocarbon substituent is a polyisobutene group.
23. A lubricating composition according to claim 22 wherein the polyhydric alcohol is selected from the class consisting of glycerol, pentaerythritol, and sorbitol.
24. A lubricating composition according to claim 22 wherein it is a mineral oil composition and the ester comprises from about 0.01% to about 10% by weight of the composition.
25. A lubricating composition according to claim 23 wherein the lubricating oil is a mineral lubricating oil and the ester comprises from about 0.5% to about 5% by weight of the composition.
References Cited UNITED STATES PATENTS 2,933,468 4/1960 Aldridge et al. 260-78.40 XR 2,962,443 11/ 1960 Rhodes.
3,045,042 7/ 1962 Staker.
3,184,474 5/ 1965 Catto et al.
3,197,409 7/1965 De Vries.
3,255,108 6/1966 Wiese 252495 XR 3,269,946 8/ 1966 Wiese 25249.5 XR 3,272,746 9/1966 Le Seur et al.
3,281,356 10/1966 Coleman.
3,331,776 7/1967 Krukziener.
PATRICK P. GARVIN, Primary Examiner US. Cl. X.R.
Patent No. 3,522,179 July 28, 1970 William M. Le Suer or appears in the above identified It is certified that err e hereby corrected as patent and that said Letters Patent ar shown below:
"at least 50" should read at least Column 17, line 45,
"12" should read 2 about 50 Column 18, line 47 Signed and sealed this 2nd day of March 1971.
(SEAL) Attest:
Edward M. Fletcher, Jr.
Commissioner of Patents Attesting Officer WILLIAM E. SCHUYLER, JR.
US567052A 1963-04-23 1966-07-22 Lubricating composition containing esters of hydrocarbon-substituted succinic acid Expired - Lifetime US3522179A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US27490563A 1963-04-23 1963-04-23
US56705266A 1966-07-22 1966-07-22
US86608469A 1969-10-03 1969-10-03
US86608169A 1969-10-03 1969-10-03
US1133570A 1970-02-13 1970-02-13

Publications (1)

Publication Number Publication Date
US3522179A true US3522179A (en) 1970-07-28

Family

ID=27533439

Family Applications (4)

Application Number Title Priority Date Filing Date
US567052A Expired - Lifetime US3522179A (en) 1963-04-23 1966-07-22 Lubricating composition containing esters of hydrocarbon-substituted succinic acid
US866084A Expired - Lifetime US3579450A (en) 1963-04-23 1969-10-03 Lubricants and fuels containing epoxide treated esters
US866081A Expired - Lifetime US3542680A (en) 1963-04-23 1969-10-03 Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same
US11335A Expired - Lifetime US3632510A (en) 1963-04-23 1970-02-13 Mixed ester-metal salts and lubricants and fuels containing the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US866084A Expired - Lifetime US3579450A (en) 1963-04-23 1969-10-03 Lubricants and fuels containing epoxide treated esters
US866081A Expired - Lifetime US3542680A (en) 1963-04-23 1969-10-03 Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same
US11335A Expired - Lifetime US3632510A (en) 1963-04-23 1970-02-13 Mixed ester-metal salts and lubricants and fuels containing the same

Country Status (3)

Country Link
US (4) US3522179A (en)
DE (1) DE1271877B (en)
GB (1) GB1055337A (en)

Cited By (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639242A (en) * 1969-12-29 1972-02-01 Lubrizol Corp Lubricating oil or fuel containing sludge-dispersing additive
US3755169A (en) * 1970-10-13 1973-08-28 Lubrizol Corp High molecular weight carboxylic acid acylating agents and the process for preparing the same
US3755173A (en) * 1971-08-05 1973-08-28 Chevron Res Alkenyl halolactone esters and acids and lubricants containing them
US3862981A (en) * 1971-07-08 1975-01-28 Rhone Progil New lubricating oil additives
US3879308A (en) * 1973-05-14 1975-04-22 Lubrizol Corp Lubricants and fuels containing ester-containing compositions
US3936480A (en) * 1971-07-08 1976-02-03 Rhone-Progil Additives for improving the dispersing properties of lubricating oil
DE2646241A1 (en) * 1975-10-14 1977-04-28 Lubrizol Corp AMINOPHENOLS, METHOD FOR THEIR PRODUCTION AND THEIR USE
DE2702805A1 (en) * 1976-01-28 1977-08-11 Lubrizol Corp Additive concentrates for lubricating oils and fuels - contg. amino-phenol and detergent-dispersant, for use in two-stroke motors
US4072618A (en) * 1976-08-27 1978-02-07 Mobil Oil Corporation Metal working lubricant
US4100083A (en) * 1974-05-30 1978-07-11 Mobil Oil Corporation Lubricant compositions containing an amine salt of a half ester of succinic acid
US4105571A (en) * 1977-08-22 1978-08-08 Exxon Research & Engineering Co. Lubricant composition
US4159958A (en) * 1978-06-30 1979-07-03 Chevron Research Company Succinate dispersant combination
US4237020A (en) * 1979-08-20 1980-12-02 Edwin Cooper, Inc. Lubricating and fuel compositions containing succinimide friction reducers
US4240916A (en) * 1976-07-09 1980-12-23 Exxon Research & Engineering Co. Pour point depressant additive for fuels and lubricants
US4240970A (en) * 1976-07-28 1980-12-23 Mobil Oil Corporation Reaction products of hydroxy aromatic or alkylphenylether compounds and alkenylsuccinic acid, anhydride, or ester
FR2460297A1 (en) * 1979-06-28 1981-01-23 Texaco Development Corp DIESTER QUATERNARY AMMONIUM SALT, PROCESS FOR PREPARING THE SAME, AND LUBRICATING OIL COMPOSITION CONTAINING THE SAME
US4253980A (en) * 1979-06-28 1981-03-03 Texaco Inc. Quaternary ammonium salt of ester-lactone and hydrocarbon oil containing same
FR2469448A1 (en) * 1979-11-13 1981-05-22 Texaco Development Corp DIESTER QUATERNARY AMMONIUM SALT COMPOSITION, MANUFACTURING METHOD THEREOF, AND LUBRICATING OIL COMPOSITION BASED ON SAID SALT COMPOSITION
US4306070A (en) * 1979-06-28 1981-12-15 Texaco Inc. Method for preparing quaternary ammonium salt of ester-lactone
US4444565A (en) * 1982-12-20 1984-04-24 Union Oil Company Of California Method and fuel composition for control of octane requirement increase
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4491527A (en) * 1982-04-26 1985-01-01 The Lubrizol Corporation Ester-heterocycle compositions useful as "lead paint" inhibitors in lubricants
US4505718A (en) * 1981-01-22 1985-03-19 The Lubrizol Corporation Organo transition metal salt/ashless detergent-dispersant combinations
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4617134A (en) * 1980-11-10 1986-10-14 Exxon Research And Engineering Company Method and lubricant composition for providing improved friction reduction
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
EP0263702A2 (en) * 1986-10-07 1988-04-13 Exxon Chemical Patents Inc. Lactone modified, esterified dispersant additives useful in oleaginous compositions
US4751011A (en) * 1986-12-12 1988-06-14 Exxon Chemical Patents Inc. Hydrocarbon soluble complexes based on metal salts of polyolefinic dicarboxylic acids
US4820432A (en) * 1987-07-24 1989-04-11 Exxon Chemical Patents Inc. Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions
US4866142A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US4866141A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same
US4866140A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
US4866135A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Heterocyclic amine terminated, lactone modified, aminated viscosity modifiers of improved dispersancy
US4867890A (en) * 1979-08-13 1989-09-19 Terence Colclough Lubricating oil compositions containing ashless dispersant, zinc dihydrocarbyldithiophosphate, metal detergent and a copper compound
JPH0228294A (en) * 1988-05-27 1990-01-30 Lubrizol Corp:The Lubricant composition
FR2634780A1 (en) * 1988-08-01 1990-02-02 Lubrizol Corp LUBRICATING OIL AND CONCENTRATE COMPOSITION FOR PREPARATION CONTAINING CARBOXYLIC DERIVATIVE COMPOSITION, ESTER AND DIHYDROCARBYLDITHIOPHOSPHORIC ACID METAL SALT
JPH0234689A (en) * 1988-06-13 1990-02-05 Lubrizol Corp:The Lubricating oil composition and concentrate
JPH0241395A (en) * 1988-08-01 1990-02-09 Lubrizol Corp:The Lubricating oil composition and concentrate
US4904401A (en) * 1988-06-13 1990-02-27 The Lubrizol Corporation Lubricating oil compositions
US4906394A (en) * 1986-10-07 1990-03-06 Exxon Chemical Patents Inc. Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions
JPH0275699A (en) * 1988-09-08 1990-03-15 Lubrizol Corp:The Lubricating oil composition
US4933098A (en) * 1988-04-06 1990-06-12 Exxon Chemical Patents Inc. Lactone modified viscosity modifiers useful in oleaginous compositions
US4936866A (en) * 1986-10-07 1990-06-26 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US4941984A (en) * 1989-07-31 1990-07-17 The Lubrizol Corporation Lubricating oil compositions and methods for lubricating gasoline-fueled and/or alcohol-fueled, spark-ignited engines
US4943382A (en) * 1988-04-06 1990-07-24 Exxon Chemical Patents Inc. Lactone modified dispersant additives useful in oleaginous compositions
US4954276A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
US4954277A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same
US4954572A (en) * 1988-11-07 1990-09-04 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy alcohols
US4963275A (en) * 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
US4971711A (en) * 1987-07-24 1990-11-20 Exxon Chemical Patents, Inc. Lactone-modified, mannich base dispersant additives useful in oleaginous compositions
US5032320A (en) * 1986-10-07 1991-07-16 Exxon Chemical Patents Inc. Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
US5057617A (en) * 1988-11-07 1991-10-15 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy thiols
US5124055A (en) * 1988-03-31 1992-06-23 Ethyl Petroleum Additives, Inc. Lubricating oil composition
WO1992021736A1 (en) 1991-05-30 1992-12-10 The Lubrizol Corporation Two-cycle lubricant and method of using same
US5205947A (en) * 1988-11-07 1993-04-27 Exxon Chemical Patents Inc. Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products
US5221490A (en) * 1990-07-30 1993-06-22 Nkk Corporation Rust-preventive lubricant composition for zinc-plated steel material
EP0558835A1 (en) 1992-01-30 1993-09-08 Albemarle Corporation Biodegradable lubricants and functional fluids
US5328622A (en) * 1989-01-30 1994-07-12 Exxon Chemical Patents Inc. Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds
US5328620A (en) * 1992-12-21 1994-07-12 The Lubrizol Corporation Oil additive package useful in diesel engine and transmission lubricants
US5330662A (en) * 1992-03-17 1994-07-19 The Lubrizol Corporation Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
US5334329A (en) * 1988-10-07 1994-08-02 The Lubrizol Corporation Lubricant and functional fluid compositions exhibiting improved demulsibility
US5422022A (en) * 1990-06-20 1995-06-06 The Lubrizol Corporation Lubricants, lubricant additives, and methods for lubricating sump-lubricated fuel-injected alcohol-powered internal combustion engines
US5439604A (en) * 1986-12-12 1995-08-08 Exxon Chemical Patents Inc. Oil soluble additives useful in oleaginous compositions
US5444135A (en) * 1992-12-17 1995-08-22 Exxon Chemical Patents Inc. Direct synthesis by living cationic polymerization of nitrogen-containing polymers
EP0695798A2 (en) 1994-08-03 1996-02-07 The Lubrizol Corporation Lubricating compositions, concentrates, and greases containing the combination of an organic polysulfide and an overbased composition or a phosphorus or boron compound
EP0695799A2 (en) 1994-08-03 1996-02-07 The Lubrizol Corporation Combination of a sulfer compound and specific phosphorus compounds and their use in lubricating compositions, concentrates and greases
US5490945A (en) * 1991-04-19 1996-02-13 The Lubrizol Corporation Lubricating compositions and concentrates
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
EP0713907A2 (en) 1994-09-26 1996-05-29 Ethyl Petroleum Additives Limited Zinc additives of enhanced performance capabilities
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5562864A (en) * 1991-04-19 1996-10-08 The Lubrizol Corporation Lubricating compositions and concentrates
US5614480A (en) * 1991-04-19 1997-03-25 The Lubrizol Corporation Lubricating compositions and concentrates
US5620946A (en) * 1992-03-17 1997-04-15 The Lubrizol Corporation Compositions containing combinations of surfactants and derivatives of succininc acylating agent or hydroxyaromatic compounds and methods of using the same
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
US5637557A (en) * 1992-03-17 1997-06-10 The Lubrizol Corporation Compositions containing derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
EP0778333A2 (en) 1995-11-09 1997-06-11 The Lubrizol Corporation Carboxylic compositions, derivatives, lubricants, fuels and concentrates
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5736492A (en) * 1995-09-08 1998-04-07 Shell Oil Company Alkenyl-substituted dicarboxylic derivatives
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US5814111A (en) * 1995-03-14 1998-09-29 Shell Oil Company Gasoline compositions
US5833722A (en) * 1994-12-13 1998-11-10 Exxon Chemical Patents, Inc. Fuel oil compositions with improved lubricity properties
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6127321A (en) * 1985-07-11 2000-10-03 Exxon Chemical Patents Inc Oil soluble dispersant additives useful in oleaginous compositions
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
WO2001052976A2 (en) * 2000-01-24 2001-07-26 The Lubrizol Corporation Partially dehydrated reaction product, process for making same, and emulsion containing same
WO2002094889A2 (en) * 2001-05-22 2002-11-28 Basf Aktiengesellschaft Low-molecular and high-molecular emulsifiers, particularly based on polyisobutylene, and mixtures thereof
US6573223B1 (en) 2002-03-04 2003-06-03 The Lubrizol Corporation Lubricating compositions with good thermal stability and demulsibility properties
US20030176714A1 (en) * 2001-09-25 2003-09-18 Curphey Thomas J. Compositions and methods for thionation during chemical synthesis reactions
US6624123B2 (en) * 1997-04-11 2003-09-23 Chevron Chemical S.A. Use of surfactants with high molecular weight for improving the filterability in hydraulic lubricants
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US20040147410A1 (en) * 2003-01-15 2004-07-29 Milner Jeffrey L Extended drain, thermally stable, gear oil formulations
US20050065043A1 (en) * 2003-09-23 2005-03-24 Henly Timothy J. Power transmission fluids having extended durability
US20050070446A1 (en) * 2003-09-25 2005-03-31 Ethyl Petroleum Additives, Inc. Boron free automotive gear oil
US20050101494A1 (en) * 2003-11-10 2005-05-12 Iyer Ramnath N. Lubricant compositions for power transmitting fluids
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
US20060003905A1 (en) * 2004-07-02 2006-01-05 Devlin Cathy C Additives and lubricant formulations for improved corrosion protection
US20060217273A1 (en) * 2005-03-23 2006-09-28 Nubar Ozbalik Lubricating compositions
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
US20070059458A1 (en) * 2005-09-09 2007-03-15 Fuji Photo Film Co., Ltd. Cellulose acylate film, optically compensatory film, polarizing plate and liquid crystal display
US20070111906A1 (en) * 2005-11-12 2007-05-17 Milner Jeffrey L Relatively low viscosity transmission fluids
US20070270317A1 (en) * 2006-05-19 2007-11-22 Milner Jeffrey L Power Transmission Fluids
US20080015124A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant composition
US20080051305A1 (en) * 2006-08-28 2008-02-28 Devlin Mark T Lubricant composition
US20080274921A1 (en) * 2007-05-04 2008-11-06 Ian Macpherson Environmentally-Friendly Lubricant Compositions
US20090071067A1 (en) * 2007-09-17 2009-03-19 Ian Macpherson Environmentally-Friendly Additives And Additive Compositions For Solid Fuels
US20090233822A1 (en) * 2008-03-11 2009-09-17 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
US20090233823A1 (en) * 2008-03-11 2009-09-17 Volkswagen Aktiengesellschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
DE102009012567A1 (en) 2008-03-11 2009-10-01 Afton Chemical Corp. Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
US20100022425A1 (en) * 2006-05-23 2010-01-28 Karl-Heinz Michel Corrosion Inhibiting Composition For Non-Ferrous Metals
US20100072427A1 (en) * 2007-03-02 2010-03-25 Basf Se Additive formulation suitable for antistatic modification and improving the electrical conductivity of inanimate organic material
US20100210492A1 (en) * 2007-07-16 2010-08-19 Basf Se Synergistic mixture
EP2267104A2 (en) 2006-02-27 2010-12-29 Basf Se Use of polynuclear phenolic compounds as dispersants
US7879775B2 (en) 2006-07-14 2011-02-01 Afton Chemical Corporation Lubricant compositions
RU2445335C2 (en) * 2009-06-05 2012-03-20 КЛИАРВОТЕР ИНТЕРНЭШНЛ ЭлЭлСи Additives improving operability in winter conditions for polymer suspensions on oil basis, and their obtaining and application method
US8389456B2 (en) 2008-06-09 2013-03-05 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US20140090208A1 (en) * 2012-09-28 2014-04-03 Takemoto Yushi Kabushiki Kaisha Processing agents for synthetic fibers, aqueous liquids thereof, processing methods for synthetic fibers and synthetic fibers
EP2811007A1 (en) 2013-06-07 2014-12-10 Basf Se Alkylene oxide and hydrocarbyl-substituted polycarboxylic acid quaternised alkylamine as additives in fuels and lubricants and their use
US9315718B2 (en) 2009-12-10 2016-04-19 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US9441168B2 (en) 2009-12-10 2016-09-13 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
EP3205705A1 (en) 2013-06-07 2017-08-16 Basf Se Alkylene oxide and hydrocarbyl-substituted polycarboxylic acid quaternised alkylamine as additives in fuels and lubricants and their use
DE102016107522A1 (en) 2016-04-22 2017-10-26 Basf Se A fuel additive device, method for adding fuel and use of the same
WO2020150123A1 (en) 2019-01-17 2020-07-23 The Lubrizol Corporation Traction fluids
US11629296B2 (en) * 2012-09-26 2023-04-18 Bl Technologies, Inc. Demulsifying compositions and methods of use

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3910845A (en) * 1973-06-22 1975-10-07 Chevron Res Reaction products of formals, acetals and ketals with succinic acid or anhydride as lubricating oil and fuel additives
GB1483728A (en) * 1973-09-13 1977-08-24 Shell Int Research Process for the preparation of an ester of an alkyl-or alkenyl succinic acid and a polyvalent alcohol
US4194886A (en) * 1974-04-09 1980-03-25 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as fuel additives
US4176077A (en) * 1974-04-09 1979-11-27 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as lubricant additives
IN143602B (en) * 1974-04-09 1977-12-31 Lubrizol Corp
US4108783A (en) * 1974-04-09 1978-08-22 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4205960A (en) * 1974-04-09 1980-06-03 The Lubrizol Corporation Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4179449A (en) * 1974-04-09 1979-12-18 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4147641A (en) * 1976-03-29 1979-04-03 Rohm And Haas Company Multipurpose hydrocarbon fuel and lubricating oil additive mixture
US4219431A (en) * 1976-07-28 1980-08-26 Mobil Oil Corporation Aroyl derivatives of alkenylsuccinic anhydride as lubricant and fuel additives
US4173540A (en) * 1977-10-03 1979-11-06 Exxon Research & Engineering Co. Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound
GB2017719B (en) * 1978-03-23 1982-07-21 Ici Ltd Surfactant compositions comprising a blend of two types of alk(en)yl succinic polyester
US4285824A (en) * 1979-01-22 1981-08-25 The Lubrizol Corporation Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4255160A (en) * 1979-03-09 1981-03-10 Standard Oil Company (Indiana) Flow improver for heavy petroleum products comprising alkenyl succinate diester
US4292186A (en) * 1979-12-04 1981-09-29 Mobil Oil Corporation Metal complexes of alkylsuccinic compounds as lubricant and fuel additives
US4343740A (en) * 1980-02-22 1982-08-10 The Lubrizol Corporation Hydroxylalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
CA1159436A (en) * 1980-11-10 1983-12-27 Harold Shaub Lubricant composition with improved friction reducing properties
US4571269A (en) * 1981-03-31 1986-02-18 Phillips Petroleum Company Asphalt compositions
US4440545A (en) * 1981-11-02 1984-04-03 Ethyl Corporation Gasohol having corrosion inhibiting properties
US4481125A (en) * 1982-05-03 1984-11-06 E.F. Houghton & Co. Water-based hydraulic fluid
US4612129A (en) 1985-01-31 1986-09-16 The Lubrizol Corporation Sulfur-containing compositions, and additive concentrates and lubricating oils containing same
JPS61176694A (en) * 1985-01-31 1986-08-08 Nippon Oil Co Ltd Gasoline composition
IN172191B (en) 1985-03-14 1993-05-01 Lubrizol Corp
GB8515974D0 (en) * 1985-06-24 1985-07-24 Shell Int Research Gasoline composition
US4760170A (en) * 1985-07-01 1988-07-26 Exxon Research & Engineering Co. Solution process for preparing metal salt esters of hydrocarbyl substituted succinic acid or anhydride and alkanols
US5118432A (en) * 1985-07-11 1992-06-02 Exxon Chemical Patents Inc. Dispersant additive mixtures for oleaginous compositions
US4863624A (en) * 1987-09-09 1989-09-05 Exxon Chemical Patents Inc. Dispersant additives mixtures for oleaginous compositions
GB8521393D0 (en) * 1985-08-28 1985-10-02 Exxon Chemical Patents Inc Middle distillate compositions
US4661274A (en) * 1986-01-13 1987-04-28 Mobil Oil Corporation Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds
GB8611772D0 (en) * 1986-05-14 1986-06-25 Ici Plc Corrosion inhibitor compositions
CA1333596C (en) * 1986-10-16 1994-12-20 Robert Dean Lundberg High functionality low molecular weight oil soluble dispersant additives useful in oleaginous compositions
GB8710955D0 (en) * 1987-05-08 1987-06-10 Shell Int Research Gasoline composition
US4938880A (en) * 1987-05-26 1990-07-03 Exxon Chemical Patents Inc. Process for preparing stable oleaginous compositions
US5026495A (en) * 1987-11-19 1991-06-25 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5085788A (en) * 1987-11-19 1992-02-04 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US4957645A (en) * 1988-02-29 1990-09-18 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5217634A (en) * 1988-02-29 1993-06-08 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5256325A (en) * 1988-02-29 1993-10-26 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5030369A (en) * 1988-02-29 1991-07-09 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5275748A (en) * 1988-02-29 1994-01-04 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5053150A (en) * 1988-02-29 1991-10-01 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5254276A (en) * 1988-12-30 1993-10-19 Mobil Oil Corporation Diol phosphite adducts of olefins as multifunctional lubricants and additives for lubricants
US5160507A (en) * 1990-06-04 1992-11-03 Mobil Oil Corp. Multifunctional ester-type additives for liquid hydrocarbyl or hydrocarbyloxy fuel
GB9027389D0 (en) * 1990-12-18 1991-02-06 Shell Int Research Gasoline composition
CA2090202A1 (en) * 1992-02-25 1993-08-26 Jeffrey A. Jones Method for improving anhydride-functionalized polymers and products
US5356552A (en) * 1993-03-09 1994-10-18 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Chlorine-free lubricating oils having modified high molecular weight succinimides
US6294506B1 (en) 1993-03-09 2001-09-25 Chevron Chemical Company Lubricating oils having carbonated sulfurized metal alkyl phenates and carbonated metal alkyl aryl sulfonates
US5821205A (en) 1995-12-01 1998-10-13 Chevron Chemical Company Polyalkylene succinimides and post-treated derivatives thereof
DE69608401T2 (en) 1995-12-19 2001-01-11 Chevron Chem Co Very long chain alkylphenyl polyoxyalkylene amines, and fuel compositions containing the same
US5637119A (en) 1995-12-29 1997-06-10 Chevron Chemical Company Substituted aromatic polyalkyl ethers and fuel compositions containing the same
DE69730709T2 (en) * 1996-05-31 2005-09-22 The Associated Octel Co. Ltd. FUEL ADDITIVES
US5792729A (en) 1996-08-20 1998-08-11 Chevron Chemical Corporation Dispersant terpolymers
US6268319B1 (en) 1997-07-08 2001-07-31 General Oil Company Slide way lubricant composition, method of making and method of using same
GB9720102D0 (en) * 1997-09-22 1997-11-19 Exxon Chemical Patents Inc Lubricity additives for fuel oil compositions
GB9818323D0 (en) * 1998-08-21 1998-10-14 Ass Octel Fuel additives
DE10147650A1 (en) * 2001-09-27 2003-04-10 Basf Ag Hydrophilic emulsifiers based on polyisobutylene
US7598211B2 (en) 2002-10-04 2009-10-06 R.T. Vanderbilt Company, Inc. Synergistic organoborate compositions and lubricating compositions containing same
US7695534B2 (en) * 2003-11-12 2010-04-13 Ecr Technologies, Inc. Chemical synthesis methods using electro-catalysis
CA2496100A1 (en) * 2004-03-10 2005-09-10 Afton Chemical Corporation Power transmission fluids with enhanced extreme pressure characteristics
US20060025314A1 (en) * 2004-07-28 2006-02-02 Afton Chemical Corporation Power transmission fluids with enhanced extreme pressure and antiwear characteristics
US7807611B2 (en) 2004-10-12 2010-10-05 The Lubrizol Corporation Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
US20060135375A1 (en) * 2004-12-21 2006-06-22 Chevron Oronite Company Llc Anti-shudder additive composition and lubricating oil composition containing the same
JP4932742B2 (en) 2005-03-01 2012-05-16 アール.ティー. ヴァンダービルト カンパニー インコーポレーティッド Molybdenum dialkyldithiocarbamate composition and lubricating composition containing the composition
US20060223716A1 (en) * 2005-04-04 2006-10-05 Milner Jeffrey L Tractor fluids
DE102005025017A1 (en) * 2005-05-30 2006-12-07 Basf Ag Use of amphiphilic block copolymers for the preparation of polymer blends
WO2006128796A2 (en) * 2005-05-30 2006-12-07 Basf Aktiengesellschaft Polymer composition comprising polyolefins and amphiphilic block copolymers and optionally other polymers and/or fillers
US20080015127A1 (en) * 2006-07-14 2008-01-17 Loper John T Boundary friction reducing lubricating composition
US20080119377A1 (en) * 2006-11-22 2008-05-22 Devlin Mark T Lubricant compositions
US20090011963A1 (en) * 2007-07-06 2009-01-08 Afton Chemical Corporation Truck fleet fuel economy by the use of optimized engine oil, transmission fluid, and gear oil
CA2668396C (en) 2008-06-09 2014-10-14 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US20100160193A1 (en) * 2008-12-22 2010-06-24 Chevron Oronite LLC Additive composition and method of making the same
US8859473B2 (en) 2008-12-22 2014-10-14 Chevron Oronite Company Llc Post-treated additive composition and method of making the same
EP2406358B1 (en) 2009-02-18 2013-08-21 The Lubrizol Corporation Amine derivatives as friction modifiers in lubricants
CN102414300B (en) 2009-02-26 2014-07-23 卢布里佐尔公司 Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant
PL2467460T3 (en) 2009-08-18 2014-05-30 Lubrizol Corp Lubricating composition containing an antiwear agent
CN104479807B (en) 2009-08-18 2017-11-17 路博润公司 Lubricating composition containing antiwear additive
US20120245065A1 (en) 2009-08-18 2012-09-27 The Lubrizol Corporation Lubricating Composition Containing an Antiwear Agent
US20120309657A1 (en) 2009-12-14 2012-12-06 The Lubrizol Corporation Lubricating Composition Containing an Antiwear Agent
WO2011081835A1 (en) 2009-12-14 2011-07-07 The Lubrizol Corporation Lubricating composition containing an antiwear agent
US8946135B2 (en) 2009-12-14 2015-02-03 The Lubrizol Corporation Lubricating composition containing a nitrile compound
CN102762703B (en) 2009-12-17 2016-12-07 路博润公司 The lubricating composition of aromatic-containing compound
US20130210690A1 (en) 2010-05-12 2013-08-15 The Lubrizol Corporation Tartaric Acid Derivatives in HTHS Fluids
WO2011146692A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Lubricating composition containing a dispersant
CN103119140B (en) 2010-05-20 2015-01-07 卢布里佐尔公司 Lubricating composition containing a dispersant
CN104830407A (en) 2010-08-31 2015-08-12 路博润公司 Lubricating composition containing an antiwear agent
WO2012030616A1 (en) 2010-08-31 2012-03-08 The Lubrizol Corporation Star polymer and lubricating composition thereof
BR112013005296A2 (en) 2010-09-07 2016-08-16 Lubrizol Corp chroman hydroxy derivatives as motor oil antioxidants
JP2013538930A (en) 2010-10-06 2013-10-17 ザ ルブリゾル コーポレイション Lubricating oil composition having anti-mist additive
US8557002B2 (en) * 2010-11-12 2013-10-15 Baker Hughes Incorporated Fuel additives for enhanced lubricity and anti-corrosion properties
CN103354832B (en) 2010-12-10 2015-11-25 路博润公司 Lubricant compositions containing viscosity index improver
CA2822351C (en) 2010-12-21 2019-10-29 The Lubrizol Corporation Lubricating composition containing an antiwear agent
KR101851036B1 (en) 2010-12-21 2018-04-20 더루우브리졸코오포레이션 Lubricating composition containing a detergent
US9309480B2 (en) 2011-01-31 2016-04-12 The Lubrizol Corporation Lubricant composition comprising anti-foam agents
WO2012112648A2 (en) 2011-02-16 2012-08-23 The Lubrizol Corporation Method of lubricating a driveline device
CA2829492A1 (en) 2011-03-10 2012-09-13 Yanshi Zhang Lubricating composition containing a thiocarbamate compound
RU2566744C2 (en) 2011-04-15 2015-10-27 ВАНДЕРБИЛТ КЕМИКАЛЗ, ЭлЭлСи Compositions of molybdenum dialkyldithiocarbamate and lubricating compositions containing it
JP6100243B2 (en) 2011-05-12 2017-03-22 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Aromatic imides and esters as lubricating additives
CA2837102A1 (en) 2011-06-15 2012-12-20 The Lubrizol Corporation Lubricating composition containing an ester of an aromatic carboxylic acid
CN106978231B (en) 2011-06-15 2020-01-03 路博润公司 Lubricating composition containing salts of carboxylic acids
EP2723836B1 (en) 2011-06-21 2018-08-08 The Lubrizol Corporation Use in a lubricating composition containing a dispersant
WO2012177529A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating compositions containing salts of hydrocarbyl substituted acylating agents
US9249699B2 (en) 2011-06-21 2016-02-02 The Lubrizol Corporation Lubricating composition containing a dispersant
CA2842669A1 (en) 2011-07-21 2013-01-24 The Lubrizol Corporation Overbased friction modifiers and methods of use thereof
EP2734501A1 (en) 2011-07-21 2014-05-28 The Lubrizol Corporation Carboxylic pyrrolidinones and methods of use thereof
WO2013062924A2 (en) 2011-10-27 2013-05-02 The Lubrizol Corporation Lubricating composition containing an esterified polymer
CA2853443C (en) 2011-10-31 2019-10-29 The Lubrizol Corporation Ashless friction modifiers for lubricating compositions
US8889606B2 (en) 2011-11-11 2014-11-18 Vanderbilt Chemicals, Llc Lubricant composition
US20140342962A1 (en) 2011-12-29 2014-11-20 The Lubrizoi Corporaton Limited Slip Friction Modifiers For Differentials
ES2590926T3 (en) 2011-12-30 2016-11-24 The Lubrizol Corporation Star polymer and lubricant composition thereof
CN106893629B (en) 2012-02-16 2020-02-28 路博润公司 Lubricant additive enhancer system
JP2015507073A (en) 2012-02-17 2015-03-05 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Lubricating composition comprising an esterified copolymer and a small amount of a dispersant suitable for power transmission applications
EP2814921B1 (en) 2012-02-17 2017-11-08 The Lubrizol Corporation Mixtures of olefin-ester copolymer with polyolefin as viscosity modifier
US9771541B2 (en) 2012-09-11 2017-09-26 The Lubrizol Corporation Lubricating composition containing an ashless TBN booster
EP2898051B1 (en) 2012-09-24 2017-08-16 The Lubrizol Corporation Lubricant comprising a mixture of an olefin-ester copolymer with an ethylene alpha-olefin copolymer
CN104955928B (en) 2012-12-07 2018-02-09 路博润公司 Pyrans dispersant
CA2895749A1 (en) 2012-12-20 2014-06-26 The Lubrizol Corporation Lubricant composition including 4-hydroxybenzamide friction modifier
JP2016509119A (en) 2013-03-07 2016-03-24 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Limited slip friction modifier for differential
CA2904215A1 (en) 2013-03-12 2014-10-09 The Lubrizol Corporation Lubricating composition containing lewis acid reaction product
EP3024916B1 (en) 2013-05-30 2019-06-26 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
CA2919459C (en) 2013-07-31 2021-11-23 The Lubrizol Corporation Method of lubricating a transmission which includes a synchronizer with a non-metallic surface
WO2015021135A1 (en) 2013-08-09 2015-02-12 The Lubrizol Corporation Reduced engine deposits from dispersant treated with copper
CN105612246A (en) 2013-08-09 2016-05-25 路博润公司 Reduced engine deposits from dispersant treated with cobalt
CA2924893C (en) 2013-09-19 2022-11-15 The Lubrizol Corporation Lubricant compositions for direct injection engines
EP3878933A1 (en) 2013-09-19 2021-09-15 The Lubrizol Corporation Lubricant compositions for direct injection engines
CN105829510B (en) 2013-09-30 2021-09-28 路博润公司 Friction control method
WO2015106090A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
CA2936276A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
KR20160132906A (en) 2014-03-11 2016-11-21 더루우브리졸코오포레이션 Method of lubricating an internal combustion engine
CN106459812B (en) 2014-03-12 2020-02-18 路博润公司 Method for lubricating an internal combustion engine
JP2017507224A (en) 2014-03-12 2017-03-16 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Method for lubricating an internal combustion engine
WO2015171674A1 (en) 2014-05-06 2015-11-12 The Lubrizol Corporation Lubricant composition containing an antiwear agent
SG11201609882UA (en) 2014-05-30 2016-12-29 Lubrizol Corp Epoxide quaternized quaternary ammonium salts
BR112016028075A2 (en) 2014-05-30 2017-08-22 Lubrizol Corp QUATERNARY AMMONIUM SALTS CONTAINING BRANCHED AMINE
EP3149127A1 (en) 2014-05-30 2017-04-05 The Lubrizol Corporation High molecular weight imide containing quaternary ammonium salts
BR112016028174A2 (en) 2014-05-30 2020-12-15 Lubrizol Corp low molecular weight ester / amide containing quaternary ammonium salts
EP3149123A2 (en) 2014-05-30 2017-04-05 The Lubrizol Corporation Coupled quaternary ammonium salts
JP2017519071A (en) 2014-05-30 2017-07-13 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Low molecular weight imide-containing quaternary ammonium salts
WO2015184280A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Imidazole containing quaternary ammonium salts
CN106661472A (en) 2014-05-30 2017-05-10 路博润公司 High molecular weight amide/ester containing quaternary ammonium salts
WO2015195614A1 (en) 2014-06-18 2015-12-23 The Lubrizol Corporation Motorcycle engine lubricant
CN106459808B (en) 2014-06-27 2020-10-27 路博润公司 Friction modifier mixtures providing good friction performance for transmission fluids
US10196580B2 (en) 2014-08-28 2019-02-05 The Lubrizol Corporation Lubricating composition with seals compatibility
EP3209756B1 (en) 2014-09-15 2022-11-02 The Lubrizol Corporation Dispersant viscosity modifiers with sulfonate functionality
US10611981B2 (en) 2014-11-12 2020-04-07 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
WO2016090121A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated aromatic polyol compound
EP3227417A1 (en) 2014-12-03 2017-10-11 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
CN107406788A (en) 2014-12-17 2017-11-28 路博润公司 The lubricating composition suppressed for lead and copper corrosion
US10336963B2 (en) 2015-02-26 2019-07-02 The Lubrizol Corporation Aromatic tetrahedral borate compounds for lubricating compositions
CA2977269A1 (en) 2015-02-26 2016-09-01 The Lubrizol Corporation Aromatic detergents and lubricating compositions thereof
SG11201707219VA (en) 2015-03-09 2017-10-30 Lubrizol Corp Method of lubricating an internal combustion engine
JP6837000B2 (en) 2015-03-10 2021-03-03 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Lubricating composition containing anti-wear agent / friction modifier
JP2018512485A (en) 2015-03-18 2018-05-17 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Lubricant composition for direct injection engines
US20160272915A1 (en) 2015-03-18 2016-09-22 The Lubrizol Corporation Lubricant compositions for direct injection engines
KR20170129928A (en) 2015-03-25 2017-11-27 더루브리졸코오퍼레이션 Lubricant composition for direct powder engine
US10577556B2 (en) 2015-06-12 2020-03-03 The Lubrizol Corporation Michael adduct amino esters as total base number boosters for marine diesel engine lubricating compositions
US10988702B2 (en) 2015-07-20 2021-04-27 The Lubrizol Corporation Zinc-free lubricating composition
US10407640B2 (en) 2015-07-22 2019-09-10 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
WO2017031143A1 (en) 2015-08-20 2017-02-23 The Lubrizol Corporation Azole derivatives as lubricating additives
US10597576B2 (en) 2015-11-02 2020-03-24 The Lubrizol Corporation Lubricant for water based drilling fluid
CN108473899A (en) 2015-11-11 2018-08-31 路博润公司 The lubricating composition of Sulfide-containing Hindered 5-substituted phenol compounds
KR20180088893A (en) 2015-12-02 2018-08-07 더루브리졸코오퍼레이션 Quaternary molecular weight imide-containing quaternary ammonium salts with short hydrocarbon tail
AU2016362476B2 (en) 2015-12-02 2020-07-30 The Lubrizol Corporation Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails
WO2017105948A1 (en) 2015-12-15 2017-06-22 The Lubrizol Corporation Sulfurized catecholate detergents for lubricating compositions
EP3420056B1 (en) 2016-02-24 2022-08-31 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2017176546A1 (en) 2016-04-07 2017-10-12 The Lubrizol Corporation Mercaptoazole derivatives as lubricating additives
SG10202011340RA (en) 2016-05-18 2021-01-28 Lubrizol Corp Hydraulic fluid composition
US11193081B2 (en) 2016-05-24 2021-12-07 The Lubrizol Corporation Seal swell agents for lubricating compositions
WO2017205274A1 (en) 2016-05-24 2017-11-30 The Lubrizol Corporation Seal swell agents for lubricating compositions
CN109477021B (en) 2016-05-24 2021-10-26 路博润公司 Seal swell agents for lubricating compositions
EP3255129B1 (en) 2016-06-06 2024-01-24 The Lubrizol Corporation Thiol-carboxylic adducts as lubricating additives
SG11201810335VA (en) 2016-06-17 2018-12-28 Lubrizol Corp Polyisobutylene-substituted phenol, derivatives thereof, and lubricating compositions containing the polyisobutylene-substituted phenol and its derivatives
WO2017218664A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
EP3472277A1 (en) 2016-06-17 2019-04-24 The Lubrizol Corporation Lubricating compositions
US20200377817A1 (en) 2016-06-17 2020-12-03 The Lubrizol Corporation Lubricating Compositions
US10260019B2 (en) 2016-06-30 2019-04-16 The Lubrizol Corporation Hydroxyaromatic succinimide detergents for lubricating compositions
CA3031232A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
CN109715765B (en) 2016-07-20 2022-09-30 路博润公司 Amine salts of alkyl phosphates for use in lubricants
CN109715767B (en) 2016-07-22 2022-01-21 路博润公司 Aliphatic tetrahedral borate compounds for fully formulated lubricating compositions
US20180057765A1 (en) 2016-08-29 2018-03-01 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
WO2018048781A1 (en) 2016-09-12 2018-03-15 The Lubrizol Corporation Total base number boosters for marine diesel engine lubricating compositions
US20190241829A1 (en) 2016-09-14 2019-08-08 The Lubrizol Corporation Lubricating composition comprising sulfonate detergent and ashless hydrocarbyl phenolic compound
US20190185778A1 (en) 2016-09-14 2019-06-20 The Lubrizol Corporation Lubricant compositions for direct injection engines
CN109963929A (en) 2016-09-21 2019-07-02 路博润公司 Polyacrylate defoaming component for diesel fuel
EP3516024A1 (en) 2016-09-21 2019-07-31 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
SG11201901687SA (en) 2016-10-12 2019-03-28 Chevron Oronite Tech Bv Marine diesel lubricant oil compositions
EP3529340B1 (en) 2016-10-18 2023-10-25 Chevron Oronite Technology B.V. Marine diesel lubricant oil compositions
CA3047549A1 (en) 2016-12-22 2018-06-28 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
DK3562921T3 (en) 2016-12-27 2022-06-07 Lubrizol Corp LUBRICANT COMPOSITION INCLUDING N-ALKYLED DIANILINE
CN110114448B (en) 2016-12-27 2022-03-04 路博润公司 Lubricating composition with alkylated naphthylamines
EP3571271A1 (en) 2017-01-17 2019-11-27 The Lubrizol Corporation Engine lubricant containing polyether compounds
WO2019005738A1 (en) 2017-06-27 2019-01-03 The Lubrizol Corporation Lubricating composition for and method of lubricating an internal combustion engine
CN111032839B (en) 2017-07-24 2023-08-11 化学工具公司 Extreme pressure metal sulfonate grease
CA3083250A1 (en) 2017-11-28 2019-06-06 The Lubrizol Corporation Lubricant compositions for high efficiency engines
CA3083929A1 (en) 2017-12-04 2019-06-13 The Lubrizol Corporation Alkylphenol detergents
EP3724301A1 (en) 2017-12-15 2020-10-21 The Lubrizol Corporation Alkylphenol detergents
US10479953B2 (en) * 2018-01-12 2019-11-19 Afton Chemical Corporation Emulsifier for use in lubricating oil
SG11202009251WA (en) 2018-03-21 2020-10-29 Lubrizol Corp NOVEL FLUORINATED POLYACRYLATES ANTIFOAMS IN ULTRA-LOW VISCOSITY (<5 CST) finished fluids
WO2019246192A1 (en) 2018-06-22 2019-12-26 The Lubrizol Corporation Lubricating compositions for heavy duty diesel engines
US20220010234A1 (en) 2018-11-16 2022-01-13 The Lubrizol Corporation Alkylbenzene sulfonate detergents
US20230002699A1 (en) 2019-06-24 2023-01-05 The Lubrizol Corporation Continuous acoustic mixing for performance additives and compositions including the same
BR112022011826A2 (en) 2019-12-18 2022-08-30 Lubrizol Corp POLYMERIC SURFACTANT COMPOUND
EP4314211A1 (en) 2021-04-01 2024-02-07 The Lubrizol Corporation Zinc free lubricating compositions and methods of using the same
WO2024030591A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing reaction products including quaternary ammonium salts
WO2024030592A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing radically-functionalized pibsa product derivatives and compositions comprising same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933468A (en) * 1956-01-26 1960-04-19 Exxon Research Engineering Co Emulsifiers from hydrocarbon polymer, maleic anhydride, and polyalkylene oxide glycol, emulsion containing same and methods for making thereof
US2962443A (en) * 1955-08-31 1960-11-29 Lubrizol Corp Steam turbine lubricant
US3045042A (en) * 1957-08-16 1962-07-17 Monsanto Chemicals Acid polyester succinates
US3184474A (en) * 1962-09-05 1965-05-18 Exxon Research Engineering Co Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial
US3197409A (en) * 1963-03-28 1965-07-27 California Research Corp Alkylene glycol ester reaction product
US3255108A (en) * 1961-08-30 1966-06-07 Lubrizol Corp Water-in-oil emulsions containing succinic esters
US3269946A (en) * 1961-08-30 1966-08-30 Lubrizol Corp Stable water-in-oil emulsions
US3272746A (en) * 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
US3281356A (en) * 1963-05-17 1966-10-25 Lubrizol Corp Thermally stable water-in-oil emulsions
US3331776A (en) * 1962-10-04 1967-07-18 Shell Oil Co Lubricating oil composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2091627A (en) * 1934-06-08 1937-08-31 Rohm & Haas Composition of matter and process
US2444328A (en) * 1943-12-31 1948-06-29 Petrolite Corp Composition of matter
US2993032A (en) * 1956-02-03 1961-07-18 California Research Corp Detergent copolymers
US2977334A (en) * 1956-10-04 1961-03-28 Monsanto Chemicals Derivatives of ethylene/maleic anhydride copolymers
NL127451C (en) * 1962-11-13
US3485754A (en) * 1967-06-30 1969-12-23 Emery Industries Inc Lubricant composition and method of refining

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962443A (en) * 1955-08-31 1960-11-29 Lubrizol Corp Steam turbine lubricant
US2933468A (en) * 1956-01-26 1960-04-19 Exxon Research Engineering Co Emulsifiers from hydrocarbon polymer, maleic anhydride, and polyalkylene oxide glycol, emulsion containing same and methods for making thereof
US3045042A (en) * 1957-08-16 1962-07-17 Monsanto Chemicals Acid polyester succinates
US3255108A (en) * 1961-08-30 1966-06-07 Lubrizol Corp Water-in-oil emulsions containing succinic esters
US3269946A (en) * 1961-08-30 1966-08-30 Lubrizol Corp Stable water-in-oil emulsions
US3184474A (en) * 1962-09-05 1965-05-18 Exxon Research Engineering Co Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial
US3331776A (en) * 1962-10-04 1967-07-18 Shell Oil Co Lubricating oil composition
US3197409A (en) * 1963-03-28 1965-07-27 California Research Corp Alkylene glycol ester reaction product
US3281356A (en) * 1963-05-17 1966-10-25 Lubrizol Corp Thermally stable water-in-oil emulsions
US3272746A (en) * 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound

Cited By (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639242A (en) * 1969-12-29 1972-02-01 Lubrizol Corp Lubricating oil or fuel containing sludge-dispersing additive
US3755169A (en) * 1970-10-13 1973-08-28 Lubrizol Corp High molecular weight carboxylic acid acylating agents and the process for preparing the same
US3936480A (en) * 1971-07-08 1976-02-03 Rhone-Progil Additives for improving the dispersing properties of lubricating oil
US3862981A (en) * 1971-07-08 1975-01-28 Rhone Progil New lubricating oil additives
US3755173A (en) * 1971-08-05 1973-08-28 Chevron Res Alkenyl halolactone esters and acids and lubricants containing them
US3879308A (en) * 1973-05-14 1975-04-22 Lubrizol Corp Lubricants and fuels containing ester-containing compositions
US4100083A (en) * 1974-05-30 1978-07-11 Mobil Oil Corporation Lubricant compositions containing an amine salt of a half ester of succinic acid
DE2646241A1 (en) * 1975-10-14 1977-04-28 Lubrizol Corp AMINOPHENOLS, METHOD FOR THEIR PRODUCTION AND THEIR USE
DE2702805A1 (en) * 1976-01-28 1977-08-11 Lubrizol Corp Additive concentrates for lubricating oils and fuels - contg. amino-phenol and detergent-dispersant, for use in two-stroke motors
US4240916A (en) * 1976-07-09 1980-12-23 Exxon Research & Engineering Co. Pour point depressant additive for fuels and lubricants
US4240970A (en) * 1976-07-28 1980-12-23 Mobil Oil Corporation Reaction products of hydroxy aromatic or alkylphenylether compounds and alkenylsuccinic acid, anhydride, or ester
US4072618A (en) * 1976-08-27 1978-02-07 Mobil Oil Corporation Metal working lubricant
US4105571A (en) * 1977-08-22 1978-08-08 Exxon Research & Engineering Co. Lubricant composition
US4159958A (en) * 1978-06-30 1979-07-03 Chevron Research Company Succinate dispersant combination
US4306070A (en) * 1979-06-28 1981-12-15 Texaco Inc. Method for preparing quaternary ammonium salt of ester-lactone
FR2460297A1 (en) * 1979-06-28 1981-01-23 Texaco Development Corp DIESTER QUATERNARY AMMONIUM SALT, PROCESS FOR PREPARING THE SAME, AND LUBRICATING OIL COMPOSITION CONTAINING THE SAME
US4251380A (en) * 1979-06-28 1981-02-17 Texaco Inc. Quaternary ammonium diester salt composition and hydrocarbon oil containing same
US4253980A (en) * 1979-06-28 1981-03-03 Texaco Inc. Quaternary ammonium salt of ester-lactone and hydrocarbon oil containing same
US4867890A (en) * 1979-08-13 1989-09-19 Terence Colclough Lubricating oil compositions containing ashless dispersant, zinc dihydrocarbyldithiophosphate, metal detergent and a copper compound
US4237020A (en) * 1979-08-20 1980-12-02 Edwin Cooper, Inc. Lubricating and fuel compositions containing succinimide friction reducers
FR2469448A1 (en) * 1979-11-13 1981-05-22 Texaco Development Corp DIESTER QUATERNARY AMMONIUM SALT COMPOSITION, MANUFACTURING METHOD THEREOF, AND LUBRICATING OIL COMPOSITION BASED ON SAID SALT COMPOSITION
US4273663A (en) * 1979-11-13 1981-06-16 Texaco Inc. Quaternary ammonium diester salt composition and lubricating oil containing same
US4617134A (en) * 1980-11-10 1986-10-14 Exxon Research And Engineering Company Method and lubricant composition for providing improved friction reduction
US4505718A (en) * 1981-01-22 1985-03-19 The Lubrizol Corporation Organo transition metal salt/ashless detergent-dispersant combinations
US4491527A (en) * 1982-04-26 1985-01-01 The Lubrizol Corporation Ester-heterocycle compositions useful as "lead paint" inhibitors in lubricants
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4444565A (en) * 1982-12-20 1984-04-24 Union Oil Company Of California Method and fuel composition for control of octane requirement increase
US6355074B1 (en) 1985-07-11 2002-03-12 Exxon Chemical Patents Inc Oil soluble dispersant additives useful in oleaginous compositions
US6127321A (en) * 1985-07-11 2000-10-03 Exxon Chemical Patents Inc Oil soluble dispersant additives useful in oleaginous compositions
US4866141A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same
US4866142A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US4906394A (en) * 1986-10-07 1990-03-06 Exxon Chemical Patents Inc. Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions
US4866139A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified, esterified dispersant additives useful in oleaginous compositions
US4866140A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
US4866135A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Heterocyclic amine terminated, lactone modified, aminated viscosity modifiers of improved dispersancy
US4954277A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same
US4936866A (en) * 1986-10-07 1990-06-26 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US4954276A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
EP0263702A3 (en) * 1986-10-07 1988-10-05 Exxon Chemical Patents Inc. Lactone modified, esterified dispersant additives usefullactone modified, esterified dispersant additives useful in oleaginous compositions in oleaginous compositions
EP0263702A2 (en) * 1986-10-07 1988-04-13 Exxon Chemical Patents Inc. Lactone modified, esterified dispersant additives useful in oleaginous compositions
US4963275A (en) * 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
US5032320A (en) * 1986-10-07 1991-07-16 Exxon Chemical Patents Inc. Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions
US5439604A (en) * 1986-12-12 1995-08-08 Exxon Chemical Patents Inc. Oil soluble additives useful in oleaginous compositions
US4751011A (en) * 1986-12-12 1988-06-14 Exxon Chemical Patents Inc. Hydrocarbon soluble complexes based on metal salts of polyolefinic dicarboxylic acids
US4971711A (en) * 1987-07-24 1990-11-20 Exxon Chemical Patents, Inc. Lactone-modified, mannich base dispersant additives useful in oleaginous compositions
US4820432A (en) * 1987-07-24 1989-04-11 Exxon Chemical Patents Inc. Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions
US5124055A (en) * 1988-03-31 1992-06-23 Ethyl Petroleum Additives, Inc. Lubricating oil composition
US4933098A (en) * 1988-04-06 1990-06-12 Exxon Chemical Patents Inc. Lactone modified viscosity modifiers useful in oleaginous compositions
US4943382A (en) * 1988-04-06 1990-07-24 Exxon Chemical Patents Inc. Lactone modified dispersant additives useful in oleaginous compositions
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
US4952328A (en) * 1988-05-27 1990-08-28 The Lubrizol Corporation Lubricating oil compositions
JPH0228294A (en) * 1988-05-27 1990-01-30 Lubrizol Corp:The Lubricant composition
JP2796356B2 (en) 1988-05-27 1998-09-10 ザ ルブリゾル コーポレーション Lubricating oil composition
JPH0234689A (en) * 1988-06-13 1990-02-05 Lubrizol Corp:The Lubricating oil composition and concentrate
US4981602A (en) * 1988-06-13 1991-01-01 The Lubrizol Corporation Lubricating oil compositions and concentrates
US4904401A (en) * 1988-06-13 1990-02-27 The Lubrizol Corporation Lubricating oil compositions
FR2634780A1 (en) * 1988-08-01 1990-02-02 Lubrizol Corp LUBRICATING OIL AND CONCENTRATE COMPOSITION FOR PREPARATION CONTAINING CARBOXYLIC DERIVATIVE COMPOSITION, ESTER AND DIHYDROCARBYLDITHIOPHOSPHORIC ACID METAL SALT
EP0389573B1 (en) * 1988-08-01 1995-01-11 The Lubrizol Corporation Lubricating oil compositions and concentrates
EP0389573A1 (en) * 1988-08-01 1990-10-03 Lubrizol Corp Lubricating oil compositions and concentrates.
JPH0241396A (en) * 1988-08-01 1990-02-09 Lubrizol Corp:The Lubricating oil composition and concentrate
US4938881A (en) * 1988-08-01 1990-07-03 The Lubrizol Corporation Lubricating oil compositions and concentrates
JPH0241395A (en) * 1988-08-01 1990-02-09 Lubrizol Corp:The Lubricating oil composition and concentrate
JP2796357B2 (en) 1988-08-01 1998-09-10 ザ ルブリゾル コーポレーション Lubricating oil compositions and concentrates
BE1001977A3 (en) * 1988-08-01 1990-05-02 Lubrizol Corp LUBRICATING OIL COMPOSITIONS.
US4957649A (en) * 1988-08-01 1990-09-18 The Lubrizol Corporation Lubricating oil compositions and concentrates
JPH0275699A (en) * 1988-09-08 1990-03-15 Lubrizol Corp:The Lubricating oil composition
US5334329A (en) * 1988-10-07 1994-08-02 The Lubrizol Corporation Lubricant and functional fluid compositions exhibiting improved demulsibility
US4954572A (en) * 1988-11-07 1990-09-04 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy alcohols
US5205947A (en) * 1988-11-07 1993-04-27 Exxon Chemical Patents Inc. Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products
US5057617A (en) * 1988-11-07 1991-10-15 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy thiols
US5340487A (en) * 1988-11-07 1994-08-23 Exxon Chemical Patents Inc. Dispersant adducts comprising alcohol adducts of dicarboxylic acid monoepoxy thiol reaction products
US5328622A (en) * 1989-01-30 1994-07-12 Exxon Chemical Patents Inc. Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds
US4941984A (en) * 1989-07-31 1990-07-17 The Lubrizol Corporation Lubricating oil compositions and methods for lubricating gasoline-fueled and/or alcohol-fueled, spark-ignited engines
US5422022A (en) * 1990-06-20 1995-06-06 The Lubrizol Corporation Lubricants, lubricant additives, and methods for lubricating sump-lubricated fuel-injected alcohol-powered internal combustion engines
US5221490A (en) * 1990-07-30 1993-06-22 Nkk Corporation Rust-preventive lubricant composition for zinc-plated steel material
US5614480A (en) * 1991-04-19 1997-03-25 The Lubrizol Corporation Lubricating compositions and concentrates
US5562864A (en) * 1991-04-19 1996-10-08 The Lubrizol Corporation Lubricating compositions and concentrates
US5490945A (en) * 1991-04-19 1996-02-13 The Lubrizol Corporation Lubricating compositions and concentrates
WO1992021736A1 (en) 1991-05-30 1992-12-10 The Lubrizol Corporation Two-cycle lubricant and method of using same
EP0558835A1 (en) 1992-01-30 1993-09-08 Albemarle Corporation Biodegradable lubricants and functional fluids
US5637557A (en) * 1992-03-17 1997-06-10 The Lubrizol Corporation Compositions containing derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
US5620946A (en) * 1992-03-17 1997-04-15 The Lubrizol Corporation Compositions containing combinations of surfactants and derivatives of succininc acylating agent or hydroxyaromatic compounds and methods of using the same
US5330662A (en) * 1992-03-17 1994-07-19 The Lubrizol Corporation Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5717039A (en) * 1992-12-17 1998-02-10 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
US5629394A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Direct synthesis by living cationic polymerization of nitrogen-containing polymers
US6030930A (en) * 1992-12-17 2000-02-29 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5444135A (en) * 1992-12-17 1995-08-22 Exxon Chemical Patents Inc. Direct synthesis by living cationic polymerization of nitrogen-containing polymers
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5663130A (en) * 1992-12-17 1997-09-02 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5696064A (en) * 1992-12-17 1997-12-09 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5698722A (en) * 1992-12-17 1997-12-16 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5703256A (en) * 1992-12-17 1997-12-30 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5328620A (en) * 1992-12-21 1994-07-12 The Lubrizol Corporation Oil additive package useful in diesel engine and transmission lubricants
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
EP0695799A2 (en) 1994-08-03 1996-02-07 The Lubrizol Corporation Combination of a sulfer compound and specific phosphorus compounds and their use in lubricating compositions, concentrates and greases
EP0695798A2 (en) 1994-08-03 1996-02-07 The Lubrizol Corporation Lubricating compositions, concentrates, and greases containing the combination of an organic polysulfide and an overbased composition or a phosphorus or boron compound
EP0713907A2 (en) 1994-09-26 1996-05-29 Ethyl Petroleum Additives Limited Zinc additives of enhanced performance capabilities
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
US5833722A (en) * 1994-12-13 1998-11-10 Exxon Chemical Patents, Inc. Fuel oil compositions with improved lubricity properties
US5814111A (en) * 1995-03-14 1998-09-29 Shell Oil Company Gasoline compositions
US5736492A (en) * 1995-09-08 1998-04-07 Shell Oil Company Alkenyl-substituted dicarboxylic derivatives
EP0778333A2 (en) 1995-11-09 1997-06-11 The Lubrizol Corporation Carboxylic compositions, derivatives, lubricants, fuels and concentrates
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6468948B1 (en) 1996-06-17 2002-10-22 Infineum Usa L.P. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6624123B2 (en) * 1997-04-11 2003-09-23 Chevron Chemical S.A. Use of surfactants with high molecular weight for improving the filterability in hydraulic lubricants
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
WO2001052976A2 (en) * 2000-01-24 2001-07-26 The Lubrizol Corporation Partially dehydrated reaction product, process for making same, and emulsion containing same
WO2001052976A3 (en) * 2000-01-24 2002-09-12 Lubrizol Corp Partially dehydrated reaction product, process for making same, and emulsion containing same
US7044988B2 (en) 2000-01-24 2006-05-16 The Lubrizol Corporation Partially dehydrated reaction product, process for making same, and emulsion containing same
US6780209B1 (en) 2000-01-24 2004-08-24 The Lubrizol Corporation Partially dehydrated reaction product process for making same, and emulsion containing same
US20040055677A1 (en) * 2000-01-24 2004-03-25 Filippini Brian B. Partially dehydrated reaction product, process for making same, and emulsion containing same
WO2002094889A2 (en) * 2001-05-22 2002-11-28 Basf Aktiengesellschaft Low-molecular and high-molecular emulsifiers, particularly based on polyisobutylene, and mixtures thereof
US20040154216A1 (en) * 2001-05-22 2004-08-12 Stephan Huffer Low-molecular and high-molecular weight emulsifiers, particularly based on polyisobutylene, and mixtures thereof
WO2002094889A3 (en) * 2001-05-22 2003-11-27 Basf Ag Low-molecular and high-molecular emulsifiers, particularly based on polyisobutylene, and mixtures thereof
US20030176714A1 (en) * 2001-09-25 2003-09-18 Curphey Thomas J. Compositions and methods for thionation during chemical synthesis reactions
US7012148B2 (en) * 2001-09-25 2006-03-14 Trustees Of Dartmouth College Compositions and methods for thionation during chemical synthesis reactions
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US6573223B1 (en) 2002-03-04 2003-06-03 The Lubrizol Corporation Lubricating compositions with good thermal stability and demulsibility properties
US7888299B2 (en) 2003-01-15 2011-02-15 Afton Chemical Japan Corp. Extended drain, thermally stable, gear oil formulations
US20040147410A1 (en) * 2003-01-15 2004-07-29 Milner Jeffrey L Extended drain, thermally stable, gear oil formulations
US20050065043A1 (en) * 2003-09-23 2005-03-24 Henly Timothy J. Power transmission fluids having extended durability
US20050070446A1 (en) * 2003-09-25 2005-03-31 Ethyl Petroleum Additives, Inc. Boron free automotive gear oil
US20070054813A1 (en) * 2003-09-25 2007-03-08 Chip Hewette Boron free automotive gear oil
US20100279901A1 (en) * 2003-11-10 2010-11-04 Iyer Ramnath N Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
EP2230292A1 (en) 2003-11-10 2010-09-22 Afton Chemical Corporation Methods of lubricating transmissions
US20050101494A1 (en) * 2003-11-10 2005-05-12 Iyer Ramnath N. Lubricant compositions for power transmitting fluids
US9267093B2 (en) 2003-11-10 2016-02-23 Afton Chemical Corporation Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
US20080009426A1 (en) * 2003-11-10 2008-01-10 Iyer Ramnath N Lubricant Compositions and Methods Comprising Dispersant and Detergent
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
US7947636B2 (en) 2004-02-27 2011-05-24 Afton Chemical Corporation Power transmission fluids
US20060003905A1 (en) * 2004-07-02 2006-01-05 Devlin Cathy C Additives and lubricant formulations for improved corrosion protection
US8557752B2 (en) 2005-03-23 2013-10-15 Afton Chemical Corporation Lubricating compositions
US20060217273A1 (en) * 2005-03-23 2006-09-28 Nubar Ozbalik Lubricating compositions
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
US20070059458A1 (en) * 2005-09-09 2007-03-15 Fuji Photo Film Co., Ltd. Cellulose acylate film, optically compensatory film, polarizing plate and liquid crystal display
US20070111906A1 (en) * 2005-11-12 2007-05-17 Milner Jeffrey L Relatively low viscosity transmission fluids
EP2272821A2 (en) 2006-02-27 2011-01-12 Basf Se Trinuclear phenolic compounds
EP2267104A2 (en) 2006-02-27 2010-12-29 Basf Se Use of polynuclear phenolic compounds as dispersants
US20070270317A1 (en) * 2006-05-19 2007-11-22 Milner Jeffrey L Power Transmission Fluids
US20100022425A1 (en) * 2006-05-23 2010-01-28 Karl-Heinz Michel Corrosion Inhibiting Composition For Non-Ferrous Metals
US7902133B2 (en) 2006-07-14 2011-03-08 Afton Chemical Corporation Lubricant composition
US7879775B2 (en) 2006-07-14 2011-02-01 Afton Chemical Corporation Lubricant compositions
US20080015124A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant composition
US7833953B2 (en) 2006-08-28 2010-11-16 Afton Chemical Corporation Lubricant composition
US20080051305A1 (en) * 2006-08-28 2008-02-28 Devlin Mark T Lubricant composition
US8551365B2 (en) 2007-03-02 2013-10-08 Basf Se Additive formulation suitable for antistatic modification and improving the electrical conductivity of inanimate organic material
US8858838B2 (en) 2007-03-02 2014-10-14 Basf Se Additive formulation suitable for antistatic modification and improving the electrical conductivity of inanimate organic material
US10062471B2 (en) 2007-03-02 2018-08-28 Basf Se Additive formulation suitable for antistatic modification and improving the electrical conductivity of inanimate organic material
US20100072427A1 (en) * 2007-03-02 2010-03-25 Basf Se Additive formulation suitable for antistatic modification and improving the electrical conductivity of inanimate organic material
EP2420553A1 (en) 2007-05-04 2012-02-22 Afton Chemical Corporation Environmentally-Friendly Lubricant Compositions
US20100152078A1 (en) * 2007-05-04 2010-06-17 Ian Macpherson Environmentally-friendly lubricant compositions
EP2017329A1 (en) 2007-05-04 2009-01-21 Afton Chemical Corporation Environmentally-Friendly Lubricant Compositions
US20080274921A1 (en) * 2007-05-04 2008-11-06 Ian Macpherson Environmentally-Friendly Lubricant Compositions
US9670430B2 (en) 2007-07-16 2017-06-06 Basf Se Synergistic mixture
US20100210492A1 (en) * 2007-07-16 2010-08-19 Basf Se Synergistic mixture
US9562202B2 (en) 2007-07-16 2017-02-07 Basf Se Synergistic mixture
US9315759B2 (en) 2007-07-16 2016-04-19 Basf Se Synergistic mixture
US20090071067A1 (en) * 2007-09-17 2009-03-19 Ian Macpherson Environmentally-Friendly Additives And Additive Compositions For Solid Fuels
US20090233822A1 (en) * 2008-03-11 2009-09-17 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
US8703669B2 (en) 2008-03-11 2014-04-22 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
US20090233823A1 (en) * 2008-03-11 2009-09-17 Volkswagen Aktiengesellschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
DE102009012567A1 (en) 2008-03-11 2009-10-01 Afton Chemical Corp. Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
DE102009001301A1 (en) 2008-03-11 2009-09-24 Volkswagen Ag Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication
US8546311B2 (en) 2008-03-11 2013-10-01 Volkswagen Aktiengesellsschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
US8389456B2 (en) 2008-06-09 2013-03-05 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
RU2445335C2 (en) * 2009-06-05 2012-03-20 КЛИАРВОТЕР ИНТЕРНЭШНЛ ЭлЭлСи Additives improving operability in winter conditions for polymer suspensions on oil basis, and their obtaining and application method
US9315718B2 (en) 2009-12-10 2016-04-19 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US9441168B2 (en) 2009-12-10 2016-09-13 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US11629296B2 (en) * 2012-09-26 2023-04-18 Bl Technologies, Inc. Demulsifying compositions and methods of use
US8834735B2 (en) * 2012-09-28 2014-09-16 Takemoto Yushi Kabushiki Kaisha Processing agents for synthetic fibers, aqueous liquids thereof, processing methods for synthetic fibers and synthetic fibers
US20140090208A1 (en) * 2012-09-28 2014-04-03 Takemoto Yushi Kabushiki Kaisha Processing agents for synthetic fibers, aqueous liquids thereof, processing methods for synthetic fibers and synthetic fibers
EP3205705A1 (en) 2013-06-07 2017-08-16 Basf Se Alkylene oxide and hydrocarbyl-substituted polycarboxylic acid quaternised alkylamine as additives in fuels and lubricants and their use
EP2811007A1 (en) 2013-06-07 2014-12-10 Basf Se Alkylene oxide and hydrocarbyl-substituted polycarboxylic acid quaternised alkylamine as additives in fuels and lubricants and their use
US10407634B2 (en) 2013-06-07 2019-09-10 Basf Se Use of nitrogen compounds quaternised with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid as additives in fuels and lubricants
EP3653689A1 (en) 2013-06-07 2020-05-20 Basf Se Use with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid of quaternised nitrogen compounds as additives in fuels and lubricants
US10676685B2 (en) 2013-06-07 2020-06-09 Basf Se Use of nitrogen compounds quaternised with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid as additives in fuels and lubricants
US11111449B2 (en) 2013-06-07 2021-09-07 Basf Se Use of nitrogen compounds quaternised with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid as additives in fuels and lubricants
EP4190882A1 (en) 2013-06-07 2023-06-07 Basf Se Use with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid of quaternised nitrogen compounds as additives in fuels and lubricants
US11912950B2 (en) 2013-06-07 2024-02-27 Basf Se Use of nitrogen compounds quaternised with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid as additives in fuels and lubricants
DE102016107522A1 (en) 2016-04-22 2017-10-26 Basf Se A fuel additive device, method for adding fuel and use of the same
WO2017182160A1 (en) 2016-04-22 2017-10-26 FAUDI Aviation GmbH Fuel additising device, method for additising a fuel and use thereof
WO2020150123A1 (en) 2019-01-17 2020-07-23 The Lubrizol Corporation Traction fluids

Also Published As

Publication number Publication date
GB1055337A (en) 1967-01-18
US3632510A (en) 1972-01-04
US3542680A (en) 1970-11-24
DE1271877B (en) 1968-07-04
US3579450A (en) 1971-05-18

Similar Documents

Publication Publication Date Title
US3522179A (en) Lubricating composition containing esters of hydrocarbon-substituted succinic acid
US3381022A (en) Polymerized olefin substituted succinic acid esters
US3533945A (en) Lubricating oil composition
US3804763A (en) Dispersant compositions
US3403102A (en) Lubricant containing phosphorus acid esters
US3282955A (en) Reaction products of acylated nitrogen intermediates and a boron compound
US4034038A (en) Boron-containing esters
US3346493A (en) Lubricants containing metal complexes of alkenyl succinic acid-amine reaction product
US3281428A (en) Reaction product of certain acylated nitrogen containing intermediates and a boron compound
US3876550A (en) Lubricant compositions
US3806456A (en) Acylated nitrogen compositions
US3306908A (en) Reaction products of high molecular weight hydrocarbon succinic compounds, amines and heavy metal compounds
US3338832A (en) Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound
US3073807A (en) Copolymers of olefins with sulfonyloxy compounds
US3513093A (en) Lubricant containing nitrogen-containing and phosphorus-containing succinic derivatives
US3366569A (en) Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide
US3562159A (en) Synthetic lubricants
US3502677A (en) Nitrogen-containing and phosphorus-containing succinic derivatives
US3331776A (en) Lubricating oil composition
US3525693A (en) Alkenyl succinic polyglycol ether
US2892786A (en) Lubricant composition
US2993032A (en) Detergent copolymers
US3325567A (en) Phosphorus esters and process
US3833624A (en) Oil-soluble esters of monocarboxylic acids and polyhydric or aminoalcohols
US2824836A (en) Lubricating oil compositions