US3536457A - Catalytic oxidation unit for domestic oven exhaust - Google Patents

Catalytic oxidation unit for domestic oven exhaust Download PDF

Info

Publication number
US3536457A
US3536457A US707056A US3536457DA US3536457A US 3536457 A US3536457 A US 3536457A US 707056 A US707056 A US 707056A US 3536457D A US3536457D A US 3536457DA US 3536457 A US3536457 A US 3536457A
Authority
US
United States
Prior art keywords
oven
oxidation unit
ceramic
gases
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US707056A
Inventor
Wayne L Henderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3536457A publication Critical patent/US3536457A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2007Removing cooking fumes from oven cavities
    • F24C15/2014Removing cooking fumes from oven cavities with means for oxidation of cooking fumes

Definitions

  • a catalytic oxidation unit useful in eliminating smoke and odors issuing from the exhaust vent of a domestic cooking oven, particularly a high temperature, selfcleaning oven using a pyrolytic process for degrading food soils.
  • the oxidation unit comprises a hollow housing supporting a plurality of catalyst coated gas burners of cellular ceramic construction and having a high surface-tovolume ratio.
  • the housing has an intake port and an exhaust port and includes a partition which separates the housing into intake and afterburner compartments; with the gas flow being directed from the oven cavity into the intake compartment, then through the catalyst coated gas burners into the afterburner compartment of the housing, and finally venting to the atmosphere through the exhaust port.
  • Primary combustion air may be supplied to the intakecompartment, while secondary combustion air may be supplied to the afterburner compartment of the housing to create afterburning of the oven exhaust therein.
  • the present invention is an improved modification of the ceramic oxidation unit described in the copending ap plication of Bohdan Hurko and Raymond L. Dills, Ser. No. 396,551, now Pat. No. 3,428,435, and a second copending application of Bohdan Hurko, Ser. No. 396,549, now Pat. No. 3,428,434, both of which are assigned to the same assignee as is the present invention.
  • the gas stream entering the oxidation unit housing is divided and directed in opposite directions to pass through the ceramic burners, and then the flow is reversed as the combustion gases pass up and around a partition which divides the housing into two compartments.
  • This second compartment operates at a high temperature to assist the completion of the oxidation process before the gases are returned to the kitchen atmosphere.
  • the length and size of each cell of the ceramic block will reduce the flow so that the hot gases remain in the oxidation temperature longer.
  • the principal object of the present invention is to provide a ceramic oxidation unit with a gas flow pattern that automatically controls the velocity of the hot gases and treats these gases at a high temperature for a suflicient amount of time while supplying these gases with ample oxygen to insure complete degradation and conversion of the gases to CO
  • a further object of the present invention is to provide an oxidation unit with catalytic coated cellular ceramic blocks of the type described and a delayed supply of primary air for these ceramic burners, as well as a constant supply of secondary air downstream of the burners to insure complete combustion.
  • the present invention in accordance with one form thereof, relates to a corrugated ceramic, catalytic oxidation unit such as for use over the exhaust vent in the walls of an oven cooking cavity.
  • This oxidation unit has walls forming a hollow housing with an intake port and an exhaust port, and there is a catalytic coated gas burner having a perforated ceramic substrate of deep cellular construction that is arranged at one or more sides of the intake port.
  • a bafile is fastened over the top of the burner and also to certain side walls of the housing to form a first intake compartment upstream of the burners and a second afterburner or exhaust compartment downstream of the burner.
  • These burners are adapted to be mounted so as to derive much of their heat from the walls of the oven cooking cavity.
  • Modifications of this invention would include a delayed source of primary air upstream of the ceramic burners and a continuous source of secondary air downstream of the ceramic burners.
  • a supplementary heating means may be provided in the intake compartment to increase the ambient temperature of the ceramic burner so that catalytic action is started when the initial gases from the oven reach the burner.
  • FIG. 1 is a left side, fragmentary, elevational view of a free-standing electric range with a ceramic catalytic oxidation unit embodying the present invention furnished over the oven vent, there being some parts broken away and others in cross-section to best show the invention and the environment in which the invention is best suited to operate.
  • FIG. 2 is a perspective view on an enlarged scale of the ceramic catalytic unit of the present invention with parts broken away to improve the understanding of the interior construction of the unit with its subdivision into an intake compartment and an exhaust or afterburner compartment, and also showing the primary air opening communicating with the intake compartment and two secondary air openings communicating with the exhaust compartment.
  • FIG. 3 is a cross-sectional elevational view of a modification of the oxidation unit of FIG. 2 showing a supplementary heater in the intake port of the unit, as well as a thermal, time delay valve normally closing the primary air opening in the lower temperature range of the intake compartment.
  • FIG. 4 is a temperature-time chart comparing the change of the temperatures of the two ceramic burners with respect to the change of temperature of the air at the center of the oven cavity.
  • FIG. 1 there is shown for illustrative purposes an electric range 10 having a top cooking surface or cooktop 11 with a plurality of surface heating elements 12, an oven cavity 13 located beneath the cooktop and formed by a box-like oven liner 14 and a front-opening, drop door 15.
  • the oven cavity is supplied with two standard heating elements; namely, a lower baking element 16 and an upper broiling element 17 that may be furnished with an inverted reflector pan 18 which overlies the same for directing radiant energy in a downward direction during broiling operations.
  • the surface heating elements 12 are controlled by selector switches 20 located in the sidearms of the cooktop 11, while the oven heating elements 16 and 17 are controlled by a combined oven selector switch and oven thermostat 21 which is positioned in the control panel 22 of a backsplasher 23 that is vertically positioned along the back edge of the cooktop 11.
  • the oven liner 14 is surrounded by a thick layer of thermal insulating material 25, such as fiberglass or the like, for retaining the heat generated within the oven cavity.
  • a range body or cabinet structure 26 forms the external structure of the range for supporting the various elements therein, and it is provided with an outer appearance finish of porcelain enamel, stainless steel or the like as is conventional in this art.
  • a catalytic oxidation unit 28 comprising the present invention with walls forming a hollow housing 29 that is positioned over the oven vent opening 31 in the top wall of the oven liner 14.
  • the particular nature of the oxidation unit 28 can best be understood by studying the perspective view of FIG. 2 Which is taken from the left hand, rear corner of the range 10 looking down upon the oxidation unit.
  • the hollow housing 29 is formed by a front wall 33, a back wall 34, opposite side walls 35 and 36 and a top wall 37. Notice that there is no bottom wall, and that the vertical walls 33-36 are each provided with an outwardly turned flange 39 on the lower edge thereof so that fastening screws 41 may be inserted through suitable holes therein and through holes in the oven liner to fasten the housing 29 to the top wall of the oven liner.
  • the oven exhaust vent opening 31 constitutes the intake port for the unit 28.
  • a pair of catalytic coated, perforated ceramic blocks 43 and 44 of thin wall cellular construction Arranged on opposite sides of this port is a pair of catalytic coated, perforated ceramic blocks 43 and 44 of thin wall cellular construction.
  • This ceramic material is the Minnesota Mining and Manufacturing Company through its American Lava Corporation. This material is designated by them as corrugated ceramic.
  • Another available source of this ceramic material is the E. I. Du Pont de Nemours Company, which designates this material as honeycomb ceramic. Two types of ceramic that have been found successful are cordierite and alumina.
  • corrugated ceramic is apparently derived from the fact that the material is of cellular construction having a configuration of multple layers of corrugated paper in that there is one series of spaced, flat partitions where each pair is separated by a corrugated spacer.
  • the corrugations are of a size with about seven corrugations per inch, and the width of each cell is about .100 inch.
  • the depth of the block is about one inch.
  • the length and size of the cells of the burner are also designed to reduce the flow so that the hot gases remain at the oxidation temperature for a longer period of time.
  • honeycomb ceramic apparently comes from the fact that the cells are cut in transverse cross-section, thereby giving it the appearance of cells of honey built by honeybees.
  • a catalytic material such as platinum or other precious metal is applied as a thin coating to the ceramic blocks 43 and 44, and including the interior surfaces of the cells thereof which are to come into contact with the hot oven gases flowing therethrough.
  • the normal cooking temperatures in a domestic oven vary between about F. and about 550 F.
  • a self-cleaning oven design has been introduced on the market and manufactured according to the teachings of the Bohdan Hurko Pat. 3,121,158 that was mentioned earlier.
  • Such an oven design uses a pyrolytic process for removing the food soils and grease splatter that accumulate on the surfaces of the oven liner and inner door panel. This is done by raising the oven temperatures to a heat cleaning temperature somewhere above about 750 F. and holding it for a suflicient length of time to reduce the food soil and grease splatter into gaseous products which are further degraded in a catalytic oxidation unit such as unit 28, before the gases are returned to the kitchen atmosphere.
  • Welch discloses a spiral, metal sheathed resistance heating element used in conjunction with a platinum coated wire screen that is interleaved in the turns of the spiral for oxidizing the smoke and odors and grease that might be present in the oven exhaust gases.
  • This Welch design is a most satisfactory design from an operational viewpoint, yet the use of a metal sheathed heater contributes a great deal to its unit cost.
  • the woven wires forming the screen have a very small surface area, and they are contacted by the gases for only a fleeting moment as compared with the action of elongated cells of the ceramic blocks of the present invention.
  • the heating of the food soils and grease splatter within the oven cavity during the heat cleaning operation produces corresponding primary gaseous degradation products which are combined with a controlled amount of ambient air drawn into the oven cavity usually through a small gap around the oven door.
  • Such degradation includes methane, ethane, water vapor, carbon monoxide, some free carbon and other elements.
  • Smoke, odors and other underisable products are initially generated at temperatures of around 300 F., and it is important to be able to eliminate these before the hot oven gases are returned to the kitchen atmosphere.
  • the oxidation unit 28 has an open bottom wall that is mounted directly to the top wall of the oven liner 14 so that the ceramic blocks 43 and 44 are bearing directly on the surface of the oven liner.
  • the ceramic blocks are heated by the oven liner and this reduces the temperature diiferential between the oven exhaust gas temperature and the temperature of the ceramic blocks.
  • turbulence is produced and this in turn reduces the gas velocity so that the gas is in contact with the catalytic surfaces of the ceramic blocks 43 and 44 for a longer period of time than if the gases pass directly through the ceramic blocks without turbulence.
  • FIGS. 2 and 3 there is a supplementary air chamber 47 inside the back wall 34, and it is defined by a vertical, parallel wall 49, opposite side walls 35 and 36, the top wall of the oven liner 14 and a cover plate 51 which covers both the air chamber 47 and the two ceramic burners 43 and 44.
  • the cover plate 51 creates an intake compartment 53 over the oven vent opening 31 and between the two burners 43 and 44.
  • the portion of the cover plate 51 over the two burners stops short of the side walls 35 and 36 and actually terminates at the rear edge of each burner as is best seen in FIG. 2.
  • the gases divided and flow through one of the burners and the side wall deflects the flow upward into an afteburner or exhaust compartment 55 where the gas flows back over the top of the cover plate 51 and passes out of the exhaust port 57.
  • the back wall 34 is furnished with a large rectangular air inlet 64, as is best seen in FIG. 2. Over this inlet 64 is fastened a thin but wide air duct 66 that extends rearwardly to the back wall of the range and is open to the atmosphere.
  • the supplementary air input system for primary and secondary air is so constructed that this air is raised in temperature above room ambient temperature prior to entering the combustion area of the oxidation unit. This heating of the supplementary air supply, as it passes through the duct 66 that is buried in the thermal insulation 25, improves the efficiency of the oxidation cycle.
  • the primary air inlet 60 is provided with a bimetal valve or shutter 68 of cantilever construction which is supported from the wall 49 and normally closes the inlet 60 at gas temperatures below about 750 F. Above this temperature or other more suitable temperature, the bimetal 68 is open to supply primary air to the intake compartment 53. Moreover, the secondary air inlets 61 and 62 are always open to the atmosphere. The size of the secondary air inlets 61 and 62 automatically controls the amount of air supplied because the change in temperature between ambient air and the exit of the burners 43 or 44 is a function of the amount of soil being oxidized.
  • an auxiliary resistance heater 70 of wire or screen formation is assembled across the intake port 31 of the oxidation unit 28 to raise the ambient temperature of the gases entering the intake compartment 53 especially during the beginning of the cycle as was mentioned heretofore.
  • the heater 70 is supported from a ring 72 of insulating material that is in turn fastened over the intake port 31 by screw fasteners 74.
  • the heater is adapted to be electrically connected to a 120 volt circuit for energizing the heater, when desired.
  • the lower curve A represents the variation of the oven air temperature with time, while there are two upper curves labeled 43 and 44 as they represent the surface temperatures of the two ceramic burners 43 and 44 respectively.
  • a smoke and odor oxidation unit that is adapted to be mounted over the exhaust vent in the walls of an oven cooking cavity, the unit having walls forming a hollow housing with an intake port and an exhaust port, and a plurality of catalyst-coated gas burner means with a perforated ceramic substrate of deep cellular construction and a high ratio of surface area to volume, at least two of such burner means being arranged within said hollow housing and located on at least two of the opposite sides of the intake port, bafile means located in said housing and arranged over the tops of said two burner means and joined to certain side walls of said housing so as to partition the hollow housing into a first intake compartment located upstream of said two burners with said intake port communicating therewith and a second afterburner compartment located downstream of said two burners with said exhaust port communicating therewith wherein the gas flowing into said intake compartment is divided into a plurality of streams which flow through said at least two burner means into the afterburner compartment, said burner means being adapted to derive much of its heat by conduction from the walls of the oven cooking cavity, and electrical resistance
  • a smoke and odor oxidation unit as recited in claim 1 wherein a single air duct communicates with both the primary air inlet opening and the two secondary air inlet openings, the said air duct being adapted to be heated by its surrounding environment so as to preheat both the primary and secondary air before they enter the oxidation unit.

Description

2 Sheets-Sheet 1 w. L. HENDERSON I CATALYTIC OXIDATION UNIT FOR DOMESTIC OVEN EXHAUST Oct. 27,1970
Filed Feb WAYNE L. HENDERSON ms ATTORNEY Oct. 27 41970 w, HENDERSON 3,536,?!-
CATALYTIC OXIDATION UNIT FOR DOMESTIC-OVENBXIIAUST Filed Feb. 21, 1968 2 shms snm a was I F'IG.4
. l I I l I I I I I I I I I o "5 l 3o 4o so 6o INVENTOIL WAYNE L. neuoaasou HIS ATTORNEY United States Patent US. Cl. 23-288 2 Claims ABSTRACT OF THE DISCLOSURE A catalytic oxidation unit useful in eliminating smoke and odors issuing from the exhaust vent of a domestic cooking oven, particularly a high temperature, selfcleaning oven using a pyrolytic process for degrading food soils. The oxidation unit comprises a hollow housing supporting a plurality of catalyst coated gas burners of cellular ceramic construction and having a high surface-tovolume ratio. The housing has an intake port and an exhaust port and includes a partition which separates the housing into intake and afterburner compartments; with the gas flow being directed from the oven cavity into the intake compartment, then through the catalyst coated gas burners into the afterburner compartment of the housing, and finally venting to the atmosphere through the exhaust port. Primary combustion air may be supplied to the intakecompartment, while secondary combustion air may be supplied to the afterburner compartment of the housing to create afterburning of the oven exhaust therein.
CROSS-REFERENCE TO RELATED APPLICATIONS The present invention is an improved modification of the ceramic oxidation unit described in the copending ap plication of Bohdan Hurko and Raymond L. Dills, Ser. No. 396,551, now Pat. No. 3,428,435, and a second copending application of Bohdan Hurko, Ser. No. 396,549, now Pat. No. 3,428,434, both of which are assigned to the same assignee as is the present invention.
BACKGROUND OF THE INVENTION Considerable testing of ceramic oxidation units in conjunction with the exhaust gases issuing from a self-cleaning baking oven has indicated that there are several important factors to consider in addition to the amount of surface area of the substrate on which the catalytic coating is supported. These additional factors are the velocity of the hot exhaust gases passing over the catalyst and the length of time that the gases are exposed to high temperatures within the oxidation unit before they are exhausted from the oxidation unit. Thus it is important to obtain complete burning of the gases so as to convert all of the gases generated by the pyrolytic breakdown of the soils on the oven liner to CO Two methods are used for automatically controlling the velocity of the gases. First, the gas stream entering the oxidation unit housing is divided and directed in opposite directions to pass through the ceramic burners, and then the flow is reversed as the combustion gases pass up and around a partition which divides the housing into two compartments. This second compartment operates at a high temperature to assist the completion of the oxidation process before the gases are returned to the kitchen atmosphere. Moreover, the length and size of each cell of the ceramic block will reduce the flow so that the hot gases remain in the oxidation temperature longer.
The principal object of the present invention is to provide a ceramic oxidation unit with a gas flow pattern that automatically controls the velocity of the hot gases and treats these gases at a high temperature for a suflicient amount of time while supplying these gases with ample oxygen to insure complete degradation and conversion of the gases to CO A further object of the present invention is to provide an oxidation unit with catalytic coated cellular ceramic blocks of the type described and a delayed supply of primary air for these ceramic burners, as well as a constant supply of secondary air downstream of the burners to insure complete combustion.
SUMMARY OF THE INVENTION The present invention, in accordance with one form thereof, relates to a corrugated ceramic, catalytic oxidation unit such as for use over the exhaust vent in the walls of an oven cooking cavity. This oxidation unit has walls forming a hollow housing with an intake port and an exhaust port, and there is a catalytic coated gas burner having a perforated ceramic substrate of deep cellular construction that is arranged at one or more sides of the intake port. A bafile is fastened over the top of the burner and also to certain side walls of the housing to form a first intake compartment upstream of the burners and a second afterburner or exhaust compartment downstream of the burner. These burners are adapted to be mounted so as to derive much of their heat from the walls of the oven cooking cavity. Modifications of this invention would include a delayed source of primary air upstream of the ceramic burners and a continuous source of secondary air downstream of the ceramic burners. Moreover, in order to increase the efficiency of the ceramic burners during the initial stage of its operation a supplementary heating means may be provided in the intake compartment to increase the ambient temperature of the ceramic burner so that catalytic action is started when the initial gases from the oven reach the burner.
BRIEF DESCRIPTION OF THE DRAWINGS My invention will be better understood from the following description taken in conjunction with the accompanying drawings and its scope will be pointed out in the appended claims.
FIG. 1 is a left side, fragmentary, elevational view of a free-standing electric range with a ceramic catalytic oxidation unit embodying the present invention furnished over the oven vent, there being some parts broken away and others in cross-section to best show the invention and the environment in which the invention is best suited to operate.
FIG. 2 is a perspective view on an enlarged scale of the ceramic catalytic unit of the present invention with parts broken away to improve the understanding of the interior construction of the unit with its subdivision into an intake compartment and an exhaust or afterburner compartment, and also showing the primary air opening communicating with the intake compartment and two secondary air openings communicating with the exhaust compartment.
FIG. 3 is a cross-sectional elevational view of a modification of the oxidation unit of FIG. 2 showing a supplementary heater in the intake port of the unit, as well as a thermal, time delay valve normally closing the primary air opening in the lower temperature range of the intake compartment.
FIG. 4 is a temperature-time chart comparing the change of the temperatures of the two ceramic burners with respect to the change of temperature of the air at the center of the oven cavity.
DESCRIPTION OF THE PREFERRED EMBODIMENT Turning now to a consideration of the drawings, and in particular FIG. 1, there is shown for illustrative purposes an electric range 10 having a top cooking surface or cooktop 11 with a plurality of surface heating elements 12, an oven cavity 13 located beneath the cooktop and formed by a box-like oven liner 14 and a front-opening, drop door 15. The oven cavity is supplied with two standard heating elements; namely, a lower baking element 16 and an upper broiling element 17 that may be furnished with an inverted reflector pan 18 which overlies the same for directing radiant energy in a downward direction during broiling operations. The surface heating elements 12 are controlled by selector switches 20 located in the sidearms of the cooktop 11, while the oven heating elements 16 and 17 are controlled by a combined oven selector switch and oven thermostat 21 which is positioned in the control panel 22 of a backsplasher 23 that is vertically positioned along the back edge of the cooktop 11.
As is conventional in this art, the oven liner 14 is surrounded by a thick layer of thermal insulating material 25, such as fiberglass or the like, for retaining the heat generated within the oven cavity. A range body or cabinet structure 26 forms the external structure of the range for supporting the various elements therein, and it is provided with an outer appearance finish of porcelain enamel, stainless steel or the like as is conventional in this art.
It is standard practice to provide an oven with a vent or exhaust duct communicating with the kitchen atmosphere; especially, for use during broiling operations when a large volume of room air is passed through the oven, usually by means of a partially open oven door so as to hold down the oven air temperature. The broiling operation utilizes a maximum temperature setting of the oven thermostat to obtain a steady ON condition of the broil element 17. Moreover, it is necessary in a high temperature, self-cleaning oven which operates on a pyrolytic principle to provide an oxidation unit such as 28 in the oven vent system to degrade the oven gases and remove the smoke and odors before the gases are returned to the kitchen atmosphere. In place of a standard exhaust duct I have attached on the top wall of the oven liner a catalytic oxidation unit 28 comprising the present invention with walls forming a hollow housing 29 that is positioned over the oven vent opening 31 in the top wall of the oven liner 14.
The particular nature of the oxidation unit 28 can best be understood by studying the perspective view of FIG. 2 Which is taken from the left hand, rear corner of the range 10 looking down upon the oxidation unit. First to help in the orientation, there is the top wall of the oven liner 14 with the oven vent opening 31 cut therein. The hollow housing 29 is formed by a front wall 33, a back wall 34, opposite side walls 35 and 36 and a top wall 37. Notice that there is no bottom wall, and that the vertical walls 33-36 are each provided with an outwardly turned flange 39 on the lower edge thereof so that fastening screws 41 may be inserted through suitable holes therein and through holes in the oven liner to fasten the housing 29 to the top wall of the oven liner.
The oven exhaust vent opening 31 constitutes the intake port for the unit 28. Arranged on opposite sides of this port is a pair of catalytic coated, perforated ceramic blocks 43 and 44 of thin wall cellular construction. One suitable source of this ceramic material is the Minnesota Mining and Manufacturing Company through its American Lava Corporation. This material is designated by them as corrugated ceramic. Another available source of this ceramic material is the E. I. Du Pont de Nemours Company, which designates this material as honeycomb ceramic. Two types of ceramic that have been found successful are cordierite and alumina. The term corrugated ceramic is apparently derived from the fact that the material is of cellular construction having a configuration of multple layers of corrugated paper in that there is one series of spaced, flat partitions where each pair is separated by a corrugated spacer. The corrugations are of a size with about seven corrugations per inch, and the width of each cell is about .100 inch. The depth of the block is about one inch. The length and size of the cells of the burner are also designed to reduce the flow so that the hot gases remain at the oxidation temperature for a longer period of time. Thus it can be seen that the ceramic block is indeed perforated and of cellular construction. The designation honeycomb ceramic apparently comes from the fact that the cells are cut in transverse cross-section, thereby giving it the appearance of cells of honey built by honeybees.
A catalytic material such as platinum or other precious metal is applied as a thin coating to the ceramic blocks 43 and 44, and including the interior surfaces of the cells thereof which are to come into contact with the hot oven gases flowing therethrough.
The normal cooking temperatures in a domestic oven vary between about F. and about 550 F. Within recent times a self-cleaning oven design has been introduced on the market and manufactured according to the teachings of the Bohdan Hurko Pat. 3,121,158 that was mentioned earlier. Such an oven design uses a pyrolytic process for removing the food soils and grease splatter that accumulate on the surfaces of the oven liner and inner door panel. This is done by raising the oven temperatures to a heat cleaning temperature somewhere above about 750 F. and holding it for a suflicient length of time to reduce the food soil and grease splatter into gaseous products which are further degraded in a catalytic oxidation unit such as unit 28, before the gases are returned to the kitchen atmosphere.
One of the first catalytic oxidation units used in the commercial self-cleaning oven was built according to the teachings of the patent of Stanley B. Welch 2,900,483, which is likewise assigned to the assignee of the present invention. Welch discloses a spiral, metal sheathed resistance heating element used in conjunction with a platinum coated wire screen that is interleaved in the turns of the spiral for oxidizing the smoke and odors and grease that might be present in the oven exhaust gases. This Welch design is a most satisfactory design from an operational viewpoint, yet the use of a metal sheathed heater contributes a great deal to its unit cost. Moreover, the woven wires forming the screen have a very small surface area, and they are contacted by the gases for only a fleeting moment as compared with the action of elongated cells of the ceramic blocks of the present invention.
The heating of the food soils and grease splatter within the oven cavity during the heat cleaning operation produces corresponding primary gaseous degradation products which are combined with a controlled amount of ambient air drawn into the oven cavity usually through a small gap around the oven door. Such degradation includes methane, ethane, water vapor, carbon monoxide, some free carbon and other elements. Smoke, odors and other underisable products are initially generated at temperatures of around 300 F., and it is important to be able to eliminate these before the hot oven gases are returned to the kitchen atmosphere.
Considerable testing has indicated that the amount of carbon monoxide in the exhaust stream coming from the oxidation unit 28 is related to the amount of odor being produced. This is an observation that has been made during a number of tests in which carbon monoxide was being measured. Carbon monoxide is, of course, odorless, but it signals a condition of incomplete burning and a product which has odor must be present. Tests have also shown that the velocity of the gases being passed through the oxidation unit effect its efliciency. The present invention will automatically control the velocity of the gases and thus will produce more complete burning and convert the oven gases to carbon dixide which is odorless. The oxidation unit 28 has an open bottom wall that is mounted directly to the top wall of the oven liner 14 so that the ceramic blocks 43 and 44 are bearing directly on the surface of the oven liner. Thus the ceramic blocks are heated by the oven liner and this reduces the temperature diiferential between the oven exhaust gas temperature and the temperature of the ceramic blocks. In the vicinity of the air intake opening 31 turbulence is produced and this in turn reduces the gas velocity so that the gas is in contact with the catalytic surfaces of the ceramic blocks 43 and 44 for a longer period of time than if the gases pass directly through the ceramic blocks without turbulence.
Looking at FIGS. 2 and 3, there is a supplementary air chamber 47 inside the back wall 34, and it is defined by a vertical, parallel wall 49, opposite side walls 35 and 36, the top wall of the oven liner 14 and a cover plate 51 which covers both the air chamber 47 and the two ceramic burners 43 and 44. Thus, the cover plate 51 creates an intake compartment 53 over the oven vent opening 31 and between the two burners 43 and 44.
The portion of the cover plate 51 over the two burners stops short of the side walls 35 and 36 and actually terminates at the rear edge of each burner as is best seen in FIG. 2. Thus, the gases divided and flow through one of the burners and the side wall deflects the flow upward into an afteburner or exhaust compartment 55 where the gas flows back over the top of the cover plate 51 and passes out of the exhaust port 57.
There is a primary air inlet 60 in the center of the wall 49 of the supplementary air chamber 47 and a pair of secondary air inlets 61 and 62, one at each end of the wall 49 to be located downstream of the burners 43 and 44. The back wall 34 is furnished with a large rectangular air inlet 64, as is best seen in FIG. 2. Over this inlet 64 is fastened a thin but wide air duct 66 that extends rearwardly to the back wall of the range and is open to the atmosphere. The supplementary air input system for primary and secondary air is so constructed that this air is raised in temperature above room ambient temperature prior to entering the combustion area of the oxidation unit. This heating of the supplementary air supply, as it passes through the duct 66 that is buried in the thermal insulation 25, improves the efficiency of the oxidation cycle.
Notice that the primary air inlet 60 is provided with a bimetal valve or shutter 68 of cantilever construction which is supported from the wall 49 and normally closes the inlet 60 at gas temperatures below about 750 F. Above this temperature or other more suitable temperature, the bimetal 68 is open to supply primary air to the intake compartment 53. Moreover, the secondary air inlets 61 and 62 are always open to the atmosphere. The size of the secondary air inlets 61 and 62 automatically controls the amount of air supplied because the change in temperature between ambient air and the exit of the burners 43 or 44 is a function of the amount of soil being oxidized.
In the second modification of FIG. 3, an auxiliary resistance heater 70 of wire or screen formation is assembled across the intake port 31 of the oxidation unit 28 to raise the ambient temperature of the gases entering the intake compartment 53 especially during the beginning of the cycle as was mentioned heretofore. The heater 70 is supported from a ring 72 of insulating material that is in turn fastened over the intake port 31 by screw fasteners 74. The heater is adapted to be electrically connected to a 120 volt circuit for energizing the heater, when desired.
Looking at the time-temperature graph of FIG. 4, the lower curve A represents the variation of the oven air temperature with time, while there are two upper curves labeled 43 and 44 as they represent the surface temperatures of the two ceramic burners 43 and 44 respectively.
Modifications of this invention will occur to those skilled in this art. Therefore, it is to be understood that this invention is not limited to the particular embodiments disclosed, but that it is intended to cover all modifications which are within the true spirit and scope of this invention as claimed.
What I claim as new and desire to secure by Letters Patent of the United States is:
1. A smoke and odor oxidation unit that is adapted to be mounted over the exhaust vent in the walls of an oven cooking cavity, the unit having walls forming a hollow housing with an intake port and an exhaust port, and a plurality of catalyst-coated gas burner means with a perforated ceramic substrate of deep cellular construction and a high ratio of surface area to volume, at least two of such burner means being arranged within said hollow housing and located on at least two of the opposite sides of the intake port, bafile means located in said housing and arranged over the tops of said two burner means and joined to certain side walls of said housing so as to partition the hollow housing into a first intake compartment located upstream of said two burners with said intake port communicating therewith and a second afterburner compartment located downstream of said two burners with said exhaust port communicating therewith wherein the gas flowing into said intake compartment is divided into a plurality of streams which flow through said at least two burner means into the afterburner compartment, said burner means being adapted to derive much of its heat by conduction from the walls of the oven cooking cavity, and electrical resistance heater means located adjacent the first intake compartment for use at least during an initial preheat stage to heat up the gases entering the housing from the cooking cavity, the walls of the hollow housing having a primary'air inlet opening communicating with the intake compartment and a secondary air inlet opening downstream of each of said two burner means in the afterburner compartment, and a normally closed thermally responsive valve cooperating with the primary air inlet opening and operable to open at temperatures of about 750 F. and above to allow primary air to mix with the hot gases issuing from the oven cooking cavity vent before passing through the burner means.
2. A smoke and odor oxidation unit as recited in claim 1 wherein a single air duct communicates with both the primary air inlet opening and the two secondary air inlet openings, the said air duct being adapted to be heated by its surrounding environment so as to preheat both the primary and secondary air before they enter the oxidation unit.
References Cited UNITED STATES PATENTS 1,757,987 5/ 1930 Whittier. 2,845,882 8/ 1958 Bratton. 2,953,357 9/1960 Long. 3,110,300 11/1963 Brown et al. 3,166,895 1/1965 Slayter et al. 3,220,179 11/ 1965 Bloomfield. 3,325,256 6/ 1967 Calvert. 3,428,435 2/1969 Hurko et al. 3,470,354 9/1969 Tilus 12621 XR MORRIS O. WOLK, Primary Examiner B. S. RICHMAN, Assistant Examiner U.S. Cl. X.R. 1262l; 219396
US707056A 1968-02-21 1968-02-21 Catalytic oxidation unit for domestic oven exhaust Expired - Lifetime US3536457A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US70705668A 1968-02-21 1968-02-21

Publications (1)

Publication Number Publication Date
US3536457A true US3536457A (en) 1970-10-27

Family

ID=24840178

Family Applications (1)

Application Number Title Priority Date Filing Date
US707056A Expired - Lifetime US3536457A (en) 1968-02-21 1968-02-21 Catalytic oxidation unit for domestic oven exhaust

Country Status (2)

Country Link
US (1) US3536457A (en)
BR (1) BR6906099D0 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785778A (en) * 1971-03-23 1974-01-15 Smokontrol Corp Smoke eliminating device
US3847135A (en) * 1974-02-04 1974-11-12 Gen Electric Hinged adapter duct for oven vent
DE2547326A1 (en) * 1974-10-29 1976-05-06 Europ Equip Menager METHOD AND DEVICE FOR CATALYSIS OF SMOKE IN AN OVEN WITH PYROLYSIS CLEANING
US4481404A (en) * 1982-12-22 1984-11-06 General Electric Company Turn-off control circuit for self-cleaning ovens
US4507529A (en) * 1983-06-29 1985-03-26 General Electric Company Food emission sensing
US4547642A (en) * 1983-01-03 1985-10-15 General Electric Company Combination microwave and thermal self-cleaning oven with an automatic venting arrangement
US4954694A (en) * 1989-01-31 1990-09-04 Matsushita Electric Industrial Co., Ltd. Cooking oven having function to automatically clean soils attached to inner walls thereof
US4977839A (en) * 1988-01-14 1990-12-18 Chemical Waste Management, Inc. Process and apparatus for separating organic contaminants from contaminated inert materials
US5038747A (en) * 1989-09-27 1991-08-13 Paloma Kogyo Kabushiki Kaisha Desmoking and deodorizing means for gas grill
US5311930A (en) * 1992-11-17 1994-05-17 Bruenn Paul R Heat reclamation device
US5431887A (en) * 1992-05-19 1995-07-11 Prototech Company Flame arresting and contaminant-adsorbing filter apparatus and method in the catalytic abatement of broiler emissions
US5622100A (en) * 1992-07-31 1997-04-22 Ayrking Corporation Catalytic assembly for cooking smoke abatement
WO1997048479A1 (en) * 1996-06-19 1997-12-24 Halton Company Kitchen exhaust system with catalytic converter
EP0831277A1 (en) 1996-09-20 1998-03-25 Bosch-Siemens HausgerÀ¤te GmbH Baking oven with a catalyst
US5943969A (en) * 1994-12-14 1999-08-31 Barnstead/Thermolyne Corporation Ashing furnace and method
US20020146355A1 (en) * 2001-04-06 2002-10-10 Carroll Joseph Allen Clip-mounted catalyst device
US20040045949A1 (en) * 2002-06-19 2004-03-11 Mcwilliams Kevin Ronald Electric heater
US20080017183A1 (en) * 2006-07-21 2008-01-24 Sataco Co., Ltd. Brick-oven having a smoke and odor removing filter
US20100294259A1 (en) * 2004-07-23 2010-11-25 Oy Halton Group Ltd. Control of exhaust systems
US8734210B2 (en) 2007-05-04 2014-05-27 Oy Halton Group Ltd. Autonomous ventilation system
US8795040B2 (en) 2007-08-28 2014-08-05 Oy Halton Group Ltd. Autonomous ventilation system
US9494324B2 (en) 2008-12-03 2016-11-15 Oy Halton Group Ltd. Exhaust flow control system and method
US9574779B2 (en) 2008-04-18 2017-02-21 Oy Halton Group, Ltd. Exhaust apparatus, system, and method for enhanced capture and containment
US10060632B2 (en) * 2013-10-02 2018-08-28 Samsung Electronics Co., Ltd. Cooking apparatus and method of controlling the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1757987A (en) * 1929-01-04 1930-05-13 Albert E Whittier Oven ventilator
US2845882A (en) * 1955-02-23 1958-08-05 Oxy Catalyst Inc Incineration apparatus and method
US2953357A (en) * 1956-08-27 1960-09-20 Gen Motors Corp Refrigerator with heating means
US3110300A (en) * 1961-04-26 1963-11-12 Universal Oil Prod Co Catalytic gas oxidizing and fluid heating apparatus
US3166895A (en) * 1960-06-10 1965-01-26 Owens Corning Fiberglass Corp Catalytic muffling system for reducing contaminants in exhaust gases
US3220179A (en) * 1962-10-31 1965-11-30 Walter P Innes Jr Catalytic afterburner for internal combustion engines and the like
US3325256A (en) * 1963-05-20 1967-06-13 Willard R Calvert Automobile exhaust gas converter
US3428435A (en) * 1964-09-15 1969-02-18 Gen Electric Self-sustaining catalytic oxidation unit
US3470354A (en) * 1967-10-19 1969-09-30 Westinghouse Electric Corp Catalytic smoke eliminator for high temperature self-cleaning ovens

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1757987A (en) * 1929-01-04 1930-05-13 Albert E Whittier Oven ventilator
US2845882A (en) * 1955-02-23 1958-08-05 Oxy Catalyst Inc Incineration apparatus and method
US2953357A (en) * 1956-08-27 1960-09-20 Gen Motors Corp Refrigerator with heating means
US3166895A (en) * 1960-06-10 1965-01-26 Owens Corning Fiberglass Corp Catalytic muffling system for reducing contaminants in exhaust gases
US3110300A (en) * 1961-04-26 1963-11-12 Universal Oil Prod Co Catalytic gas oxidizing and fluid heating apparatus
US3220179A (en) * 1962-10-31 1965-11-30 Walter P Innes Jr Catalytic afterburner for internal combustion engines and the like
US3325256A (en) * 1963-05-20 1967-06-13 Willard R Calvert Automobile exhaust gas converter
US3428435A (en) * 1964-09-15 1969-02-18 Gen Electric Self-sustaining catalytic oxidation unit
US3470354A (en) * 1967-10-19 1969-09-30 Westinghouse Electric Corp Catalytic smoke eliminator for high temperature self-cleaning ovens

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785778A (en) * 1971-03-23 1974-01-15 Smokontrol Corp Smoke eliminating device
US3847135A (en) * 1974-02-04 1974-11-12 Gen Electric Hinged adapter duct for oven vent
DE2547326A1 (en) * 1974-10-29 1976-05-06 Europ Equip Menager METHOD AND DEVICE FOR CATALYSIS OF SMOKE IN AN OVEN WITH PYROLYSIS CLEANING
US4481404A (en) * 1982-12-22 1984-11-06 General Electric Company Turn-off control circuit for self-cleaning ovens
US4547642A (en) * 1983-01-03 1985-10-15 General Electric Company Combination microwave and thermal self-cleaning oven with an automatic venting arrangement
US4507529A (en) * 1983-06-29 1985-03-26 General Electric Company Food emission sensing
US4977839A (en) * 1988-01-14 1990-12-18 Chemical Waste Management, Inc. Process and apparatus for separating organic contaminants from contaminated inert materials
US4954694A (en) * 1989-01-31 1990-09-04 Matsushita Electric Industrial Co., Ltd. Cooking oven having function to automatically clean soils attached to inner walls thereof
US5038747A (en) * 1989-09-27 1991-08-13 Paloma Kogyo Kabushiki Kaisha Desmoking and deodorizing means for gas grill
US5431887A (en) * 1992-05-19 1995-07-11 Prototech Company Flame arresting and contaminant-adsorbing filter apparatus and method in the catalytic abatement of broiler emissions
US5693298A (en) * 1992-05-19 1997-12-02 Prototech Company Method for the catalytic abatement of broiler emissions
US5622100A (en) * 1992-07-31 1997-04-22 Ayrking Corporation Catalytic assembly for cooking smoke abatement
US5311930A (en) * 1992-11-17 1994-05-17 Bruenn Paul R Heat reclamation device
US5943969A (en) * 1994-12-14 1999-08-31 Barnstead/Thermolyne Corporation Ashing furnace and method
WO1997048479A1 (en) * 1996-06-19 1997-12-24 Halton Company Kitchen exhaust system with catalytic converter
EP0831277A1 (en) 1996-09-20 1998-03-25 Bosch-Siemens HausgerÀ¤te GmbH Baking oven with a catalyst
EP0831277B1 (en) * 1996-09-20 2003-11-19 BSH Bosch und Siemens Hausgeräte GmbH Baking oven with a catalyst
US7575726B2 (en) 2001-04-06 2009-08-18 Applied Technology Limited Partnership Snap-fit catalyst device
US7138092B2 (en) * 2001-04-06 2006-11-21 Realist Technology Ltd. Clip-mounted catalyst device
US20070048197A1 (en) * 2001-04-06 2007-03-01 Realist Technology Ltd. Snap-fit catalyst device
US20020146355A1 (en) * 2001-04-06 2002-10-10 Carroll Joseph Allen Clip-mounted catalyst device
US20040045949A1 (en) * 2002-06-19 2004-03-11 Mcwilliams Kevin Ronald Electric heater
US6864464B2 (en) 2002-06-19 2005-03-08 Ceramaspeed Limited Electric heater
US9188354B2 (en) 2004-07-23 2015-11-17 Oy Halton Group Ltd. Control of exhaust systems
US20100294259A1 (en) * 2004-07-23 2010-11-25 Oy Halton Group Ltd. Control of exhaust systems
US20110021128A1 (en) * 2004-07-23 2011-01-27 Oy Halton Group Ltd. Control of exhaust systems
US8038515B2 (en) 2004-07-23 2011-10-18 Oy Halton Group Ltd. Control of exhaust systems
US8444462B2 (en) 2004-07-23 2013-05-21 Oy Halton Group Ltd. Control of exhaust systems
US11242999B2 (en) 2004-07-23 2022-02-08 Oy Halton Group Ltd. Control of exhaust systems
US10184669B2 (en) 2004-07-23 2019-01-22 Oy Halton Group Ltd Control of exhaust systems
US9011215B2 (en) 2004-07-23 2015-04-21 Oy Halton Group Ltd. Control of exhaust systems
US20080017183A1 (en) * 2006-07-21 2008-01-24 Sataco Co., Ltd. Brick-oven having a smoke and odor removing filter
US9127848B2 (en) 2007-05-04 2015-09-08 Oy Halton Group Ltd. Autonomous ventilation system
US8734210B2 (en) 2007-05-04 2014-05-27 Oy Halton Group Ltd. Autonomous ventilation system
US9587839B2 (en) 2007-08-28 2017-03-07 Oy Halton Group Ltd. Autonomous ventilation system
US8795040B2 (en) 2007-08-28 2014-08-05 Oy Halton Group Ltd. Autonomous ventilation system
US10302307B2 (en) 2007-08-28 2019-05-28 Oy Halton Group Ltd. Autonomous ventilation system
US9574779B2 (en) 2008-04-18 2017-02-21 Oy Halton Group, Ltd. Exhaust apparatus, system, and method for enhanced capture and containment
US10471482B2 (en) 2008-04-18 2019-11-12 Oy Halton Group Ltd. Exhaust apparatus, system, and method for enhanced capture and containment
US9494324B2 (en) 2008-12-03 2016-11-15 Oy Halton Group Ltd. Exhaust flow control system and method
US10082299B2 (en) 2008-12-03 2018-09-25 Oy Halton Group Ltd. Exhaust flow control system and method
US10060632B2 (en) * 2013-10-02 2018-08-28 Samsung Electronics Co., Ltd. Cooking apparatus and method of controlling the same
US11105514B2 (en) 2013-10-02 2021-08-31 Samsung Electronics Co., Ltd. Cooking apparatus and method of controlling the same
US11898758B2 (en) 2013-10-02 2024-02-13 Samsung Electronics Co., Ltd. Cooking apparatus and method of controlling the same

Also Published As

Publication number Publication date
BR6906099D0 (en) 1973-02-08

Similar Documents

Publication Publication Date Title
US3536457A (en) Catalytic oxidation unit for domestic oven exhaust
US3364912A (en) Self-cleaning gas oven
US3428435A (en) Self-sustaining catalytic oxidation unit
US9683747B2 (en) Combination oven with catalytic converter
US3962561A (en) Catalytically assisted pyrolytic self-cleaning oven
US3785778A (en) Smoke eliminating device
US3624742A (en) Self-cleaning gas oven with heat exchanger
US3290483A (en) Combined broiler and catalytic oxidation unit
US3507265A (en) Self-cleaning gas cooking oven
US3428434A (en) Two-stage self-sustaining catalytic oxidation unit
US3782360A (en) Heat-cleaning range construction
US2922018A (en) Domestic cooking appliance
US6462319B1 (en) Multi-stage self-cleaning control for oven
US3328560A (en) Recirculating venting system for domestic oven
US3530847A (en) Gas-fueled self-cleaning oven
TR199900057T2 (en) Is�t�c�lar
US3512514A (en) Air cooling system for walls of self-cleaning oven
RU2052175C1 (en) Household gas stove
EP1887285A2 (en) Oven with electric heater
US3302000A (en) Domestic oven with movable wall panels
US3474226A (en) Range oven heating control circuit for pyrolytic oven cleaning
US3470354A (en) Catalytic smoke eliminator for high temperature self-cleaning ovens
US3504161A (en) Oven
GB1594434A (en) Cooking oven
US3624743A (en) Gas-cooking oven with oven scavenging means