US3565729A - Non-woven fabric - Google Patents

Non-woven fabric Download PDF

Info

Publication number
US3565729A
US3565729A US828918A US3565729DA US3565729A US 3565729 A US3565729 A US 3565729A US 828918 A US828918 A US 828918A US 3565729D A US3565729D A US 3565729DA US 3565729 A US3565729 A US 3565729A
Authority
US
United States
Prior art keywords
filaments
spinneret
air
gas
fleece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US828918A
Inventor
Ludwig Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Application granted granted Critical
Publication of US3565729A publication Critical patent/US3565729A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0229Filter rod forming processes
    • A24D3/0237Filter rod forming processes by extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/015Natural yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the apparatus includes at least one linearly aligned row of individual spinning orifices, each of which is adapted to have a synthetic fiber filament spun therefrom; means for impinging generally parallel air streams on both sides of the rank of filaments so spun; a multiplicity of channel means, each individually associated with a single filament, which filament passes through the channel and is drawn therein by the air stream; and fleece form means upon which the filaments are laid after they emerge from the Ehannels and upon which the filaments form a non-woven eece.
  • the invention relates to the production of non-woven fabric articles from materials which can be provided in filament form, as by extrusion.
  • the invention provides a new apparatus for production of filaments, and new non woven fabrics.
  • the starting material for the manufacture of non-woven fabrics is commonly staple fibers which are brought into a flat assemblage and fixed in place with the aid of bonding agents or by self-adhesion.
  • the high precision required in the manufacture of textile fibers as to uniformity of fiber thickness and length is not as technically important in the case of non-woven fabrics. Consequently, attempts have been made to produce special fibers for non-woven fabrics, and furthermore, to simplify the processes of making fibers and non-woven fabrics by combining the two processes, i.e. production of fibers and production of fabric, into one operation.
  • solutions of high polymers be sprayed through round nozzles placed in a concentric air stream, whereupon fibrous mats are formed.
  • directed gas currents are meant those gas currents the various strata of which have the same direction of travel over a distance of at least 30 cm.
  • filament material is spun out in such manner that a plurality of continuous fila ments are formed simultaneously, said filaments lying rectilinearly alongside one another.
  • This set of filaments is guided within air channels in such a manner that they do not contact one another. This is accomplished by means of currents which pick up the filaments as they leave the spinneret, draw them and solidify them and carry them in parallel paths within air channels away from the nozzle.
  • This gas or vapor handling according to the invention results in a uniform formation of the groups of filaments coming from the spinnerets the entire group being carried away from the spinnerets within air channels in a parallel ribbon-wise arrangement, avoiding the combination of a plurality of filaments into a yarn or tow, and they are finally built up, by winding, collecting or criss-crossing,
  • the invention provides a process for spinning of filaments which comprises issuing a fused polymer mass in the form of filaments from several linear rows of spinneret holes of a spinneret head, and directing gas streams into impinging and entraining relation with the issuing fused polymer filaments to draw them and orient polymer molecules in the direction of the filament axis.
  • the mass is drawn to reduce the diameter from the diameter of the spinneret hole in the ratio of at least 30:1, and the filaments are cooled to a set condition wherein the molecular orientation is retained.
  • the filaments are maintained in drawn condition during the cooling by gas streams directed against the filaments to urge them to the drawn condition.
  • a multitude of linear, parallel filament rows are simultaneously drawn while keeping them in parallel arrangements within the air channels, and the drawn and set filaments of the different rows are finally collected on a screen or perforated roll for the formation of a fleece or mat.
  • a fiber-forming high polymer can be fed in fused form to a plurality of spinnerets, each of which consists of a linear row or line of more than, for example, holes, and an elongated gas discharge passageway can be provided on each side of the row or line of spinneret holes.
  • the individual spinneret holes can have a diameter of 0.1-1.0 mm., preferably 0.2-0.5 mm.
  • the length of the holes can be 3 to 6 times the diameter.
  • the distance of the holes from one another can be 1 to 3 mm., and all of the holes in the same spinneret can be the same distance apart.
  • the distance between the row of holes and the slit like opening for the discharge of gas is more than about 0.1 mm.
  • the gas stream does not have to be directed at any angle to the filaments, through an angle of a few degrees can be used.
  • the fused polymer is ejected from the spinneret holes in filament form.
  • the filaments are immediately thereafter seized on both sides by heated gas currents discharged from two slit-like openings.
  • the gas velocity is so adjusted that the filaments are carried away from the spinneret without breaking off, and so that the filament diameter decreases within a distance of mm. from the spinneret in a ratio of at least 30:1, but preferably higher.
  • the gas currents producing the great cross-sectional reduction are guided in such a manner that, due to the smooth shape of the slits, turbulence at the outlets of the spinneret is suppressed and a substantially directed flow is obtained. At a distance of between 1 to 5 cm.
  • the group of linearly aligned, parallel filaments from each individual spinneret, guided by the gas current surrounding it, is introduced into an air channel or guide passageway for the purpose of keeping the filaments, as well as the filament rows, in a parallel arrangement. This is important, not only for the formation of a uniform web but also for the undisturbed drawing and orienting of the filaments.
  • the gas currents After leaving the gas discharge passageways, the gas currents are no longer heated, but instead cooled off due to adiabatic expansion, in such manner that, at the distance of 5 cm. from the spinneret, the gas current can be chilled from, for example, 300 C. in the slit to 60l00 C.
  • This cooling is of great importance to the filaments, inasmuch as the molecular orientation produced by the great cross-sectional reduction and by the stretching that takes place within a distance of 5 mm. from the spinneret, is more or less substantially frozen.
  • the extent to which molecular orientation is achieved depends on the amount by which the filaments are stretched, which in turn can be controlled by the speed with which the polymers are ejected from the spinnerets and the speed and the degree of cooling down of the gas currents.
  • the gas stream can cool by more than 100 C. in a distance of about 50 mm. to at least partially set the filaments.
  • the guidance of the filament rows within the separate air channels is of great importance for the drawing and orienting process since it provides for turbulence-free conditions.
  • non-woven fabrics are manufactured by:
  • the material forming the filaments can be provided in the fabric form as monofilaments with statistically varying directions of the filaments, such as, for example, in a woven or knit pattern.
  • a secondary gas stream can be passed into impinging relation With the filament forms along a path at an angle or perpendicular to the movement of the filament forms from the spinneret heat under the influence of the gas streams directed towards the filament forms from above and below the filament forms.
  • the primary gas streams can, and preferably do, provide the filament forms in a plane.
  • the secondary gas stream used to gather the filament forms together for the collection thereof into a fabric form can then be a gas stream which passes through such plane and across the path of the monofilament forms, breaking up the plane of the filaments and causing the filaments to cross one another.
  • the filaments can be gathered on a foraminous form which is moved a ross the path of the filaments. Desirably means are provided for oscillating the filaments relative to the form for providing an improved disposition of the fibers in the fabric. Following the gathering, the fabric form produced thereby can be calendered at, for example, room temperature or steamtreated to secure the filaments together. It can also be bonded with synthetic resins, especially if a soft hand is desired.
  • the invention provides a novel fabric structure characterized in that the fabric is constituted by monofilaments strands gathered together in a manner to provide a fabric thereof with statistically varying directions of filaments within the strands, and the filaments can be arrayed in a woven or knit-like pattern.
  • the monofilament strands can be collectively arrayed in a fabric pattern, the course of the filaments varying in a statistically random manner.
  • the monofilament strands can be gathered together on a form having the shape of a garment, so that a seamless garment can be formed of the non-woven filament fabric according to the invention.
  • the form for the garment can be wound with respect to the strands, so that the monofilament strands are gathered on the form in a manner to provide a nonwoven fabric therefrom.
  • the filaments can be collected on a screen having a woven, cloth-like pattern, by drawing gas or vapor through the holes of the screen.
  • a preferred embodiment of the invention is the collection of filaments on a patterned foraminated form or screen, with means to increase the air speed towards the collection spots, as well as means to keep off the filaments from the undesired locations.
  • Such means can be pyramidal studs or pins which are located on the collection form or screen wherever the holes or mesh of the woven or knit-like cloth should be.
  • the pyramidal form of these pins or studs tends to guide the filaments into the right direction, as well as increases the air speed of the guiding air stream of the filaments towards the collecting spots.
  • the filaments thereby settle in a pattern resembling cloth and can be bonded that way. They resemble cloth in appearance but are nonwoven and have statistically varying directions of the filaments.
  • a feature of the fabric of the invention is that the filaments have varying degrees of molecular orientation, due to variation in gas and polymer stream velocity over the slot width, and due to this, the fabrics have good strength and toughness since mechanical stress is absorbed by filaments having varying elongation characteristics. It is a further feature of the fabric and process of the invention that the degree of molecular orientation varies with the thickness of the filaments within the fabric, so that with decreasing thickness the orientation increases.
  • FIG. 1 is an end elevation view of a spinneret head according to the invention
  • FIG. 2 is a side elevation view of the head shown in FIG. 1;
  • FIG. 3 is a schematic representation of apparatus according to the invention and using secondary air supply means
  • FIG. 4 is an elevation view taken along line 4--4 in FIG. 3;
  • FIG. 5 is a dimetric view wherein production of a fleece-utilizing apparatus according to the invention is depicted
  • FIG. 6, FIG. 7 and FIG. 8 are, respectively, side elevation, top plane, and dimetric views of another embodiment of the apparatus according to the invention, and indicating use of the apparatus for production of a fleece;
  • FIG. 9 is a graph showing birefringence in relation to fiber fineness
  • FIG. 10 is dimetric view, partially in cross-section, showing apparatus according to the invention, wherein a plurality of the ranks of the filaments are simultaneously formed and are guided to a fleece form for collection as a fabric;
  • FIG. 11 is a diagrammatic representation of a fleece fabric according to the invention, having a woven-like pattern wherein the monofilaments are arrayed with statistically varying directions;
  • FIG. 12 is a showing corresponding to FIG. 11 and indicating a knit-like pattern
  • FIG. 13 is a showing of drum perforations and pyramidal studs for production of a knit-like pattern as is shown in FIG. 12;
  • FIG. 14 is a showing of collecting screen with pyramidal pins for the production of a woven-like pattern as is shown in FIG. 11;
  • FIG. 15 and FIG. 16 are cross-sectional views of fabric structures provided with an iron-on stiffener formed of monofilaments according to the invention.
  • the apparatus of the invention can include a spinneret outfitted with a spinneret head having a plurality of spinneret holes disposed in a line, desirably in a substantially straight line, for receiving molten filament forming material from the spinneret and issuing it in a plurality of molten parallel filament forms, and gas delivering means disposed adjacent the spinneret holes for directing the gas stream into the path of the molten filament-forming material as such material issues from the spinneret holes and for entraining the filament-forming material as continuous filaments extending from the spinneret holes and elongating the filaments and cooling them to set condition while introducing them to the air channels.
  • the apparatus further includes a foraminous form disposed in the path of the filaments after they leave the air channel for receiving the elongated filaments and collecting them, with the monofilaments disposed in totally random (as in common felt), or random and pattern crossing relation to form a felted fleece, and means for moving the form relative to the elongated filaments to effect the collection of the filaments as an extended fleece.
  • a spinneret head 11 is provided with a multitude of aligned spinneret holes 12, and the head further includes gas discharge pasageways 13 which are in the form of elongated passageways having their outlet ends disposed substantially parallel to the spinneret holes 12.
  • the spinneret head 11 may be mounted on a spinneret 12', with the spinneret holes 12, disposed for directing filaments toward the fleece form 14 which is rotated in the direction indicated by the arrow. Due to the action of gas streams discharging from the passageways 13, the issuing filaments are grasped by the gas streams as a plane of filaments extending substantially toward the fleece form 14. The filaments pass between the secondary gas supply conduits 15. Gas discharging from the secondary gas supply conduits 15 along with the filaments enters the guide passageway 39 and in cooperation with the guide passageway serves to maintain the filaments in a plane, accomplishes smooth drawing action and prevents entanglement thereof prior to the arrival of the filaments at the form 14.
  • the fleece form 14 may be a perforated cylinder and suction may be applied to the inside of the cylinder via suction nozzle 38 so that the gas is drawn through the cylinder; the drawing of the gas through the cylinder will serve to break up the plane of the filaments and to cause the filaments to be arranged in a random and crossing relation on the form 14.
  • Other means may be provided to break up the plane of filaments adjacent the fleece form 14, such as air supply means 38a and 3812 which will supply air streams cutting across the path of the filaments to disrupt the plane thereof.
  • the guide passageway or channel 39 may be rocked so that its discharge end pivots about its inlet end, whereby to facilitate the collection of the monofilaments into a fleece, and to facilitate crossing and mingling as well as accomplishing a pattern-like arrangement of the filaments.
  • the spinneret 12, secondary supply conduits 15, and the air channel are mounted on a base 16 by brackets 18 and 19.
  • the filaments 21 are indicated as issuing from the spinneret hole 12 and are maintained in a plane by gas streams issuing from the gas discharge passageways 13.
  • the filaments are maintained as a plane as they are moved by the gas stream within the guide passageway 39 to the fleece form 22, which, in this case is ellipsoidal in cross-section indicating that the fleece form may be of any desired configuration and thus may be of garment form.
  • the spacing of the spinneret holes 12 form the gas discharge passageways 13 may be about 0.1-1 mm. This distance is indicated by the dimension S shown in FIG. 1.
  • the device according to the invention includes a hopper 30 for the resin to be used to form the filaments, a conduit 31 leading from the hopper to the feed device 32 which is provided with a drive 33 for controlling the feed rate. From the feed device 32, the resin is passed to the manifold 34 where it is melted by application of heat from a heat supply source (not shown). Communicating with the manifold 34 are a plurality of spinnerets 35. Each of the spinnerets 35 is provided with a pump (not shown) driven by pump shaft 36, and is provided with a spinneret head as is shown in FIG. 1.
  • a gas supply line 37 com municates with each of the spinnerets to supply gas for the gas discharge passageways 13 (FIG. 1) of the spinneret heads.
  • the gas passed through each of the lines 37 is heated by a heater (not shown).
  • a rank 46 of filaments issues from each of the spinneret heads, and the spinnerets are disposed with the heads in parallel relation so that the ranks are in parallel planes.
  • the guide passageway or air channels 39 guide the filaments from the entrance end of the air channels to the exit end thereof which is disposed adjacent the fleece form 45, which in the illustrated embodiment is a screen.
  • the guide passageways serve to prevent entanglement of filaments of one rank with filaments of another rnak, and further, serve to prevent entanglement of the various filaments of each rank, and keep them on parallel course.
  • the air channels serve to keep the air streams directed and to guide the gas streams along the lengths of the filaments so that the gas streams urge the filaments in the direction of travel thereof and tend to urge the filaments in the direction in which they have been drawn and suppress turbulence thereby allowing for smooth drawing action. In this way, the molecular orientation occasioned by the drawing is maintained during cooling of the filaments to the set condition, while the air stream has a great length of undisturbed filament for applying its frictional force thereto.
  • a screen is moved in the direction of the arrow across the path of the descending ranks of filaments 46 and collects the filaments as a fleece.
  • the air channels 39 may be rocked as is indicated by the arrows 44.
  • each air channel is mounted on a shaft 40 which extends in the direction of the transverse axis of the air channel and a pinion 42, is provided for the rocking action of the air channels.
  • the ranks of fibers are disposed so that horizontal projection thereof in the direction 7 of movement of the screen 45, indicated by the arrow 50 causes such filaments to overlap each other. This can be best seen in FIG. 7.
  • the spinneret 12' is outfitted with a plurality of spinneret heads 11 each having a line of spinneret holes 12.
  • An air passageway 13 is disposed adjacent each row of spinneret holes and on each side thereof. Resin is supplied by a conveyor 51 to a pump 52, which in turn moves the resin to the conduits system 61, whereby the resin is advanced to the spinneret holes 12.
  • Primary air for assisting in the drawing of the monofilaments is introduced via conduits 56 and issues from the air discharge passageways 13.
  • the guide passageway interposed between the spinneret and the fleece form may be a square chamber with a centrally disposed opening for passage of the filaments extending therethrough, and with a plate disposed adjacent to the filament path through the chamber on each side of the filament path. Openings may be provided in the plates, the openings being formed to direct gas passed therethrough in the direction of and along the filament path.
  • a plurality of guide passageways one for each row of spinneret holes, is provided in the housing 63.
  • the housing 63 is constructed with openings 64 extending therethrough for passage through the housing of the filaments.
  • Each of the openings 64 is bounded above and below by a plate 65, and the plates 65 are provided with openings 66. These openings are formed to direct air or other gas passed therethrough along the path of filament travel through the various passageways 64.
  • Gas is introduced into the openings 66 in the housing 63 through inlet pipes 58.
  • the divider plates 67 are provided.
  • Filament ranks 46 issue from the spinneret holes 12 and pass through respective openings 64 in the housing 63, and on the fleece form 14.
  • the fleece form is rotated in the direction indicated by the arrow thereon, and, the filaments from each rank are collected on the fleece form as a layer, providing a fabric of several layers.
  • a feature of the invention is that the filaments may be deposited on a fleece form to provide a fabric having a wovenor knit-like pattern. This may be effected by means of gas or steam currents utilized with an alteration of intensity corresponding to the pattern desired, and/or utilizing a selected pattern for the perforations of the fleece form on which the filaments are collected. This may best be accomplished by using a collecting screen or foraminous form, which in the places of mesh or holes of the woven or knit pattern have elongated guiding studs or pins. These studs or pins may be of pyramidal form and as close as possible leaving free and foraminous only the places where filaments would collect in order to have a wovenor knit-like mesh of strands.
  • the pyramidal form provides narrowing air passages towards the collection screen, thereby increasing air speed towards the collecting points or lines of the filaments which helps very much in having good collecting performance.
  • the fabrics so formed have a wovenor knit-like structure, they differ from the usual woven or knit goods in that the individual filaments or collections of filaments which form the Wovenor knit-like pattern change direction in a statistically random manner. This is indicated for a wovenlike pattern in FIG. 11, wherein the forms b indicate the overall pattern which, as will be observed, is that of woven goods.
  • the direction of a mono-filament through the fabric is indicated by the dashed line a.
  • the course of the filament is governed by the swinging action of the air channels, with lower swinging speed the course will be more curly, while with higher speeds there is a tendency to produce more nearly parallel filaments Within the strands.
  • They also differ from regular Woven or knitted goods in that the strands which form the mesh are constructed of filaments with varying degrees of molecular orientation of chain molecules whereby the orientation increases with decreasing fiber thickness.
  • the overall pattern of the goods is as is shown in FIG. 12.
  • the monofilaments are disposed to pro vide the fabric form b and the varying directions and paths of the monofilaments in the gOOds is indicated by the dashed line a for one of the filaments.
  • FIG. 13 A pattern for drum perforations and guiding studs corresponding to the knitlike pattern shown in FIG. 12, is shown in FIG. 13.
  • the drum 70 is provided with perforations 71 and the projections 72 which have the form of a cone.
  • the surface on which the filaments are collected may be formed of a screen having pyramid-like projections.
  • the screen 73 is provided with pyramid-like projections 74.
  • guide passageways or air channels accord ing to the invention has been found to provide maximum uniformity of the fiber web over the entire width of the material and yet to prevent different drawing ratios of individual filaments.
  • the swinging of the guide passageways provides a method of regulating the parallelism of filaments within given strands in woven or knit-like patterns. The higher the swinging speed, the more unidirectional is the lay of filaments within the strands while forming the mesh of woven or knit-like pattern. With low swinging speeds, a more curly pattern of filament deposition is obtained.
  • filaments of 6 microns in diameter and less may be drawn directly from, say, 400 micron spinneret holes. Such a reduction in combination with rapid cooling results in high orientation of long chain molecules.
  • the present process is furthermore characterized by the fact that the gas currents which produce the drawing of the filaments out of the spinning holes and which provide the parallel guidance, should impinge upon the filaments for a distance of at least 300 mm. and preferably 600 mm. without the individual filaments being entangled with one another by turbulence.
  • the use of air channels enables the realizing of such results.
  • Table 1 shows how the fiber thickness varies with the rate of flow of polymer per spinneret hole, provided the gas current flow remains constant:
  • Table 2 lists the strengths of such filaments in relation to thickness.
  • the curve in FIG. 9 shows the birefringence of Polyamide-6 fibers in relation to fiber fineness. It is therefore apparent that, in the case of fine fibers, birefringence values are achieved which correspond to those of normally spun and mechanically drawn fibers in the cold state. If no special precautions are taken, the fiow of polymer as well as gas over the width of the long linear nozzle shows irregularities especially towards the ends of the slots. This results in having different air and polymer velocities. For instance in the middle of the slot the air velocity is lower as compared to the air velocity at the ends of the slot, a characteristic which becomes especially dominant in long slots. This results in the production of a spectrum of fiber thicknesses.
  • EXAMPLE 1 Granulated polyamide (polycaprolactam, melting temperature 210 C., relative viscosity 2.28) was melted in an extrusion worm press at temperatures increasing forwardly of 200, 220, 250 and 270 and fed to 4 spinning pumps.
  • the spinning pumps pumped the materials to 4 spinnerets heated to 220 C., which each consisted of a row of 160 holes of a diameter of 0.3 mm. Each row of spinning holes had air slots of 0.2 mm. height at a distance of 0.4 mm. on both sides, along its entire length.
  • the continuous filaments passing from the nozzles in the form of a broad, non-cohering parallel band'of a multiplicity of filaments were each seized on both opposite sides by air at a velocity of 200 m./
  • nozzle holes to about 1200 I wlfhm a difference in filament thickness may be avoided by having dlstance of 3 from the flozzle eXlt- At a dlstahce longer air slots than spinning rows in order to apply the of 30 from ⁇ nozzle exlt a row of filaments decrease in air speed to a place where no filaments are gether Wlth alt streams whlchby h h a formed and by having smaller spinning nozzles.
  • Perature of was brought mto lts chahml, it has been found desirable to have filaments of different which air Channel consisted of boxhke ducts With the characteristics within one fabric.
  • the fabric was impregnated with a 30% by swinging the guiding channels or passageways.
  • the -15 dispersion of polyacrylate resin (Butyl acrylate) and ranks of filaments follow the swinging movement without dried, giving a fabric containing a 30 g./sq. meter of intertwining inside of the channels.
  • a frequency of as fiber and 10 g./sq. meter of bonding resin. many as to-and-fro movements per second is appropri- EXAMPLE 2 ate.
  • the po1nt of deposit of a particular filament can be displaced several times per second into the A gfannlate 0f Polycaprolactam Was meltarea of the adjacent spinneret and back, so thata satisfaced on a Worm gear P and fed t0 the pp toryinterfeltingis a hieved, ratus of this invention by means of spinning pumps,
  • the bonding of the unwoven fabric thus produced can at a tempel'atum 0f
  • the p g P p be brought about by various methods.
  • the filaments can i at d th m l t four pinn rets heated to 230 be welded together by heat treatment or with the aid of C.
  • Each of the spinnerets contained a rectilinear swelling substances.
  • Secondary bonding agents in the line of spinning holes, 160 in number, each having a diform of dispersions or solutions can also be added.
  • the ameter of 400 and each spaced from the next by 2 fabric can be needled. Particularly desirable effects can be mm.
  • the row of holes was bounded on both sides, at 21 achieved by printing-on the bonding agents in certain patdistance of 0.4 mm., by air slots 330 mm. in length. In terns, because this especially preserves the inherent textileeach case, air currents heated to 230 C. were forced out like character of the goods. All fiber-forming polymers of the air slots at a velocity of 200 m./sec.
  • the filaments that can be melted without decomposition can be used as issuing from the holes were seized by the bilateral air raw materials for the present process. currents and thrust forwardly, whereby, at a distance of
  • the following table gives a perspective of a number of about 3 mm. from the spinneret they were accelerated fiber characteristics obtained with various raw materials: from a velocity of 1 rn./min. at the spinneret hole, to
  • the filaments issuing from four of the air ducts were collected on a screening drum, having holes (perforations) of about 2 mm. in diameter, arranged in a knit pattern. In checkerboard fashion the holes were surrounded by round pyramids of 2 mm. base diameter and 4 mm. height.
  • the unwoven fabric articles of the invention have a soft hand like woven or knit goods, and may therefore, be used wherever woven or knit goods or other such interlaced fabrics are used.
  • the new process substantially simplifies the manufacture of such textile products, since the fabric manufacturing process is coupled with the production of the fiber. In other words, it is not necessary for fibers to be made and then drawn and treated with spinning oil and sizing agents in a first series of procedures, and then to spin the fibers of filaments into yarns which then are used for the production of woven or knit goods.
  • the process of this invention also differs from the prior art production of unwoven fabrics wherein the starting material is staple fibers which are made into a fleece and cemented together with the aid of bonding agents.
  • the starting material is staple fibers which are made into a fleece and cemented together with the aid of bonding agents.
  • the result of this high proportion of bonding agent in many cases is a stiffening of the fabric or a loss of its soft feel.
  • the starting materials may be polymers such as polyamides, polyesters, polyolefins, polyvinyl acetate, polyvinyl chloride, polyvinyl alcohol, cellulose acetate or cellulose in dissolved form (viscose). These materials may be spun into continuous filaments by a melt or solution spinning process.
  • the process of the invention uses directed gas currents as the drawing medium while spinning from several linearly arranged rows of holes, whereby each row has two associated air slots, into an air channel.
  • the air channels or guide passageways are spaced at a distance of between 1 to 5 cm. from the nozzle exit to allow for cooling of the gas currents.
  • the air slots are parallel above and below each row of spinning holes.
  • spinnerets are used which have more than 100 holes per spinning nozzle.
  • the spinning speed may be, for example, between 1,000 and 2,000 meters per minute, according to the thickness of the fibers.
  • the band of filaments of each individual row of spinning holes upon leaving the spinneret, is seized from above and below by a primary current of gas and accelerated, resulting in a reduction of the filament cross-section from, for example from 300 microns to 15 microns.
  • the purpose of the primary gas or vapor current is to perform this drawing action and keep the filaments separate from one another. Furthermore, the primary gas or vapor current in many cases causes a stiffening or solidification of the filaments, at least on the surface. Then the bands of filaments are introduced into the air channels and seized by secondary gas or vapor currents which may produce a final solidification and guide the filaments on their parallel course and prevent them from combining and entangling.
  • the gas or vapor currents have a velocity greater than the spinning speed, so that they not only stretch the plastic substance as it comes from the spinneret, but also solidify and draw the filaments.
  • the filaments are solidified by cooling from the molten state.
  • the filaments may also be solidified by precipitation by using, for the acceleration and guidance of the band of filaments, vapors which pre cipitate solutions of high polymers in filamentary form.
  • the solidification of the filaments coming from the spinneret may also be accomplished by chemical action, by using acid vapors, for example, of xanthogenate solutions.
  • the individual filaments are superposed by criss-crossing or winding entanglement, and are stripped off in the form of a jumbled structure.
  • the stripping speed is always lower than the spinning speed.
  • the fleece that has been formed from continuous filaments may be needled, by means, for example, of the needle punching apparatus described in Textile Industries, September 1958, page 117, wherein needles equipped with barbs are used, which catch certain filaments and push them through the fleece, whereby a loop of continuous filaments is formed. If the material has been appropriately compressed, a drawing of the filaments takes place which is particularly effective if the needling process is repeated several times.
  • the materials thus manufactured distinguish themselves by a combination of high strength with a soft, pleasant cloth-like hand. Nevertheless, they may be further treated to achieve special properties. For example, it is possible to achieve woven fabric-like materials by calendaring the non-woven fabric of this invention with embossed rollers; this gives the material a better hand and it may be sewed rapidly and securely. It has furthermore been found that the filaments in the materials of the invention are welded to one another by calendering at room temperature in such a manner that a firm bond results. It is possible in this manner to produce paper-like materials.
  • Binding agents as are appropriate can be used to effect such bonding as is desired, though as is noted above, substantially less bonding agent is required than in the case of felts formed of staple fibers. Heat treatment may be used, and it has been found desirable to employ superheated steam since this assures satisfactory heat transfer through a substantial thickness of fleece.
  • the properties of the products of the invention may be improved.
  • impregnation with silicone resins has resulted in an improvement in ironability.
  • Thermal post treatment is often desirable. If, for example, the product is made by the spinning of polyvinyl alcohol, the finished product may be made more ironable by tempering at elevated temperatures. A substantial improvement in launderability has been achieved by treatment of the fabric with cross-linking resins, such as those containing free methylol groups.
  • the materials can be surface coated to produce leather-like materials.
  • the advantage of the fibrous materials of the invention in this case is also and especially the fact that the continuous filaments do not contain any sizing agents and thus have an outstanding ability to adhere to the bonding agents used in the manufacture of artificial leather. This adhesion can be still further improved by performing the spinning process with a slight oxidation of the fiber surface as for instance that which occurs by spinning under an oxygen atmosphere. It has proven surprising that, when the fibrous materials of the invention are used, for example for the improvement manufacture of artificial leather materials, especially smooth, uniform products are obtained.
  • paper-like products may be produced from fleeces according to the invention.
  • Suitable materials may be used as fillers to fill the pores for appropriate consolidation, and by such procedure, it is feasible to produce fully synthetic, paper-like materials with a high degree of strength.
  • the invention has special application to the production of iron-on stiffeners, or to joining webs.
  • stiffeners linings, interlinings
  • stiffeners consist of fabrics or webs which are coated with a thermoplastic adhesive mass.
  • the adhesive mass must be deposited, preferably not in the form of a sheet, but, for example in a dotwise coating, in order to obtain porosity in the finished product, for example articles of clothing.
  • the web or the fabric serves in many instances only as a supporting material for the adhesive masses. As an appreciable simplification it has been proposed to dispense with the supporting material.
  • thermoplastic fibers which may be ironed on by applying an appropriate heat on the base cloth, which is to be stiffened.
  • This simplification has not been successful inasmuch as the thermoplastic fibers produced heretofore could not be ironed on at sufiiciently low temperatures to the base cloth with a sufiicient degree of adhesiveness, or because the adhering surface was not resistant to cleaning or washing.
  • a fibrous web is produced directly by spinning of such chemical substances as may be ironed on at temperatures ranging from 110-180 C. and which is resistant to washing and cleaning.
  • the process is conducted in such a manner that melts or solutions, or mixtures containing softening agents or softeners, and consisting of adhesive high polymers, are spun with the aid of spinnerets into lengthwise chambers, as are described hereinbefore and as are disclosed in application Ser. No. 302,370 filed Aug. 15, 1963.
  • the filaments are maintained mutually separated and are drawn and solidified with the aid of the oriented air currents.
  • the velocity of the air may be fixedvin such a manner that the layer of air closest to the filaments at the outlet of the spinneret (i.e.
  • the initial velocity of the air has more than times the velocity of the filament, preferably sufficient so that the velocity of the filament commencing with the spinneret increases SOD-fold within a distance of 5 cm. owing to the lag caused by the frictional forces of the air currents.
  • the expression oriented air current is intended to have reference to air currents which exhibit markedly identical directions of flow at different layer levels. The oriented air currents render it possible to obtain a great elongation in the spinning and drawing of complex mixtures, and also permit collection as webs of desired form. This is also true in the case of such fibers which will not withstand a normal carding process.
  • Apparatus as is described hereinbefore may be utilized for production of the iron-0n stitfeners.
  • the air jet above and the air jet below the filaments are oriented air currents, and the velocity in each may be such that the velocity in the stratum adjacent the filaments is highest, and the velocity decreases from stratum t0 stratum in the direction away from the filaments.
  • Multiple slots or nozzles may be used to produce each air stream to facilitate obtaining the desired gradient in velocity.
  • the filaments Upon issuing from the guide passageways, the filaments may be picked up with the aid of a suction device as is shown in FIG. 3 and may then be consolidated to a continuous web.
  • the consolidation takes place, for example, with the aid of heated rollers, whereby the yarns are made to adhere to each other by virtue of their natural adhesiveness.
  • any other consolidating method may be resorted to. Generally such methods are preferred as do not require any additional binding agents, except where special effects are sought which are brought about by means of a binding or finishing means.
  • the iron-on fabrics of the invention may be utilized entirely as a binder, since no backing or support is required, or, alternatively, as binder and stiffener.
  • a base fabric 78 of polycaprolactam is stiffened by a fleece 79 made, for example, according to Example 2 hereof, and ironed on by application of a heating instrument to the surface of the fabric 78 opposite the fleece 79.
  • a sandwich structure, as is shown in FIG. 16 may also be made.
  • the outer and inner fabrics 78 and 80 are bonded by the fleece 79.
  • Fabric structures, such as those shown in FIGS. 15 and 16, may be porous since the fleece may be applied so that an impermeable film-like layer is not formed from the fleece.
  • the bonding by the monofilament fleece of the invention is a direct bonding of the fleece to the contiguous material.
  • the ironing-on may be by any suitable means for softening the fleece to permit adhesion thereof to the adjacent material.
  • EXAMPLE 3 A granulate of high-pressure polyethylene (melting index 72), was melted at a temperature of C. and fed to a spinneret of 260 C.
  • the spinneret consisted of a row of 20 holes with a diameter of 0.4 mm. and a spacing between the holes of 3 mm.
  • the row of holes was bounded above and below at a distance of 0.2 mm. by an air slot which was 0.3 mm. in height and 68 mm. in length.
  • the filaments entered a guide passageway with a plate spacing of 30 mm.
  • 15 air jets were developed by a pressure of 1 atm. and caused an acceleration of the filaments from 1 m./min. in the spinneret bore to 500/m. per min. at a distance of 60 cm. from the spinneret.
  • the filaments were captured by means of a wire screen in the form of a fibrous web, and consolidated by means of steam treatment wherein steam was passed through the web to effect a suitable bonding.
  • EXAMPLE 4 A mixture of 1 part of a polyamide mixture of caprolactam and adipinous hexamethylene diamine and 1 part of 2-ethyl-hexanolpara-oxybenzoic acid ester was melted in a worm gear press at a temperature of 130 C. The melt was supplied to a spinneret heated to 160 C. The spinneret was mounted, as indicated in Example 3. The air jets on leaving the slot, exhibited a temperature of 160 C. The air jets were produced under a pressure of 1.2 atm. at the slots. The fleece, produced in accordance with Example 3, exhibited an adequate initial adhesiveness on reaching the screening drum to assure mutual consolidation of the fibers.
  • EXAMPLE 5 A mixture of 1 part of cellulose acetate (39% acetyl) and 1 part of diethylphthalate was melted in a Worm gear press at a temperature of 170 C. The melt was supplied to a spinneret which had been heated to 190 C. The spinneret was mounted as indicated under Example 3, and the air jet, on leaving the slots, exhibited a temperature of 190 C. The air jets were produced at a pressure at the slot of 1 atm. The fleece produced on the screening drum by suction was consolidated by passing such through rollers heated to 150 C.
  • the iron-on fleece may be of any suitable weight for the task to be performed.
  • the weight may be such as to provide a desired stiffening effect.
  • the fleece may appropriately be light.
  • the fleeces may, for example, weigh 5-50 grams per square yard, and will commonly preferably weigh 5-25 grams per square yard.
  • the fineness in denier may be in the order of tenths and above, for example 0.3 and above. As a range the denier may be about 0.35, preferably 0.5-3.
  • composition of the monofilaments this may be any one of a wide range of materials and mixtures.
  • Thecomposition should soften in the range of 110180 C. and should be formable into monofilaments by the process of the invention to provide monofilaments of great length, i.e. it should be possible to continuously spin the composition by the process of the invention utilizing oriented air jets, without substantial breakage of the monofilaments.
  • suitable compositions are polymers and polymer softener mixtures, such as branched polyethylene preferably having a melt index in excess of 70, polyamides and softeners preferably mixed polyamides and ester softeners, and mixtures of cellulose acetate with softeners.
  • Apparatus for the continuous production of non- Woven fabrics which comprises spinneret means having at least one substantially linearly aligned row of spinning nozzles, means adjacent said spinning nozzles for impinging a gas stream onto two opposite sides of the rank of filaments spun from said row of nozzles; channel means proximate to and spaced longitudinally from said spinneret adapted to be associated with a single row of filaments and adapted to receive said filaments and at least a portion of said gas stream therein and to receive such filaments in a tacky state and pass such therethrough spaced from the walls thereof, said channel means having an inlet operating in substantial alignment with and spaced from said spinneret and from said gas means; and continuously moving fleece-forming means including a fleece form spaced from the end of said channel means opposite to the end thereof adjacent to said spinneret and disposed at an angle to said filaments adapted to receive said filaments upon emergence thereof from said channels.
  • gas delivery means comprises means providing an elongated opening on each side of and adjacent to said row of spinning nozzles.
  • Apparatus as claimed in claim 1 including a second gas delivery means disposed intermediate the ends of said channel means which is adapted to impinge a second gas stream upon said filaments within said channel means.
  • Apparatus as claimed in claim 1 including a multiplicity of substantially parallel rows of spinning nozzles.
  • Apparatus as claimed in claim 1 including means for heating said gas before impingement thereof upon said filaments.
  • said fleece form comprises a formaminous rotatable hollow drum and including suction means operatively associated with said drum adapted to provide a pressure decrease from the outside to the inside of said drum.

Abstract

APPARATUS FOR PRODUCING NON-WOVEN FIBROUS FLEECES. THE APPARATUS INCLUDES AT LEAST ONE LINEARLY ALIGNED ROW OF INDIVIDUAL SPINNING ORIFICES, EACH O F WHICH IS ADAPTED TO HAVE A SYNTHETIC FIBER FILAMENT SPUN THEREFROM; MEANS FOR IMPINGING GENERALLY PARALLEL AIR STREAMS ON BOTH SIDES OF THE RANK OF FILAMENTS SO SPUN; A MULTIPLICITY OF CHANNEL MEANS, EACH INDIVIDUALLY ASSOCIATED WITH A SINGLE FILAMENT,

WHICH FILAMENT PASSES THROUGH THE CHANNEL AND IS DRAWN THEREIN BY THE AIR STREAM; AND FLEECE FORM MEANS UPON WHICH THE FILAMENTS ARE LAID AFTER THEY EMERGE FROM THE CHANNELS AND UPON WHICH THE FILAMENTS FORM A NON-WOVEN FLEECE.

Description

Feb. 23, 1971 L. HARTMANN NON-WOVEN FABRIC Filed 001;. Filed Jan. 29, 1964 5 Shgets-Sheet 1 o ooooo zlmgoo olooooooo' INV ENT OR LUDWG HART'MANN ATTORNEYS Feb.23, 1971 L.HARTMANN 3,565,729
NON-WOVEN FABRIC Filed Oct. Filed Jan. 29, 1964 5 Sheets-Sheet 2 mmihimiiaiidumb.
u 'INVENTOR JMlJiLUL v I wow/c HARTMANN "Ji -7 My ATTORNEYS Feb. 23, 1971 L. HARTMANN NON'WOVEN FABRIC 5 Sheets-Sheet 3 Filed Oct. Filed Jan. 29, 1964 FIBER. THICKNESS B/REFR/NGENCE 0F POLVAM/DE6 F/LAMENTS INVENTOR LUDW/G HARTMANN ATTORNEYS Feb. 23, 1971 HARTMANN 3,565,729
NON-WOVEN FABRIC Filed Oct. Filed Jan. 29. 1964 v 5 s t -she t INVENIOR wow/a HARTMANN ATTORNEYS Feb. 23, 1971 L. HARTMANN 3,565,729
NON-WOVEN FABRI C Filed Oct. Filed Jan. 29, 1964 5 sheets sheet 5 I N VENT( )R L UDW/G HA RTMANN 8%, 9.416 f lu ATTORNEYS United States Patent 3,565,729 NON-WOVEN FABRIC Ludwig Hartmann, Oberflockenbach, Germany, assignor to Carl Freudenberg, a corporation of Germany Division of application Ser. No. 341,489, Jan. 29, 1964. Continuation-impart of applications Ser. No. 254,601, Jan. 29, 1963; Ser. No. 302,370, Aug. 15, 1963; and Ser. No. 614,093, Feb. 6, 1967. This application May 29, 1969, Ser. No. 828,918 Claims priority, applicahgon (ziiermany, Feb. 3, 1962,
Int. Cl. B29f 3/01, 3/06; B29g 7/00 US. Cl. 156-441 7 Claims ABSTRACT OF THE DISCLOSURE Apparatus for producing non-woven fibrous fleeces. The apparatus includes at least one linearly aligned row of individual spinning orifices, each of which is adapted to have a synthetic fiber filament spun therefrom; means for impinging generally parallel air streams on both sides of the rank of filaments so spun; a multiplicity of channel means, each individually associated with a single filament, which filament passes through the channel and is drawn therein by the air stream; and fleece form means upon which the filaments are laid after they emerge from the Ehannels and upon which the filaments form a non-woven eece.
This application is a continuation-in-part of Ser. No. 254,601, filed Jan. 29, 1963, now abandoned; application Ser. No. 302,370, filed Aug. 15, 1963, now abandoned; and application Ser. N0. 614,093, filed Feb. 6, 1967; and is agiyision of application Ser. No. 341,489, filed Jan. 29,
The invention relates to the production of non-woven fabric articles from materials which can be provided in filament form, as by extrusion. The invention provides a new apparatus for production of filaments, and new non woven fabrics.
The starting material for the manufacture of non-woven fabrics is commonly staple fibers which are brought into a flat assemblage and fixed in place with the aid of bonding agents or by self-adhesion. In general, the high precision required in the manufacture of textile fibers as to uniformity of fiber thickness and length, is not as technically important in the case of non-woven fabrics. Consequently, attempts have been made to produce special fibers for non-woven fabrics, and furthermore, to simplify the processes of making fibers and non-woven fabrics by combining the two processes, i.e. production of fibers and production of fabric, into one operation. Thus, it has been proposed that solutions of high polymers be sprayed through round nozzles placed in a concentric air stream, whereupon fibrous mats are formed. These processes, based on a spray gun principle, have not achieved any great industrial importance because the fibers produce, and hence also the non-woven fabrics made, do not possess enough strength. This is probably due mainly to the poor molecular orientation of the chain molecules in the fibers thus manufactured, which evidently have been drawn very little or not at all. It has been proposed to use in place of the round nozzles, a fiat nozzle. The flat nozzle is formed of two wedges, into which longitudinal grooves have been cut, and the wedges are placed together so that juxtaposed holes are provided. The fused high polymer mass can be injected into two turbulent air currents and blown into fine fibers by means of the air currents. Since the wedges equipped with the longitudinal grooves have to be pressed tightly against one another, struts are required at certain intervals, and the struts hamper the uniform formation of fibers at regular intervals and, due to Patented Feb. 23, 1971 ice the turbulence which the struts create, they interfere with the formation of high-strength fibers and uniform fabrics of relatively great width.
The air streams which pick up the fibers become very turbulent after leaving the spinning nozzle, which interferes with well defined drawing conditions of the fibers themselves.
The above-mentioned disadvantages are overcome by the following invention, which makes it possible, by spinning fiberforming high polymers into directed gas currents of high velocity, to produce a uniform non-woven fabric of great strength. Furthermore, it has been found surprisingly that, by fusion spinning and drawing by means of directed gas currents, fibers of high molecular orientation can be produced. By directed gas currents according to the present invention, is meant those gas currents the various strata of which have the same direction of travel over a distance of at least 30 cm.
In the process of the invention, filament material is spun out in such manner that a plurality of continuous fila ments are formed simultaneously, said filaments lying rectilinearly alongside one another. This set of filaments is guided within air channels in such a manner that they do not contact one another. This is accomplished by means of currents which pick up the filaments as they leave the spinneret, draw them and solidify them and carry them in parallel paths within air channels away from the nozzle. This gas or vapor handling according to the invention results in a uniform formation of the groups of filaments coming from the spinnerets the entire group being carried away from the spinnerets within air channels in a parallel ribbon-wise arrangement, avoiding the combination of a plurality of filaments into a yarn or tow, and they are finally built up, by winding, collecting or criss-crossing,
' into a mat.
Thus, the invention provides a process for spinning of filaments which comprises issuing a fused polymer mass in the form of filaments from several linear rows of spinneret holes of a spinneret head, and directing gas streams into impinging and entraining relation with the issuing fused polymer filaments to draw them and orient polymer molecules in the direction of the filament axis. The mass is drawn to reduce the diameter from the diameter of the spinneret hole in the ratio of at least 30:1, and the filaments are cooled to a set condition wherein the molecular orientation is retained. The filaments are maintained in drawn condition during the cooling by gas streams directed against the filaments to urge them to the drawn condition. In practical application, a multitude of linear, parallel filament rows are simultaneously drawn while keeping them in parallel arrangements within the air channels, and the drawn and set filaments of the different rows are finally collected on a screen or perforated roll for the formation of a fleece or mat.
In this process a fiber-forming high polymer can be fed in fused form to a plurality of spinnerets, each of which consists of a linear row or line of more than, for example, holes, and an elongated gas discharge passageway can be provided on each side of the row or line of spinneret holes. The individual spinneret holes can have a diameter of 0.1-1.0 mm., preferably 0.2-0.5 mm. The length of the holes can be 3 to 6 times the diameter. The distance of the holes from one another can be 1 to 3 mm., and all of the holes in the same spinneret can be the same distance apart. The distance between the row of holes and the slit like opening for the discharge of gas is more than about 0.1 mm. and preferably is about 0.1 to 1 mm., desirably 0.2 mm. and preferably is about 0.1 to 1 mm., desirably 0.2 mm. Due to this close spacing, the gas stream does not have to be directed at any angle to the filaments, through an angle of a few degrees can be used.
The fused polymer is ejected from the spinneret holes in filament form. The filaments are immediately thereafter seized on both sides by heated gas currents discharged from two slit-like openings. The gas velocity is so adjusted that the filaments are carried away from the spinneret without breaking off, and so that the filament diameter decreases within a distance of mm. from the spinneret in a ratio of at least 30:1, but preferably higher. The gas currents producing the great cross-sectional reduction are guided in such a manner that, due to the smooth shape of the slits, turbulence at the outlets of the spinneret is suppressed and a substantially directed flow is obtained. At a distance of between 1 to 5 cm. away from the spinneret, the group of linearly aligned, parallel filaments from each individual spinneret, guided by the gas current surrounding it, is introduced into an air channel or guide passageway for the purpose of keeping the filaments, as well as the filament rows, in a parallel arrangement. This is important, not only for the formation of a uniform web but also for the undisturbed drawing and orienting of the filaments. After leaving the gas discharge passageways, the gas currents are no longer heated, but instead cooled off due to adiabatic expansion, in such manner that, at the distance of 5 cm. from the spinneret, the gas current can be chilled from, for example, 300 C. in the slit to 60l00 C. This cooling is of great importance to the filaments, inasmuch as the molecular orientation produced by the great cross-sectional reduction and by the stretching that takes place within a distance of 5 mm. from the spinneret, is more or less substantially frozen. The extent to which molecular orientation is achieved depends on the amount by which the filaments are stretched, which in turn can be controlled by the speed with which the polymers are ejected from the spinnerets and the speed and the degree of cooling down of the gas currents. The gas stream can cool by more than 100 C. in a distance of about 50 mm. to at least partially set the filaments. The guidance of the filament rows within the separate air channels is of great importance for the drawing and orienting process since it provides for turbulence-free conditions.
In one of the procedures of the invention, non-woven fabrics are manufactured by:
(a) extruding a material for formation of filaments, while in liquid state, through a plurality of juxtaposed openings to provide a plurality of spaced and parallel disposed non-solidified filaments of the material issuing from the openings;
(b) passing heated gas streams on both major sides of the group of parallel filaments to impinging and entraining relation with the filaments, the gas of the gas streams cooling down and converging with the path of the filaments and urging the filaments in the direction of the extrusion into the air channels while tending to maintain the filaments in said spaced parallel disposed relationship, the filaments at least partially solidifying during the impingement of the gas; and
(c) thereafter and while the filaments are in impinging relation with the gas and after leaving the guide passageways or air channels, collecting the at least partially solidified filaments together to provide a fabric form comprising the filaments. By this procedure, the material forming the filaments can be provided in the fabric form as monofilaments with statistically varying directions of the filaments, such as, for example, in a woven or knit pattern.
Gathering of the filaments together to form a fabric can be performed in various ways. A secondary gas stream can be passed into impinging relation With the filament forms along a path at an angle or perpendicular to the movement of the filament forms from the spinneret heat under the influence of the gas streams directed towards the filament forms from above and below the filament forms. The primary gas streams can, and preferably do, provide the filament forms in a plane. The secondary gas stream used to gather the filament forms together for the collection thereof into a fabric form, can then be a gas stream which passes through such plane and across the path of the monofilament forms, breaking up the plane of the filaments and causing the filaments to cross one another. The filaments can be gathered on a foraminous form which is moved a ross the path of the filaments. Desirably means are provided for oscillating the filaments relative to the form for providing an improved disposition of the fibers in the fabric. Following the gathering, the fabric form produced thereby can be calendered at, for example, room temperature or steamtreated to secure the filaments together. It can also be bonded with synthetic resins, especially if a soft hand is desired.
As well as providing a procedure for the production of non-woven fabrics, the invention provides a novel fabric structure characterized in that the fabric is constituted by monofilaments strands gathered together in a manner to provide a fabric thereof with statistically varying directions of filaments within the strands, and the filaments can be arrayed in a woven or knit-like pattern. Thus, the monofilament strands can be collectively arrayed in a fabric pattern, the course of the filaments varying in a statistically random manner. Further, the monofilament strands :can be gathered together on a form having the shape of a garment, so that a seamless garment can be formed of the non-woven filament fabric according to the invention. In the production of such garments the form for the garment can be wound with respect to the strands, so that the monofilament strands are gathered on the form in a manner to provide a nonwoven fabric therefrom. For the production of fabrics having a woven or knit-like pattern, the filaments can be collected on a screen having a woven, cloth-like pattern, by drawing gas or vapor through the holes of the screen. A preferred embodiment of the invention is the collection of filaments on a patterned foraminated form or screen, with means to increase the air speed towards the collection spots, as well as means to keep off the filaments from the undesired locations. Such means can be pyramidal studs or pins which are located on the collection form or screen wherever the holes or mesh of the woven or knit-like cloth should be. The pyramidal form of these pins or studs tends to guide the filaments into the right direction, as well as increases the air speed of the guiding air stream of the filaments towards the collecting spots. The filaments thereby settle in a pattern resembling cloth and can be bonded that way. They resemble cloth in appearance but are nonwoven and have statistically varying directions of the filaments.
A feature of the fabric of the invention is that the filaments have varying degrees of molecular orientation, due to variation in gas and polymer stream velocity over the slot width, and due to this, the fabrics have good strength and toughness since mechanical stress is absorbed by filaments having varying elongation characteristics. It is a further feature of the fabric and process of the invention that the degree of molecular orientation varies with the thickness of the filaments within the fabric, so that with decreasing thickness the orientation increases.
The invention is further described in reference to the accompanying drawings, wherein:
FIG. 1 is an end elevation view of a spinneret head according to the invention;
FIG. 2 is a side elevation view of the head shown in FIG. 1;
FIG. 3 is a schematic representation of apparatus according to the invention and using secondary air supply means;
FIG. 4 is an elevation view taken along line 4--4 in FIG. 3;
FIG. 5 is a dimetric view wherein production of a fleece-utilizing apparatus according to the invention is depicted;
FIG. 6, FIG. 7 and FIG. 8 are, respectively, side elevation, top plane, and dimetric views of another embodiment of the apparatus according to the invention, and indicating use of the apparatus for production of a fleece;
FIG. 9 is a graph showing birefringence in relation to fiber fineness;
FIG. 10 is dimetric view, partially in cross-section, showing apparatus according to the invention, wherein a plurality of the ranks of the filaments are simultaneously formed and are guided to a fleece form for collection as a fabric;
FIG. 11 is a diagrammatic representation of a fleece fabric according to the invention, having a woven-like pattern wherein the monofilaments are arrayed with statistically varying directions;
FIG. 12 is a showing corresponding to FIG. 11 and indicating a knit-like pattern; and
FIG. 13 is a showing of drum perforations and pyramidal studs for production of a knit-like pattern as is shown in FIG. 12;
FIG. 14 is a showing of collecting screen with pyramidal pins for the production of a woven-like pattern as is shown in FIG. 11;
FIG. 15 and FIG. 16 are cross-sectional views of fabric structures provided with an iron-on stiffener formed of monofilaments according to the invention.
The apparatus of the invention can include a spinneret outfitted with a spinneret head having a plurality of spinneret holes disposed in a line, desirably in a substantially straight line, for receiving molten filament forming material from the spinneret and issuing it in a plurality of molten parallel filament forms, and gas delivering means disposed adjacent the spinneret holes for directing the gas stream into the path of the molten filament-forming material as such material issues from the spinneret holes and for entraining the filament-forming material as continuous filaments extending from the spinneret holes and elongating the filaments and cooling them to set condition while introducing them to the air channels. The apparatus further includes a foraminous form disposed in the path of the filaments after they leave the air channel for receiving the elongated filaments and collecting them, with the monofilaments disposed in totally random (as in common felt), or random and pattern crossing relation to form a felted fleece, and means for moving the form relative to the elongated filaments to effect the collection of the filaments as an extended fleece.
As is shown in FIG. 1, a spinneret head 11 is provided with a multitude of aligned spinneret holes 12, and the head further includes gas discharge pasageways 13 which are in the form of elongated passageways having their outlet ends disposed substantially parallel to the spinneret holes 12.
As is indicated in FIG. 3, the spinneret head 11 may be mounted on a spinneret 12', with the spinneret holes 12, disposed for directing filaments toward the fleece form 14 which is rotated in the direction indicated by the arrow. Due to the action of gas streams discharging from the passageways 13, the issuing filaments are grasped by the gas streams as a plane of filaments extending substantially toward the fleece form 14. The filaments pass between the secondary gas supply conduits 15. Gas discharging from the secondary gas supply conduits 15 along with the filaments enters the guide passageway 39 and in cooperation with the guide passageway serves to maintain the filaments in a plane, accomplishes smooth drawing action and prevents entanglement thereof prior to the arrival of the filaments at the form 14. The fleece form 14 may be a perforated cylinder and suction may be applied to the inside of the cylinder via suction nozzle 38 so that the gas is drawn through the cylinder; the drawing of the gas through the cylinder will serve to break up the plane of the filaments and to cause the filaments to be arranged in a random and crossing relation on the form 14. Other means may be provided to break up the plane of filaments adjacent the fleece form 14, such as air supply means 38a and 3812 which will supply air streams cutting across the path of the filaments to disrupt the plane thereof. Further, the guide passageway or channel 39 may be rocked so that its discharge end pivots about its inlet end, whereby to facilitate the collection of the monofilaments into a fleece, and to facilitate crossing and mingling as well as accomplishing a pattern-like arrangement of the filaments. In the representation shown in FIG. 3, the spinneret 12, secondary supply conduits 15, and the air channel are mounted on a base 16 by brackets 18 and 19.
In the dimetric representation in FIG. 5, the filaments 21 are indicated as issuing from the spinneret hole 12 and are maintained in a plane by gas streams issuing from the gas discharge passageways 13. The filaments are maintained as a plane as they are moved by the gas stream within the guide passageway 39 to the fleece form 22, which, in this case is ellipsoidal in cross-section indicating that the fleece form may be of any desired configuration and thus may be of garment form.
As noted above, the spacing of the spinneret holes 12 form the gas discharge passageways 13 may be about 0.1-1 mm. This distance is indicated by the dimension S shown in FIG. 1.
In the apparatus shown in FIG. 6, FIG. 7 and FIG. 8, the device according to the invention includes a hopper 30 for the resin to be used to form the filaments, a conduit 31 leading from the hopper to the feed device 32 which is provided with a drive 33 for controlling the feed rate. From the feed device 32, the resin is passed to the manifold 34 where it is melted by application of heat from a heat supply source (not shown). Communicating with the manifold 34 are a plurality of spinnerets 35. Each of the spinnerets 35 is provided with a pump (not shown) driven by pump shaft 36, and is provided with a spinneret head as is shown in FIG. 1. Further, a gas supply line 37 com municates with each of the spinnerets to supply gas for the gas discharge passageways 13 (FIG. 1) of the spinneret heads. The gas passed through each of the lines 37 is heated by a heater (not shown). A rank 46 of filaments issues from each of the spinneret heads, and the spinnerets are disposed with the heads in parallel relation so that the ranks are in parallel planes. Spaced from each spinneret head in a position to receive the filaments issued thereby, is a guide passageway 39. The guide passageway or air channels 39 guide the filaments from the entrance end of the air channels to the exit end thereof which is disposed adjacent the fleece form 45, which in the illustrated embodiment is a screen. The guide passageways serve to prevent entanglement of filaments of one rank with filaments of another rnak, and further, serve to prevent entanglement of the various filaments of each rank, and keep them on parallel course. Also, the air channels serve to keep the air streams directed and to guide the gas streams along the lengths of the filaments so that the gas streams urge the filaments in the direction of travel thereof and tend to urge the filaments in the direction in which they have been drawn and suppress turbulence thereby allowing for smooth drawing action. In this way, the molecular orientation occasioned by the drawing is maintained during cooling of the filaments to the set condition, while the air stream has a great length of undisturbed filament for applying its frictional force thereto.
A screen is moved in the direction of the arrow across the path of the descending ranks of filaments 46 and collects the filaments as a fleece. To improve the distribution of the filaments as well as to improve their interfelting, the air channels 39 may be rocked as is indicated by the arrows 44. Thus, each air channel is mounted on a shaft 40 which extends in the direction of the transverse axis of the air channel and a pinion 42, is provided for the rocking action of the air channels.
To further facilitate the obtaining of a suitable distribution of filaments in the fleece, the ranks of fibers are disposed so that horizontal projection thereof in the direction 7 of movement of the screen 45, indicated by the arrow 50 causes such filaments to overlap each other. This can be best seen in FIG. 7.
In the embodiment shown in FIG. 10, the spinneret 12' is outfitted with a plurality of spinneret heads 11 each having a line of spinneret holes 12. An air passageway 13 is disposed adjacent each row of spinneret holes and on each side thereof. Resin is supplied by a conveyor 51 to a pump 52, which in turn moves the resin to the conduits system 61, whereby the resin is advanced to the spinneret holes 12. Primary air for assisting in the drawing of the monofilaments is introduced via conduits 56 and issues from the air discharge passageways 13.
The guide passageway interposed between the spinneret and the fleece form may be a square chamber with a centrally disposed opening for passage of the filaments extending therethrough, and with a plate disposed adjacent to the filament path through the chamber on each side of the filament path. Openings may be provided in the plates, the openings being formed to direct gas passed therethrough in the direction of and along the filament path.
In the embodiment of FIG. 10, a plurality of guide passageways, one for each row of spinneret holes, is provided in the housing 63. The housing 63 is constructed with openings 64 extending therethrough for passage through the housing of the filaments. Each of the openings 64 is bounded above and below by a plate 65, and the plates 65 are provided with openings 66. These openings are formed to direct air or other gas passed therethrough along the path of filament travel through the various passageways 64. Gas is introduced into the openings 66 in the housing 63 through inlet pipes 58. To provide suitable distribution of the gas, the divider plates 67 are provided. Filament ranks 46 issue from the spinneret holes 12 and pass through respective openings 64 in the housing 63, and on the fleece form 14. The fleece form is rotated in the direction indicated by the arrow thereon, and, the filaments from each rank are collected on the fleece form as a layer, providing a fabric of several layers.
A feature of the invention is that the filaments may be deposited on a fleece form to provide a fabric having a wovenor knit-like pattern. This may be effected by means of gas or steam currents utilized with an alteration of intensity corresponding to the pattern desired, and/or utilizing a selected pattern for the perforations of the fleece form on which the filaments are collected. This may best be accomplished by using a collecting screen or foraminous form, which in the places of mesh or holes of the woven or knit pattern have elongated guiding studs or pins. These studs or pins may be of pyramidal form and as close as possible leaving free and foraminous only the places where filaments would collect in order to have a wovenor knit-like mesh of strands. The pyramidal form provides narrowing air passages towards the collection screen, thereby increasing air speed towards the collecting points or lines of the filaments which helps very much in having good collecting performance. Whereas the fabrics so formed have a wovenor knit-like structure, they differ from the usual woven or knit goods in that the individual filaments or collections of filaments which form the Wovenor knit-like pattern change direction in a statistically random manner. This is indicated for a wovenlike pattern in FIG. 11, wherein the forms b indicate the overall pattern which, as will be observed, is that of woven goods. The direction of a mono-filament through the fabric is indicated by the dashed line a. The course of the filament is governed by the swinging action of the air channels, with lower swinging speed the course will be more curly, while with higher speeds there is a tendency to produce more nearly parallel filaments Within the strands. They also differ from regular Woven or knitted goods in that the strands which form the mesh are constructed of filaments with varying degrees of molecular orientation of chain molecules whereby the orientation increases with decreasing fiber thickness. Similarly, for knit-like fabrics, the overall pattern of the goods is as is shown in FIG. 12. The monofilaments are disposed to pro vide the fabric form b and the varying directions and paths of the monofilaments in the gOOds is indicated by the dashed line a for one of the filaments. A pattern for drum perforations and guiding studs corresponding to the knitlike pattern shown in FIG. 12, is shown in FIG. 13. The drum 70 is provided with perforations 71 and the projections 72 which have the form of a cone. For producing a woven-like pattern, as is shown in FIG. 11, the surface on which the filaments are collected may be formed of a screen having pyramid-like projections. Referring to FIG. 14, the screen 73 is provided with pyramid-like projections 74.
The use of guide passageways or air channels accord ing to the invention has been found to provide maximum uniformity of the fiber web over the entire width of the material and yet to prevent different drawing ratios of individual filaments. The swinging of the guide passageways provides a method of regulating the parallelism of filaments within given strands in woven or knit-like patterns. The higher the swinging speed, the more unidirectional is the lay of filaments within the strands while forming the mesh of woven or knit-like pattern. With low swinging speeds, a more curly pattern of filament deposition is obtained.
With the gas currents, according to the invention, filaments of 6 microns in diameter and less may be drawn directly from, say, 400 micron spinneret holes. Such a reduction in combination with rapid cooling results in high orientation of long chain molecules.
In the prior art spinning processes, such great stretching from the spinneret holes by mechanical devices results in the breaking of filaments. The present process is furthermore characterized by the fact that the gas currents which produce the drawing of the filaments out of the spinning holes and which provide the parallel guidance, should impinge upon the filaments for a distance of at least 300 mm. and preferably 600 mm. without the individual filaments being entangled with one another by turbulence. The use of air channels enables the realizing of such results.
The great cross-sectional reduction in the filament diameters orients the filament molecules, and the finer the filament is drawn, that is, the greater the ga pull, the greater the degree of orientation will be. As the fineness of the filament increases, the specific strength of the filament increases. The following tables list strengths of filaments which were spun from polycaprolactam according to Example 1, below.
Table 1 shows how the fiber thickness varies with the rate of flow of polymer per spinneret hole, provided the gas current flow remains constant:
1 Per spinneret hole in cc./minute.
Table 2 lists the strengths of such filaments in relation to thickness.
TABLE 2 Tensile strength Fineness in grams Fiber in deniers per denier 1 Thickness in microns.
The curve in FIG. 9 shows the birefringence of Polyamide-6 fibers in relation to fiber fineness. It is therefore apparent that, in the case of fine fibers, birefringence values are achieved which correspond to those of normally spun and mechanically drawn fibers in the cold state. If no special precautions are taken, the fiow of polymer as well as gas over the width of the long linear nozzle shows irregularities especially towards the ends of the slots. This results in having different air and polymer velocities. For instance in the middle of the slot the air velocity is lower as compared to the air velocity at the ends of the slot, a characteristic which becomes especially dominant in long slots. This results in the production of a spectrum of fiber thicknesses. It has been found that the birefringence of EXAMPLE 1 Granulated polyamide (polycaprolactam, melting temperature 210 C., relative viscosity 2.28) was melted in an extrusion worm press at temperatures increasing forwardly of 200, 220, 250 and 270 and fed to 4 spinning pumps. The spinning pumps pumped the materials to 4 spinnerets heated to 220 C., which each consisted of a row of 160 holes of a diameter of 0.3 mm. Each row of spinning holes had air slots of 0.2 mm. height at a distance of 0.4 mm. on both sides, along its entire length. The continuous filaments passing from the nozzles in the form of a broad, non-cohering parallel band'of a multiplicity of filaments were each seized on both opposite sides by air at a velocity of 200 m./
these different filaments increases with decreasing thickness, indicating increasing polymer molecule orientation. Whlch left slots heated to Production of a uniform non-woven fleece is possible by and Pulled forward thereby h filaments We re swinging the guide passageways so that a given line on the fi i acceleratfid from a veloclty of J collecting screen is served by several spinning holes. This the nozzle holes to about 1200 I wlfhm a difference in filament thickness may be avoided by having dlstance of 3 from the flozzle eXlt- At a dlstahce longer air slots than spinning rows in order to apply the of 30 from} nozzle exlt a row of filaments decrease in air speed to a place where no filaments are gether Wlth alt streams whlchby h h a formed and by having smaller spinning nozzles. However, Perature of was brought mto lts chahml, it has been found desirable to have filaments of different which air Channel consisted of boxhke ducts With the characteristics within one fabric. Filaments of different mensiorls of 35 Width 3 height and 58 length thicknesses give a better fabric surface. The thicker fibers and Whlch ducts were p on that end adjacent to th@ have higher residual elongations because of lower drawing 2 (entrance) n that end adjacent to the filament ratios and give the fabric a certain toughness, because celvlng Screen U- Each p g nOZZle had an h astressis li d h 11 1 channel associated therewith, which kept the filaments The felting of the individual filaments into anon-woven from each 1101116 separated from as Well as Parallel to f b i t k place on h b i of various i i 1 o each other. The air channels were rocked around an axis the one hand, the spinning speed is substantially higher which was at the entrance side, so that the exit side swung than the speed with which the fabric is taken out, the two back and forth 5 as indicated on G- 8. T i speeds being in a ratio of approximately 100:1. Thus, if Channels Were swung in parallel- The filaments were the web of filaments is blown onto a screen belt with a lowed to P through the atmosphere for 30 an after suction behind it, the filament can be laid on in loops of a leaving the air Channelsdiameter always greater than 1 mm., i.e. greater than the This passage was also in a swinging fashion caused by fi a ent Spacing, so that adjacent loops overlap. Another the swinging of the air channels which gave the filaments factor that contributes to the felting is the turbulence of heir direction of movement. The filaments were finally the gas current after it leaves the guiding channels and 40 collected on a moving screen which had a suction destrikes the screen belt. The turbulence of the gas also invice therebelow. The screen was moved forward at a vecreases as the deposit of fibers on the screen belt increases. locity of 10 m./min., while the rows of filaments coming The felting together of the ranks of filaments from differfrom the nozzles were interfelted into a cohering nonent spinnerets according to the invention is brought about woven fabric. The fabric was impregnated with a 30% by swinging the guiding channels or passageways. The -15 dispersion of polyacrylate resin (Butyl acrylate) and ranks of filaments follow the swinging movement without dried, giving a fabric containing a 30 g./sq. meter of intertwining inside of the channels. A frequency of as fiber and 10 g./sq. meter of bonding resin. many as to-and-fro movements per second is appropri- EXAMPLE 2 ate. In this manner, the po1nt of deposit of a particular filament can be displaced several times per second into the A gfannlate 0f Polycaprolactam Was meltarea of the adjacent spinneret and back, so thata satisfaced on a Worm gear P and fed t0 the pp toryinterfeltingis a hieved, ratus of this invention by means of spinning pumps, The bonding of the unwoven fabric thus produced can at a tempel'atum 0f The p g P p be brought about by various methods. The filaments can i at d th m l t four pinn rets heated to 230 be welded together by heat treatment or with the aid of C. Each of the spinnerets contained a rectilinear swelling substances. Secondary bonding agents in the line of spinning holes, 160 in number, each having a diform of dispersions or solutions can also be added. The ameter of 400 and each spaced from the next by 2 fabric can be needled. Particularly desirable effects can be mm. The row of holes was bounded on both sides, at 21 achieved by printing-on the bonding agents in certain patdistance of 0.4 mm., by air slots 330 mm. in length. In terns, because this especially preserves the inherent textileeach case, air currents heated to 230 C. were forced out like character of the goods. All fiber-forming polymers of the air slots at a velocity of 200 m./sec. The filaments that can be melted without decomposition can be used as issuing from the holes were seized by the bilateral air raw materials for the present process. currents and thrust forwardly, whereby, at a distance of The following table gives a perspective of a number of about 3 mm. from the spinneret they were accelerated fiber characteristics obtained with various raw materials: from a velocity of 1 rn./min. at the spinneret hole, to
TABLE 3 Rate Fiber of flow Velocity Spinstrength, through of gas Gas neret grams Fiber spinneret, in the temperatemporaper thickness Polymer ccJmin. slit m./sec. ture, C. ture, C. denier in microns Polycaprolactarn 0. 1 270 260 240 3. 2 ll. Polypropylene 0. 065 260 265 5. 0 8. 0 Polyethylene terephthalate... 0. 1 260 247 3. 5 13. 0 Polystyrene 0. 065 375 248 1. 5 13. 0
1000 m./min. At a distance of cm. from the spinneret the filament of each individual spinneret was introduced into a lengthwise air-duct in register with it, having inner dimensions of said duct being about 3 x 35 cm. and having a length of 58 cm. Until the filaments entered the air ducts, the air currents pertaining to each of the spinnerets had cooled down to 100 C. and maintained the filaments separated from each other. The air ducts assured that the individual filametns also remained separated from each other while proceeding downstream, while the set of filaments of each individual spinneret remained separate from the sets of filaments of the adjacent spinnerets. This made it possible to determine in advance the collection place of the filaments and particularly to facilitate patterned collection. The filaments issuing from four of the air ducts were collected on a screening drum, having holes (perforations) of about 2 mm. in diameter, arranged in a knit pattern. In checkerboard fashion the holes were surrounded by round pyramids of 2 mm. base diameter and 4 mm. height.
By blowing hot air currents through the filaments, both during and after collection, the filaments assumed an arrangement in accordance with the layout of the perforations on the collecting drum, and under the effect of the heat, the filaments became bonded together. In this manner, there was produced a type of textured (knit-like) fabric structure with statically varying directions of the endless filaments.
The unwoven fabric articles of the invention have a soft hand like woven or knit goods, and may therefore, be used wherever woven or knit goods or other such interlaced fabrics are used. The new process, however, substantially simplifies the manufacture of such textile products, since the fabric manufacturing process is coupled with the production of the fiber. In other words, it is not necessary for fibers to be made and then drawn and treated with spinning oil and sizing agents in a first series of procedures, and then to spin the fibers of filaments into yarns which then are used for the production of woven or knit goods.
The process of this invention also differs from the prior art production of unwoven fabrics wherein the starting material is staple fibers which are made into a fleece and cemented together with the aid of bonding agents. 'In processes of that kind, it is necessary to produce a relatively high number of bonds, in order to prevent individual fibers from working out of the fabric and fuzzing up the surface, a phenomenon which not only results in the destruction of the fabric, but also in a nuisance when the free fibers migrate, for example, to the outside of an outer wear fabric. Consequently, a relatively high proportion of binding agent is required to adequately fix the staple fibers. The result of this high proportion of bonding agent in many cases is a stiffening of the fabric or a loss of its soft feel.
In the process of the invention, these disadvantages are avoided and a simplified manufacture of unwoven fabric articles is achieved. The starting materials may be polymers such as polyamides, polyesters, polyolefins, polyvinyl acetate, polyvinyl chloride, polyvinyl alcohol, cellulose acetate or cellulose in dissolved form (viscose). These materials may be spun into continuous filaments by a melt or solution spinning process. In contrast to the prior art spinning methods, the process of the invention uses directed gas currents as the drawing medium while spinning from several linearly arranged rows of holes, whereby each row has two associated air slots, into an air channel. The air channels or guide passageways are spaced at a distance of between 1 to 5 cm. from the nozzle exit to allow for cooling of the gas currents. The air slots are parallel above and below each row of spinning holes. Preferably, spinnerets are used which have more than 100 holes per spinning nozzle. The spinning speed may be, for example, between 1,000 and 2,000 meters per minute, according to the thickness of the fibers.
The band of filaments of each individual row of spinning holes, upon leaving the spinneret, is seized from above and below by a primary current of gas and accelerated, resulting in a reduction of the filament cross-section from, for example from 300 microns to 15 microns. The purpose of the primary gas or vapor current is to perform this drawing action and keep the filaments separate from one another. Furthermore, the primary gas or vapor current in many cases causes a stiffening or solidification of the filaments, at least on the surface. Then the bands of filaments are introduced into the air channels and seized by secondary gas or vapor currents which may produce a final solidification and guide the filaments on their parallel course and prevent them from combining and entangling. The gas or vapor currents have a velocity greater than the spinning speed, so that they not only stretch the plastic substance as it comes from the spinneret, but also solidify and draw the filaments. In the case of thermoplastics, the filaments are solidified by cooling from the molten state. The filaments, however, may also be solidified by precipitation by using, for the acceleration and guidance of the band of filaments, vapors which pre cipitate solutions of high polymers in filamentary form. The solidification of the filaments coming from the spinneret may also be accomplished by chemical action, by using acid vapors, for example, of xanthogenate solutions.
When the bands of filaments are collected, for example, on a screen with vacuum apparatus behind it, the individual filaments are superposed by criss-crossing or winding entanglement, and are stripped off in the form of a jumbled structure. The stripping speed is always lower than the spinning speed. To increase its strength, the fleece that has been formed from continuous filaments may be needled, by means, for example, of the needle punching apparatus described in Textile Industries, September 1958, page 117, wherein needles equipped with barbs are used, which catch certain filaments and push them through the fleece, whereby a loop of continuous filaments is formed. If the material has been appropriately compressed, a drawing of the filaments takes place which is particularly effective if the needling process is repeated several times. This process results in a considerable further strengthening of the fabric. The materials thus manufactured distinguish themselves by a combination of high strength with a soft, pleasant cloth-like hand. Nevertheless, they may be further treated to achieve special properties. For example, it is possible to achieve woven fabric-like materials by calendaring the non-woven fabric of this invention with embossed rollers; this gives the material a better hand and it may be sewed rapidly and securely. It has furthermore been found that the filaments in the materials of the invention are welded to one another by calendering at room temperature in such a manner that a firm bond results. It is possible in this manner to produce paper-like materials.
Binding agents as are appropriate can be used to effect such bonding as is desired, though as is noted above, substantially less bonding agent is required than in the case of felts formed of staple fibers. Heat treatment may be used, and it has been found desirable to employ superheated steam since this assures satisfactory heat transfer through a substantial thickness of fleece.
By subsequent impregnation with synthetic resins or sizes, the properties of the products of the invention may be improved. For example, impregnation with silicone resins has resulted in an improvement in ironability. Thermal post treatment is often desirable. If, for example, the product is made by the spinning of polyvinyl alcohol, the finished product may be made more ironable by tempering at elevated temperatures. A substantial improvement in launderability has been achieved by treatment of the fabric with cross-linking resins, such as those containing free methylol groups.
After appropriate pore filling and compression, the materials can be surface coated to produce leather-like materials. The advantage of the fibrous materials of the invention in this case is also and especially the fact that the continuous filaments do not contain any sizing agents and thus have an outstanding ability to adhere to the bonding agents used in the manufacture of artificial leather. This adhesion can be still further improved by performing the spinning process with a slight oxidation of the fiber surface as for instance that which occurs by spinning under an oxygen atmosphere. It has proven surprising that, when the fibrous materials of the invention are used, for example for the improvement manufacture of artificial leather materials, especially smooth, uniform products are obtained.
Further, paper-like products may be produced from fleeces according to the invention. Suitable materials may be used as fillers to fill the pores for appropriate consolidation, and by such procedure, it is feasible to produce fully synthetic, paper-like materials with a high degree of strength.
The invention has special application to the production of iron-on stiffeners, or to joining webs.
Recently resort has been had in the processing of textiles to stiffeners (linings, interlinings) which are not sewed on but rather are secured to the base cloth by an ironing process. Generally speaking these stiffeners consist of fabrics or webs which are coated with a thermoplastic adhesive mass. The adhesive mass must be deposited, preferably not in the form of a sheet, but, for example in a dotwise coating, in order to obtain porosity in the finished product, for example articles of clothing. The web or the fabric serves in many instances only as a supporting material for the adhesive masses. As an appreciable simplification it has been proposed to dispense with the supporting material. This could be accomplished, for example, by producing the iron-on textures or webs from thermoplastic fibers, which may be ironed on by applying an appropriate heat on the base cloth, which is to be stiffened. This simplification has not been successful inasmuch as the thermoplastic fibers produced heretofore could not be ironed on at sufiiciently low temperatures to the base cloth with a sufiicient degree of adhesiveness, or because the adhering surface was not resistant to cleaning or washing.
On the other hand, polymers or polymer mixtures which may be ironed on, even at lower temperatures, and which are at the same time also resistant to washing or cleaning, are known. However, these substances cannot be processed by the conventional spinning methods to yield fine fibers of suflicient strength to produce textile webs.
These drawbacks have been obviated by the present invention. Pursuant to it, a fibrous web is produced directly by spinning of such chemical substances as may be ironed on at temperatures ranging from 110-180 C. and which is resistant to washing and cleaning.
The advantages of such a material, as against materials known hitherto, also resides in the fact that it is adhesive on both sides, and that owing to the absence of a carrier or supporting fabric, it does not make the end product too stiff or bulky. The spinning process is conducted in the manner described above wherein the filaments are spun out of special spinnerets with the aid of directed air currents. The oriented air currents serve in this connection as drawing and stripping devices. The advantage of spinning with oriented air currents resides in the fact that the ironon substances, may be spun out without breaking. Such air currents are in contrast to strongly eddying air currents which would snap off the spinning mass upon such issuing from the spinning holes. Thus, it becomes feasible to spin, into textile webs built up of yarns, even such substances or mixtures of substances which have but a slight tendency to the formation of fibers.
In this connection, the process is conducted in such a manner that melts or solutions, or mixtures containing softening agents or softeners, and consisting of adhesive high polymers, are spun with the aid of spinnerets into lengthwise chambers, as are described hereinbefore and as are disclosed in application Ser. No. 302,370 filed Aug. 15, 1963. In the chambers or guide passageways the filaments are maintained mutually separated and are drawn and solidified with the aid of the oriented air currents. In this connection, the velocity of the air may be fixedvin such a manner that the layer of air closest to the filaments at the outlet of the spinneret (i.e. the initial velocity of the air), has more than times the velocity of the filament, preferably sufficient so that the velocity of the filament commencing with the spinneret increases SOD-fold within a distance of 5 cm. owing to the lag caused by the frictional forces of the air currents. The expression oriented air current is intended to have reference to air currents which exhibit markedly identical directions of flow at different layer levels. The oriented air currents render it possible to obtain a great elongation in the spinning and drawing of complex mixtures, and also permit collection as webs of desired form. This is also true in the case of such fibers which will not withstand a normal carding process.
Apparatus as is described hereinbefore may be utilized for production of the iron-0n stitfeners. Desirably the air jet above and the air jet below the filaments are oriented air currents, and the velocity in each may be such that the velocity in the stratum adjacent the filaments is highest, and the velocity decreases from stratum t0 stratum in the direction away from the filaments. Multiple slots or nozzles may be used to produce each air stream to facilitate obtaining the desired gradient in velocity. Upon issuing from the guide passageways, the filaments may be picked up with the aid of a suction device as is shown in FIG. 3 and may then be consolidated to a continuous web. The consolidation takes place, for example, with the aid of heated rollers, whereby the yarns are made to adhere to each other by virtue of their natural adhesiveness. However, any other consolidating method may be resorted to. Generally such methods are preferred as do not require any additional binding agents, except where special effects are sought which are brought about by means of a binding or finishing means.
The iron-on fabrics of the invention may be utilized entirely as a binder, since no backing or support is required, or, alternatively, as binder and stiffener. In FIG. 15, a base fabric 78 of polycaprolactam, is stiffened by a fleece 79 made, for example, according to Example 2 hereof, and ironed on by application of a heating instrument to the surface of the fabric 78 opposite the fleece 79. A sandwich structure, as is shown in FIG. 16 may also be made. The outer and inner fabrics 78 and 80 are bonded by the fleece 79. Fabric structures, such as those shown in FIGS. 15 and 16, may be porous since the fleece may be applied so that an impermeable film-like layer is not formed from the fleece. The bonding by the monofilament fleece of the invention is a direct bonding of the fleece to the contiguous material. The ironing-onmay be by any suitable means for softening the fleece to permit adhesion thereof to the adjacent material.
EXAMPLE 3 A granulate of high-pressure polyethylene (melting index 72), was melted at a temperature of C. and fed to a spinneret of 260 C. The spinneret consisted of a row of 20 holes with a diameter of 0.4 mm. and a spacing between the holes of 3 mm. The row of holes was bounded above and below at a distance of 0.2 mm. by an air slot which was 0.3 mm. in height and 68 mm. in length. Two air jets, each one of them at 260 C., were forced through the two air slots. These air jets seized the melts issuing from the spinning holes and drew them in the forward direction to form filaments. At a distance of 3 cm. from the spinneret head, the filaments entered a guide passageway with a plate spacing of 30 mm. The
15 air jets were developed by a pressure of 1 atm. and caused an acceleration of the filaments from 1 m./min. in the spinneret bore to 500/m. per min. at a distance of 60 cm. from the spinneret. The filaments were captured by means of a wire screen in the form of a fibrous web, and consolidated by means of steam treatment wherein steam was passed through the web to effect a suitable bonding.
EXAMPLE 4 A mixture of 1 part of a polyamide mixture of caprolactam and adipinous hexamethylene diamine and 1 part of 2-ethyl-hexanolpara-oxybenzoic acid ester was melted in a worm gear press at a temperature of 130 C. The melt was supplied to a spinneret heated to 160 C. The spinneret was mounted, as indicated in Example 3. The air jets on leaving the slot, exhibited a temperature of 160 C. The air jets were produced under a pressure of 1.2 atm. at the slots. The fleece, produced in accordance with Example 3, exhibited an adequate initial adhesiveness on reaching the screening drum to assure mutual consolidation of the fibers.
EXAMPLE 5 A mixture of 1 part of cellulose acetate (39% acetyl) and 1 part of diethylphthalate was melted in a Worm gear press at a temperature of 170 C. The melt was supplied to a spinneret which had been heated to 190 C. The spinneret was mounted as indicated under Example 3, and the air jet, on leaving the slots, exhibited a temperature of 190 C. The air jets were produced at a pressure at the slot of 1 atm. The fleece produced on the screening drum by suction was consolidated by passing such through rollers heated to 150 C.
The iron-on fleece may be of any suitable weight for the task to be performed. Thus the weight may be such as to provide a desired stiffening effect. Where the fleece is to serve merely the function of joining two webs to form a sandwich, the fleece may appropriately be light. The fleeces may, for example, weigh 5-50 grams per square yard, and will commonly preferably weigh 5-25 grams per square yard. The fineness in denier may be in the order of tenths and above, for example 0.3 and above. As a range the denier may be about 0.35, preferably 0.5-3.
As to the composition of the monofilaments, this may be any one of a wide range of materials and mixtures. Thecomposition should soften in the range of 110180 C. and should be formable into monofilaments by the process of the invention to provide monofilaments of great length, i.e. it should be possible to continuously spin the composition by the process of the invention utilizing oriented air jets, without substantial breakage of the monofilaments. Examples of suitable compositions are polymers and polymer softener mixtures, such as branched polyethylene preferably having a melt index in excess of 70, polyamides and softeners preferably mixed polyamides and ester softeners, and mixtures of cellulose acetate with softeners.
While the invention has been described with respect to particular embodiments thereof, these various embodi ments are merely representative of the invention and do not serve to set forth the limits thereof.
What is claimed is:
1. Apparatus for the continuous production of non- Woven fabrics which comprises spinneret means having at least one substantially linearly aligned row of spinning nozzles, means adjacent said spinning nozzles for impinging a gas stream onto two opposite sides of the rank of filaments spun from said row of nozzles; channel means proximate to and spaced longitudinally from said spinneret adapted to be associated with a single row of filaments and adapted to receive said filaments and at least a portion of said gas stream therein and to receive such filaments in a tacky state and pass such therethrough spaced from the walls thereof, said channel means having an inlet operating in substantial alignment with and spaced from said spinneret and from said gas means; and continuously moving fleece-forming means including a fleece form spaced from the end of said channel means opposite to the end thereof adjacent to said spinneret and disposed at an angle to said filaments adapted to receive said filaments upon emergence thereof from said channels.
2. Apparatus as claimed in claim 1, wherein said fleece form contains perforations therein, which perforations are in a mesh pattern.
3. Apparatus as claimed in claim 1 wherein said gas delivery means comprises means providing an elongated opening on each side of and adjacent to said row of spinning nozzles.
4. Apparatus as claimed in claim 1 including a second gas delivery means disposed intermediate the ends of said channel means which is adapted to impinge a second gas stream upon said filaments within said channel means.
5. Apparatus as claimed in claim 1, including a multiplicity of substantially parallel rows of spinning nozzles.
6. Apparatus as claimed in claim 1, including means for heating said gas before impingement thereof upon said filaments.
7. Apparatus as claimed in claim 1 wherein said fleece form comprises a formaminous rotatable hollow drum and including suction means operatively associated with said drum adapted to provide a pressure decrease from the outside to the inside of said drum.
References Cited UNITED STATES PATENTS 2,577,205 12/1951 Meyer et al 156-497UX 2,689,801 9/1954 DAlelio 156497UX 3,314,840 4/1967 Lloyd et al. 156-441 BENJAMIN A. BORCHELT, Primary Examiner T. H. WEBB, Assistant Examiner US. Cl. X.R. 156-167
US828918A 1962-02-03 1969-05-29 Non-woven fabric Expired - Lifetime US3565729A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEF0035926 1962-02-03

Publications (1)

Publication Number Publication Date
US3565729A true US3565729A (en) 1971-02-23

Family

ID=7096231

Family Applications (2)

Application Number Title Priority Date Filing Date
US341489A Expired - Lifetime US3502763A (en) 1962-02-03 1964-01-27 Process of producing non-woven fabric fleece
US828918A Expired - Lifetime US3565729A (en) 1962-02-03 1969-05-29 Non-woven fabric

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US341489A Expired - Lifetime US3502763A (en) 1962-02-03 1964-01-27 Process of producing non-woven fabric fleece

Country Status (1)

Country Link
US (2) US3502763A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752613A (en) * 1970-12-08 1973-08-14 Celanese Corp Apparatus for producing spray spun nonwoven sheets
US3784425A (en) * 1971-11-08 1974-01-08 Schickedanz Ver Papierwerk Process and apparatus for the production of plastic-sheathed tampons
US3787265A (en) * 1972-03-24 1974-01-22 Celanese Corp Process and apparatus for producing fibrous structures
US4177312A (en) * 1978-05-08 1979-12-04 Akzona Inc. Matting article
US4181450A (en) * 1976-04-02 1980-01-01 Akzona Incorporated Erosion control matting
US4209563A (en) * 1975-06-06 1980-06-24 The Procter & Gamble Company Method for making random laid bonded continuous filament cloth
US4252590A (en) * 1975-07-09 1981-02-24 Akzona Incorporated Low density matting and process
US4741941A (en) * 1985-11-04 1988-05-03 Kimberly-Clark Corporation Nonwoven web with projections
US4997611A (en) * 1987-08-22 1991-03-05 Carl Freudenberg Process for the production of nonwoven webs including a drawing step and a separate blowing step
US4999080A (en) * 1988-05-27 1991-03-12 Corovin Gmbh Apparatus for producing a nonwoven fabric from continuous filaments
US5123983A (en) * 1990-08-24 1992-06-23 E. I. Du Pont De Nemours And Company Gas management system for closely-spaced laydown jets
US5397413A (en) * 1992-04-10 1995-03-14 Fiberweb North America, Inc. Apparatus and method for producing a web of thermoplastic filaments
US5614306A (en) * 1991-12-31 1997-03-25 Kimberly-Clark Corporation Conductive fabric and method of producing same
US5679042A (en) * 1996-04-25 1997-10-21 Kimberly-Clark Worldwide, Inc. Nonwoven fabric having a pore size gradient and method of making same
US5814390A (en) * 1995-06-30 1998-09-29 Kimberly-Clark Worldwide, Inc. Creased nonwoven web with stretch and recovery
US5853628A (en) * 1996-09-12 1998-12-29 Kimberly-Clark Worldwide, Inc. Method of forming nonwoven fabric having a pore size gradient
WO1999045186A1 (en) * 1998-03-03 1999-09-10 Nordson Corporation Apparatus and method for the manufacture of nonwoven webs and laminates
ES2268959A1 (en) * 2005-03-11 2007-03-16 Tesalca 99, S.A. Extruder fabricating strips of polymer non woven material includes a pivoting spinner head assembly producing polymer filaments for wide strips production

Families Citing this family (1112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1907204A1 (en) * 1968-08-24 1971-01-21 Babcock & Wilcox Ag Process for the pyrometallurgical treatment of sulfidic iron ores or iron ore concentrates
US3849241A (en) * 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3978185A (en) * 1968-12-23 1976-08-31 Exxon Research And Engineering Company Melt blowing process
BE794339A (en) * 1972-01-21 1973-07-19 Kimberly Clark Co NON-WOVEN MATERIALS
GB1406252A (en) * 1972-03-02 1975-09-17 Impeial Chemical Ind Ltd Non-woven materials and a method of making them
US3972759A (en) * 1972-06-29 1976-08-03 Exxon Research And Engineering Company Battery separators made from polymeric fibers
US4001357A (en) * 1972-08-02 1977-01-04 Alfred Walz Process for the manufacture of fibers from fusible materials
GB1453447A (en) * 1972-09-06 1976-10-20 Kimberly Clark Co Nonwoven thermoplastic fabric
GB1444816A (en) * 1972-12-22 1976-08-04 Tamag Basel Ag Extruder nozzle for moulding tobacco pulp
US3949130A (en) * 1974-01-04 1976-04-06 Tuff Spun Products, Inc. Spun bonded fabric, and articles made therefrom
DE2406321C3 (en) * 1974-02-09 1981-04-09 Fa. Carl Freudenberg, 6940 Weinheim Spunbond, consisting of randomly distributed, endless polyamide 6 threads
US3915615A (en) * 1974-10-23 1975-10-28 American Cyanamid Co Extrusion die
US4013816A (en) * 1975-11-20 1977-03-22 Draper Products, Inc. Stretchable spun-bonded polyolefin web
US4150937A (en) * 1977-06-23 1979-04-24 Owens-Corning Fiberglas Corporation Apparatus for forming filaments
DE2922427C2 (en) * 1979-06-01 1984-10-31 Fa. Carl Freudenberg, 6940 Weinheim Spunbonded fabric made from individual filaments and groups of filaments and process for its manufacture
US4778460A (en) * 1985-10-07 1988-10-18 Kimberly-Clark Corporation Multilayer nonwoven fabric
US4753834A (en) * 1985-10-07 1988-06-28 Kimberly-Clark Corporation Nonwoven web with improved softness
US4668566A (en) * 1985-10-07 1987-05-26 Kimberly-Clark Corporation Multilayer nonwoven fabric made with poly-propylene and polyethylene
US4855179A (en) * 1987-07-29 1989-08-08 Arco Chemical Technology, Inc. Production of nonwoven fibrous articles
US5141699A (en) * 1987-12-21 1992-08-25 Minnesota Mining And Manufacturing Company Process for making oriented melt-blown microfibers
US5993943A (en) * 1987-12-21 1999-11-30 3M Innovative Properties Company Oriented melt-blown fibers, processes for making such fibers and webs made from such fibers
US4988560A (en) * 1987-12-21 1991-01-29 Minnesota Mining And Manufacturing Company Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
US4983109A (en) * 1988-01-14 1991-01-08 Nordson Corporation Spray head attachment for metering gear head
US5055151A (en) * 1988-01-21 1991-10-08 Greenstreak Plastic Products Company Porous filamentary mats and method of making same
US4818597A (en) * 1988-01-27 1989-04-04 Kimberly-Clark Corporation Health care laminate
US4997082A (en) * 1988-06-28 1991-03-05 Kimberly-Clark Corporation Humidistat
US4952366A (en) * 1988-07-25 1990-08-28 Owens-Corning Fiberglas Corporation Molding process
US4904514A (en) * 1988-09-13 1990-02-27 Kimberly-Clark Corporation Protective covering for a mechanical linkage
US4906513A (en) * 1988-10-03 1990-03-06 Kimberly-Clark Corporation Nonwoven wiper laminate
EP0418493A1 (en) * 1989-07-28 1991-03-27 Fiberweb North America, Inc. A nonwoven composite fabric combined by hydroentangling and a method of manufacturing the same
US5188885A (en) * 1989-09-08 1993-02-23 Kimberly-Clark Corporation Nonwoven fabric laminates
DE3938164A1 (en) * 1989-11-16 1991-05-23 Fourne Maschinenbau Gmbh BLOW FIBER SPIDER NOZZLE ARRANGEMENT
JP2887611B2 (en) * 1990-01-27 1999-04-26 三井化学株式会社 Nonwoven fabric manufacturing method and apparatus
US5271883A (en) * 1990-06-18 1993-12-21 Kimberly-Clark Corporation Method of making nonwoven web with improved barrier properties
US5213881A (en) * 1990-06-18 1993-05-25 Kimberly-Clark Corporation Nonwoven web with improved barrier properties
US5464688A (en) * 1990-06-18 1995-11-07 Kimberly-Clark Corporation Nonwoven web laminates with improved barrier properties
DE4026371A1 (en) * 1990-08-21 1992-02-27 Daimler Benz Ag Deposition of quartz glass layer for use in optical fibres - consists of burning silicon-contg. volatile cpds. in flame which is directed at the substrate surface
US5861117A (en) * 1991-08-01 1999-01-19 Rumber Materials, Inc. Process and apparatus for cooling an extrudate
US5366786A (en) * 1992-05-15 1994-11-22 Kimberly-Clark Corporation Garment of durable nonwoven fabric
DE4237298C2 (en) * 1992-10-05 1996-04-18 Silver Plastics Gmbh & Co Kg Hydrophobic composite material made of non-woven layers made of thermoplastic
US5336707A (en) * 1992-11-06 1994-08-09 Kimberly-Clark Corporation Surface segregation through the use of a block copolymer
CA2097630A1 (en) * 1992-12-29 1994-06-30 Ann Louise Mccormack Stretch-pillowed, bulked laminate
CA2105026C (en) * 1993-04-29 2003-12-16 Henry Louis Griesbach Iii Shaped nonwoven fabric and method for making the same
US5393831A (en) * 1993-05-05 1995-02-28 Kimberly-Clark Corporation Shelf stable nonwoven fabrics and films
US5512358A (en) * 1993-09-22 1996-04-30 Kimberly-Clark Corporation Multi-component polymeric strands including a butene polymer and nonwoven fabric and articles made therewith
US5409642A (en) * 1993-10-06 1995-04-25 Exxon Chemical Patents Inc. Melt blowing of tubular filters
US5538019A (en) * 1993-11-03 1996-07-23 Schweitzer-Mauduit International, Inc. Spunbond cigarette filter
CA2136675C (en) * 1993-12-17 2005-02-15 Kimberly-Clark Worldwide, Inc. Liquid permeable, quilted film laminates
CA2120645C (en) * 1993-12-21 2004-02-10 Andrew Scott Burnes Compressively resilient loop structure for hook and loop fastener systems
CA2138584C (en) * 1993-12-30 2006-08-15 Wanda Walton Jackson Apertured film/nonwoven composite for personal care absorbent articles and the like
CA2124237C (en) * 1994-02-18 2004-11-02 Bernard Cohen Improved nonwoven barrier and method of making the same
US5605739A (en) * 1994-02-25 1997-02-25 Kimberly-Clark Corporation Nonwoven laminates with improved peel strength
ES2136214T3 (en) * 1994-03-04 1999-11-16 Kimberly Clark Co FIBROUS NON-WOVEN FABRIC WITH IMPROVED LIQUID SPILL CONTROL FOR ABSORBENT PERSONAL HYGIENE AND SIMILAR ITEMS.
US5486166A (en) * 1994-03-04 1996-01-23 Kimberly-Clark Corporation Fibrous nonwoven web surge layer for personal care absorbent articles and the like
US5487189A (en) 1994-03-16 1996-01-30 Kimberly-Clark Corporation Coveralls having reduced seams and seamless shoulder construction and method of manufacture
US5413811A (en) * 1994-03-18 1995-05-09 Kimberly-Clark Corporation Chemical and mechanical softening process for nonwoven web
US5498463A (en) * 1994-03-21 1996-03-12 Kimberly-Clark Corporation Polyethylene meltblown fabric with barrier properties
US5482765A (en) * 1994-04-05 1996-01-09 Kimberly-Clark Corporation Nonwoven fabric laminate with enhanced barrier properties
US5688157A (en) * 1994-04-05 1997-11-18 Kimberly-Clark Worldwide, Inc. Nonwoven fabric laminate with enhanced barrier properties
ES2135064T5 (en) * 1994-04-29 2003-04-01 Kimberly Clark Co ELASTIC GENERATES OF MULTIPLE LAYERS, NOT FABRICS, FIBROSO, SHORT.
CA2145893A1 (en) 1994-05-31 1995-12-01 Leon Eugene Chambers, Jr. Tampon with integral cover
CA2148392A1 (en) 1994-06-06 1995-12-07 Ann Louise Mccormack Stretch-thinned film and nonwoven laminate
CA2138195A1 (en) * 1994-06-08 1995-12-09 James P. Brown Nonwoven fabric laminate
CA2136576C (en) * 1994-06-27 2005-03-08 Bernard Cohen Improved nonwoven barrier and method of making the same
US5455110A (en) * 1994-06-29 1995-10-03 Kimberly-Clark Corporation Nonwoven laminated fabrics
US5460884A (en) * 1994-08-25 1995-10-24 Kimberly-Clark Corporation Soft and strong thermoplastic polymer fibers and nonwoven fabric made therefrom
US5702377A (en) * 1994-09-01 1997-12-30 Kimberly-Clark Worldwide, Inc. Wet liner for child toilet training aid
US6171695B1 (en) 1994-09-21 2001-01-09 Kimberly-Clark Worldwide, Inc. Thin absorbent pads for food products
CA2161712A1 (en) * 1994-11-03 1996-05-04 Ketan N. Shah Silane modified elastomeric compositions and articles made therefrom
US5681646A (en) * 1994-11-18 1997-10-28 Kimberly-Clark Worldwide, Inc. High strength spunbond fabric from high melt flow rate polymers
AU4961696A (en) * 1994-12-08 1996-06-26 Kimberly-Clark Worldwide, Inc. Method of forming a particle size gradient in an absorbent article
ZA9510604B (en) * 1994-12-20 1996-07-03 Kimberly Clark Co Low gauge films and film/nonwoven laminates
US6309736B1 (en) 1994-12-20 2001-10-30 Kimberly-Clark Worldwide, Inc. Low gauge films and film/nonwoven laminates
ZA9510307B (en) * 1994-12-20 1996-06-11 Kimberly Clark Co Mechanically compatibilized film/non-woven laminates
TW330217B (en) 1994-12-20 1998-04-21 Kimberly Clark Co Low gauge films and film/nonwoven laminates
US5707468A (en) * 1994-12-22 1998-01-13 Kimberly-Clark Worldwide, Inc. Compaction-free method of increasing the integrity of a nonwoven web
CA2153278A1 (en) * 1994-12-30 1996-07-01 Bernard Cohen Nonwoven laminate barrier material
US5540976A (en) * 1995-01-11 1996-07-30 Kimberly-Clark Corporation Nonwoven laminate with cross directional stretch
US5714256A (en) * 1995-01-27 1998-02-03 Kimberly-Clark Worldwide, Inc. Method of providing a nonwoven fabric with a wide bonding window
US5652051A (en) * 1995-02-27 1997-07-29 Kimberly-Clark Worldwide, Inc. Nonwoven fabric from polymers containing particular types of copolymers and having an aesthetically pleasing hand
US20050147787A1 (en) * 2000-08-08 2005-07-07 Bailey Larry M. Carpet construction and carpet backings for same
US5597647A (en) * 1995-04-20 1997-01-28 Kimberly-Clark Corporation Nonwoven protective laminate
US5549868A (en) * 1995-04-21 1996-08-27 Kimberly-Clark Corporation Method of sterilizing an article
CA2217123A1 (en) * 1995-05-02 1996-11-07 Steven Ray Stopper Nonwoven-film laminates
CA2219838A1 (en) * 1995-05-25 1996-11-28 Kimberly-Clark Worldwide, Inc. Filter matrix
US5522810A (en) * 1995-06-05 1996-06-04 Kimberly-Clark Corporation Compressively resistant and resilient fibrous nonwoven web
WO1996039032A1 (en) * 1995-06-06 1996-12-12 Kimberly-Clark Worldwide, Inc. Microporous fabric containing a microbial adsorbent
WO1996039031A1 (en) * 1995-06-06 1996-12-12 Kimberly-Clark Worldwide, Inc. Microporous film containing a microbial adsorbent
MX9602398A (en) * 1995-06-23 1997-02-28 Kimberly Clark Co Modified polymeric material having improved wettability.
US5952251A (en) * 1995-06-30 1999-09-14 Kimberly-Clark Corporation Coformed dispersible nonwoven fabric bonded with a hybrid system
US5916678A (en) * 1995-06-30 1999-06-29 Kimberly-Clark Worldwide, Inc. Water-degradable multicomponent fibers and nonwovens
US5853859A (en) * 1995-07-07 1998-12-29 Kimberly-Clark Worldwide, Inc. Room temperature latex printing
ZA965786B (en) * 1995-07-19 1997-01-27 Kimberly Clark Co Nonwoven barrier and method of making the same
US6384297B1 (en) 1999-04-03 2002-05-07 Kimberly-Clark Worldwide, Inc. Water dispersible pantiliner
US5662978A (en) * 1995-09-01 1997-09-02 Kimberly-Clark Worldwide, Inc. Protective cover fabric including nonwovens
US5822884A (en) * 1996-07-11 1998-10-20 Kimberly-Clark Worldwide, Inc. Slip-resistant shoe cover
US5798078A (en) * 1996-07-11 1998-08-25 Kimberly-Clark Worldwide, Inc. Sulfonated polymers and method of sulfonating polymers
US5709735A (en) * 1995-10-20 1998-01-20 Kimberly-Clark Worldwide, Inc. High stiffness nonwoven filter medium
US5658268A (en) * 1995-10-31 1997-08-19 Kimberly-Clark Worldwide, Inc. Enhanced wet signal response in absorbent articles
US5687916A (en) * 1995-11-06 1997-11-18 Kimberly-Clark Worldwide, Inc. Method of nonwoven reclaim
US5709921A (en) * 1995-11-13 1998-01-20 Kimberly-Clark Worldwide, Inc. Controlled hysteresis nonwoven laminates
US5834384A (en) * 1995-11-28 1998-11-10 Kimberly-Clark Worldwide, Inc. Nonwoven webs with one or more surface treatments
US5711994A (en) * 1995-12-08 1998-01-27 Kimberly-Clark Worldwide, Inc. Treated nonwoven fabrics
US5639541A (en) * 1995-12-14 1997-06-17 Kimberly-Clark Corporation Oil absorbent material with superior abrasive properties
CA2238440C (en) * 1995-12-15 2004-07-27 Kimberly-Clark Worldwide, Inc. High temperature, high speed rotary valve
US5763041A (en) * 1995-12-21 1998-06-09 Kimberly-Clark Worldwide, Inc. Laminate material
US5607735A (en) * 1995-12-22 1997-03-04 Kimberly-Clark Corporation High efficiency dust sock
US6060638A (en) * 1995-12-22 2000-05-09 Kimberly-Clark Worldwide, Inc. Matched permeability liner/absorbent structure system for absorbent articles and the like
US5817584A (en) * 1995-12-22 1998-10-06 Kimberly-Clark Worldwide, Inc. High efficiency breathing mask fabrics
US5810954A (en) * 1996-02-20 1998-09-22 Kimberly-Clark Worldwide, Inc. Method of forming a fine fiber barrier fabric with improved drape and strength of making same
US5695849A (en) * 1996-02-20 1997-12-09 Kimberly-Clark Worldwide Inc. Elastic, breathable, barrier fabric
US5952252A (en) * 1996-02-20 1999-09-14 Kimberly-Clark Worldwide, Inc. Fully elastic nonwoven fabric laminate
US6103647A (en) * 1996-03-14 2000-08-15 Kimberly-Clark Worldwide, Inc. Nonwoven fabric laminate with good conformability
US5707735A (en) * 1996-03-18 1998-01-13 Midkiff; David Grant Multilobal conjugate fibers and fabrics
US5667562A (en) * 1996-04-19 1997-09-16 Kimberly-Clark Worldwide, Inc. Spunbond vacuum cleaner webs
US5770531A (en) * 1996-04-29 1998-06-23 Kimberly--Clark Worldwide, Inc. Mechanical and internal softening for nonwoven web
US5699791A (en) * 1996-06-04 1997-12-23 Kimberley Clark Corporation Universal fit face mask
US6040255A (en) * 1996-06-25 2000-03-21 Kimberly-Clark Worldwide, Inc. Photostabilization package usable in nonwoven fabrics and nonwoven fabrics containing same
US5935612A (en) * 1996-06-27 1999-08-10 Kimberly-Clark Worldwide, Inc. Pneumatic chamber having grooved walls for producing uniform nonwoven fabrics
US6171433B1 (en) 1996-07-17 2001-01-09 Iowa State University Research Foundation, Inc. Method of making polymer powders and whiskers as well as particulate products of the method and atomizing apparatus
US5762734A (en) * 1996-08-30 1998-06-09 Kimberly-Clark Worldwide, Inc. Process of making fibers
US6028016A (en) * 1996-09-04 2000-02-22 Kimberly-Clark Worldwide, Inc. Nonwoven Fabric Substrates Having a Durable Treatment
US6296936B1 (en) 1996-09-04 2001-10-02 Kimberly-Clark Worldwide, Inc. Coform material having improved fluid handling and method for producing
US6060636A (en) * 1996-09-04 2000-05-09 Kimberly-Clark Worldwide, Inc. Treatment of materials to improve handling of viscoelastic fluids
US5932495A (en) * 1996-09-04 1999-08-03 Kimberly-Clark Worldwide, Inc. Enhanced odor absorption by natural and synthetic polymers
US6017832A (en) * 1996-09-04 2000-01-25 Kimberly-Clark Worldwide, Inc. Method and composition for treating substrates for wettability
US6204208B1 (en) 1996-09-04 2001-03-20 Kimberly-Clark Worldwide, Inc. Method and composition for treating substrates for wettability and skin wellness
US5789065A (en) * 1996-10-11 1998-08-04 Kimberly-Clark Worldwide, Inc. Laminated fabric having cross-directional elasticity and method for producing same
US5910224A (en) * 1996-10-11 1999-06-08 Kimberly-Clark Worldwide, Inc. Method for forming an elastic necked-bonded material
US5853881A (en) * 1996-10-11 1998-12-29 Kimberly-Clark Worldwide, Inc. Elastic laminates with improved hysteresis
US5695377A (en) * 1996-10-29 1997-12-09 Kimberly-Clark Worldwide, Inc. Nonwoven fabrics having improved fiber twisting and crimping
US5820973A (en) 1996-11-22 1998-10-13 Kimberly-Clark Worldwide, Inc. Heterogeneous surge material for absorbent articles
US6152904A (en) 1996-11-22 2000-11-28 Kimberly-Clark Worldwide, Inc. Absorbent articles with controllable fill patterns
US5843063A (en) * 1996-11-22 1998-12-01 Kimberly-Clark Worldwide, Inc. Multifunctional absorbent material and products made therefrom
US5879343A (en) * 1996-11-22 1999-03-09 Kimberly-Clark Worldwide, Inc. Highly efficient surge material for absorbent articles
US5874160A (en) * 1996-12-20 1999-02-23 Kimberly-Clark Worldwide, Inc. Macrofiber nonwoven bundle
KR100499299B1 (en) 1996-12-20 2005-07-04 킴벌리-클라크 월드와이드, 인크. Absorbent Articles Having Reduced Outer Cover Dampness
US6001460A (en) * 1996-12-30 1999-12-14 Kimberly-Clark Worldwide, Inc. Elastic laminated fabric material and method of making same
US5935512A (en) * 1996-12-30 1999-08-10 Kimberly-Clark Worldwide, Inc. Nonwoven process and apparatus
DE19654798A1 (en) 1996-12-31 1998-07-02 Kirchhoff International Gmbh M Cell construction for bed material and the like
US5762857A (en) * 1997-01-31 1998-06-09 Weng; Jian Method for producing nonwoven web using pulsed electrostatic charge
US5964743A (en) 1997-02-27 1999-10-12 Kimberly-Clark Worldwide, Inc. Elastic absorbent material for personal care products
US6105578A (en) 1997-02-27 2000-08-22 Kimberly-Clark Worldwide, Inc. Equipment drape for use with an interventional magnetic resonance imaging device
US5883026A (en) * 1997-02-27 1999-03-16 Kimberly-Clark Worldwide, Inc. Face masks including a spunbonded/meltblown/spunbonded laminate
US5919177A (en) * 1997-03-28 1999-07-06 Kimberly-Clark Worldwide, Inc. Permeable fiber-like film coated nonwoven
US5931823A (en) * 1997-03-31 1999-08-03 Kimberly-Clark Worldwide, Inc. High permeability liner with improved intake and distribution
US6156421A (en) * 1997-04-02 2000-12-05 Kimberly-Clark Worldwide, Inc. Stretched-filled microporous films and methods of making the same
US6192521B1 (en) 1997-04-08 2001-02-27 Kimberly-Clark Worldwide, Inc. Process for manufacturing shorts or trousers
ES2274568T3 (en) 1997-04-08 2007-05-16 Kimberly-Clark Worldwide, Inc. CLOTHES FOR DRESSING OF A SINGLE USE AND ITS MANUFACTURING PROCESS.
US5907872A (en) * 1997-04-08 1999-06-01 Kimberly-Clark Worldwide, Inc. Process for manufacturing sleeveless tops, shirts, or blouses
US6179939B1 (en) 1997-05-12 2001-01-30 Kimberly-Clark Worldwide, Inc. Methods of making stretched filled microporous films
US6608236B1 (en) 1997-05-14 2003-08-19 Kimberly-Clark Worldwide, Inc. Stabilized absorbent material and systems for personal care products having controlled placement of visco-elastic fluids
US6172276B1 (en) 1997-05-14 2001-01-09 Kimberly-Clark Worldwide, Inc. Stabilized absorbent material for improved distribution performance with visco-elastic fluids
US5883231A (en) * 1997-05-14 1999-03-16 Kimberly-Clark Worldwide, Inc. Artificial menses fluid
US5901706A (en) 1997-06-09 1999-05-11 Kimberly-Clark Worldwide, Inc. Absorbent surgical drape
US7344732B2 (en) * 2002-01-10 2008-03-18 Kimberly-Clark Worldwide, Inc. Medicated tampon
US7341737B2 (en) * 1997-06-11 2008-03-11 Kimberly-Clark Worldwide, Inc. Medicated tampon
US6066221A (en) * 1997-06-17 2000-05-23 Kimberly-Clark Worldwide, Inc. Method of using zoned hot air knife
US5853635A (en) * 1997-06-18 1998-12-29 Kimberly-Clark Worldwide, Inc. Method of making heteroconstituent and layered nonwoven materials
US6346097B1 (en) 1997-08-08 2002-02-12 Kimberly-Clark Worldwide, Inc. Personal care product with expandable BM containment
US6420625B1 (en) 1997-09-12 2002-07-16 Kimberly-Clark Worldwide, Inc. Breathable, liquid-impermeable, apertured film/nonwoven laminate and process for making same
US5964742A (en) * 1997-09-15 1999-10-12 Kimberly-Clark Worldwide, Inc. Nonwoven bonding patterns producing fabrics with improved strength and abrasion resistance
US6909028B1 (en) 1997-09-15 2005-06-21 Kimberly-Clark Worldwide, Inc. Stable breathable elastic garments
US6238767B1 (en) 1997-09-15 2001-05-29 Kimberly-Clark Worldwide, Inc. Laminate having improved barrier properties
US6315806B1 (en) 1997-09-23 2001-11-13 Leonard Torobin Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby
US6183670B1 (en) 1997-09-23 2001-02-06 Leonard Torobin Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby
US5965468A (en) * 1997-10-31 1999-10-12 Kimberly-Clark Worldwide, Inc. Direct formed, mixed fiber size nonwoven fabrics
US6537932B1 (en) 1997-10-31 2003-03-25 Kimberly-Clark Worldwide, Inc. Sterilization wrap, applications therefor, and method of sterilizing
WO1999022619A1 (en) 1997-10-31 1999-05-14 Kimberly-Clark Worldwide, Inc. Creped nonwoven materials and liner
US6209227B1 (en) 1997-10-31 2001-04-03 Kimberly-Clark Worldwide, Inc. Shoe cover with slip-resistant sole
US6007914A (en) * 1997-12-01 1999-12-28 3M Innovative Properties Company Fibers of polydiorganosiloxane polyurea copolymers
US6083856A (en) * 1997-12-01 2000-07-04 3M Innovative Properties Company Acrylate copolymeric fibers
US6107222A (en) * 1997-12-01 2000-08-22 3M Innovative Properties Company Repositionable sheets with a nonwoven web of pressure-sensitive adhesive fibers
WO1999032165A1 (en) * 1997-12-23 1999-07-01 Kimberly-Clark Worldwide, Inc. Pulp and superabsorbent composite for improved intake performance
AU3190399A (en) 1998-03-25 1999-10-18 Kimberly-Clark Worldwide, Inc. Leakage reducing construction for absorbent articles
US6047413A (en) 1998-03-31 2000-04-11 Kimberly-Clark Worldwide, Inc. Conformable backpack for encapsulated chemical protection suit
US6164948A (en) * 1998-05-08 2000-12-26 Kimberly-Clark Worldwide, Inc. Extrusion die system with removable insert
WO1999060975A1 (en) 1998-05-29 1999-12-02 Kimberly-Clark Worldwide, Inc. Disposable absorbent articles with bm containment
US6172153B1 (en) 1998-06-12 2001-01-09 Montell North America Inc. Olefin polymer composition having low smoke generation and fiber, film and fabric prepared therefrom
US6365088B1 (en) 1998-06-26 2002-04-02 Kimberly-Clark Worldwide, Inc. Electret treatment of high loft and low density nonwoven webs
US6797377B1 (en) 1998-06-30 2004-09-28 Kimberly-Clark Worldwide, Inc. Cloth-like nonwoven webs made from thermoplastic polymers
BR9911922A (en) 1998-07-10 2001-03-27 Kimberly Clark Woldwide Inc Dressing piece for use in absorbing and containing excrement with improved absorbency system
US7005394B1 (en) 1998-07-10 2006-02-28 3M Innovative Properties Company Tackified thermoplastic-epoxy pressure sensitive adhesives
US6019152A (en) 1998-07-29 2000-02-01 Kimberly-Clark Worldwide, Inc. Apparatus for heating nonwoven webs
US6117379A (en) * 1998-07-29 2000-09-12 Kimberly-Clark Worldwide, Inc. Method and apparatus for improved quenching of nonwoven filaments
US6203889B1 (en) 1998-07-30 2001-03-20 Kimberly-Clark Worldwide, Inc. Nonwoven webs having zoned migration of internal additives
US6649548B1 (en) 1998-10-02 2003-11-18 Kimberly-Clark Worldwide, Inc. Nonwoven web and film laminate with improved strength and method of making the same
US6649099B2 (en) 1998-10-30 2003-11-18 Kimberly-Clark Worldwide, Inc. Method of incorporating fluid treatment agents into absorbent composites
US6867344B2 (en) * 1998-10-30 2005-03-15 Kimberly-Clark Worldwide, Inc. Absorbent article with fluid treatment agent
US6350711B1 (en) * 1998-10-30 2002-02-26 Kimberly-Clark Worldwide, Inc. Absorbent article with fluid treatment agent
US6676648B2 (en) 1998-11-04 2004-01-13 Kimberly-Clark Worldwide, Inc. Absorbent garment having asymmetric longitudinal absorbent pad
US6589892B1 (en) 1998-11-13 2003-07-08 Kimberly-Clark Worldwide, Inc. Bicomponent nonwoven webs containing adhesive and a third component
US6686303B1 (en) 1998-11-13 2004-02-03 Kimberly-Clark Worldwide, Inc. Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component
US6362389B1 (en) 1998-11-20 2002-03-26 Kimberly-Clark Worldwide, Inc. Elastic absorbent structures
US6300258B1 (en) 1999-08-27 2001-10-09 Kimberly-Clark Worldwide, Inc. Nonwovens treated with surfactants having high polydispersities
US20010009711A1 (en) * 1998-12-16 2001-07-26 Margaret Gwyn Latimer Resilient fluid management materials for personal care products
US6610903B1 (en) 1998-12-18 2003-08-26 Kimberly-Clark Worldwide, Inc. Materials for fluid management in personal care products
US6245271B1 (en) 1998-12-18 2001-06-12 Kimberly-Clark Worldwide, Inc. Reduced die lip buildup extrusion of polymer compositions
US6723669B1 (en) * 1999-12-17 2004-04-20 Kimberly-Clark Worldwide, Inc. Fine multicomponent fiber webs and laminates thereof
US6613028B1 (en) 1998-12-22 2003-09-02 Kimberly-Clark Worldwide, Inc. Transfer delay for increased access fluff capacity
CO5150202A1 (en) 1998-12-31 2002-04-29 Kimberly Clark Co COMPOSITION OF FACIAL TISSU AND METHOD FOR USE FOR THE SECRETARY OF SKIN IRRITANTS OF THE NASAL SECRETION
US6583076B1 (en) 1999-01-08 2003-06-24 Kimberly-Clark Worldwide, Inc. Nonwoven fabrics prepared using visbroken single-site catalyzed polypropylene
US7025123B1 (en) 1999-01-29 2006-04-11 Kimberly-Clark Worldwide, Inc. Fluid distribution system for thermal transfer rollers
WO2000045762A1 (en) 1999-02-02 2000-08-10 The Procter & Gamble Company Disposable garment
US6765125B2 (en) 1999-02-12 2004-07-20 Kimberly-Clark Worldwide, Inc. Distribution—Retention material for personal care products
US6509284B1 (en) 1999-02-26 2003-01-21 Kimberly-Clark Worldwide, Inc. Layer materials treated with surfacant-modified chelating agents
US6479150B1 (en) 1999-02-26 2002-11-12 Kimberly-Clark Worldwide, Inc. Layer materials treated with surfactant-modified hydrophobic odor control agents
US6433243B1 (en) 1999-02-26 2002-08-13 Kimberly-Clark Worldwide, Inc. Water permeable porous layer materials treated with surfactant-modified cyclodextrins
US6534149B1 (en) 1999-04-03 2003-03-18 Kimberly-Clark Worldwide, Inc. Intake/distribution material for personal care products
US6348253B1 (en) 1999-04-03 2002-02-19 Kimberly-Clark Worldwide, Inc. Sanitary pad for variable flow management
US6409883B1 (en) 1999-04-16 2002-06-25 Kimberly-Clark Worldwide, Inc. Methods of making fiber bundles and fibrous structures
US6613029B1 (en) 1999-04-28 2003-09-02 Kimberly-Clark Worldwide, Inc. Vapor swept diaper
US6281407B1 (en) 1999-05-28 2001-08-28 Kimberly-Clark Worldwide, Inc. Personal care product containing a product agent
US6098557A (en) * 1999-06-23 2000-08-08 Kimberly-Clark Worldwide, Inc. High speed method for producing pant-like garments
US6177607B1 (en) 1999-06-25 2001-01-23 Kimberly-Clark Worldwide, Inc. Absorbent product with nonwoven dampness inhibitor
US6461457B1 (en) 1999-06-30 2002-10-08 Kimberly-Clark Worldwide, Inc. Dimensionally stable, breathable, stretch-thinned, elastic films
US6642429B1 (en) 1999-06-30 2003-11-04 Kimberly-Clark Worldwide, Inc. Personal care articles with reduced polymer fibers
US6423883B1 (en) 1999-07-13 2002-07-23 Kimberly-Clark Worldwide, Inc. Liquid reception medium with liquid activated mechanical mass transport means
US6673980B1 (en) 1999-07-16 2004-01-06 Kimberly-Clark Worldwide, Inc. Absorbent product with creped nonwoven dampness inhibitor
US6499981B1 (en) * 1999-07-26 2002-12-31 Kabushiki Kaisha Kobe Seiko Sho Drawing unit
JP2003506581A (en) * 1999-07-28 2003-02-18 キンバリー クラーク ワールドワイド インコーポレイテッド Mechanical cross-extensible cloth-like nonwovens for facings and liners
US6680423B1 (en) 1999-08-27 2004-01-20 Kimberly-Clark Worldwide, Inc. Absorbent article having reinforced elastic absorbent core
US7137971B2 (en) * 1999-08-27 2006-11-21 Kimberly-Clark Worldwide, Inc. Incontinence garment having pleated extensible liquid retention layer
US6350399B1 (en) 1999-09-14 2002-02-26 Kimberly-Clark Worldwide, Inc. Method of forming a treated fiber and a treated fiber formed therefrom
US6663611B2 (en) 1999-09-28 2003-12-16 Kimberly-Clark Worldwide, Inc. Breathable diaper with low to moderately breathable inner laminate and more breathable outer cover
US6613704B1 (en) * 1999-10-13 2003-09-02 Kimberly-Clark Worldwide, Inc. Continuous filament composite nonwoven webs
US6777056B1 (en) 1999-10-13 2004-08-17 Kimberly-Clark Worldwide, Inc. Regionally distinct nonwoven webs
US6565969B1 (en) 1999-10-21 2003-05-20 3M Innovative Properties Company Adhesive article
US6298855B1 (en) 1999-10-22 2001-10-09 Kimberly-Clark Worldwide, Inc. Surgical drape
US6506456B1 (en) 1999-10-29 2003-01-14 Kimberly-Clark Worldwide, Inc. Method for application of a fluid on a substrate formed as a film or web
US6479154B1 (en) 1999-11-01 2002-11-12 Kimberly-Clark Worldwide, Inc. Coextruded, elastomeric breathable films, process for making same and articles made therefrom
US6794024B1 (en) 1999-11-01 2004-09-21 Kimberly-Clark Worldwide, Inc. Styrenic block copolymer breathable elastomeric films
EP1227769A1 (en) 1999-11-08 2002-08-07 Kimberly-Clark Worldwide, Inc. Slip-resistant and absorbent material
US6267252B1 (en) 1999-12-08 2001-07-31 Kimberly-Clark Worldwide, Inc. Fine particle filtration medium including an airlaid composite
US6632212B1 (en) 1999-12-14 2003-10-14 Kimberly-Clark Worldwide, Inc. Breathable laminate permanently conformable to the contours of a wearer
US6645388B2 (en) 1999-12-22 2003-11-11 Kimberly-Clark Corporation Leukocyte depletion filter media, filter produced therefrom, method of making same and method of using same
US6653524B2 (en) 1999-12-23 2003-11-25 Kimberly-Clark Worldwide, Inc. Nonwoven materials with time release additives
US6482194B1 (en) 1999-12-23 2002-11-19 Kimberly-Clark Worldwide, Inc. Pocket design for absorbent article
BR0016788A (en) * 1999-12-27 2003-02-25 Kimberly Clark Worldwid Inc Fibers providing active controlled delivery agent
US6248833B1 (en) 2000-02-29 2001-06-19 Exxon Mobil Chemical Patents Inc. Fibers and fabrics prepared with propylene impact copolymers
US6440882B1 (en) 2000-02-29 2002-08-27 Exxon Mobil Chemical Patents Inc. Fibers and fabrics prepared with propylene impact copolymers
US6719744B2 (en) 2000-03-15 2004-04-13 3M Innovative Properties Company Elastic closure tape tab for disposable absorbent articles such as diapers
US6647549B2 (en) 2000-04-06 2003-11-18 Kimberly-Clark Worldwide, Inc. Finger glove
US7012169B2 (en) * 2000-04-06 2006-03-14 Kimberly-Clark Worldwide, Inc. Disposable finger sleeve for appendages
US6721987B2 (en) * 2000-04-06 2004-04-20 Kimberly-Clark Worldwide, Inc. Dental wipe
US20030045844A1 (en) * 2000-04-14 2003-03-06 Taylor Jack Draper Dimensionally stable, breathable, stretch-thinned, elastic films
US6626961B1 (en) 2000-04-27 2003-09-30 Kimberly-Clark Worldwide, Inc. Nonwovens modified with petrolatum
US6613703B1 (en) 2000-04-27 2003-09-02 Kimberly-Clark Worldwide, Inc. Thermoplastic nonwoven web chemically reacted with a cyclodextrin compound
US6821915B2 (en) 2000-05-03 2004-11-23 Kimberly-Clark Worldwide, Inc. Film having high breathability induced by low cross-directional stretch
GB0011351D0 (en) * 2000-05-12 2000-06-28 British American Tobacco Co Tobacco reconstitution
US6833179B2 (en) 2000-05-15 2004-12-21 Kimberly-Clark Worldwide, Inc. Targeted elastic laminate having zones of different basis weights
US20050106971A1 (en) * 2000-05-15 2005-05-19 Thomas Oomman P. Elastomeric laminate with film and strands suitable for a nonwoven garment
US8182457B2 (en) * 2000-05-15 2012-05-22 Kimberly-Clark Worldwide, Inc. Garment having an apparent elastic band
US6432248B1 (en) 2000-05-16 2002-08-13 Kimberly-Clark Worldwide, Inc. Process for making a garment with refastenable sides and butt seams
US6447628B1 (en) * 2000-05-16 2002-09-10 Kimberly-Clark Worldwide, Inc. Process for making a garment with refastenable sides
US6409858B1 (en) 2000-05-16 2002-06-25 Kimberly-Clark Worldwide, Inc. Process for making a garment with refastenable lap seams
US6893426B1 (en) 2000-05-16 2005-05-17 Kimberly-Clark Worldwide, Inc. Absorbent article with refastenable sides
US6395115B1 (en) 2000-05-16 2002-05-28 Kimberly-Clark Worldwide, Inc. Process for making a garment with dual refastenable sides and butt seams
US6432243B1 (en) 2000-05-16 2002-08-13 Kimberly-Clark Worldwide, Inc. Process for making a garment with dual refastenable lap seams
US6815383B1 (en) 2000-05-24 2004-11-09 Kimberly-Clark Worldwide, Inc. Filtration medium with enhanced particle holding characteristics
US7687681B2 (en) 2000-05-26 2010-03-30 Kimberly-Clark Worldwide, Inc. Menses specific absorbent systems
US6600086B1 (en) 2000-05-31 2003-07-29 Kimberly-Clark Worldwide, Inc. Breathable diaper outer cover with foam dampness inhibitor
US6754919B2 (en) 2000-06-01 2004-06-29 Kimberly-Clark Worldwide, Inc. Protective cover article
US6497188B2 (en) 2000-06-07 2002-12-24 Kimberly-Clark Worldwide, Inc. Alternate process for manufacturing shirts with inset sleeves
US6557479B2 (en) 2000-06-07 2003-05-06 Kimberly-Clark Worldwide, Inc. Process for manufacturing shirts with inset sleeves
US6578504B2 (en) 2000-06-07 2003-06-17 Kimberly-Clark Worldwide, Inc. Process for manufacturing unibody shirts with sleeves
US6830543B2 (en) * 2000-06-07 2004-12-14 Kimberly-Clark Worldwide, Inc. Process for manufacturing unibody shirts with sleeves
US6435116B2 (en) 2000-06-07 2002-08-20 Kimberly-Clark Worldwide, Inc. Process for manufacturing shirts with raglan sleeves
MXPA02012116A (en) 2000-06-07 2003-04-25 Kimberly Clark Co Process for manufacturing shirts with inset sleeves.
JP4529240B2 (en) * 2000-06-13 2010-08-25 ソニー株式会社 Information processing apparatus and method, information processing system, and recording medium
DE10035679A1 (en) * 2000-07-21 2002-01-31 Inst Neue Mat Gemein Gmbh Nanoscale corundum powder, sintered bodies made therefrom and process for their production
US6440246B1 (en) 2000-08-15 2002-08-27 Kimberly-Clark Worldwide, Inc. Method of applying curved leg elastics using rotating disks
US6540857B1 (en) 2000-08-15 2003-04-01 Kimberly-Clark Worldwide, Inc. Method of applying curved leg elastics using curved pucks
US6585841B1 (en) 2000-08-15 2003-07-01 Kimberly-Clark Worldwide, Inc. Method of optimizing spacing between elastic members in applying leg elastics
US6375769B1 (en) 2000-08-15 2002-04-23 Kimberly-Clark Worldwide, Inc. Method of applying curved leg elastics using pucks with curved surfaces
US6635041B1 (en) 2000-08-15 2003-10-21 Kimberly-Clark Worldwide, Inc. Absorbent garment with asymmetrical leg elastic tension
US6689115B1 (en) 2000-08-15 2004-02-10 Kimberly-Clark Worldwide, Inc. Absorbent garment with asymmetrical leg elastic spacing
US6569275B1 (en) 2000-08-15 2003-05-27 Kimberly-Clark Worldwide, Inc. Method of optimizing tension in applying leg elastics
US6652504B1 (en) 2000-08-15 2003-11-25 Kimberly-Clark Worldwide, Inc. Pant-like absorbent garments having curved leak guard flaps
US6613033B1 (en) 2000-08-15 2003-09-02 Kimberly-Clark Worldwide, Inc. Pant-like absorbent garments having curved leg cuffs
US6679869B1 (en) 2000-08-16 2004-01-20 Kimberly-Clark Worldwide, Inc. Absorbent article having an elastic outer cover
US6908458B1 (en) 2000-08-25 2005-06-21 Kimberly-Clark Worldwide, Inc. Swellable structure having a pleated cover material
US6632205B1 (en) 2000-08-25 2003-10-14 Kimberly-Clark Worldwide, Inc. Structure forming a support channel adjacent a gluteal fold
US6627564B1 (en) 2000-08-31 2003-09-30 Kimberly-Clark Worldwide, Inc. Composite elastic in one direction and extensible in another direction
US6649547B1 (en) 2000-08-31 2003-11-18 Kimberly-Clark Worldwide, Inc. Integrated nonwoven laminate material
US6468255B1 (en) 2000-08-31 2002-10-22 Kimberly-Clark Worldwide, Inc. Front/back separation barrier
US20050106970A1 (en) * 2000-09-01 2005-05-19 Stanitis Gary E. Melt processable perfluoropolymer forms
US20030082968A1 (en) * 2000-09-28 2003-05-01 Varunesh Sharma Nonwoven materials having controlled chemical gradients
US6797226B2 (en) 2000-10-10 2004-09-28 Kimberly-Clark Worldwide, Inc. Process of making microcreped wipers
US6657100B1 (en) 2000-10-25 2003-12-02 Kimberly-Clark Worldwide, Inc. Toilet training article containing an astringent agent
US6576810B1 (en) * 2000-10-25 2003-06-10 Kimberly-Clark Worldwide, Inc. Toilet training article containing an effervescent agent
US6627788B1 (en) 2000-10-27 2003-09-30 Kimberly-Clark Worldwide, Inc. Swimwear with water drain
US20020099107A1 (en) * 2000-10-27 2002-07-25 Tucker John David Textile fibers made from strengthened polypropylene
US6869424B1 (en) 2000-10-27 2005-03-22 Kimberly-Clark Worldwide, Inc. Stretchable absorbent garment with non-stretchable liner
US6709254B2 (en) 2000-10-27 2004-03-23 Kimberly-Clark Worldwide, Inc. Tiltable web former support
US6969378B1 (en) 2000-10-27 2005-11-29 Kimberly-Clark Worldwide, Inc. Biaxial stretch garment
US6822136B1 (en) 2000-10-27 2004-11-23 Kimberly-Clark Worldwide, Inc. Swimwear with built-in draining mechanism
US7628778B2 (en) 2000-10-27 2009-12-08 Kimberly-Clark Worldwide, Inc. Absorbent article with self-forming seals
US7608069B2 (en) * 2000-10-27 2009-10-27 Kimberly-Clark Worldwide, Inc. Absorbent article with captured leg elastics
US6797856B1 (en) 2000-10-27 2004-09-28 Kimberly-Clark Worldwide Inc. Microbial management in swimwear
US6881205B2 (en) 2000-10-27 2005-04-19 Kimberly-Clark Worldwide, Inc. Independence of components in absorbent articles
US6823530B2 (en) 2000-10-27 2004-11-30 Kimberly-Clark Worldwide, Inc. Antimicrobial treatment for swimwear
US6982231B1 (en) 2000-10-27 2006-01-03 Kimberly-Clark Worldwide, Inc. Elastomeric, breathable laminate with enhanced breathability upon extension
US6914018B1 (en) 2000-10-27 2005-07-05 Kimberly-Clark Worldwide, Inc. Biaxial stretch, breathable laminate with cloth-like aesthetics and method for making same
US6488670B1 (en) 2000-10-27 2002-12-03 Kimberly-Clark Worldwide, Inc. Corrugated absorbent system for hygienic products
US6702800B1 (en) 2000-10-27 2004-03-09 Kimberly-Clark Worldwide, Inc. Absorbent garment with transverse and longitudinal stretch
US20030003834A1 (en) * 2000-11-20 2003-01-02 3M Innovative Properties Company Method for forming spread nonwoven webs
US6607624B2 (en) 2000-11-20 2003-08-19 3M Innovative Properties Company Fiber-forming process
CN100432316C (en) * 2000-11-20 2008-11-12 3M创新有限公司 Fiber-forming process
US6615836B1 (en) 2000-11-27 2003-09-09 Kimberly-Clark Worldwide, Inc. Surgical drape having a pocket-forming feature
US6936554B1 (en) 2000-11-28 2005-08-30 Kimberly-Clark Worldwide, Inc. Nonwoven fabric laminate with meltblown web having a gradient fiber size structure
US6767508B1 (en) 2000-11-28 2004-07-27 Kimberly-Clark Worldwide, Inc. Nonwovens modified with alkyl polyglycoside surfactants
US6605552B2 (en) 2000-12-01 2003-08-12 Kimberly-Clark Worldwide, Inc. Superabsorbent composites with stretch
US20020098341A1 (en) * 2000-12-07 2002-07-25 Schiffer Daniel K. Biodegradable breathable film and laminate
US6569225B2 (en) 2000-12-07 2003-05-27 Kimberly-Clark Worldwide, Inc. Breathable barrier films containing cavated fillers
IT1319599B1 (en) * 2000-12-20 2003-10-20 Rosaldo Fare MELT-BLOWN HEAD AND CONTROLLED FEEDING PROCEDURE FOR THE PRODUCTION OF POLYMERIC MATERIAL FIBRILLES
US6736916B2 (en) 2000-12-20 2004-05-18 Kimberly-Clark Worldwide, Inc. Hydraulically arranged nonwoven webs and method of making same
US6619947B2 (en) 2000-12-21 2003-09-16 Kimberly-Clark Worldwide, Inc. Dual capillary spinneret with single outlet for production of homofilament crimp fibers
US6446691B1 (en) 2000-12-21 2002-09-10 Kimberly-Clark Worldwide, Inc. Dual capillary spinneret for production of homofilament crimp fibers
US20020095129A1 (en) * 2000-12-21 2002-07-18 Friderich S. Scott Body fluid sealing gaskets for personal care products
US6762137B2 (en) * 2000-12-21 2004-07-13 Kimberly-Clark Worldwide, Inc. Water repellant meltblown webs and laminates
US7025914B2 (en) 2000-12-22 2006-04-11 Kimberly-Clark Worldwide, Inc. Multilayer approach to producing homofilament crimp spunbond
US6709623B2 (en) 2000-12-22 2004-03-23 Kimberly-Clark Worldwide, Inc. Process of and apparatus for making a nonwoven web
US6632386B2 (en) 2000-12-22 2003-10-14 Kimberly-Clark Worldwide, Inc. In-line heat treatment of homofilament crimp fibers
US6582810B2 (en) 2000-12-22 2003-06-24 Kimberly-Clark Worldwide, Inc. One-step method of producing an elastic, breathable film structure
US6596920B2 (en) 2000-12-27 2003-07-22 Kimberly-Clark Worldwide, Inc. Swimwear with fluid draining mechanism
US6623837B2 (en) 2000-12-27 2003-09-23 Kimberly-Clark Worldwide, Inc. Biaxially extendible material
US20020102392A1 (en) * 2000-12-28 2002-08-01 Kimberly-Clark Worldwide, Inc. Flexible laminate structures having enclosed discrete regions of a material
US6767852B2 (en) 2000-12-28 2004-07-27 Kimberly-Clark Worldwide, Inc. Stretch edge elastic laminate
US20020095127A1 (en) * 2000-12-28 2002-07-18 Kimberly-Clark Worldwide, Inc. Controlled delamination of laminate structures having enclosed discrete regions of a material
US7037571B2 (en) * 2000-12-28 2006-05-02 Kimberly-Clark Worldwide, Inc. Disposable shoe liner
US6716205B2 (en) 2000-12-28 2004-04-06 Kimberly-Clark Worldwide, Inc. Pant-like absorbent garment having tailored flap and leg elastic
US6774069B2 (en) 2000-12-29 2004-08-10 Kimberly-Clark Worldwide, Inc. Hot-melt adhesive for non-woven elastic composite bonding
US6657009B2 (en) 2000-12-29 2003-12-02 Kimberly-Clark Worldwide, Inc. Hot-melt adhesive having improved bonding strength
US6872784B2 (en) 2000-12-29 2005-03-29 Kimberly-Clark Worldwide, Inc. Modified rubber-based adhesives
US6582412B2 (en) 2000-12-29 2003-06-24 Kimberly-Clark Worldwide, Inc. Disposable one-piece swimsuit for girls
US20020123538A1 (en) * 2000-12-29 2002-09-05 Peiguang Zhou Hot-melt adhesive based on blend of amorphous and crystalline polymers for multilayer bonding
US6976978B2 (en) 2001-02-22 2005-12-20 Kimberly-Clark Worldwide, Inc. Refastenable pull-on training pant with diagonal seams
US20020123730A1 (en) 2001-03-05 2002-09-05 Popp Robert Lee Tucked fastener for improved fastener performance
US6475618B1 (en) 2001-03-21 2002-11-05 Kimberly-Clark Worldwide, Inc. Compositions for enhanced thermal bonding
US6878223B2 (en) * 2001-03-23 2005-04-12 Kimberly-Clark Worldwide, Inc. Refastenable absorbent product with Z-folded side panels and method of making same in the machine direction
US6635135B2 (en) * 2001-03-23 2003-10-21 Kimberly-Clark Worldwide, Inc. Refastenable absorbent product with overlaid side panels and method of making same in the machine direction
US6652696B2 (en) 2001-03-23 2003-11-25 Kimberly-Clark Worldwide, Inc. Cross direction method for making a refastenable garment with overlaid side panels
USD494369S1 (en) 2001-04-04 2004-08-17 Kimberly-Clark Worldwide, Inc. Dental wipe
US6994904B2 (en) 2001-05-02 2006-02-07 3M Innovative Properties Company Pressure sensitive adhesive fibers with a reinforcing material
US7118639B2 (en) * 2001-05-31 2006-10-10 Kimberly-Clark Worldwide, Inc. Structured material having apertures and method of producing the same
US7045029B2 (en) * 2001-05-31 2006-05-16 Kimberly-Clark Worldwide, Inc. Structured material and method of producing the same
US6869670B2 (en) 2001-05-31 2005-03-22 Kimberly-Clark Worldwide, Inc. Composites material with improved high viscosity fluid intake
US6787184B2 (en) 2001-06-16 2004-09-07 Kimberly-Clark Worldwide, Inc. Treated nonwoven fabrics
US6838590B2 (en) 2001-06-27 2005-01-04 Kimberly-Clark Worldwide, Inc. Pulp fiber absorbent composites for personal care products
US6759567B2 (en) 2001-06-27 2004-07-06 Kimberly-Clark Worldwide, Inc. Pulp and synthetic fiber absorbent composites for personal care products
US7297139B2 (en) 2001-07-05 2007-11-20 Kimberly-Clark Worldwide, Inc. Refastenable absorbent garment
DE10133105A1 (en) * 2001-07-12 2003-02-06 Claas Selbstfahr Erntemasch Harvester header
US6899700B2 (en) 2001-08-29 2005-05-31 Kimberly-Clark Worldwide, Inc. Therapeutic agent delivery tampon
JP2003085910A (en) * 2001-09-11 2003-03-20 Sony Corp Disk cartridge, disk recording medium device and disk recording and reproducing device
US6776316B2 (en) * 2001-09-28 2004-08-17 Kimberly-Clark Worldwide, Inc. Method of tucking refastenable side seams
US6723035B2 (en) 2001-09-28 2004-04-20 Kimberly-Clark Worldwide, Inc. Method of tucking side panels with side panel fold location control
US6712121B2 (en) 2001-10-12 2004-03-30 Kimberly-Clark Worldwide, Inc. Antimicrobially-treated fabrics
US6837879B2 (en) * 2001-10-31 2005-01-04 Kimberly-Clark Worldwide, Inc. Containment flaps for absorbent article
US7037457B2 (en) * 2001-11-05 2006-05-02 3M Innovative Properties Company Systems and methods for composite webs with structured discrete polymeric regions
US20030087059A1 (en) * 2001-11-05 2003-05-08 3M Innovative Properties Company Composite webs with discrete elastic polymeric regions
US6942894B2 (en) 2001-11-05 2005-09-13 3M Innovative Properties Company Methods for producing composite webs with reinforcing discrete polymeric regions
US20030106605A1 (en) * 2001-11-16 2003-06-12 Jameson Lee Kirby Material having one or more chemistries which produce topography, unique fluid handling properties and/or bonding properties thereon and/or therein
US20030124336A1 (en) * 2001-11-30 2003-07-03 Keane James M. Adhesive system for absorbent structures
US6861135B2 (en) * 2001-11-30 2005-03-01 Kimberly-Clark Worldwide, Inc. Microwaveable latent polymer composites with rough surface texture
US20030125688A1 (en) * 2001-11-30 2003-07-03 Keane James M. Adhesive system for mechanically post-treated absorbent structures
US20030104748A1 (en) * 2001-12-03 2003-06-05 Brown Kurtis Lee Helically crimped, shaped, single polymer fibers and articles made therefrom
US6780201B2 (en) 2001-12-11 2004-08-24 Kimberly-Clark Worldwide, Inc. High wet resiliency curly cellulose fibers
US6696618B2 (en) 2001-12-12 2004-02-24 Kimberly-Clark Worldwide, Inc. Absorbent composites exhibiting swelling/deswelling properties
US6996851B2 (en) * 2001-12-13 2006-02-14 Kimberly-Clark Worldwide, Inc. Permeable, close to the body liner for swimwear
US20030111758A1 (en) * 2001-12-13 2003-06-19 Clark Darryl Franklin Fully activated bicomponent web with absorbents
US6958432B2 (en) * 2001-12-14 2005-10-25 Kimberly-Clark Worldwide, Inc. Disposable absorbent article
US6918981B2 (en) * 2001-12-14 2005-07-19 Kimberly-Clark Worldwide, Inc. Process for adding superabsorbent to a pre-formed fibrous web using two polymer precursor streams
US7018497B2 (en) 2001-12-14 2006-03-28 Kimberly-Clark Worldwide, Inc. Method of making an absorbent structure having high integrity
US6872275B2 (en) * 2001-12-14 2005-03-29 Kimberly-Clark Worldwide, Inc. Process for adding superabsorbent to a pre-formed fibrous web via in situ polymerization
US6645407B2 (en) 2001-12-14 2003-11-11 Kimberly-Clark Worldwide, Inc. Process for making absorbent material with in-situ polymerized superabsorbent
US6793650B2 (en) 2001-12-14 2004-09-21 Kimberly-Clark Worldwide, Inc. Disposable training pant designed specifically for late stage toilet training
US20030211248A1 (en) * 2001-12-14 2003-11-13 Ko Young C. High performance absorbent structure including superabsorbent added to a substrate via in situ polymerization
US6852904B2 (en) 2001-12-18 2005-02-08 Kimberly-Clark Worldwide, Inc. Cellulose fibers treated with acidic odor control agents
US6740792B2 (en) 2001-12-18 2004-05-25 Kimberly-Clark Worldwide, Inc. Cover material with improved fluid handling properties
US6767553B2 (en) 2001-12-18 2004-07-27 Kimberly-Clark Worldwide, Inc. Natural fibers treated with acidic odor control/binder systems
US7615040B2 (en) 2001-12-19 2009-11-10 Kimberly-Clark Worldwide, Inc. Thin, flexible, low capacity absorbent article with leakage protection
US6939334B2 (en) * 2001-12-19 2005-09-06 Kimberly-Clark Worldwide, Inc. Three dimensional profiling of an elastic hot melt pressure sensitive adhesive to provide areas of differential tension
US6884238B2 (en) 2001-12-19 2005-04-26 Kimberly-Clark Worldwide, Inc. Method of providing a series of disposable absorbent articles to consumers
US6949089B2 (en) 2001-12-19 2005-09-27 Kimberly-Clark Worldwide, Inc. Method of providing a series of disposable absorbent articles to consumers
US7083839B2 (en) * 2001-12-20 2006-08-01 Kimberly-Clark Worldwide, Inc. Laminate structures containing activatable materials
US7838447B2 (en) * 2001-12-20 2010-11-23 Kimberly-Clark Worldwide, Inc. Antimicrobial pre-moistened wipers
US20030118776A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Entangled fabrics
US6835264B2 (en) * 2001-12-20 2004-12-28 Kimberly-Clark Worldwide, Inc. Method for producing creped nonwoven webs
US7056313B2 (en) 2001-12-20 2006-06-06 Kimberly-Clark Worldwide, Inc. Aesthetically improved side panels for disposable garment and methods of making the same
US6939335B2 (en) 2001-12-20 2005-09-06 Kimberly-Clark Worldwide, Inc. Aesthetically improved side panels for disposable garments and methods of making the same
US6835865B2 (en) 2001-12-21 2004-12-28 Kimberly-Clark Worldwide, Inc. Antimicrobial nonwoven webs for personal care absorbent articles
US20030120180A1 (en) * 2001-12-21 2003-06-26 Kimberly-Clark Worldwide, Inc. Method and apparatus for collecting and testing biological samples
US20030120225A1 (en) * 2001-12-21 2003-06-26 Kimberly-Clark Worldwide, Inc. Therapeutic agent delivery labial pad
US6706135B2 (en) 2001-12-21 2004-03-16 Kimberly-Clark Worldwide, Inc. Process for temporarily stabilizing an extensible web
US7799968B2 (en) * 2001-12-21 2010-09-21 Kimberly-Clark Worldwide, Inc. Sponge-like pad comprising paper layers and method of manufacture
US6921570B2 (en) * 2001-12-21 2005-07-26 Kimberly-Clark Worldwide, Inc. Pattern unbonded nonwoven web and process for making same
US6888043B2 (en) 2001-12-21 2005-05-03 Kimberly-Clark Worldwide, Inc. Feminine care products for the delivery of therapeutic substances
US7189888B2 (en) 2001-12-21 2007-03-13 Kimberly-Clark Worldwide, Inc. Nonabsorbent surge layer having discrete regions of superabsorbent and method for making
US6843872B2 (en) 2001-12-28 2005-01-18 Kimberly-Clark Worldwide, Inc. Neck bonded and stretch bonded laminates with perforated nonwovens and method of making
EP1458914B1 (en) 2001-12-28 2007-07-25 Polymer Group, Inc. Nonwoven fabrics having a durable three-dimensional image
US6902796B2 (en) 2001-12-28 2005-06-07 Kimberly-Clark Worldwide, Inc. Elastic strand bonded laminate
US20030155679A1 (en) * 2001-12-31 2003-08-21 Reeves William G. Method of making regenerated carbohydrate foam compositions
US20030143388A1 (en) * 2001-12-31 2003-07-31 Reeves William G. Regenerated carbohydrate foam composition
US20030125683A1 (en) * 2001-12-31 2003-07-03 Reeves William G. Durably hydrophilic, non-leaching coating for hydrophobic substances
US6799957B2 (en) * 2002-02-07 2004-10-05 Nordson Corporation Forming system for the manufacture of thermoplastic nonwoven webs and laminates
US6773527B2 (en) 2002-04-01 2004-08-10 Kimberly-Clark Worldwide, Inc. Method for obtaining improved ultrasonic bond strength
US6833171B2 (en) 2002-04-03 2004-12-21 Kimberly-Clark Worldwide, Inc. Low tack slip-resistant shoe cover
US20030188753A1 (en) * 2002-04-03 2003-10-09 Kimberly-Clark Worldwide, Inc. Radial angiography drape
EP1492914B1 (en) * 2002-04-05 2011-10-12 Polymer Group, Inc. Two-sided nonwoven fabrics having a three-dimensional image
US6629340B1 (en) 2002-04-05 2003-10-07 Polymer Group, Inc. Acoustic underlayment for pre-finished laminate floor system
WO2003087454A1 (en) * 2002-04-08 2003-10-23 Polymer Group, Inc. Nonwoven fabrics having compound three-dimensional images
US20030203694A1 (en) * 2002-04-26 2003-10-30 Kimberly-Clark Worldwide, Inc. Coform filter media having increased particle loading capacity
US20030200991A1 (en) * 2002-04-29 2003-10-30 Kimberly-Clark Worldwide, Inc. Dual texture absorbent nonwoven web
US20030203162A1 (en) * 2002-04-30 2003-10-30 Kimberly-Clark Worldwide, Inc. Methods for making nonwoven materials on a surface having surface features and nonwoven materials having surface features
US20030203691A1 (en) * 2002-04-30 2003-10-30 Kimberly-Clark Worldwide, Inc. Nonwoven materials having surface features
US20030211802A1 (en) * 2002-05-10 2003-11-13 Kimberly-Clark Worldwide, Inc. Three-dimensional coform nonwoven web
US20030225384A1 (en) * 2002-05-23 2003-12-04 Kimberly-Clark Worldwide, Inc. Absorbent article having a multi-layer absorbent structure
US20030219594A1 (en) * 2002-05-23 2003-11-27 Jian Qin Meltblown absorbent fibers and composites and method for making the same
US6880211B2 (en) 2002-06-13 2005-04-19 3M Innovative Properties Company Macro closure device for disposable articles
US7488441B2 (en) * 2002-06-15 2009-02-10 Kimberly-Clark Worldwide, Inc. Use of a pulsating power supply for electrostatic charging of nonwovens
US7316842B2 (en) * 2002-07-02 2008-01-08 Kimberly-Clark Worldwide, Inc. High-viscosity elastomeric adhesive composition
US6978486B2 (en) * 2002-07-02 2005-12-27 Kimberly-Clark Worldwide, Inc. Garment including an elastomeric composite laminate
US7316840B2 (en) * 2002-07-02 2008-01-08 Kimberly-Clark Worldwide, Inc. Strand-reinforced composite material
US7335273B2 (en) * 2002-12-26 2008-02-26 Kimberly-Clark Worldwide, Inc. Method of making strand-reinforced elastomeric composites
US7015155B2 (en) * 2002-07-02 2006-03-21 Kimberly-Clark Worldwide, Inc. Elastomeric adhesive
US20040005457A1 (en) * 2002-07-03 2004-01-08 Kimberly-Clark Worldwide, Inc. Methods of improving the softness of fibers and nonwoven webs and fibers and nonwoven webs having improved softness
US20040023579A1 (en) * 2002-07-30 2004-02-05 Kainth Arvinder Pal Singh Fiber having controlled fiber-bed friction angles and/or cohesion values, and composites made from same
US7297395B2 (en) * 2002-07-30 2007-11-20 Kimberly-Clark Worldwide, Inc. Superabsorbent materials having low, controlled gel-bed friction angles and composites made from the same
US20040023589A1 (en) * 2002-07-30 2004-02-05 Kainth Arvinder Pal Singh Superabsorbent materials having high, controlled gel-bed friction angles and composites made from the same
US8323435B2 (en) 2002-07-31 2012-12-04 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an article
US20050026527A1 (en) * 2002-08-05 2005-02-03 Schmidt Richard John Nonwoven containing acoustical insulation laminate
US7178171B2 (en) 2002-08-19 2007-02-20 Kimberly-Clark Worldwide, Inc. Elastomeric gloves having enhanced breathability
US20040038607A1 (en) * 2002-08-22 2004-02-26 Kimberly-Clark Worldwide, Inc. Non-slip nonwoven liner
US20040044321A1 (en) * 2002-08-27 2004-03-04 Kainth Arvinder Pal Singh Superabsorbent materials having controlled gel-bed friction angles and cohesion values and composites made from same
US20040044320A1 (en) * 2002-08-27 2004-03-04 Kainth Arvinder Pal Singh Composites having controlled friction angles and cohesion values
US6881375B2 (en) * 2002-08-30 2005-04-19 Kimberly-Clark Worldwide, Inc. Method of forming a 3-dimensional fiber into a web
US6896843B2 (en) * 2002-08-30 2005-05-24 Kimberly-Clark Worldwide, Inc. Method of making a web which is extensible in at least one direction
US20040044323A1 (en) * 2002-08-30 2004-03-04 Kimberly-Clark Worldwide, Inc. Absorbent article with elastic components having non-uniform elastic tension
WO2004020174A1 (en) * 2002-08-30 2004-03-11 Kimberly-Clark Worldwide, Inc. Device and process for treating flexible web by stretching between intermeshing forming surfaces
US20040110442A1 (en) * 2002-08-30 2004-06-10 Hannong Rhim Stretchable nonwoven materials with controlled retraction force and methods of making same
US20040043214A1 (en) * 2002-08-30 2004-03-04 Kimberly-Clark Worldwide, Inc. Method of forming a 3-dimensional fiber and a web formed from such fibers
US6677038B1 (en) 2002-08-30 2004-01-13 Kimberly-Clark Worldwide, Inc. 3-dimensional fiber and a web made therefrom
US20040044324A1 (en) * 2002-09-03 2004-03-04 3M Innovative Properties Company Shaped elastic ear
US7338625B2 (en) * 2002-09-18 2008-03-04 Kimberly-Clark Worldwide, Inc. Methods of restoring elasticity after stiffening treatments
US20040054342A1 (en) * 2002-09-18 2004-03-18 Newbill Vincent B. Absorbent articles having a superabsorbent retention web
US7355091B2 (en) * 2002-09-18 2008-04-08 Kimberly-Clark Worldwide, Inc. Elastomeric nonwoven with attached superabsorbent polymer
US20040059309A1 (en) * 2002-09-18 2004-03-25 Nortman Brian Keith Absorbent article with untreated hydrophobic target area
US6945249B2 (en) * 2002-09-24 2005-09-20 Kimberly-Clark Worldwide, Inc. Easy gripping face mask
US6868984B2 (en) * 2002-09-24 2005-03-22 Kimberly-Clark Worldwide, Inc. Method of dispensing a face mask
US6948499B2 (en) * 2002-09-24 2005-09-27 Kimberly-Clark Worldwide, Inc. Easy gripping face mask
US6715188B1 (en) 2002-09-24 2004-04-06 3M Innovative Properties Company Hinged tab for slot and tab closure systems
US20040077247A1 (en) * 2002-10-22 2004-04-22 Schmidt Richard J. Lofty spunbond nonwoven laminate
US6928657B2 (en) 2002-10-25 2005-08-16 Kimberly-Clark Worldwide, Inc. Face mask having hook and loop type fastener
US8034440B2 (en) 2002-10-31 2011-10-11 Kimberly-Clark Worldwide, Inc. Elastomeric film and laminates thereof
US6989125B2 (en) * 2002-11-21 2006-01-24 Kimberly-Clark Worldwide, Inc. Process of making a nonwoven web
US7086095B2 (en) * 2002-11-21 2006-08-08 Kimberly-Clark Worldwide, Inc. Boxer-style absorbent underpant and method of making same
US20040102123A1 (en) * 2002-11-21 2004-05-27 Bowen Uyles Woodrow High strength uniformity nonwoven laminate and process therefor
EP1587976A4 (en) 2002-11-22 2008-04-23 Polymer Group Inc Regionally imprinted nonwoven fabric
US6984279B2 (en) 2002-11-25 2006-01-10 Kimberly-Clark Worldwide, Inc. Process to make boxer shorts with an absorbent core
US8176573B2 (en) 2002-12-09 2012-05-15 Kimberly-Clark Worldwide, Inc. Boxer shorts and process of making boxer shorts from one or more webs
US9700079B2 (en) 2002-12-09 2017-07-11 Kimberly-Clark Worldwide, Inc. Process of making boxer shorts from a web with various leg opening shapes
US8361049B2 (en) * 2002-12-09 2013-01-29 Kimberly-Clark Worldwide, Inc. Boxer shorts and process of making boxer shorts with expandable material
US8147642B2 (en) * 2002-12-09 2012-04-03 Kimberly-Clark Worldwide, Inc. Process of making boxer shorts from a web
US20040107481A1 (en) * 2002-12-09 2004-06-10 Mortell Heather Schenck Process to make boxer shorts having a contracted crotch region
US7393799B2 (en) * 2002-12-10 2008-07-01 Saint-Gobain Technical Fabrics Canada, Ltd Breathable, waterproofing, tear-resistant fabric
US8282618B2 (en) * 2002-12-11 2012-10-09 Kimberly-Clark Worldwide, Inc. Disposable boxer brief
US6887542B2 (en) 2002-12-11 2005-05-03 Kimberly-Clark Worldwide, Inc. Method for treating an elastomeric article
AU2003300882A1 (en) 2002-12-12 2004-07-09 Ahlstrom Windsor Locks Llc Ethylene oxide sterilizable, low cost nonwoven laminates with high wet peel strength and improved barrier properties
US7008496B2 (en) * 2002-12-16 2006-03-07 Kimberly-Clark Worldwide, Inc. One-step necked-bonded laminate process and apparatus
US20040116018A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Method of making fibers, nonwoven fabrics, porous films and foams that include skin treatment additives
US7994079B2 (en) * 2002-12-17 2011-08-09 Kimberly-Clark Worldwide, Inc. Meltblown scrubbing product
US20040111817A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Disposable scrubbing product
US20040118410A1 (en) * 2002-12-18 2004-06-24 Griesbach Henry L. Surgical drape having an instrument holder
US6875315B2 (en) 2002-12-19 2005-04-05 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US6878238B2 (en) * 2002-12-19 2005-04-12 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US7032751B2 (en) * 2002-12-19 2006-04-25 Kimberly-Clark Worldwide, Inc. Dispensing assembly for single piece face mask
US7198621B2 (en) * 2002-12-19 2007-04-03 Kimberly-Clark Worldwide, Inc. Attachment assembly for absorbent article
US6994091B2 (en) * 2002-12-20 2006-02-07 Kimberly-Clark Worldwide, Inc. Surgical drape with diverting feature
US7381666B2 (en) * 2002-12-20 2008-06-03 Kimberly-Clark Worldwide, Inc. Breathable film and fabric having liquid and viral barrier
US6878427B2 (en) 2002-12-20 2005-04-12 Kimberly Clark Worldwide, Inc. Encased insulation article
US20040121683A1 (en) * 2002-12-20 2004-06-24 Joy Jordan Composite elastic material
US7320948B2 (en) * 2002-12-20 2008-01-22 Kimberly-Clark Worldwide, Inc. Extensible laminate having improved stretch properties and method for making same
US8409618B2 (en) 2002-12-20 2013-04-02 Kimberly-Clark Worldwide, Inc. Odor-reducing quinone compounds
US7393346B2 (en) * 2002-12-20 2008-07-01 Kimberly-Clark Worldwide, Inc. Disposable leak-proof containment garment
US7666410B2 (en) * 2002-12-20 2010-02-23 Kimberly-Clark Worldwide, Inc. Delivery system for functional compounds
US6931951B2 (en) 2002-12-20 2005-08-23 Kimberly-Clark Worldwide, Inc. Mechanical device with simulated skin substrate
US7855316B2 (en) * 2002-12-20 2010-12-21 Kimberly-Clark Worldwide, Inc. Preferentially stretchable laminates with perforated layers
US7037112B2 (en) * 2002-12-20 2006-05-02 Kimberly-Clark Worldwide, Inc. Virtual arm for measurement of humidity, temperature, and water vapor transmission rate in materials
US6826973B2 (en) * 2002-12-20 2004-12-07 Kimberly-Clark Worldwide, Inc. Heated mechanical arm
US6904820B2 (en) * 2002-12-20 2005-06-14 Kimberly-Clark Worldwide, Inc. Method of using a simulated skin substrate and method for determining material dryness performance
US6958103B2 (en) * 2002-12-23 2005-10-25 Kimberly-Clark Worldwide, Inc. Entangled fabrics containing staple fibers
US7582308B2 (en) * 2002-12-23 2009-09-01 Kimberly-Clark Worldwide, Inc. Odor control composition
US20040122409A1 (en) * 2002-12-23 2004-06-24 Thomas Oomman Painumoottil Enhanced elastomer blend
US7022201B2 (en) * 2002-12-23 2006-04-04 Kimberly-Clark Worldwide, Inc. Entangled fabric wipers for oil and grease absorbency
US20040121688A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Flexible activated carbon substrates
US20040122389A1 (en) * 2002-12-23 2004-06-24 Mace Tamara Lee Use of hygroscopic treatments to enhance dryness in an absorbent article
US20040121681A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Absorbent articles containing an activated carbon substrate
US20040121690A1 (en) * 2002-12-23 2004-06-24 Mleziva Mark Michael Elastomeric laminates having random copolymer facings
US20040122385A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Absorbent articles including an odor absorbing and/or odor reducing additive
US6863924B2 (en) * 2002-12-23 2005-03-08 Kimberly-Clark Worldwide, Inc. Method of making an absorbent composite
US7994078B2 (en) * 2002-12-23 2011-08-09 Kimberly-Clark Worldwide, Inc. High strength nonwoven web from a biodegradable aliphatic polyester
US20040122387A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Absorbent articles that include a stretchable substrate having odor control properties
US20040117916A1 (en) * 2002-12-23 2004-06-24 Polanco Braulio Arturo Non-destructive treatment process with uniform coverage
US7700500B2 (en) * 2002-12-23 2010-04-20 Kimberly-Clark Worldwide, Inc. Durable hydrophilic treatment for a biodegradable polymeric substrate
US20040121682A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Antimicrobial fibrous substrates
US7312167B2 (en) * 2002-12-23 2007-12-25 Kimberly-Clark Worldwide, Inc. Breathable multilayer films for use in absorbent articles
US20040121121A1 (en) * 2002-12-23 2004-06-24 Kimberly -Clark Worldwide, Inc. Entangled fabrics containing an apertured nonwoven web
US20040121692A1 (en) * 2002-12-23 2004-06-24 Taylor Jack Draper Oil-resistant elastic laminates
US20040122408A1 (en) * 2002-12-24 2004-06-24 Potnis Prasad S. Dry-blend elastomer for elastic laminates
US20040122396A1 (en) * 2002-12-24 2004-06-24 Maldonado Jose E. Apertured, film-coated nonwoven material
US7329621B2 (en) 2002-12-26 2008-02-12 Kimberly-Clark Worldwide, Inc. Stretchable film laminates and methods and apparatus for making stretchable film laminates
US6957884B2 (en) 2002-12-27 2005-10-25 Kinberly-Clark Worldwide, Inc. High-speed inkjet printing for vibrant and crockfast graphics on web materials or end-products
US6934969B2 (en) * 2002-12-27 2005-08-30 Kimberly-Clark Worldwide, Inc. Anti-wicking protective workwear and methods of making and using same
US7155746B2 (en) * 2002-12-27 2007-01-02 Kimberly-Clark Worldwide, Inc. Anti-wicking protective workwear and methods of making and using same
US20040127878A1 (en) * 2002-12-30 2004-07-01 Olson Christopher Peter Surround stretch absorbent garments
US20040127868A1 (en) * 2002-12-30 2004-07-01 Kimberly-Clark Worldwide, Inc. Absorbent article with improved leak guards
US7943813B2 (en) 2002-12-30 2011-05-17 Kimberly-Clark Worldwide, Inc. Absorbent products with enhanced rewet, intake, and stain masking performance
US7736350B2 (en) * 2002-12-30 2010-06-15 Kimberly-Clark Worldwide, Inc. Absorbent article with improved containment flaps
US20040127880A1 (en) * 2002-12-30 2004-07-01 Kimberly-Clark Worldwide, Inc. Absorbent article with suspended absorbent pad structure
US7476447B2 (en) 2002-12-31 2009-01-13 Kimberly-Clark Worldwide, Inc. Elastomeric materials
US20040126519A1 (en) * 2002-12-31 2004-07-01 Odorzynski Thomas W. Solids-entrapping secondary article
US20040127873A1 (en) * 2002-12-31 2004-07-01 Varona Eugenio Go Absorbent article including porous separation layer with capillary gradient
US20040127871A1 (en) * 2002-12-31 2004-07-01 Odorzynski Thomas W. Secondary absorbent article
US7226880B2 (en) * 2002-12-31 2007-06-05 Kimberly-Clark Worldwide, Inc. Breathable, extensible films made with two-component single resins
US7491863B2 (en) * 2002-12-31 2009-02-17 Kimberly-Clark Worldwide, Inc. Secondary lotioned article
US8216203B2 (en) * 2003-01-01 2012-07-10 Kimberly-Clark Worldwide, Inc. Progressively functional stretch garments
JP2007500629A (en) * 2003-01-22 2007-01-18 ポリマー・グループ・インコーポレーテツド Three-dimensional film and manufacturing method thereof
US7815995B2 (en) * 2003-03-03 2010-10-19 Kimberly-Clark Worldwide, Inc. Textured fabrics applied with a treatment composition
US7238314B2 (en) * 2003-03-13 2007-07-03 3M Innovative Properties Company Polymer transfer apparatus, methods, and composite webs
KR20050117554A (en) * 2003-03-13 2005-12-14 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Composite webs and closure systems
US6869441B2 (en) * 2003-03-21 2005-03-22 Kimberly-Clark Worldwide, Inc. Thermal therapy sleeve
US6881219B1 (en) 2003-03-21 2005-04-19 Kimberly-Clark Worldwide, Inc. Method of extending the therapeutic duration of a thermal therapy product
US7056335B2 (en) * 2003-03-21 2006-06-06 Kimberly-Clark Worldwide, Inc. Thermal therapy sleeve
US6916750B2 (en) * 2003-03-24 2005-07-12 Kimberly-Clark Worldwide, Inc. High performance elastic laminates made from high molecular weight styrenic tetrablock copolymer
US20040203308A1 (en) * 2003-04-09 2004-10-14 Ko Young Chan Process for making absorbent material
US20040258844A1 (en) * 2003-04-11 2004-12-23 Polymer Group, Inc. Nonwoven cleaning articles having compound three-dimensional images
US7169843B2 (en) 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
US20040214499A1 (en) * 2003-04-25 2004-10-28 Kimberly-Clark Worldwide, Inc. Absorbent structure with superabsorbent material
US8211815B2 (en) * 2003-06-13 2012-07-03 Kimberly-Clark Worldwide, Inc. Absorbent structure having three-dimensional topography on upper and lower surfaces
US20040253890A1 (en) * 2003-06-13 2004-12-16 Ostgard Estelle Anne Fibers with lower edgewise compression strength and sap containing composites made from the same
US20040253440A1 (en) * 2003-06-13 2004-12-16 Kainth Arvinder Pal Singh Fiber having controlled fiber-bed friction angles and/or cohesion values, and composites made from same
US20040254550A1 (en) * 2003-06-16 2004-12-16 Kimberly-Clark Worldwide, Inc. Temperature change element for use in personal care products
US8273066B2 (en) 2003-07-18 2012-09-25 Kimberly-Clark Worldwide, Inc. Absorbent article with high quality ink jet image produced at line speed
US7425517B2 (en) * 2003-07-25 2008-09-16 Kimberly-Clark Worldwide, Inc. Nonwoven fabric with abrasion resistance and reduced surface fuzziness
US20050027267A1 (en) * 2003-07-31 2005-02-03 Van Dyke Wendy Lynn Absorbent article with improved fit and free liquid intake
US7696401B2 (en) * 2003-07-31 2010-04-13 Evonik Stockhausen, Inc. Absorbent materials and absorbent articles incorporating such absorbent materials
US7682349B2 (en) 2003-08-01 2010-03-23 Kimberly-Clark Worldwide, Inc. Fastener orientation for packaged garments having refastenable seams
US20050038400A1 (en) * 2003-08-11 2005-02-17 Poruthoor Simon K. Leak prevention system for a disposable absorbent article
US20050037194A1 (en) * 2003-08-15 2005-02-17 Kimberly-Clark Worldwide, Inc. Thermoplastic polymers with thermally reversible and non-reversible linkages, and articles using same
US7220478B2 (en) * 2003-08-22 2007-05-22 Kimberly-Clark Worldwide, Inc. Microporous breathable elastic films, methods of making same, and limited use or disposable product applications
US7270723B2 (en) 2003-11-07 2007-09-18 Kimberly-Clark Worldwide, Inc. Microporous breathable elastic film laminates, methods of making same, and limited use or disposable product applications
US7932196B2 (en) * 2003-08-22 2011-04-26 Kimberly-Clark Worldwide, Inc. Microporous stretch thinned film/nonwoven laminates and limited use or disposable product applications
US20050054779A1 (en) * 2003-09-05 2005-03-10 Peiguang Zhou Stretchable hot-melt adhesive composition with temperature resistance
US20050054999A1 (en) * 2003-09-08 2005-03-10 Kimberly-Clark Worldwide, Inc. Nonwoven fabric laminate that reduces particle migration
US7141142B2 (en) * 2003-09-26 2006-11-28 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US7754197B2 (en) * 2003-10-16 2010-07-13 Kimberly-Clark Worldwide, Inc. Method for reducing odor using coordinated polydentate compounds
US7438875B2 (en) * 2003-10-16 2008-10-21 Kimberly-Clark Worldwide, Inc. Method for reducing odor using metal-modified silica particles
US7582485B2 (en) * 2003-10-16 2009-09-01 Kimberly-Clark Worldride, Inc. Method and device for detecting ammonia odors and helicobacter pylori urease infection
US7488520B2 (en) 2003-10-16 2009-02-10 Kimberly-Clark Worldwide, Inc. High surface area material blends for odor reduction, articles utilizing such blends and methods of using same
US7413550B2 (en) * 2003-10-16 2008-08-19 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath
US7879350B2 (en) * 2003-10-16 2011-02-01 Kimberly-Clark Worldwide, Inc. Method for reducing odor using colloidal nanoparticles
US7837663B2 (en) * 2003-10-16 2010-11-23 Kimberly-Clark Worldwide, Inc. Odor controlling article including a visual indicating device for monitoring odor absorption
US7794737B2 (en) 2003-10-16 2010-09-14 Kimberly-Clark Worldwide, Inc. Odor absorbing extrudates
US7678367B2 (en) * 2003-10-16 2010-03-16 Kimberly-Clark Worldwide, Inc. Method for reducing odor using metal-modified particles
US7141518B2 (en) 2003-10-16 2006-11-28 Kimberly-Clark Worldwide, Inc. Durable charged particle coatings and materials
US20050096615A1 (en) * 2003-10-31 2005-05-05 Kimberly-Clark Worldwide, Inc. Absorbent article with segmented absorbent structure
US7872168B2 (en) * 2003-10-31 2011-01-18 Kimberely-Clark Worldwide, Inc. Stretchable absorbent article
US7270889B2 (en) * 2003-11-04 2007-09-18 Kimberly-Clark Worldwide, Inc. Tackified amorphous-poly-alpha-olefin-bonded structures
US20050097659A1 (en) * 2003-11-06 2005-05-12 Kimberly-Clark Worldwide, Inc. Protective garment with elastomeric elbow patches
US7073373B2 (en) * 2003-11-24 2006-07-11 Kimberly-Clark Worldwide, Inc. Absorbent structure having enhanced intake performance characteristics and method for evaluating such characteristics
US7811949B2 (en) * 2003-11-25 2010-10-12 Kimberly-Clark Worldwide, Inc. Method of treating nonwoven fabrics with non-ionic fluoropolymers
US7931944B2 (en) * 2003-11-25 2011-04-26 Kimberly-Clark Worldwide, Inc. Method of treating substrates with ionic fluoropolymers
US7326751B2 (en) * 2003-12-01 2008-02-05 Kimberly-Clark Worlwide, Inc. Method of thermally processing elastomeric compositions and elastomeric compositions with improved processability
US20050118435A1 (en) * 2003-12-01 2005-06-02 Kimberly-Clark Worldwide, Inc. Films and methods of forming films having polyorganosiloxane enriched surface layers
ATE455886T1 (en) 2003-12-05 2010-02-15 Phoenix Intellectuals And Tech METHOD FOR PRODUCING AN ELASTIC NON-WOVEN FABRIC
US20050130522A1 (en) * 2003-12-11 2005-06-16 Kaiyuan Yang Fiber reinforced elastomeric article
US20050130536A1 (en) * 2003-12-11 2005-06-16 Kimberly-Clark Worldwide, Inc. Disposable scrubbing product
US20050129897A1 (en) * 2003-12-11 2005-06-16 Kimberly-Clark Worldwide, Inc. Disposable scrubbing product
US20050130537A1 (en) * 2003-12-12 2005-06-16 Kimberly-Clark Worldwide, Inc. Vehicle seat cover
US7686796B2 (en) * 2003-12-15 2010-03-30 Kimberly-Clark Worldwide, Inc. Absorbent garment and method for placing an absorbent garment on a wearer's waist
US7875014B2 (en) 2003-12-15 2011-01-25 Kimberly-Clark Worldwide, Inc. Absorbent garment having a garment shell
US7491196B2 (en) * 2003-12-15 2009-02-17 Kimberly-Clark Worldwide, Inc. Absorbent garment
US7993322B2 (en) * 2003-12-15 2011-08-09 Kimberly-Clark Worldwide, Inc. Absorbent garment having outer shell and adjustable absorbent assembly therein
US7344526B2 (en) * 2003-12-15 2008-03-18 Kimberly-Clark Worldwide, Inc. Absorbent garment
US7282349B2 (en) * 2003-12-16 2007-10-16 Kimberly-Clark Worldwide, Inc. Solvatochromatic bacterial detection
US7300770B2 (en) * 2004-12-16 2007-11-27 Kimberly-Clark Worldwide, Inc. Detection of microbe contamination on elastomeric articles
US7409953B2 (en) * 2003-12-16 2008-08-12 Kimberly-Clark Worldwide, Inc. Surgical drape having an expandable member
US7399608B2 (en) * 2003-12-16 2008-07-15 Kimberly-Clark Worldwide, Inc. Microbial detection and quantification
US20050136766A1 (en) * 2003-12-17 2005-06-23 Tanner James J. Wet-or dry-use biodegradable collecting sheet
US7662745B2 (en) * 2003-12-18 2010-02-16 Kimberly-Clark Corporation Stretchable absorbent composites having high permeability
US20050132463A1 (en) * 2003-12-19 2005-06-23 Kimberly-Clark Worldwide, Inc. Surgical gown having adhesive tabs and methods of use
US20050132465A1 (en) * 2003-12-19 2005-06-23 Kimberly-Clark Worldwide, Inc. Surgical gown having an adhesive tab and methods of use
DE10360845A1 (en) 2003-12-20 2005-07-21 Corovin Gmbh Soft fleece based on polyethylene
US20050136155A1 (en) * 2003-12-22 2005-06-23 Jordan Joy F. Specialty beverage infusion package
US7955710B2 (en) * 2003-12-22 2011-06-07 Kimberly-Clark Worldwide, Inc. Ultrasonic bonding of dissimilar materials
US7150616B2 (en) * 2003-12-22 2006-12-19 Kimberly-Clark Worldwide, Inc Die for producing meltblown multicomponent fibers and meltblown nonwoven fabrics
US20050136224A1 (en) * 2003-12-22 2005-06-23 Kimberly-Clark Worldwide, Inc. Ultrasonic bonding and embossing of an absorbent product
US7553302B2 (en) * 2003-12-22 2009-06-30 Kimberly-Clark Worldwide, Inc. Packaged interlabial article
US20050133145A1 (en) * 2003-12-22 2005-06-23 Kimberly-Clark Worldwide, Inc. Laminated absorbent product with ultrasonic bond
US20050136773A1 (en) * 2003-12-22 2005-06-23 Kimberly-Clark Worldwide, Inc. Treated nonwoven material
US7194789B2 (en) * 2003-12-23 2007-03-27 Kimberly-Clark Worldwide, Inc. Abraded nonwoven composite fabrics
US7194788B2 (en) * 2003-12-23 2007-03-27 Kimberly-Clark Worldwide, Inc. Soft and bulky composite fabrics
US7645353B2 (en) * 2003-12-23 2010-01-12 Kimberly-Clark Worldwide, Inc. Ultrasonically laminated multi-ply fabrics
US20050137540A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Bacteria removing wipe
US20050136772A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
US20050138749A1 (en) * 2003-12-29 2005-06-30 Keck Laura E. Combination dry and absorbent floor mop/wipe
US20050148964A1 (en) * 2003-12-29 2005-07-07 Chambers Leon E.Jr. Absorbent structure having profiled stabilization
US20050142965A1 (en) * 2003-12-29 2005-06-30 Kimberly-Clark Worldwide, Inc. Surface charge manipulation for improved fluid intake rates of absorbent composites
US20050148980A1 (en) * 2003-12-30 2005-07-07 Kimberly-Clark Worldwide, Inc. Absorbent garment having outer shell and discreet absorbent assembly adapted for positioning therein
US20050148266A1 (en) * 2003-12-30 2005-07-07 Myers David L. Self-supporting pleated electret filter media
US20050148264A1 (en) * 2003-12-30 2005-07-07 Varona Eugenio G. Bimodal pore size nonwoven web and wiper
US20050142339A1 (en) * 2003-12-30 2005-06-30 Price Cindy L. Reinforced elastic laminate
US7198742B2 (en) * 2003-12-30 2007-04-03 Kimberly-Clark Worldwide, Inc. Apparatus and method for deforming sheet material
US20050148262A1 (en) * 2003-12-30 2005-07-07 Varona Eugenio G. Wet wipe with low liquid add-on
US7252870B2 (en) * 2003-12-31 2007-08-07 Kimberly-Clark Worldwide, Inc. Nonwovens having reduced Poisson ratio
US7601657B2 (en) * 2003-12-31 2009-10-13 Kimberly-Clark Worldwide, Inc. Single sided stretch bonded laminates, and methods of making same
US7105716B2 (en) * 2003-12-31 2006-09-12 Kimberly-Clark Worldwide, Inc. Absorbent articles
US20050148922A1 (en) * 2003-12-31 2005-07-07 Reeves William G. Thermoplastic composition and products made therefrom
US7897078B2 (en) * 2004-03-09 2011-03-01 3M Innovative Properties Company Methods of manufacturing a stretched mechanical fastening web laminate
US20050217937A1 (en) * 2004-04-05 2005-10-06 Rohlf Bradley A Retractable safety device
US7799967B2 (en) * 2004-04-08 2010-09-21 Kimberly-Clark Worldwide, Inc. Differentially expanding absorbent structure
US7002055B2 (en) * 2004-04-13 2006-02-21 Kimberly-Clark Worldwide, Inc. Toilet training article containing a foaming agent
US7444722B2 (en) * 2004-04-30 2008-11-04 Kimberly-Clark Worldwide, Inc. Refastenable absorbent garment
US7476047B2 (en) * 2004-04-30 2009-01-13 Kimberly-Clark Worldwide, Inc. Activatable cleaning products
US20050241119A1 (en) * 2004-04-30 2005-11-03 Nadezhda Efremova Refastenable garment attachment means with low impact on the garment
US7928282B2 (en) * 2004-04-30 2011-04-19 Kimberly-Clark Worldwide, Inc. Absorbent products with a linked enzyme treatment
US7799162B2 (en) * 2004-05-10 2010-09-21 3M Innovative Properties Company Composite webs with elastic composite structures
US20050260368A1 (en) * 2004-05-18 2005-11-24 Ruid John O Packaging for insulation products
US7247215B2 (en) * 2004-06-30 2007-07-24 Kimberly-Clark Worldwide, Inc. Method of making absorbent articles having shaped absorbent cores on a substrate
US7938813B2 (en) 2004-06-30 2011-05-10 Kimberly-Clark Worldwide, Inc. Absorbent article having shaped absorbent core formed on a substrate
US7772456B2 (en) * 2004-06-30 2010-08-10 Kimberly-Clark Worldwide, Inc. Stretchable absorbent composite with low superaborbent shake-out
US20060003656A1 (en) * 2004-06-30 2006-01-05 Kimberly-Clark Worldwide, Inc. Efficient necked bonded laminates and methods of making same
US7922983B2 (en) * 2005-07-28 2011-04-12 Kimberly-Clark Worldwide, Inc. Sterilization wrap with additional strength sheet
US20060003658A1 (en) * 2004-06-30 2006-01-05 Hall Gregory K Elastic clothlike meltblown materials, articles containing same, and methods of making same
US8324446B2 (en) * 2004-06-30 2012-12-04 Kimberly-Clark Worldwide, Inc. Unitary absorbent core with binding agents
US7718844B2 (en) * 2004-06-30 2010-05-18 Kimberly-Clark Worldwide, Inc. Absorbent article having an interior graphic
US20060047257A1 (en) * 2004-08-31 2006-03-02 Maria Raidel Extensible absorbent core and absorbent article
US7588034B2 (en) * 2004-09-29 2009-09-15 Kimberly-Clark Worldwide, Inc. Three piece drape with fluid diversion capabilities
US20060069361A1 (en) * 2004-09-29 2006-03-30 Kimberly-Clark Worldwide, Inc. Absorbent article component having applied graphic, and process for making same
US20060069360A1 (en) * 2004-09-29 2006-03-30 Kimberly-Clark Worldwide, Inc. Absorbent article with insult indicators
US7285178B2 (en) * 2004-09-30 2007-10-23 Kimberly-Clark Worldwide, Inc. Method and apparatus for making a wrapped absorbent core
US7608070B2 (en) * 2004-09-30 2009-10-27 Kimberly-Clark Worldwide, Inc. Foam-based fasteners
US7396349B2 (en) * 2004-09-30 2008-07-08 Kimberly-Clark Worldwide, Inc. Wrapped absorbent core
US20060068666A1 (en) * 2004-09-30 2006-03-30 Varunesh Sharma Printed nonwoven substrates for use in personal care articles
US20060069365A1 (en) * 2004-09-30 2006-03-30 Sperl Michael D Absorbent composite having selective regions for improved attachment
US20060074390A1 (en) * 2004-10-06 2006-04-06 Kimberly-Clark Worldwide, Inc. Absorbent article dispensing system
US20060093788A1 (en) * 2004-10-29 2006-05-04 Kimberly-Clark Worldwide, Inc. Disposable food preparation mats, cutting sheets, placemats, and the like
US20060110997A1 (en) * 2004-11-24 2006-05-25 Snowden Hue S Treated nonwoven fabrics and method of treating nonwoven fabrics
US7086404B2 (en) * 2004-12-13 2006-08-08 Kimberly-Clark Worldwide, Inc. Surgical drape with adjustable fenestration
US20060143767A1 (en) * 2004-12-14 2006-07-06 Kaiyuan Yang Breathable protective articles
US20060130252A1 (en) * 2004-12-16 2006-06-22 Kimberly-Clark Worldwide, Inc. Cleaning device
US8622059B2 (en) * 2004-12-21 2014-01-07 Kimberly-Clark Worldwide, Inc. Face mask with absorbent element
US8197455B2 (en) * 2004-12-21 2012-06-12 Kimberly-Clark Worldwide, Inc. Absorbent articles and/or packaging components each having different patterns in a single container
US20060135932A1 (en) * 2004-12-21 2006-06-22 Abuto Frank P Stretchable absorbent core and wrap
US20060135933A1 (en) * 2004-12-21 2006-06-22 Newlin Seth M Stretchable absorbent article featuring a stretchable segmented absorbent
US7725948B2 (en) * 2004-12-22 2010-06-01 Kimberly-Clark Woldwide, Inc. Face mask with offset folding for improved fluid resistance
US20060135026A1 (en) * 2004-12-22 2006-06-22 Kimberly-Clark Worldwide, Inc. Composite cleaning products having shape resilient layer
US20060130841A1 (en) * 2004-12-22 2006-06-22 Kimberly-Clark Worldwide, Inc Face mask with horizontal and vertical folds
US7651653B2 (en) * 2004-12-22 2010-01-26 Kimberly-Clark Worldwide, Inc. Machine and cross-machine direction elastic materials and methods of making same
US7507047B2 (en) * 2004-12-22 2009-03-24 Kimberly-Clark Worldwide, Inc. Finger wipe containing a composition in a rupturable reservoir
US7612001B2 (en) * 2004-12-22 2009-11-03 Kimberly-Clark Worldwide, Inc. High performance elastic materials made using styrene block copolymers and mixtures
US20060141885A1 (en) * 2004-12-23 2006-06-29 Cobbs Susan K Apertured spunbond/spunblown composites
US20060140902A1 (en) * 2004-12-23 2006-06-29 Kimberly-Clark Worldwide, Inc. Odor control substrates
US7816285B2 (en) * 2004-12-23 2010-10-19 Kimberly-Clark Worldwide, Inc. Patterned application of activated carbon ink
US7338516B2 (en) * 2004-12-23 2008-03-04 Kimberly-Clark Worldwide, Inc. Method for applying an exothermic coating to a substrate
US8168852B2 (en) * 2004-12-23 2012-05-01 Kimberly-Clark Worldwide, Inc. Activated carbon substrates
US7763061B2 (en) * 2004-12-23 2010-07-27 Kimberly-Clark Worldwide, Inc. Thermal coverings
US7290545B2 (en) * 2004-12-23 2007-11-06 Kimberly-Clark Worldwide, Inc. Face mask with anti-fog folding
US20060142712A1 (en) * 2004-12-23 2006-06-29 Kimberly-Clark Worldwide, Inc. Absorbent articles that provide warmth
US20060137069A1 (en) * 2004-12-27 2006-06-29 Kaiyuan Yang Three-dimensional finger glove
US20060137070A1 (en) * 2004-12-27 2006-06-29 Kaiyuan Yang Finger glove with single seam
US20060140899A1 (en) * 2004-12-28 2006-06-29 Kimberly-Clark Worldwide, Inc. Skin cleansing system comprising an anti-adherent formulation and a cationic compound
US7642395B2 (en) * 2004-12-28 2010-01-05 Kimberly-Clark Worldwide, Inc. Composition and wipe for reducing viscosity of viscoelastic bodily fluids
US20060141886A1 (en) * 2004-12-29 2006-06-29 Brock Thomas W Spunbond-meltblown-spunbond laminates made from biconstituent meltblown materials
US20060141217A1 (en) * 2004-12-29 2006-06-29 Ellis Clifford J Deep patterned nonwoven fabrics and method of making them
US20060147716A1 (en) * 2004-12-30 2006-07-06 Jaime Braverman Elastic films with reduced roll blocking capability, methods of making same, and limited use or disposable product applications incorporating same
US20060148361A1 (en) * 2004-12-30 2006-07-06 Kimberley-Clark Worldwide, Inc. Method for forming an elastic laminate
US20060148917A1 (en) * 2004-12-30 2006-07-06 Radwanski Fred R Absorbent foam containing fiber
US8172084B2 (en) * 2004-12-30 2012-05-08 Kimberly-Clark Worldwide, Inc. Absorbent article packaging
US20060148357A1 (en) * 2004-12-30 2006-07-06 Baratian Stephen A Elastic laminate having topography
US8328782B2 (en) * 2005-02-18 2012-12-11 The Procter & Gamble Company Hydrophobic surface coated light-weight nonwoven laminates for use in absorbent articles
US8677513B2 (en) 2005-04-01 2014-03-25 Kimberly-Clark Worldwide, Inc. Surgical sleeve for glove retention
US20060243378A1 (en) * 2005-04-29 2006-11-02 Kimberly-Clark Worldwide, Inc. Absorbent garment and process for making such an absorbent garment
US20060246804A1 (en) * 2005-04-29 2006-11-02 Thomas Oomman P Elastomeric materials
US20060247599A1 (en) * 2005-04-29 2006-11-02 Kimberly-Clark Worldwide, Inc. Garment having an outer shell that freely moves in relation to an absorbent assembly therein
US7552501B2 (en) * 2005-04-29 2009-06-30 Kimberly-Clark Worldwide, Inc. Finger wipe with improved seam structure
US20060251858A1 (en) * 2005-05-06 2006-11-09 Kimberly-Clark Worldwide, Inc. Elastic, breathable barrier films and laminates
US7615109B2 (en) * 2005-06-10 2009-11-10 Electrolux Home Care Products, Inc. Sodium bicarbonate vacuum bag inserts
US7685649B2 (en) * 2005-06-20 2010-03-30 Kimberly-Clark Worldwide, Inc. Surgical gown with elastomeric fibrous sleeves
US20070000014A1 (en) * 2005-06-20 2007-01-04 John Rotella Surgical gown with a film sleeve for glove retention and wearer protection
US7469427B2 (en) * 2005-06-30 2008-12-30 Kimberly-Clark Worldwide, Inc. Stretchable and permeable non-woven protective gloves
US20070026028A1 (en) * 2005-07-26 2007-02-01 Close Kenneth B Appliance for delivering a composition
US7655829B2 (en) 2005-07-29 2010-02-02 Kimberly-Clark Worldwide, Inc. Absorbent pad with activated carbon ink for odor control
US7517166B2 (en) * 2005-07-29 2009-04-14 Kimberly-Clark Worldwide, Inc. Applicator with discrete pockets of a composition to be delivered with use of the applicator
US8241263B2 (en) 2005-08-26 2012-08-14 Medline Industries, Inc. Absorbent article
US7604623B2 (en) * 2005-08-30 2009-10-20 Kimberly-Clark Worldwide, Inc. Fluid applicator with a press activated pouch
US7674058B2 (en) * 2005-08-30 2010-03-09 Kimberly-Clark Worldwide, Inc. Disposable wipe with liquid storage and application system
US7682554B2 (en) * 2005-08-30 2010-03-23 Kimberly-Clark Worldwide, Inc. Method and apparatus to mechanically shape a composite structure
US8221378B2 (en) 2005-08-30 2012-07-17 Kimberly-Clark Worldwide, Inc. Combination of refastenable and releasable bonds
US7687012B2 (en) * 2005-08-30 2010-03-30 Kimberly-Clark Worldwide, Inc. Method and apparatus to shape a composite structure without contact
US20070048497A1 (en) * 2005-08-31 2007-03-01 Peiguang Zhou Single-faced neck bonded laminates and methods of making same
US20070049153A1 (en) * 2005-08-31 2007-03-01 Dunbar Charlene H Textured wiper material with multi-modal pore size distribution
US7565987B2 (en) 2005-08-31 2009-07-28 Kimberly-Clark Worldwide, Inc. Pull tab activated sealed packet
US20070045144A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Packaging component for personal care articles
US7575384B2 (en) * 2005-08-31 2009-08-18 Kimberly-Clark Worldwide, Inc. Fluid applicator with a pull tab activated pouch
US20070048709A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. System for detection and analysis of biological waste spread in an undergarment
US7845351B2 (en) * 2005-08-31 2010-12-07 Kimberly-Clark Worldwide Inc. Germicidal face mask
US7384491B2 (en) * 2005-09-01 2008-06-10 Kimberly-Clark Worldwide, Inc. Apparatus and methods for making crosslinked elastic laminates
US8038661B2 (en) 2005-09-02 2011-10-18 The Procter & Gamble Company Absorbent article with low cold flow construction adhesive
US20070083980A1 (en) * 2005-09-16 2007-04-19 Kimberly-Clark Worldwide, Inc. Polymer-coated protective garment
US20070073255A1 (en) * 2005-09-29 2007-03-29 Kimberly-Clark Worldwide, Inc. Absorbent personal care article with a wrap member having distinct component layers
US20070077838A1 (en) * 2005-09-30 2007-04-05 Binkley Jesse A Multiple layer roofing underlayment material
JP2009511111A (en) * 2005-10-21 2009-03-19 ザ プロクター アンド ギャンブル カンパニー Absorbent articles containing auxetic materials
US20070090014A1 (en) * 2005-10-24 2007-04-26 Kimberly-Clark Worldwide, Inc. Discreet personal care product kit
US20070092398A1 (en) * 2005-10-25 2007-04-26 Mcdonald Duane L Pouch for sterilization of medical products
US20070099531A1 (en) * 2005-10-27 2007-05-03 Efremova Nadezhda V Foam fastening system that includes a surface modifier
US8034430B2 (en) 2005-10-27 2011-10-11 Kimberly-Clark Worldwide, Inc. Nonwoven fabric and fastening system that include an auto-adhesive material
US20070098953A1 (en) * 2005-10-27 2007-05-03 Stabelfeldt Sara J Fastening systems utilizing combinations of mechanical fasteners and foams
US7640637B2 (en) 2005-11-01 2010-01-05 Kimberly-Clark Worldwide, Inc. Methods to modify the fibrous landing layer of a foam based fastener and products made from the same
US20070135785A1 (en) * 2005-12-12 2007-06-14 Jian Qin Absorbent articles comprising thermoplastic coated superabsorbent polymer materials
US20070130709A1 (en) * 2005-12-13 2007-06-14 Kimberly-Clark Worldwide, Inc. Methods for employing a cleansing device with inclusion
US20070135784A1 (en) * 2005-12-13 2007-06-14 Kimberly-Clark Worldwide, Inc. Surgical drape with superabsorbent fluid management members
US20070130707A1 (en) * 2005-12-13 2007-06-14 Kimberly-Clark Worldwide, Inc. Cleansing device with inclusion
US20070134303A1 (en) * 2005-12-14 2007-06-14 Ali Yahiaoui Protective and therapeutic article
US20070135787A1 (en) * 2005-12-14 2007-06-14 Maria Raidel Extensible absorbent layer and absorbent article
US7833369B2 (en) * 2005-12-14 2010-11-16 Kimberly-Clark Worldwide, Inc. Strand, substrate, and/or composite comprising re-activatable adhesive composition, and processes for making and/or utilizing same
US7713252B2 (en) * 2005-12-14 2010-05-11 Kimberly-Clark Worldwide, Inc. Therapeutic article including a personal care composition and methods of making the therapeutic article
US7842163B2 (en) 2005-12-15 2010-11-30 Kimberly-Clark Worldwide, Inc. Embossed tissue products
US8282776B2 (en) * 2005-12-15 2012-10-09 Kimberly-Clark Worldwide, Inc. Wiping product having enhanced oil absorbency
US7879191B2 (en) * 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Wiping products having enhanced cleaning abilities
US7704341B2 (en) * 2005-12-15 2010-04-27 Kimberly-Clark Worldwide, Inc. Method and apparatus for mechanically bonding material webs
US7976662B2 (en) * 2005-12-15 2011-07-12 Kimberly-Clark Worldwide, Inc. Laminate containing a fluorinated nonwoven web
US7794486B2 (en) 2005-12-15 2010-09-14 Kimberly-Clark Worldwide, Inc. Therapeutic kit employing a thermal insert
US7727513B2 (en) * 2005-12-15 2010-06-01 Kimberly-Clark Worldwide, Inc. Method for screening for bacterial conjunctivitis
US7422712B2 (en) * 2005-12-15 2008-09-09 Kimberly-Clark Worldwide, Inc. Technique for incorporating a liquid additive into a nonwoven web
US20070141303A1 (en) * 2005-12-15 2007-06-21 Steindorf Eric C Sheet materials with zoned machine direction extensibility and methods of making
US7686840B2 (en) 2005-12-15 2010-03-30 Kimberly-Clark Worldwide, Inc. Durable exothermic coating
US20070142801A1 (en) * 2005-12-15 2007-06-21 Peiguang Zhou Oil-resistant elastic attachment adhesive and laminates containing it
US20070141352A1 (en) * 2005-12-15 2007-06-21 Calhoun Patricia H Cross-directional elastic films with machine direction stiffness
US7879188B2 (en) * 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Additive compositions for treating various base sheets
US8003553B2 (en) * 2005-12-15 2011-08-23 Kimberly-Clark Worldwide, Inc. Elastic-powered shrink laminate
US7837831B2 (en) * 2005-12-15 2010-11-23 Kimberly-Clark Worldwide, Inc. Tissue products containing a polymer dispersion
US20070141937A1 (en) * 2005-12-15 2007-06-21 Joerg Hendrix Filament-meltblown composite materials, and methods of making same
US8137392B2 (en) * 2005-12-15 2012-03-20 Kimberly-Clark Worldwide, Inc. Conformable thermal device
US7883604B2 (en) * 2005-12-15 2011-02-08 Kimberly-Clark Worldwide, Inc. Creping process and products made therefrom
US7807023B2 (en) * 2005-12-15 2010-10-05 Kimberly-Clark Worldwide, Inc. Process for increasing the basis weight of sheet materials
US7820001B2 (en) * 2005-12-15 2010-10-26 Kimberly-Clark Worldwide, Inc. Latent elastic laminates and methods of making latent elastic laminates
US8444811B2 (en) 2005-12-15 2013-05-21 Kimberly-Clark Worldwide, Inc. Process for increasing the basis weight of sheet materials
US20070137811A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Premoistened tissue products
US7879189B2 (en) * 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Additive compositions for treating various base sheets
US20070141934A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Nonwoven webs containing bacteriostatic compositions and methods of making the same
US20070142882A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Thermal device having a controlled heating profile
US20070142262A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Bacteria capturing treatment for fibrous webs
US7820010B2 (en) * 2005-12-15 2010-10-26 Kimberly-Clark Worldwide, Inc. Treated tissue products having increased strength
US20070141311A1 (en) * 2005-12-15 2007-06-21 Mleziva Mark M Differentially-stretched elastic laminate
US7985209B2 (en) * 2005-12-15 2011-07-26 Kimberly-Clark Worldwide, Inc. Wound or surgical dressing
US20070137769A1 (en) * 2005-12-15 2007-06-21 Payne Patrick L Method for forming a printed film-nonwoven laminate
US7703698B2 (en) * 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
US7810743B2 (en) 2006-01-23 2010-10-12 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US8410005B2 (en) 2006-03-30 2013-04-02 The Procter & Gamble Company Stacks of pre-moistened wipes with unique fluid retention characteristics
US20070255243A1 (en) * 2006-04-28 2007-11-01 Kaun James M Dimensionally stable stretchable absorbent composite
US20070251522A1 (en) * 2006-05-01 2007-11-01 Welchel Debra N Respirator with exhalation vents
US20100224199A1 (en) * 2006-05-01 2010-09-09 Kimberly-Clark Worldwide, Inc. Respirator
US20080003907A1 (en) * 2006-06-28 2008-01-03 Samuel Keith Black Facing Product for Vehicular Trim
US7585382B2 (en) * 2006-06-30 2009-09-08 Kimberly-Clark Worldwide, Inc. Latent elastic nonwoven composite
WO2008008067A1 (en) 2006-07-14 2008-01-17 Kimberly-Clark Worldwide, Inc. Biodegradable aliphatic polyester for use in nonwoven webs
US7534481B2 (en) * 2006-08-08 2009-05-19 3M Innovative Properties Company Shaped elastic tab laminates
US20080120758A1 (en) * 2006-08-30 2008-05-29 Mary Katherine Lawson Thermal impulse bonding of thermally sensitive laminate barrier materials
US7763442B2 (en) * 2006-08-31 2010-07-27 Kimberly-Clark Worldwide, Inc. Method for detecting candida on skin
US20080057811A1 (en) * 2006-08-31 2008-03-06 Kimberly-Clark Worldwide, Inc. Multifunctional hydrogel-web composites for enhanced absorbency applications and methods of making the same
US7531319B2 (en) * 2006-08-31 2009-05-12 Kimberly-Clark Worldwide, Inc. Array for rapid detection of a microorganism
US7803244B2 (en) * 2006-08-31 2010-09-28 Kimberly-Clark Worldwide, Inc. Nonwoven composite containing an apertured elastic film
US20080057534A1 (en) * 2006-08-31 2008-03-06 Kimberly-Clark Worldwide, Inc. Microbe-sensitive indicators and use of the same
US7678716B2 (en) * 2006-08-31 2010-03-16 Kimberly-Clark Worldwide, Inc. Hydrogel-web composites for thermal energy transfer applications and methods of making the same
US20080063806A1 (en) * 2006-09-08 2008-03-13 Kimberly-Clark Worldwide, Inc. Processes for curing a polymeric coating composition using microwave irradiation
US8034286B2 (en) * 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US9283188B2 (en) * 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US20080060550A1 (en) * 2006-09-12 2008-03-13 Macdonald Gavin Color changing skin sealant with co-acid trigger
US20080063615A1 (en) * 2006-09-12 2008-03-13 Macdonald John Gavin Color changing skin sealant
US20080070464A1 (en) * 2006-09-14 2008-03-20 3M Innovative Properties Company Composite webs and methods of manufacturing same
US20080077104A1 (en) * 2006-09-22 2008-03-27 Baer Noah J Absorbent article wrapper component having disposal means
US20080076315A1 (en) * 2006-09-27 2008-03-27 Mccormack Ann L Elastic Composite Having Barrier Properties
US20080085210A1 (en) * 2006-10-05 2008-04-10 Henry Griesbach Decontamination of filtration media for respiration
US20080103460A1 (en) * 2006-10-31 2008-05-01 Close Kenneth B Method for making an appliance for delivering a composition, the appliance having an elastic layer and a shielding layer
US20080102093A1 (en) * 2006-10-31 2008-05-01 Close Kenneth B Appliance for delivering a composition, the appliance having an elastic layer and a shielding layer
US20080103461A1 (en) * 2006-10-31 2008-05-01 Johnson Kroy D Appliance for delivering a composition, the appliance having an outer fibrous layer and inner liquid-impermeable layer
US20080116096A1 (en) * 2006-11-17 2008-05-22 Johnson Kroy D Liquid-permeable appliance for delivering a composition
US7582178B2 (en) * 2006-11-22 2009-09-01 Kimberly-Clark Worldwide, Inc. Nonwoven-film composite with latent elasticity
US7938921B2 (en) * 2006-11-22 2011-05-10 Kimberly-Clark Worldwide, Inc. Strand composite having latent elasticity
US7785443B2 (en) 2006-12-07 2010-08-31 Kimberly-Clark Worldwide, Inc. Process for producing tissue products
US7642208B2 (en) * 2006-12-14 2010-01-05 Kimberly-Clark Worldwide, Inc. Abrasion resistant material for use in various media
US20080145316A1 (en) * 2006-12-14 2008-06-19 Macdonald John Gavin Skin coating with microbial indicator
US20080145269A1 (en) * 2006-12-15 2008-06-19 Martin Stephanie M Deodorizing container that includes a modified nanoparticle ink
US7951127B2 (en) 2006-12-15 2011-05-31 Kimberly-Clark Worldwide, Inc. Composite bodyside liner
US8044255B2 (en) * 2006-12-15 2011-10-25 Kimberly-Clark Worldwide, Inc. Treatment of personal care products to reduce leakage
US20080145268A1 (en) * 2006-12-15 2008-06-19 Martin Stephanie M Deodorizing container that includes an anthraquinone ink
US7568251B2 (en) 2006-12-28 2009-08-04 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US20080155762A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US20080156428A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Bonding Substrates With Improved Microwave Absorbing Compositions
US7712353B2 (en) * 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US20080156157A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7673516B2 (en) * 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7740666B2 (en) * 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US20080157442A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions
US7674300B2 (en) * 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US20080155728A1 (en) * 2006-12-28 2008-07-03 Greg Hafer Surgical gown tie attachment
US20080156427A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Bonding Substrates With Improved Microwave Absorbing Compositions
US7531471B2 (en) * 2007-01-30 2009-05-12 Kimberly-Clark Worldwide, Inc. Substrate containing a deodorizing ink
US7910795B2 (en) * 2007-03-09 2011-03-22 Kimberly-Clark Worldwide, Inc. Absorbent article containing a crosslinked elastic film
US8895111B2 (en) 2007-03-14 2014-11-25 Kimberly-Clark Worldwide, Inc. Substrates having improved ink adhesion and oil crockfastness
US20080230196A1 (en) * 2007-03-22 2008-09-25 Kou-Chang Liu Softening compositions for treating tissues which retain high rate of absorbency
US7588662B2 (en) * 2007-03-22 2009-09-15 Kimberly-Clark Worldwide, Inc. Tissue products containing non-fibrous polymeric surface structures and a topically-applied softening composition
US7879747B2 (en) 2007-03-30 2011-02-01 Kimberly-Clark Worldwide, Inc. Elastic laminates having fragrance releasing properties and methods of making the same
US10863783B2 (en) 2007-04-16 2020-12-15 Kimberly-Clark Worldwide, Inc. Protective apparel with angled stretch panel
US8187697B2 (en) * 2007-04-30 2012-05-29 Kimberly-Clark Worldwide, Inc. Cooling product
US8029190B2 (en) * 2007-05-10 2011-10-04 Kimberly-Clark Worldwide, Inc. Method and articles for sensing relative temperature
US20100018641A1 (en) * 2007-06-08 2010-01-28 Kimberly-Clark Worldwide, Inc. Methods of Applying Skin Wellness Agents to a Nonwoven Web Through Electrospinning Nanofibers
US8513323B2 (en) * 2007-06-22 2013-08-20 Kimbery-Clark Worldwide, Inc. Multifunctional silicone blends
US7789927B2 (en) * 2007-07-06 2010-09-07 Kimberly-Clark Worldwide, Inc. Portable breathable dust partition system
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US7947184B2 (en) * 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7785674B2 (en) * 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9265292B2 (en) * 2007-07-20 2016-02-23 Kimberly-Clark Worldwide, Inc. Easy donning garment
US7841020B2 (en) 2007-07-20 2010-11-30 Kimberly-Clark Worldwide, Inc. Easy donning garment
US8029489B2 (en) * 2007-08-03 2011-10-04 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article and method of adhering such article to a wearer
US20090182296A1 (en) * 2007-08-03 2009-07-16 Melissa Jean Dennis Body Adhering Article
US8012137B2 (en) * 2007-08-03 2011-09-06 Kimberly-Clark Worldwide, Inc. Packaged body adhering absorbent article and method of applying such article to a wearer
US8062275B2 (en) * 2007-08-03 2011-11-22 Kimberly Clark Worldwide, Inc. Body adhering absorbent article and method for donning such article
US8292862B2 (en) 2007-08-03 2012-10-23 Kimberly-Clark Worldwide, Inc. Dynamic fitting body adhering absorbent article
US8251969B2 (en) * 2007-08-03 2012-08-28 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US8197456B2 (en) * 2007-08-03 2012-06-12 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US8672911B2 (en) 2007-08-03 2014-03-18 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US8734413B2 (en) 2007-08-03 2014-05-27 Kimberly-Clark Worldwide, Inc. Packaged body adhering absorbent article
US7947027B2 (en) 2007-12-28 2011-05-24 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US8702672B2 (en) * 2007-08-03 2014-04-22 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US9642403B2 (en) * 2007-08-16 2017-05-09 Kimberly-Clark Worldwide, Inc. Strap fastening system for a disposable respirator providing improved donning
US20090047855A1 (en) * 2007-08-16 2009-02-19 3M Innovative Properties Company Stretchable elastic nonwoven laminates
US20090044811A1 (en) 2007-08-16 2009-02-19 Kimberly-Clark Worldwide, Inc. Vent and strap fastening system for a disposable respirator providing improved donning
US20090044809A1 (en) * 2007-08-16 2009-02-19 Kimberly-Clark Worldwide, Inc. Vent and strap fastening system for a disposable respirator
US7879744B2 (en) 2007-08-30 2011-02-01 Kimberly-Clark Worldwide, Inc. Stabilized decolorizing composition
US8569221B2 (en) 2007-08-30 2013-10-29 Kimberly-Clark Worldwide, Inc. Stain-discharging and removing system
US8226624B2 (en) * 2007-08-31 2012-07-24 Kimberly-Clark Worldwide, Inc. Elastic member for a garment having improved gasketing
US20090068419A1 (en) * 2007-09-07 2009-03-12 Invista North America S.A.R.L. Variable stretch nonwoven fabric composites
JP5563459B2 (en) * 2007-09-07 2014-07-30 インヴィスタ テクノロジーズ エスアエルエル Variable stretch multilayer nonwoven composite
US20090068422A1 (en) * 2007-09-07 2009-03-12 Invista North America S.A.R.L. Multilayer stretch nonwoven fabric composites
US20090089928A1 (en) * 2007-10-03 2009-04-09 Alina Kasbohm Pacification blanket
US8033421B2 (en) * 2007-10-03 2011-10-11 Kimberly-Clark Worldwide, Inc. Refillable travel dispenser for wet wipes
US7549178B2 (en) * 2007-10-12 2009-06-23 Kimberly-Clark Worldwide, Inc. Patch for securing a surgical gown tie
US20090098081A1 (en) * 2007-10-12 2009-04-16 Macdonald John Gavin System for providing a method for applying a skin sealant having a phase change visual indicating component
US20090098073A1 (en) * 2007-10-12 2009-04-16 Macdonald John Gavin Phase change visual indicating composition
US7923392B2 (en) * 2007-10-16 2011-04-12 Kimberly-Clark Worldwide, Inc. Crosslinked elastic material formed from a branched block copolymer
US8349963B2 (en) 2007-10-16 2013-01-08 Kimberly-Clark Worldwide, Inc. Crosslinked elastic material formed from a linear block copolymer
US8399368B2 (en) * 2007-10-16 2013-03-19 Kimberly-Clark Worldwide, Inc. Nonwoven web material containing a crosslinked elastic component formed from a linear block copolymer
US7923391B2 (en) * 2007-10-16 2011-04-12 Kimberly-Clark Worldwide, Inc. Nonwoven web material containing crosslinked elastic component formed from a pentablock copolymer
US8597452B2 (en) * 2007-10-31 2013-12-03 Kimberly-Clark Worldwide, Inc. Methods of stretching wet wipes to increase thickness
US20090123569A1 (en) * 2007-11-08 2009-05-14 Macdonald John Gavin Coverage indicating technology for skin sealants using tannates
US20090147905A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
US20090157022A1 (en) * 2007-12-13 2009-06-18 Kimberly-Clark Worldwide, Inc. Absorbent articles having a wetness indicator
US20090151733A1 (en) * 2007-12-13 2009-06-18 Welchel Debra N Respirator with stretch-panels
US8871232B2 (en) 2007-12-13 2014-10-28 Kimberly-Clark Worldwide, Inc. Self-indicating wipe for removing bacteria from a surface
US20090156079A1 (en) 2007-12-14 2009-06-18 Kimberly-Clark Worldwide, Inc. Antistatic breathable nonwoven laminate having improved barrier properties
US8470431B2 (en) * 2007-12-14 2013-06-25 Kimberly Clark Product with embossments having a decreasing line weight
US8227658B2 (en) * 2007-12-14 2012-07-24 Kimberly-Clark Worldwide, Inc Film formed from a blend of biodegradable aliphatic-aromatic copolyesters
US20090155325A1 (en) * 2007-12-14 2009-06-18 Kimberly-Clark Worldwide, Inc. Formulation and products for promoting skin cleanliness and health
US8454889B2 (en) * 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8858892B2 (en) * 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US20090166177A1 (en) 2007-12-28 2009-07-02 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8057573B2 (en) * 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
US9421504B2 (en) * 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8206024B2 (en) 2007-12-28 2012-06-26 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US8215822B2 (en) 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US10589134B2 (en) * 2008-01-30 2020-03-17 Kimberly-Clark Worldwide, Inc. Hand health and hygiene system for hand health and infection control
US8287677B2 (en) 2008-01-31 2012-10-16 Kimberly-Clark Worldwide, Inc. Printable elastic composite
US20090233049A1 (en) * 2008-03-11 2009-09-17 Kimberly-Clark Worldwide, Inc. Coform Nonwoven Web Formed from Propylene/Alpha-Olefin Meltblown Fibers
US8017534B2 (en) * 2008-03-17 2011-09-13 Kimberly-Clark Worldwide, Inc. Fibrous nonwoven structure having improved physical characteristics and method of preparing
US20090240220A1 (en) * 2008-03-20 2009-09-24 Kimberly-Clark Worldwide, Inc Compressed Substrates Configured to Deliver Active Agents
US8062453B2 (en) * 2008-04-02 2011-11-22 Bae Systems Land & Armaments, L.P. Method for quasi-instantaneous polymerization of filament wound composite materials
US20090286437A1 (en) * 2008-05-14 2009-11-19 Kimberly-Clark Worldwide, Inc. Wipes with rupturable beads
US8709191B2 (en) 2008-05-15 2014-04-29 Kimberly-Clark Worldwide, Inc. Latent elastic composite formed from a multi-layered film
US8563017B2 (en) * 2008-05-15 2013-10-22 Kimberly-Clark Worldwide, Inc. Disinfectant wet wipe
US20090299312A1 (en) * 2008-05-30 2009-12-03 Kimberly-Clark Worldwide, Inc. Twisted, Compressed Substrates as Wetness Indicators in Absorbent Articles
US20090308548A1 (en) * 2008-06-16 2009-12-17 Tramontina Paul F Temporary partition curtain
US20090326622A1 (en) * 2008-06-26 2009-12-31 Johnson Kroy D Customizable therapeutic article for applying heat to the body
US20090321431A1 (en) * 2008-06-26 2009-12-31 Rasha Wafikzaki Farag Anti-splatter cover for microwave cooking
US20090320852A1 (en) * 2008-06-27 2009-12-31 Cuevas Brian J Tracheostomy Tube Butterfly Flange
US8603281B2 (en) 2008-06-30 2013-12-10 Kimberly-Clark Worldwide, Inc. Elastic composite containing a low strength and lightweight nonwoven facing
US8679992B2 (en) 2008-06-30 2014-03-25 Kimberly-Clark Worldwide, Inc. Elastic composite formed from multiple laminate structures
US7700530B2 (en) * 2008-06-30 2010-04-20 Kimberly Clark Worldwide, Inc. Polysensorial personal care cleanser comprising a quaternary silicone surfactant
US20090325440A1 (en) * 2008-06-30 2009-12-31 Thomas Oomman P Films and film laminates with relatively high machine direction modulus
US8324445B2 (en) * 2008-06-30 2012-12-04 Kimberly-Clark Worldwide, Inc. Collection pouches in absorbent articles
US7968479B2 (en) * 2008-06-30 2011-06-28 Kimberly-Clark Worldwide, Inc. Elastic multilayer composite including pattern unbonded elastic materials, articles containing same, and methods of making same
US7924142B2 (en) * 2008-06-30 2011-04-12 Kimberly-Clark Worldwide, Inc. Patterned self-warming wipe substrates
US11234905B2 (en) * 2008-07-11 2022-02-01 Kimberly-Clark Worldwide, Inc. Formulations having improved compatibility with nonwoven substrates
US9949906B2 (en) 2008-07-11 2018-04-24 Kimberly-Clark Worldwide, Inc. Substrates having formulations with improved transferability
US20100031427A1 (en) * 2008-08-06 2010-02-11 Aaron Drake Smith Garment With Interior Surface Indicator
US9168718B2 (en) * 2009-04-21 2015-10-27 Exxonmobil Chemical Patents Inc. Method for producing temperature resistant nonwovens
US20100266818A1 (en) * 2009-04-21 2010-10-21 Alistair Duncan Westwood Multilayer Composites And Apparatuses And Methods For Their Making
US8664129B2 (en) 2008-11-14 2014-03-04 Exxonmobil Chemical Patents Inc. Extensible nonwoven facing layer for elastic multilayer fabrics
US20100266824A1 (en) * 2009-04-21 2010-10-21 Alistair Duncan Westwood Elastic Meltblown Laminate Constructions and Methods for Making Same
US10161063B2 (en) 2008-09-30 2018-12-25 Exxonmobil Chemical Patents Inc. Polyolefin-based elastic meltblown fabrics
US8710148B2 (en) 2011-12-02 2014-04-29 Exxonmobil Chemical Patents Inc. Polymer compositions and nonwoven compositions prepared therefrom
US9498932B2 (en) * 2008-09-30 2016-11-22 Exxonmobil Chemical Patents Inc. Multi-layered meltblown composite and methods for making same
US11147722B2 (en) * 2008-11-10 2021-10-19 Kimberly-Clark Worldwide, Inc. Absorbent article with a multifunctional acrylate skin-adhesive composition
US8157780B2 (en) 2008-12-15 2012-04-17 Kimberly-Clark Worldwide, Inc. Absorbent article having line of weakness for folding the article
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
US8163388B2 (en) * 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
US8225729B2 (en) * 2008-12-16 2012-07-24 Kimberly-Clark Worldwide, Inc. Three-dimensional wiping substrate and method therefor
US8507746B2 (en) * 2008-12-16 2013-08-13 Kimberly-Clark Worldwide, Inc. Leakage-signaling absorbent article
US8882735B2 (en) * 2008-12-16 2014-11-11 Kimberly-Clark Worldwide, Inc. Article with fluid-activated barriers
US8247638B2 (en) * 2008-12-17 2012-08-21 Kimberly-Clark Worldwide, Inc. Absorbent article saturation indication system and method
US7858055B2 (en) 2008-12-18 2010-12-28 Kimberly-Clark Worldwide, Inc. Moisture sensitive auxetic material
US20100159774A1 (en) * 2008-12-19 2010-06-24 Chambers Jr Leon Eugene Nonwoven composite and method for making the same
US20100159775A1 (en) * 2008-12-19 2010-06-24 Chambers Jr Leon Eugene Nonwoven Composite And Method For Making The Same
US8021996B2 (en) 2008-12-23 2011-09-20 Kimberly-Clark Worldwide, Inc. Nonwoven web and filter media containing partially split multicomponent fibers
US7942264B2 (en) * 2008-12-24 2011-05-17 Kimberly-Clark Worldwide, Inc. Sterilization container with peel top
US8623289B2 (en) 2008-12-24 2014-01-07 Kimberly-Clark Worldwide Inc. Single use sterilization container
US20100158751A1 (en) * 2008-12-24 2010-06-24 Steven Scott Friderich Single use sterilization container
US20100159778A1 (en) * 2008-12-24 2010-06-24 Hughes Janis W Conformable attachment structure for forming a seal with the skin
US8241587B2 (en) 2008-12-24 2012-08-14 Kimberly-Clark Worldwide, Inc. Collapsible sterilization container
US7833918B2 (en) 2009-01-14 2010-11-16 The Dial Corporation Water-activated, disposable two-sided cleaning article
US10022468B2 (en) 2009-02-02 2018-07-17 Kimberly-Clark Worldwide, Inc. Absorbent articles containing a multifunctional gel
MX2011009060A (en) 2009-02-27 2011-11-18 Exxonmobil Chem Patents Inc Multi-layer nonwoven in situ laminates and method of producing the same.
US8105463B2 (en) 2009-03-20 2012-01-31 Kimberly-Clark Worldwide, Inc. Creped tissue sheets treated with an additive composition according to a pattern
EP2461760B1 (en) 2009-08-06 2020-02-26 O&M Halyard International Unlimited Company Flexible multi-panel sterilization assembly
DE102009029194A1 (en) 2009-09-04 2011-04-07 Kimberly-Clark Worldwide, Inc., Neenah Separation of colored substances from aqueous liquids
US8636833B2 (en) 2009-09-16 2014-01-28 E I Du Pont De Nemours And Company Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
US20110091714A1 (en) 2009-10-16 2011-04-21 E. I. Du Pont De Nemours And Company Monolithic films having zoned breathability
WO2011047264A1 (en) 2009-10-16 2011-04-21 E. I. Du Pont De Nemours And Company Articles having zoned breathability
US8668975B2 (en) * 2009-11-24 2014-03-11 Exxonmobil Chemical Patents Inc. Fabric with discrete elastic and plastic regions and method for making same
WO2011119536A1 (en) 2010-03-22 2011-09-29 Abbott Cardiovascular Systems Inc. Stent delivery system having a fibrous matrix covering with improved stent retention
MX2012011400A (en) * 2010-04-12 2014-04-14 Georgia Pacific Consumer Prod Cleaning wipe for use with disinfectants, method of manufacture thereof, and system.
MX2012011717A (en) 2010-04-16 2012-11-06 Kimberly Clark Co Absorbent composite with a resilient coform layer.
WO2011159400A1 (en) 2010-06-15 2011-12-22 Exxonmobil Chemical Patents Inc. Nonwoven fabrics made from polymer blends and methods for making same
EP2582868B1 (en) 2010-06-17 2018-03-28 Washington University Biomedical patches with aligned fibers
ES2792823T3 (en) 2010-07-02 2020-11-12 Procter & Gamble Soluble fibrous web structure article comprising active ingredients
US8674169B2 (en) 2010-07-15 2014-03-18 The Procter And Gamble Company Absorbent core
US8727957B2 (en) 2010-08-05 2014-05-20 Kimberly-Clark Worldwide, Inc. System for securing flexible multi-panel sterilization assembly
US10753023B2 (en) 2010-08-13 2020-08-25 Kimberly-Clark Worldwide, Inc. Toughened polylactic acid fibers
US8936740B2 (en) 2010-08-13 2015-01-20 Kimberly-Clark Worldwide, Inc. Modified polylactic acid fibers
MX344365B (en) 2010-10-19 2016-12-14 Medline Ind Inc * Absorbent articles and methods of manufacturing the same.
US10117792B2 (en) 2010-10-19 2018-11-06 Medline Industries, Inc. Absorbent articles and methods of manufacturing the same
US8545474B2 (en) 2010-10-22 2013-10-01 Kimberly-Clark Worldwide, Inc. Disposable absorbent article with finger tab without compromising stretch
WO2012064468A2 (en) 2010-11-09 2012-05-18 Exxonmobil Chemical Patents Inc. Meltblown nonwoven compositions and methods for making them
WO2012064469A1 (en) 2010-11-09 2012-05-18 Exxonmobil Chemical Patents Inc. Bicomponent fibers and methods for making them
MX362711B (en) 2010-12-03 2019-02-05 3G Mermet Corp Near infrared reflecting composition and coverings for architectural openings incorporating same.
US8708988B2 (en) 2010-12-03 2014-04-29 Kimberly-Clark Worldwide, Inc. Absorbent article configured for controlled deformation
WO2012078826A2 (en) 2010-12-08 2012-06-14 3M Innovative Properties Company Adhesive article for three-dimensional applications
US8777900B2 (en) 2010-12-14 2014-07-15 Kimberly-Clark Worldwide, Inc. Ambulatory enteral feeding system
US20120152289A1 (en) 2010-12-21 2012-06-21 Tara Denise Smith Sterilization Container With Disposable Liner
US8551895B2 (en) 2010-12-22 2013-10-08 Kimberly-Clark Worldwide, Inc. Nonwoven webs having improved barrier properties
US8604129B2 (en) 2010-12-30 2013-12-10 Kimberly-Clark Worldwide, Inc. Sheet materials containing S-B-S and S-I/B-S copolymers
US8895126B2 (en) 2010-12-31 2014-11-25 Kimberly-Clark Worldwide, Inc. Segmented films with high strength seams
US11419958B2 (en) 2011-02-04 2022-08-23 O&M Halyard, Inc. Flexible multi-panel sterilization assembly with bolsters
US8758547B2 (en) 2011-02-08 2014-06-24 Kimberly-Clark Worldwide, Inc. Method of manufacturing a body adhering absorbent article orientated in the cross-machine direction with reduced curl
US8764922B2 (en) 2011-02-08 2014-07-01 Kimberly-Clark Worldwide, Inc. Method of manufacturing a body adhering absorbent article orientated in the machine direction with reduced curl
US8486427B2 (en) 2011-02-11 2013-07-16 Kimberly-Clark Worldwide, Inc. Wipe for use with a germicidal solution
US8426671B2 (en) 2011-02-11 2013-04-23 Polymer Group, Inc. Liquid management layer for personal care absorbent articles
WO2012149391A1 (en) 2011-04-28 2012-11-01 Adherent Laboratories, Inc. Polyolefin based hot melt adhesive composition
EP2723927B1 (en) 2011-06-21 2016-11-23 ExxonMobil Chemical Patents Inc. Elastic nonwoven materials comprising propylene-based and ethylene-based polymers
US20120328850A1 (en) 2011-06-27 2012-12-27 Ali Yahiaoui Sheet Materials Having Improved Softness
DE102011106709A1 (en) * 2011-07-06 2013-01-10 Automatik Plastics Machinery Gmbh Method and device for producing granules
US9364859B2 (en) 2011-07-28 2016-06-14 Kimberly-Clark Worldwide, Inc. Superhydrophobic surfaces
US9217094B2 (en) 2011-07-28 2015-12-22 The Board Of Trustees Of The University Of Illinois Superhydrophobic compositions
US20130042501A1 (en) 2011-08-15 2013-02-21 Herb Flores Velazquez Disposable Protective Footwear Cover
US9296535B2 (en) 2011-09-30 2016-03-29 Avent, Inc. Flexible multi-panel sterilization assembly with mass balancing side tabs
US9717811B2 (en) 2011-09-30 2017-08-01 Avent, Inc. Flexible multi-panel sterilization assembly with side tabs
USD716938S1 (en) 2011-10-19 2014-11-04 Medline Industries, Inc. Absorbent core
US20130102985A1 (en) 2011-10-19 2013-04-25 Daniel Lee Ellingson Absorbent Article Having A Discrete Portion
US20130112589A1 (en) 2011-11-04 2013-05-09 Khoa T. Lien Drainage Kit With Built-In Disposal Bag
US9718253B2 (en) 2011-11-08 2017-08-01 Avent, Inc. Method of using a sterilization wrap system
US10059081B2 (en) 2011-12-22 2018-08-28 Exxonmobil Chemical Patents Inc. Fibers and nonwoven materials prepared therefrom
US8685189B2 (en) 2011-12-28 2014-04-01 Kimberly-Clark Worldwide, Inc. Process for making a flexible multi-panel sterilization assembly
CA2860535A1 (en) 2012-01-04 2013-07-11 North Carolina State University Elastomeric depth filter
US9220646B2 (en) 2012-03-30 2015-12-29 Kimberly-Clark Worldwide, Inc. Absorbent articles with improved stain decolorization
US9469091B2 (en) 2012-08-08 2016-10-18 3M Innovative Properties Company Method of making extensible web laminates
US9241843B2 (en) 2012-09-19 2016-01-26 The Procter & Gamble Company Article with tackifier-free adhesive
US8865824B2 (en) 2012-09-19 2014-10-21 IFS Industries Inc. Hot melt adhesive
IN2015DN02299A (en) 2012-09-21 2015-08-21 Univ Washington
US9327473B2 (en) 2012-10-31 2016-05-03 Kimberly-Clark Worldwide, Inc. Fluid-entangled laminate webs having hollow projections and a process and apparatus for making the same
WO2014082011A1 (en) 2012-11-22 2014-05-30 E. I. Du Pont De Nemours And Company Thermally protective cover and method of manufacture thereof
CN104838049A (en) 2012-12-19 2015-08-12 金伯利-克拉克环球有限公司 Low density fibers and methods for forming same
US20150329688A1 (en) 2012-12-21 2015-11-19 E.I.Du Pont De Nemours And Company Thermally stable porous medium
US20140272223A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Packages for articles of commerce
EP2778270A1 (en) 2013-03-15 2014-09-17 Fibertex Personal Care A/S Nonwoven substrates having fibrils
US9205006B2 (en) 2013-03-15 2015-12-08 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US20140259483A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Wipes with improved properties
US20140272359A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Nonwoven substrates
US9504610B2 (en) 2013-03-15 2016-11-29 The Procter & Gamble Company Methods for forming absorbent articles with nonwoven substrates
US9173782B2 (en) 2013-03-28 2015-11-03 Kimberly-Clark Worldwide, Inc. Coordinated apertured and embossed topsheet layer materials, and absorbent articles containing such
US10005917B2 (en) 2013-04-30 2018-06-26 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US9803100B2 (en) 2013-04-30 2017-10-31 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic surfaces
US9457115B2 (en) 2013-05-31 2016-10-04 Avent, Inc. Recyclable indicator tape for sterilization
EP3004241B1 (en) 2013-06-04 2021-08-11 ExxonMobil Chemical Patents Inc. Polymer compositions and nonwoven compositions prepared therefrom
US11549201B2 (en) 2013-06-18 2023-01-10 Exxonmobil Chemicals Patents Inc. Fibers and nonwoven materials prepared therefrom
WO2014204778A1 (en) 2013-06-18 2014-12-24 Exxonmobil Chemical Patents Inc. Fibers and nonwoven materials prepared therefrom
US9848543B2 (en) 2013-07-09 2017-12-26 E I Du Pont De Nemours And Company System and method for irrigation
US20150037557A1 (en) 2013-07-31 2015-02-05 Kimberly-Clark Worldwide, Inc. Sustainable Polymer Films
US9517870B2 (en) 2013-07-31 2016-12-13 Avent, Inc. Dual layer wrap package for aseptic presentation
US9162781B2 (en) 2013-07-31 2015-10-20 Avent, Inc. Easy-open protective package for aseptic presentation
EP2835466B1 (en) 2013-08-09 2019-09-18 Ahlstrom-Munksjö Oyj Dye-Receiving Material and Uses Thereof
EP2835419A1 (en) 2013-08-09 2015-02-11 Ahlstrom Corporation Laundry aid and use thereof
US20150083627A1 (en) 2013-09-26 2015-03-26 Kimberly-Clark Worldwide, Inc. Gas Permeable Sterilization and Shipping Package System for Medical Products
US9237975B2 (en) 2013-09-27 2016-01-19 Kimberly-Clark Worldwide, Inc. Absorbent article with side barriers and decolorizing agents
US9908981B2 (en) 2013-09-30 2018-03-06 Exxonmobil Chemical Patents Inc. Polymer compositions and articles made therefrom
KR102230470B1 (en) 2013-11-20 2021-03-23 킴벌리-클라크 월드와이드, 인크. Soft and durable nonwoven composite
KR101682869B1 (en) 2013-11-20 2016-12-05 킴벌리-클라크 월드와이드, 인크. Absorbent article containing a soft and durable backsheet
US10695235B2 (en) 2013-11-27 2020-06-30 Kimberly-Clark Worldwide, Inc. Printed 3D-elastic laminates
US10463222B2 (en) 2013-11-27 2019-11-05 Kimberly-Clark Worldwide, Inc. Nonwoven tack cloth for wipe applications
US9486368B2 (en) 2013-12-05 2016-11-08 Medline Industries, Inc. Disposable hygienic article with means for diagnostic testing
US9913764B2 (en) 2013-12-18 2018-03-13 Kimberly-Clark Worldwide, Inc. Post-bonded grooved elastic materials
US20150174281A1 (en) 2013-12-19 2015-06-25 The Procter & Gamble Company Hot melt adhesive
MX362844B (en) 2013-12-20 2019-02-15 Kimberly Clark Co Hydroentangled elastic film-based, stretch-bonded composites and methods of making same.
EP3084057A4 (en) 2013-12-20 2017-08-09 Kimberly-Clark Worldwide, Inc. Hydroentangled elastic filament-based, stretch-bonded composites and methods of making same
USD746439S1 (en) 2013-12-30 2015-12-29 Kimberly-Clark Worldwide, Inc. Combination valve and buckle set for disposable respirators
JP2017509857A (en) 2014-01-27 2017-04-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Lightweight injury-reducing protective clothing
US20150247281A1 (en) 2014-02-28 2015-09-03 Avent, Inc. Reduced medical wet packs, post steam sterilization
US9375367B2 (en) 2014-02-28 2016-06-28 Medline Industries, Inc. Fastener for an absorbent article
US9320657B2 (en) 2014-03-31 2016-04-26 Kimberly-Clark Worldwide, Inc. Absorbent article having interconnected waist and leg bands
US9226502B2 (en) 2014-03-31 2016-01-05 Kimberly-Clark Worldwide, Inc. Fibrous web comprising a cationic polymer for capturing microorganisms
US9622922B2 (en) 2014-04-21 2017-04-18 Medline Industries, Inc. Stretch breathable protective absorbent article using bilaminate
US10226388B2 (en) 2014-04-21 2019-03-12 Medline Industries, Inc. Stretch breathable protective absorbent article using tri-laminate
JP6362226B2 (en) 2014-04-22 2018-07-25 ザ プロクター アンド ギャンブル カンパニー Composition in the form of a soluble solid structure
US20150342685A1 (en) 2014-05-27 2015-12-03 Avent, Inc. Surgical drape with sterile system access
WO2015191802A1 (en) 2014-06-12 2015-12-17 The Procter & Gamble Company Absorbent article with tackifier-free adhesive
US11019840B2 (en) 2014-07-02 2021-06-01 R.J. Reynolds Tobacco Company Oral pouch products
US10744435B2 (en) 2014-07-30 2020-08-18 Sabic Global Technologies B.V. Spunbond polycarbonate resin filter media
GB2544427B (en) 2014-07-31 2022-09-28 Kimberly Clark Co Anti-adherent alcohol-based composition
US10238107B2 (en) 2014-07-31 2019-03-26 Kimberly-Clark Worldwide, Inc. Anti-adherent composition
BR112017000849B1 (en) 2014-07-31 2022-02-01 Kimberly-Clark Worldwide, Inc Composition to inhibit attachment of microbes to a biotic or abiotic surface, and tissue
US10293073B2 (en) 2014-08-29 2019-05-21 Avent, Inc. Moisture management for wound care
WO2016036466A2 (en) 2014-09-05 2016-03-10 Exxomobil Chemical Patents Inc. Polymer compositions and nonwoven materials prepared therefrom
US10959456B2 (en) 2014-09-12 2021-03-30 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
BR112017008700B1 (en) 2014-11-18 2021-04-06 Kimberly-Clark Worldwide, Inc. NON-WOVEN BLANKET, COMPOSITE AND ABSORBENT ARTICLE
WO2016085468A1 (en) 2014-11-25 2016-06-02 Kimberly-Clark Worldwide, Inc. Textured nonwoven laminate
US20160157515A1 (en) 2014-12-05 2016-06-09 R.J. Reynolds Tobacco Company Smokeless tobacco pouch
EP3034594B1 (en) 2014-12-15 2018-11-28 Ahlstrom-Munksjö Oyj Laundry aid and use thereof
CN107002294A (en) 2014-12-19 2017-08-01 金伯利-克拉克环球有限公司 Detail hollow fiber with high voidage
EP3234247B1 (en) 2014-12-19 2023-03-01 Kimberly-Clark Worldwide, Inc. Cd extensible nonwoven composite
WO2016126591A1 (en) 2015-02-02 2016-08-11 E. I. Du Pont De Nemours And Company Root intrusion improvements in irrigation tubes
EP3056549B1 (en) 2015-02-10 2022-11-16 Ahlstrom Corporation Colorant composition and uses thereof
US10011709B2 (en) 2015-02-26 2018-07-03 Exxonmobil Chemical Patents Inc. Compositions comprising propylene-based elastomers and polyalphaolefins
WO2016138272A1 (en) 2015-02-27 2016-09-01 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US9826878B2 (en) 2015-03-17 2017-11-28 The Clorox Company Heated cleaning articles using a reactive metal and saline heat generator
US9809789B2 (en) 2015-03-17 2017-11-07 The Clorox Company Heated cleaning articles using a calcium oxide and water heat generator
GB2553715B (en) 2015-04-01 2021-08-04 Kimberly Clark Co Fibrous substrate for capture of gram negative bacteria
WO2017019874A1 (en) 2015-07-30 2017-02-02 North Carolina State University Grafted islands-in-the-sea nonwoven for high capacity ion exchange bioseparation
CN108349204B (en) 2015-08-14 2021-03-30 3M创新有限公司 Composite fabric including structured film and method of forming the same
KR101927036B1 (en) 2015-08-31 2018-12-07 킴벌리-클라크 월드와이드, 인크. An absorbent article having an absorbent body providing improved accessibility to the leak-barrier pocket of the waist-
KR101886392B1 (en) 2015-08-31 2018-08-08 킴벌리-클라크 월드와이드, 인크. Elastic composite and absorbent article comprising same
MX2018002941A (en) 2015-09-29 2018-06-18 Kimberly Clark Co Materials that shrink in one dimension and expand in another dimension.
US10470943B2 (en) 2015-09-29 2019-11-12 Kimberly-Clark Worldwide, Inc. Absorbent article with selectively positioned waist containment member having an improved waist seal
BR112018009929B1 (en) 2015-12-01 2023-01-24 Kimberly-Clark Worldwide, Inc LIQUID COMPOSITION, METHODS FOR ABSORBING AN OIL-BASED CONTAMINANT FROM A SURFACE AND FOR PROTECTING A SURFACE IN PAINTING OPERATIONS, AND NON-OILOPHYLIC TISSUE
WO2017105889A1 (en) 2015-12-18 2017-06-22 Kimberly-Clark Worldwide, Inc. Method of laser cutting a web structure
EP3397222B1 (en) 2015-12-30 2021-11-10 Kimberly-Clark Worldwide, Inc. Absorbent article side panel method of fastening
US10314346B2 (en) 2016-04-21 2019-06-11 O&M Halyard, Inc. Face mask having improved comfort through cooling of microclimate through use of a phase change material
US10512289B2 (en) 2016-05-04 2019-12-24 O&M Halyard, Inc. Disposable surgical gown
US10632228B2 (en) 2016-05-12 2020-04-28 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair
AU2016408394B2 (en) 2016-05-26 2021-11-11 Kimberly-Clark Worldwide, Inc. Anti-adherent compositions and methods of inhibiting the adherence of microbes to a surface
US11583013B2 (en) 2016-07-29 2023-02-21 O&M Halyard, Inc. Collar for a disposable surgical gown
CN109789040B (en) 2016-10-18 2022-04-22 金佰利(中国)有限公司 Elasticized absorbent article and method of weakening elastic portion in elasticized absorbent article
WO2018160165A1 (en) 2017-02-28 2018-09-07 Kimberly-Clark Worldwide, Inc. Absorbent articles with extended leg elastics
JP6893996B2 (en) 2017-02-28 2021-06-23 キンバリー クラーク ワールドワイド インコーポレイテッド Elastic material with directional extension properties
RU2763485C2 (en) 2017-05-31 2021-12-29 Кимберли-Кларк Ворлдвайд, Инк. Absorbent products closed on sides, opening from front or back
EP3630035A4 (en) 2017-05-31 2021-03-03 Kimberly-Clark Worldwide, Inc. Front or rear opening closed-sided absorbent articles
US10968054B2 (en) * 2017-08-31 2021-04-06 Kimberly-Clark Worldwide, Inc. Air assisted particulate delivery system
BR112020007021A2 (en) 2017-10-31 2020-10-06 Kimberly-Clark Worldwide, Inc. elastic material
WO2019104240A1 (en) 2017-11-22 2019-05-31 Extrusion Group, LLC Meltblown die tip assembly and method
CN111417370A (en) 2017-12-19 2020-07-14 金伯利-克拉克环球有限公司 Absorbent article having visually distinct backsheet and waistband
WO2019204545A1 (en) 2018-04-20 2019-10-24 The Procter & Gamble Company Absorbent article comprising an adhesive composition
WO2019204541A1 (en) 2018-04-20 2019-10-24 The Procter & Gamble Company Adhesive composition for absorbent articles
US20190321241A1 (en) 2018-04-20 2019-10-24 The Procter & Gamble Company Absorbent article comprising an adhesive composition
JP7418356B2 (en) 2018-06-15 2024-01-19 ダウ グローバル テクノロジーズ エルエルシー Cast films containing bimodal ethylene-based polymers with high molecular weight high-density fractions
US11873377B2 (en) 2018-06-15 2024-01-16 Dow Global Technologies Llc Blown films comprising bimodal ethylene-based polymers having high molecular weight high density fractions
EP3807329A1 (en) 2018-06-15 2021-04-21 Dow Global Technologies Llc Bimodal ethylene-based polymers having high molecular weight high density fractions
EP3807332A1 (en) 2018-06-15 2021-04-21 Dow Global Technologies LLC Process for the production of bimodal ethylene-based polymers having high molecular weight high density fractions
EP3594396B1 (en) 2018-07-10 2024-01-31 Karlsruher Institut für Technologie Process for producing micro- and nano-structured fiber-based substrates
US11528947B2 (en) 2018-08-24 2022-12-20 O&M Halyard, Inc. Personal protection and ventilation system
JP7281534B2 (en) 2018-08-24 2023-05-25 オーアンドエム ハリヤード インコーポレイテッド Personal protective ventilation system
EP3844329A1 (en) 2018-08-30 2021-07-07 ExxonMobil Chemical Patents Inc. Bicomponent polymeric fibers
EP3880875A1 (en) 2018-11-16 2021-09-22 ExxonMobil Chemical Patents Inc. Polyalphaolefin modified polymer blends for fibres and nonwovens
TW202031692A (en) 2018-11-30 2020-09-01 美商陶氏全球科技有限責任公司 Polymer-based film with balanced properties
US20200178622A1 (en) 2018-12-06 2020-06-11 O&M Halyard, Inc. Mechanically Bonded Visor System for Surgical Hood
US11787152B2 (en) 2018-12-13 2023-10-17 North Carolina State University Method of preparing a composite sheet
MX2021014399A (en) 2019-05-30 2022-01-18 Kimberly Clark Co Apparatuses and methods for manufacturing absorbent structures including flexible masking media.
WO2021021180A1 (en) 2019-07-31 2021-02-04 Kimberly-Clark Worldwide, Inc. Zoned elastic film and laminates comprising the same
WO2021021184A1 (en) 2019-07-31 2021-02-04 Kimberly-Clark Worldwide, Inc. Zoned elastic film and laminates comprising the same
EP3797747A1 (en) 2019-09-30 2021-03-31 3M Innovative Properties Company Disposal tab, method of making a disposal tab, disposal tape and absorbent article with disposal tab
US20210170031A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition with nanocrystalline cellulose
WO2021116881A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product in a pourous pouch comprising a fleece material
WO2021116884A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Layered fleece for pouched product
WO2021116919A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Fleece for oral product with releasable component
BR112022010979A2 (en) 2019-12-09 2022-08-16 Nicoventures Trading Ltd PACKAGING PRODUCTS WITH HEAT SEALABLE BINDING
EP4072334A1 (en) 2019-12-09 2022-10-19 Nicoventures Trading Limited Oral product with dissolvable component
US20210169138A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Fibrous fleece material
CN114829486A (en) 2019-12-19 2022-07-29 埃克森美孚化学专利公司 Functionalized propylene-based elastomer compositions and methods of making the same
DE112020006418T5 (en) 2020-02-24 2022-10-27 Kimberly-Clark Worldwide, Inc. NON-BLOCKING MULTI-LAYER ELASTIC COMPOSITION
DE112020006892T5 (en) 2020-04-13 2022-12-29 Kimberly-Clark Worldwide, Inc. PROTECTIVE FABRIC AND CLOTHING MADE THEREOF
WO2022035607A1 (en) 2020-08-11 2022-02-17 Exxonmobil Chemical Patents Inc. Face masks incorporating elastomeric layers and methods of producing such face masks
WO2022087250A1 (en) 2020-10-22 2022-04-28 Exxonmobil Chemical Patents Inc. Carbon fibers and related continuous production methods
US20220195645A1 (en) 2020-12-21 2022-06-23 O&M Halyard, Inc. Higher Strength Calcium Carbonate Filled Fiber Spunbond and SMS Nonwoven Material
EP4284972A1 (en) 2021-01-28 2023-12-06 Nicoventures Trading Limited Method for sealing pouches
WO2022224196A1 (en) 2021-04-22 2022-10-27 Nicoventures Trading Limited Orally dissolving films
US20220354155A1 (en) 2021-04-30 2022-11-10 Nicoventures Trading Limited Multi-compartment oral pouched product
GB2609041A (en) 2021-07-20 2023-01-25 Cellucomp Ltd Water absorbing and antimicrobial fabric composition
US20230148660A1 (en) 2021-11-15 2023-05-18 Nicoventures Trading Limited Products with enhanced sensory characteristics
WO2023084498A1 (en) 2021-11-15 2023-05-19 Nicoventures Trading Limited Oral products with nicotine-polymer complex
EP4227449A1 (en) 2022-02-14 2023-08-16 SHPP Global Technologies B.V. Fibers comprising reinforcement additives and recycled contents
WO2023178296A1 (en) 2022-03-17 2023-09-21 Avery Dennison Corporation Laser printable, flexible drum labels
WO2023194959A1 (en) 2022-04-06 2023-10-12 Nicoventures Trading Limited Pouched products with heat sealable binder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1786669A (en) * 1928-04-23 1930-12-30 Filter Fabrics Inc Process of and apparatus for the dry disintegration and deposition of fibers
US2244281A (en) * 1938-05-06 1941-06-03 Rhodiaceta Cellulosic structure, apparatus and method for producing same
US2336743A (en) * 1941-10-13 1943-12-14 Fred W Manning Method and apparatus for spinning unwoven fabrics
US2336745A (en) * 1941-12-20 1943-12-14 Fred W Manning Method and apparatus for making unwoven and composite fabrics
US2411660A (en) * 1943-05-22 1946-11-26 Fred W Manning Method of making filter cartridges, abrasive sheets, scouring pads, and the like
US2522527A (en) * 1946-10-09 1950-09-19 Fred W Manning Spinning gun for the production of filaments and method of making nonwoven fabrics
US2891277A (en) * 1953-06-24 1959-06-23 Du Pont Apparatus for melt spinning filaments which will coalesce
BE534423A (en) * 1953-12-24
US3026190A (en) * 1958-12-02 1962-03-20 American Viscose Corp Elastomer bonded abrasives
NL250971A (en) * 1959-04-30
NL128906C (en) * 1959-06-15
UST859640I4 (en) * 1959-12-15 1900-01-01

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752613A (en) * 1970-12-08 1973-08-14 Celanese Corp Apparatus for producing spray spun nonwoven sheets
US3784425A (en) * 1971-11-08 1974-01-08 Schickedanz Ver Papierwerk Process and apparatus for the production of plastic-sheathed tampons
US3787265A (en) * 1972-03-24 1974-01-22 Celanese Corp Process and apparatus for producing fibrous structures
US4209563A (en) * 1975-06-06 1980-06-24 The Procter & Gamble Company Method for making random laid bonded continuous filament cloth
US4252590A (en) * 1975-07-09 1981-02-24 Akzona Incorporated Low density matting and process
US4342807A (en) * 1975-07-09 1982-08-03 Akzona Incorporated Low density matting and process
USRE31599E (en) * 1975-07-09 1984-06-12 Akzona Incorporated Low density matting and process
US4181450A (en) * 1976-04-02 1980-01-01 Akzona Incorporated Erosion control matting
US4177312A (en) * 1978-05-08 1979-12-04 Akzona Inc. Matting article
US4741941A (en) * 1985-11-04 1988-05-03 Kimberly-Clark Corporation Nonwoven web with projections
US4997611A (en) * 1987-08-22 1991-03-05 Carl Freudenberg Process for the production of nonwoven webs including a drawing step and a separate blowing step
US4999080A (en) * 1988-05-27 1991-03-12 Corovin Gmbh Apparatus for producing a nonwoven fabric from continuous filaments
US5123983A (en) * 1990-08-24 1992-06-23 E. I. Du Pont De Nemours And Company Gas management system for closely-spaced laydown jets
US5614306A (en) * 1991-12-31 1997-03-25 Kimberly-Clark Corporation Conductive fabric and method of producing same
US5397413A (en) * 1992-04-10 1995-03-14 Fiberweb North America, Inc. Apparatus and method for producing a web of thermoplastic filaments
US5814390A (en) * 1995-06-30 1998-09-29 Kimberly-Clark Worldwide, Inc. Creased nonwoven web with stretch and recovery
US5679042A (en) * 1996-04-25 1997-10-21 Kimberly-Clark Worldwide, Inc. Nonwoven fabric having a pore size gradient and method of making same
US5853628A (en) * 1996-09-12 1998-12-29 Kimberly-Clark Worldwide, Inc. Method of forming nonwoven fabric having a pore size gradient
US6182732B1 (en) 1998-03-03 2001-02-06 Nordson Corporation Apparatus for the manufacture of nonwoven webs and laminates including means to move the spinning assembly
WO1999045186A1 (en) * 1998-03-03 1999-09-10 Nordson Corporation Apparatus and method for the manufacture of nonwoven webs and laminates
US6427745B1 (en) 1998-03-03 2002-08-06 Nordson Corporation Apparatus for the manufacture of nonwoven webs and laminates
US20020189748A1 (en) * 1998-03-03 2002-12-19 Nordson Corporation Apparatus and method for the manufacture of nonwoven webs and laminate
EP1270770A2 (en) * 1998-03-03 2003-01-02 Nordson Corporation Apparatus for the manufacture of nonwoven webs and laminates
EP1270770A3 (en) * 1998-03-03 2003-03-26 Nordson Corporation Apparatus for the manufacture of nonwoven webs and laminates
US6770156B2 (en) 1998-03-03 2004-08-03 Nordson Corporation Apparatus and method for the manufacture of nonwoven webs and laminate
US20040222570A1 (en) * 1998-03-03 2004-11-11 Nordson Corporation Apparatus and method for the manufacture of nonwoven webs and laminate
ES2268959A1 (en) * 2005-03-11 2007-03-16 Tesalca 99, S.A. Extruder fabricating strips of polymer non woven material includes a pivoting spinner head assembly producing polymer filaments for wide strips production

Also Published As

Publication number Publication date
US3502763A (en) 1970-03-24

Similar Documents

Publication Publication Date Title
US3565729A (en) Non-woven fabric
US3509009A (en) Non-woven fabric
US3692618A (en) Continuous filament nonwoven web
US3528129A (en) Apparatus for producing nonwoven fleeces
US3441468A (en) Process for the production of non-woven webs
US3554854A (en) Non-woven fabric
US5789328A (en) Bulky nonwoven fabric and method for producing the same
CN1097100C (en) Process of making spun-bonded web
US4107364A (en) Random laid bonded continuous filament cloth
US4209563A (en) Method for making random laid bonded continuous filament cloth
US3439085A (en) Process for the production of non-woven elastic polyurethane fabric
US3940302A (en) Non-woven materials and a method of making them
US4217387A (en) Process for the manufacture of a non-woven web from synthetic filaments
JP2004506100A (en) Spunbond nonwoven fabric manufacturing process and its manufacturing system
US3781393A (en) Process for the continuous production of a random-filament fleece
US4172166A (en) Carpet with non-woven backing
US3738884A (en) Method for producing non-woven fibrous products
JPS6135302B2 (en)
US3796619A (en) Method of spray-spinning continuous tubular structures
JP2918332B2 (en) Method and spinning device for the production of microfilaments
US20050003035A1 (en) Method for forming polymer materials utilizing modular die units
US5298097A (en) Apparatus and method for thermally bonding a textile web
EP1024940A1 (en) Method and apparatus for in-line splitting of plural-component fibers and formation of nonwoven fabrics
US3562771A (en) Process for preparation of continuous filament nonwoven webs
JP2005539158A (en) Medical textile fabric with improved barrier performance