US3566916A - Inlet vane damper - Google Patents

Inlet vane damper Download PDF

Info

Publication number
US3566916A
US3566916A US3566916DA US3566916A US 3566916 A US3566916 A US 3566916A US 3566916D A US3566916D A US 3566916DA US 3566916 A US3566916 A US 3566916A
Authority
US
United States
Prior art keywords
shaft
shafts
damper
arm
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
James R Root
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Industrial Components Inc
Original Assignee
Ruskin Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruskin Manufacturing Co filed Critical Ruskin Manufacturing Co
Application granted granted Critical
Publication of US3566916A publication Critical patent/US3566916A/en
Assigned to PHILIPS INDUSTRIAL COMPONENTS, INC. reassignment PHILIPS INDUSTRIAL COMPONENTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: RUSKIN MANUFACTURING COMPANY, A CORP OF MO.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87265Dividing into parallel flow paths with recombining
    • Y10T137/8741With common operator
    • Y10T137/87442Rotary valve
    • Y10T137/87458Axes of rotation of valves intersect at point

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An inlet vane damper having a rigid ring interconnecting the vane shafts for closing or opening the vanes simultaneously. A crank arm of spring material interconnects each shaft with the ring to tolerate minor variations in the movement of the various arms with respect to the ring to obviate the necessity for precision in the manufacture and assembly of the damper control elements.

Description

0 United States Patent 1111 3,566,916
[72] Inventor Jam s 0 2,443,263 6/1948 Meyer 415/160 lIldePendenceMW 2,827,224 3/1958 Madison et a1. 415/160 [21] Appl. No. 820,727 2,955,744 10/1960 Hemsworth 415/160 [221 Filed y 1,1969 3,066,488 12/1962 Mock 230/114(L)X Patented Mar-2,1971 3,376,018 4/1968 Williamson 230/114(L)X [73] Assignee Ruskin Manufacturing Company FQREIGN PATENTS 959,126 2/1957 Germany 415/160 Primary ExaminerRobert G. Nilson INLET VANE DAMPER Attorney Don M. Bradley 6 Claims, 8 Drawing Figs.
[52] U.S.Cl 137/601,
251/294,4l5/162 3 [51] Int. Cl...., F04d 29/46 ABSTRACT: An inlet vane damper having a rigid ring inter- [50] Field of Search 137/601; connecting the vane shafts for closing or opening the vanes 251/212, 294; 415/ 16 161, 162 simultaneously. A crank arm of spring material interconnects each shaft with the ring to tolerate minor variations in the 1 References Cted movement of the various arms with respect to the ring to ob- UNITED STATES PATENTS viate the necessity for precision in the manufacture and as- 1,989,413 1/1935 Hagen 230/1 14 11) sembly Ofthe dampewomwlelementst PATENTEDHAR 21971 3566316 sum 1 0F 2 INVENTOR, JAMES R. ROOT ATTORNEY INLET VANE DAMPER This invention relates to fluid control apparatus and more particularly, to a damper intended for use in carefully controlling the flow of a fluid to a fan or the like by means of a plurality of vanes extending radially across a damper opening. These devices are commonly referred to in the trade as inlet vane" dampers.
The vanes of dampers of this type are mounted on rotatable shafts which extend radially across the damper opening. The vanes serve to close off the opening or, when partially open, admit the air in aswirling path of travel into a fan or other apparatus. The shafts are preferably interconnected by a common banor member so that they may all be operated in unison by a single control device. The common bar takes the form of a circular ring member extending around the damper opening and connected to the respective shafts through torque arms. This requires that the arms and connecting structures be of precisely the same length and the arms must be situated in precisely identical geometric arrangements if the damper is to operate smoothly and efficiently. Further, the ring member has been required in previous constructions to be carefully guided alonga fixed, circular path of travel. The member itself had to be precision manufactured wherein relatively close tolerances were adhered to so that the member would move freely relative to its fixed guides. Lost motion devices were utilized to accommodate for the swinging of the torque arms along paths of travel that were quite different from the circular path of travel of the common ring member.
All of the foregoing resulted in a damper which was quite costly to manufacture and relatively hard to maintain in good working order. Accordingly, it is the primary object of this invention to provide an inlet vane damper having novel structure connecting the separate shafts to the common ring member which automatically compensate for minor manufacturing and assembly imperfections so that the cost of the damper is reduced.
Another object of the invention is the provision of a damper in which the requirement for expensive and difficult to maintain ring guides is completely eliminated.
Still a further object of the present invention is the provision of an assembly of two dampers having interconnecting structure which permits the two separate dampers to be operated simultaneously by a single controller.
These and other important objects and advantages of this invention will be further explained or will be apparent from the following specification and claims, and from .the drawings.
In the drawings:
FIG. I is a fragmentary, side elevational view of a fan equipped with a pair of inlet vane dampers constructed pursuant to the principles of this invention;
FIG. 2 is an end elevational view of the fan of FIG. 1, parts being broken away and shown in cross section to clarify the illustration of the construction;
FIG. 3 is an enlarged end elevational view of a connector, the ring and torque arm appearing fragmentarily, parts being broken away and shown in cross section to reveal details of construction;
FIG. 4 is an enlarged,fragmentary, vertical cross-sectional view through a damper embodying the principles of this invention, and showing the torque arm in side elevation;
FIG. 5 is a view similar to FIG. 4, but taken 90 to the latter and showing the torque arm in end elevation;
FIG. 6 is a view similar to FIG. 5, but showing the relative position of the arm and ring when the vane shaft is in its fully rotated position;
FIG. 7 is a fragmentary, top plan view of the damper, the positions for the ring and torque arm when the shaft is in its fully rotated position appearing in dash lines; and
FIG. 8 i a view taken along line 8-8 of FIG. 7.
An inlet vane damper embodying the principles'of this invention is broadly designated in the drawings by the reference numeral 10. Damper 10 is used for carefully controlling the flow of fluid such as air or the like. In FIGS. 1 and 2 of the drawing, damper 10 is shown installed at the inlet of a fan broadly designated 12, the latter having a second damper 14 identical to damper 10 installed-on the second inlet of fan 12. Manifestly, dampers embodying the principles of this inven- Lion may be utilized in conduits or the like but, in the main, have been used for controlling the flow of air at the inlet of a fan. The damper comprises an annular frame member 16 having outwardly extending annular flanges 18 and 20 rigidly secured to member 16.,
Flange 20 is adapted to be secured to a corresponding flange 22 forming a part of the inlet 24 of fan 12.
An inner frame ring 26 concentric with ring 16 is secured in the position illustrated in FIG. 2 by means of three braces 28 having opposite ends secured to members 16 and 26 respectively. Aplurality of shafts 30 have opposite ends journaled in members 16 and 26 respectively and project radially across the frame opening defined by frame member 16 as illustrated in FIG. 2. Suitable bearings 32 and 34 are provided members 26 and 16 respectively so that each shaft is free to rotate about its longitudinal axis. A blade 36 is rigidly secured to each shaft 30 and the blades 36 are shaped to complementally close the damper frame opening when the respective shafts 30 are rotated to a predetermined position. Obviously, when the shafts are simultaneously rotated about their longitudinal axes, the blades are .swung to positions of relative angularity with respect'to the closed positions thereof thus permitting the flow of fluid through the damper opening. Manifestly, the degree of swinging between the fully closed position .to the fully open position of the respective blades controls the effective size of the orifice through the frame opening thereby permitting careful regulation of the flow of fluid through the damper.
Each shaft 30 is provided proximal its outermost end with a torque arm 38 which is rigidly secured to its respective shaft by means ofa collar 40. Arm 38 maybe secured to collar 40 by any suitable means such as welding or the like. Further, the collar 40 is preferably adjustably secured to its respective shaft 30 by a setscrew (not shown) or thelike. Arm 38 is'constructed from relatively thin yieldable spring material such as spring steel or the like and has a considerably greater width dimension than its thickness dimension to permit bending of arm 38 toward or away from its respective shaft 38 and about an axis extending transversely of arm 38 along the width dimension of the latter. The relatively great width of the arm will likewise resist bending of arm 38 about an axis parallel to shaft 30 so that the arms 38 may be utilized for applying sufficient torque to rotate shafts 30 for adjustment of the positions of the damper blades 36.
An elongated continuous ring 42 constructed of rigid material such as steel or the like is disposed in circumscribing relationship around frame member 16 and between flanges l8 and 20. This ring is disposed outwardly beyond the arms 38 and is connected to the outer end of each arm 38 by means of a swivel fastener broadly designated 44. The fastener 44 is best illustrated in FIG. 3 and comprises a body 46 drilled to receivering 42 therethrough. A bolt 48 is threadably received in-body 46 as illustrated and extends into physical engagement with ring 42 for rigidly clamping body 46 to the ring 42. A ball 50 is integral with the innermost pointed end of body 46 and is complementally received within a socket S2 at the outermost end of a pedestal 54 having an inwardly projecting bolt 56 adapted to releasably secure the pedestal to its corresponding arm 38. The socket 52 has a restricted neck 58 which permits a wide range of swinging movement of body 46 with respect to pedestal 54 thereby presenting a universal joint between the arm 38 and ring 42.
The ring 42 may be constructed from an elongated rod bent in circular fashion, the opposite ends of the rod being interconnected by any suitable fastener (not shown) after the ring is installed on the damper in the position illustrated.
In use, one or more dampers 10 or 14 may be installed .as shown in FIG. ,1. A controller 60 such as an electric motor,
solenoid or the like is operably coupled with one shaft 30 for rotating the shaft responsive to signals which may be sent to controller 60 from a remote source through an electric cable 62. The shaft 64 from the fan prime mover 66 may be received through the central opening 68 defined by the innermost frame member 26. In any event, member 26 is aligned with a corresponding tubular portion of the fan motor (not shown) or may be otherwise closed so that the effective orifice through the damper is controlled by blades 36.
Although controller 60 is illustrated coupled with damper 14, it will be understood that controller 60 might just as well be coupled with any of the shafts 30 of damper 10. In the assembly illustrated in FIG. 1, damper 14 is identical in construction with damper l and will not be described in detail. A flexible cable or shaft 70 has one end thereof secured to one of the shafts 30 of damper l4 and the other end of cable 70 is coupled with one of the shafts 30 of damper 10. This interconnects the shafts of the respective dampers so that rotation of a shaft of one damper causes a resultant identical rotation of the corresponding shaft of the other damper.
Any rotation of any of the shafts 30 causes a consequent swinging movement of its respective torque arm 38. Since each arm 38 is secured to ring 42, there must be a movement of the ring in response to the swinging of the torque arm. Obviously, since all of the torque arms for each damper are coupled with the common ring member 42, the swinging of one arm 38 results in a corresponding swinging of all arms 38.
Heretofore, inlet vane dampers have utilized a common ring member for interconnecting of torque arms so that the damper blades all move simultaneously and in corresponding directions and through corresponding distances. However, it has heretofore been necessary to provide elaborate guide rollers or other confining means to the ring to insure that it maintains a fixed circular path of travel to obtain the precision necessary in the movement of the blades. The necessity for precision guide means has also required that the ring itself be precisely constructed for movement through the guide means. Further, elaborate lost motion mechanisms have been required to permit the swinging of the torque arms through a fixed plane about the shafts 30 while the common ring moved on a different, circular path of travel.
It is to be pointed out at this juncture that the novel torque arms 38 which are connected to ring 42 by the universal connectors 44 obviate all necessity for such precisely constructed guide and lost motion mechanisms. The yieldability of the torque arms 38 permit the same to bend or deflect as a result of the rotation of the common ring member 42 about a fixed central axis responsive to the swinging ofa torque arm 38. The deflection of the torque arm 38 as a result of the swinging of the arm 38 from an intermediate position shown in FIG. 7 to a position at the end of the path of travel for its corresponding blade (shown in dash lines in FIG. 7) is graphically designated by the reference numeral 72 in FIG. 8 This bending is a result, of course, of the tendency of the torque arm to rotate in a plane extending perpendicular to the axis of rotation of shaft 30 while the movement of ring 42 proceeds on the circular path of travel about its central axis. Obviously, the swinging of the torque arms 38 which are uniformly distributed around the damper will result in the shifting of the ring 42 toward or away from the respective shafts 30 as shown in dash lines in FIG. 7. The ring, however, automatically remains concentric to its initial position throughout its entire range of movement and this concentricity insures uniformity of movement of all of the blades as they are operated simultaneously upon movement of the ring 42. It is contemplated, of course, that the blades and connecting structures are of uniform size and are disposed in identical positions of angularity in the composite damper.
The swivel connection effected by fastener 44 is necessitated by virtue of the geometry of the interconnected ring,
shaft and torque arm. Although the torque arm would normally rotate about its shaft in a fixed plane, the deflection of the torque arm results in such movement occurring in a curvilinear path. were it not for the universal joint of the connector 44, a longitudinal twisting of the torque arm 38 would result. Such twisting is avoided with the ball and socket connection and the body 46 and pedestal 54 may assume relative positions throughout the entire range of movement as are necessary to prevent such longitudinal twisting of the torque arms 38.
Not to be overlooked is the fact that ring 42 need not be precisely constructed in the damper described herein. The deflection permitted by arms 38 permit ring 42 to free-float and follow the movement of the interconnected torque arms. The elimination of the necessity for a precisely constructed common ring member substantially minimizes the cost of dampers of this type.
lclaim:
I. In a damper having a plurality of shafts extending radially across a damper opening, means mounting the shafts for rotation about respective longitudinal axes, a vane carried by each shaft respectively, each vane being disposed to block its corresponding portion of said opening when its shaft is rotated to a predetermined position, and control means operably coupled with said shafts for simultaneously rotating the latter to move the vanes toward or away from respective closed positions, said control means comprising: v
a rigid annular member extending around the opening;
an operating crank for each shaft respectively, each crank including an elongated arm of substantially flat spring material projecting from its corresponding shaft and deflectable longitudinally toward said shaft to produce a biasing force toward said annular member; and
a ball and socket assembly pivotally coupling the member with each arm respectively, each ball and socket being disposed between the corresponding arm and the member in position for said biasing force to hold the ball against its corresponding socket, each assembly including means for securing the assembly to the member at a position longitudinally thereof bending the arm to produce said bias ing force, whereby the biasing force holds the ball and socket against rattling and rotation of any of said shafts rotates the member about the central axis of the latter to simultaneously swing the arms for rotating the remaining shafts.
2. The invention of claim 1, wherein each of said arms comprises an elongated, substantially flat strip of spring steel, and means rigidly securing said strip to its corresponding shaft.
3. The invention of claim 2, wherein the width dimension of said arm is substantially greater than the thickness thereof to restrict the bending of the arm to a path of travel toward and away from said shaft.
4. The invention of claim 1, wherein is provided an assembly comprising a pair of said dampers, and herein is included a flexible shaft having its opposite ends rigidly coupled with a shaft of each respective damper, whereby all of said shafts of both dampers rotate together responsive to rotation of any of said shafts.
5. The invention of claim 4, wherein is provided power means operably coupled with one of the shafts of one damper for operating both of said dampers of the assembly.
6. The invention of claim 1 wherein said assembly securing means includes clamp means carried by each of said assemblies and shiftable along said member for adjustably securing the respective arms to the member at any desired position longitudinally of the member, whereby to permit adjustment of the magnitude of the biasing force on each assembly respectively.

Claims (6)

1. In a damper having a plurality of shafts extending radially across a damper opening, means mounting the shafts for rotation about respective longitudinal axes, a vane carried by each shaft respectively, each vane being disposed to block its corresponding portion of said opening when its shaft is rotated to a predetermined position, and control means operably coupled with said shafts for simultaneously rotating the latter to move the vanes toward or away from respective closed positions, said control means comprising: a rigid annular member extending around the opening; an operating crank for each shaft respectively, each crank including an elongated arm of substantially flat spring material projecting from its corresponding shaft and deflectable longitudinally toward said shaft to produce a biasing force toward said annular member; and a ball and socket assembly pivotally coupling the member with each arm respectively, each ball and socket being disposed between the corresponding arm and the member in position for said biasing force to hold the ball against its corresponding socket, each assembly including means for securing the assembly to the member at a position longitudinally thereof bending the arm to produce said biasing force, whereby the biasing force holds the ball and socket against rattling and rotation of any of said shafts rotates the member about the central axis of the latter to simultaneously swing the arms for rotating the remaining shafts.
2. The invention of claim 1, wherein each of said arms comprises an elongated, substantially flat strip of spring steel, and Means rigidly securing said strip to its corresponding shaft.
3. The invention of claim 2, wherein the width dimension of said arm is substantially greater than the thickness thereof to restrict the bending of the arm to a path of travel toward and away from said shaft.
4. The invention of claim 1, wherein is provided an assembly comprising a pair of said dampers, and herein is included a flexible shaft having its opposite ends rigidly coupled with a shaft of each respective damper, whereby all of said shafts of both dampers rotate together responsive to rotation of any of said shafts.
5. The invention of claim 4, wherein is provided power means operably coupled with one of the shafts of one damper for operating both of said dampers of the assembly.
6. The invention of claim 1, wherein said assembly securing means includes clamp means carried by each of said assemblies and shiftable along said member for adjustably securing the respective arms to the member at any desired position longitudinally of the member, whereby to permit adjustment of the magnitude of the biasing force on each assembly respectively.
US3566916D 1969-05-01 1969-05-01 Inlet vane damper Expired - Lifetime US3566916A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82072769A 1969-05-01 1969-05-01

Publications (1)

Publication Number Publication Date
US3566916A true US3566916A (en) 1971-03-02

Family

ID=25231568

Family Applications (1)

Application Number Title Priority Date Filing Date
US3566916D Expired - Lifetime US3566916A (en) 1969-05-01 1969-05-01 Inlet vane damper

Country Status (2)

Country Link
US (1) US3566916A (en)
GB (1) GB1296762A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299535A (en) * 1980-11-24 1981-11-10 The Trane Company Fan inlet guide vane assembly
EP0381399A2 (en) * 1989-02-02 1990-08-08 Hitachi, Ltd. Vane controller
US5674125A (en) * 1995-01-24 1997-10-07 American Standard Inc. Fresh air flow modulation device
US5755069A (en) * 1997-03-04 1998-05-26 Specialty Metal Fabricators, Inc. Louver assembly and method for installing a louver assembly
US6510687B1 (en) * 1996-06-14 2003-01-28 Sharav Sluices Ltd. Renewable resource hydro/aero-power generation plant and method of generating hydro/aero-power
US6779971B2 (en) * 2000-10-12 2004-08-24 Holset Engineering Company, Limited Turbine
US20090298409A1 (en) * 2008-05-29 2009-12-03 Maersk Container Industri A/S Ventilation valve arrangement and transport container with a ventilation valve arrangement
CN117145986A (en) * 2023-11-01 2023-12-01 亿昇(天津)科技有限公司 Guide vane air valve and flow regulating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1989413A (en) * 1929-10-31 1935-01-29 B F Sturtevant Co Centrifugal fan
US2443263A (en) * 1944-09-18 1948-06-15 American Blower Corp Fluid flow control apparatus
DE959126C (en) * 1953-11-19 1957-02-28 Krantz H Fa Axial fan with diffuser
US2827224A (en) * 1955-06-30 1958-03-18 Buffalo Forge Co Inlet vane actuating device
US2955744A (en) * 1955-05-20 1960-10-11 Gen Electric Compressor
US3066488A (en) * 1959-11-04 1962-12-04 Bendix Corp Power output control for a gas turbine engine
US3376018A (en) * 1966-01-10 1968-04-02 Rolls Royce Vane operating mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1989413A (en) * 1929-10-31 1935-01-29 B F Sturtevant Co Centrifugal fan
US2443263A (en) * 1944-09-18 1948-06-15 American Blower Corp Fluid flow control apparatus
DE959126C (en) * 1953-11-19 1957-02-28 Krantz H Fa Axial fan with diffuser
US2955744A (en) * 1955-05-20 1960-10-11 Gen Electric Compressor
US2827224A (en) * 1955-06-30 1958-03-18 Buffalo Forge Co Inlet vane actuating device
US3066488A (en) * 1959-11-04 1962-12-04 Bendix Corp Power output control for a gas turbine engine
US3376018A (en) * 1966-01-10 1968-04-02 Rolls Royce Vane operating mechanism

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299535A (en) * 1980-11-24 1981-11-10 The Trane Company Fan inlet guide vane assembly
EP0381399A2 (en) * 1989-02-02 1990-08-08 Hitachi, Ltd. Vane controller
EP0381399A3 (en) * 1989-02-02 1991-01-02 Hitachi, Ltd. Vane controller
US5096374A (en) * 1989-02-02 1992-03-17 Hitachi, Ltd. Vane controller
US5674125A (en) * 1995-01-24 1997-10-07 American Standard Inc. Fresh air flow modulation device
US6510687B1 (en) * 1996-06-14 2003-01-28 Sharav Sluices Ltd. Renewable resource hydro/aero-power generation plant and method of generating hydro/aero-power
US6647717B2 (en) 1996-06-14 2003-11-18 Sharav Sluices, Ltd. Renewable resource hydro/aero-power generation plant and method of generating hydro/aero-power
US5987836A (en) * 1997-03-04 1999-11-23 Specialty Metal Fabrications, Inc. Louver assembly and method for installing a louver assembly
US5755069A (en) * 1997-03-04 1998-05-26 Specialty Metal Fabricators, Inc. Louver assembly and method for installing a louver assembly
US6779971B2 (en) * 2000-10-12 2004-08-24 Holset Engineering Company, Limited Turbine
US20090298409A1 (en) * 2008-05-29 2009-12-03 Maersk Container Industri A/S Ventilation valve arrangement and transport container with a ventilation valve arrangement
US8562399B2 (en) * 2008-05-29 2013-10-22 Maersk Container Industri As Ventilation valve arrangement and transport container with a ventilation valve arrangement
CN117145986A (en) * 2023-11-01 2023-12-01 亿昇(天津)科技有限公司 Guide vane air valve and flow regulating device
CN117145986B (en) * 2023-11-01 2024-01-09 亿昇(天津)科技有限公司 Guide vane air valve and flow regulating device

Also Published As

Publication number Publication date
GB1296762A (en) 1972-11-15

Similar Documents

Publication Publication Date Title
US3566916A (en) Inlet vane damper
US5096374A (en) Vane controller
US4092907A (en) Outlet nozzle for heating and venting systems of automobiles
US2513463A (en) Air introducing device
US3044387A (en) Damper and linkage therefor
US1872599A (en) Louver or damper device
US4241647A (en) Air damper valve
US3487768A (en) Damper fastening arrangement
US3540484A (en) Constant volume regulators and air distribution apparatus embodying same
DE3623001C1 (en) Adjustment device for swiveling guide vanes of turbo engines
US2233983A (en) High-speed inlet vane
US2443263A (en) Fluid flow control apparatus
US2473329A (en) Tail rotor for helicopters
US2656782A (en) Adjustable air distributor
US2390068A (en) Adjustable pitch propeller mechanism
WO1997005421A1 (en) Centilevered adjustable hollow arm and joints therefor
US2555009A (en) Adjustable louver assembly for discharge outlets
DE2134205C3 (en) Device for throughput control of a centrifugal compressor
JPS6111712B2 (en)
DE2637222C3 (en) Swirl regulator
CN216518834U (en) Ventilator blade structure capable of adjusting angle in linkage manner
CN220081975U (en) Automatic butt joint structure of worm gear air valve actuator
US4147095A (en) Directional concentrated air discharge outlet
EP3779294B1 (en) Blade adjusting mechanism and air circulator
CN211501049U (en) Adjustable air inlet valve for fan test

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHILIPS INDUSTRIAL COMPONENTS, INC.,OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RUSKIN MANUFACTURING COMPANY, A CORP OF MO.;REEL/FRAME:004599/0779

Effective date: 19860626

Owner name: PHILIPS INDUSTRIAL COMPONENTS, INC., DAYTON, OH.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RUSKIN MANUFACTURING COMPANY, A CORP OF MO.;REEL/FRAME:004599/0779

Effective date: 19860626