US3577744A - Dry air refrigerated display case system - Google Patents

Dry air refrigerated display case system Download PDF

Info

Publication number
US3577744A
US3577744A US888289A US3577744DA US3577744A US 3577744 A US3577744 A US 3577744A US 888289 A US888289 A US 888289A US 3577744D A US3577744D A US 3577744DA US 3577744 A US3577744 A US 3577744A
Authority
US
United States
Prior art keywords
air
refrigerated
housing
duct
display case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US888289A
Inventor
John F Mercer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3577744A publication Critical patent/US3577744A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • A47F3/0439Cases or cabinets of the open type
    • A47F3/0443Cases or cabinets of the open type with forced air circulation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • A47F3/0482Details common to both closed and open types

Definitions

  • the display case is coilless, the depressed temperature being maintained primarily through conduction panels forming the bottom and walls of the product zone, which conduction panels are disposed in intimate contact with the refrigerated air supply from the primary evaporator unit. Apertures through the conduction panels are provided to leak cold dry air into the product display zone to attain spillage at a low rate. System efficiency is increased by providing baffles to insure intimate contact of the dry refrigerated air against the thermally conductive panels comprising the walls as well as the bottom panel of the product zone.
  • JOHN E MERCER ATTORNEYS DRY AIR REFRIGERATED DISPLAY CASE SYSTEM This invention relates to refrigerated food display systems and, more particularly, to such a system which utilizes refrigerated air conveyed from a distinctly separate evaporator unit to achieve the cooling.
  • Prior art refrigerated display cases which utilize evaporator coils integral with the display case and in intimate heat conducting relationship with the product display zone have certain inherent drawbacks which become particularly acute when the humidity exceeds a rather low threshold value.
  • the product display zone can frost up very quickly to the extent that defrosting activity must take place as often as several times per day.
  • a heating element to melt the frost must be energized, and the heating element must have substantial capacity to achieve defrosting within a reasonable time period. Under severe frosting and icing conditions, the products must be removed from the display zone before the defrosting cycle is initiated.
  • the source of dry filtered air comprises a small secondary evaporator unit and a compressor and storage tank used in conjunction therewith such that a small amount of air is pulled from ambient, dehydrated by the secondary evaporator unit and passed through the compressor for storage in the pressure tank.
  • Makeup air is metered through a capillary tube to the primary system at a rate commensurate with the spillage.
  • FIG. 1 is a perspective view of the primary evaporator unit used in the refrigerated display case of the present invention coupled to a single section display case incorporating the air flowprincipals of the invention;
  • FIG. 2 is a partially cutaway perspective view of the apparatus comprising the secondary subsystem for providing dried makeup air to the primary system;
  • FIG. 3 is a partially cutaway perspective view of a differently arranged primary evaporator system used in conjunction with a shelf-type open top refrigerated display case.
  • a primary evaporator unit 1 is fixed to one end of a single section open top display case 2. It will become apparent as the description proceeds that the evaporator unit 1 and display case 2 may be physically separated and that additional display area may be realized by adding intermediate, open ended display sections between the display case 2 and the evaporator unit 1.
  • the primary evaporator unit 1 comprises a closed housing 3 separated into an upper, high-pressure space 4 and a lower, low-pressure space 5 by a stepped partition 6.
  • the side of the evaporator unit 1 toward the display case 2 is provided with a supply air opening 7 from the high-pressure zone and a return air opening 8 to the low-pressure zone.
  • a centrifugal blower 9, driven by the motor 10 pumps air from the low-pressure zone 5 to the high-pressure zone 4.
  • the evaporator coil unit 1 1 comprises one of the heat exchangers of a refrigeration system including other standard components (not shown) to effect the refrigeration cycle.
  • the display case 2 comprises a bottom 12, sidewalls 13, an end wall 14, and a cap member 15 extending around the top of the case.
  • the display area or product zone bottom 16, the display area sidewalls l7, and the display area end wall 18 comprise panels of thermally conductive material.
  • the space between the case bottom 12 and the product zone bottom 16 and between the sidewalls 13, 17 and between the end walls 14, 18 is divided into a supply air duct 19 and a return duct 20 by a partition having a horizontal portion 21 positioned between the case bottom 12 and the product zone bottom panel 16 and a vertical portion 22 disposed between the outer case walls 13 and 14 and the product zone wall panels 17 and 18.
  • the supply air duct 19 of the display case 2 receives refrigerated air from the high-pressure space 4 through the supply air opening 7.
  • the refrigerated air in the supply air duct 19 is forced into intimate contact with the product zone bottom panel 16 and the product zone wall panels 17 and 18 by the confining action of the horizontal portion 21 and the vertical portion 22 of the partition bounding the supply air duct 19 and the return air duct 20.
  • a preponderance of the refrigerated air moves from the supply air duct 19 to the return air duct 20 over the uppermost edge of the vertical portion 22 of the partition separating the zones whereupon the circulated air passes through the return air duct 20 and through the return air opening 8 into the low pressure space 5 of the primary evaporator unit 1 such that it can again be cooled and circulated into the display case 2.
  • a small portion of the refrigerated air in the supply air duct 19 is permitted to escape through apertures 23 into the product zone.
  • the refrigerated air introduced into the product zone through the apertures 23 is very dry.
  • the product zone is always filled with the cold, dry air which is permitted to spill slowly over the cap member 15 to ambient.
  • Makeup is introduced into the pri-' mary evaporator unit 1 through a conduit 24 communicating between a source of very dry air and the low pressure space 5.
  • a secondary evaporator unit 25 is provided with a housing 26 having one or more apertures 27 for admitting ambient air.
  • a secondary evaporator coil 28 of a small, secondary refrigeration system (other components not shown) is utilized to dehumidify the ambient air as it flows across the secondary coil 28.
  • the intake port 70 of an air compressor 29 is coupled to an opening 30 in the housing 26 of the secondary evaporator unit 25 by a conduit 31.
  • the dehumidified ambient air is pulled through the conduit 31 and is compressed by the air compressor 29 which has its discharge port 71 connected, through another conduit 32, to a pressurized air storage tank 33.
  • a copper tube 34 conveys dried compressed air through a filter 35 to a capillary tube 36 which serves to meter the necessary volume of makeup air to the conduit 24 which, as noted above, communicates with the low pressure space of the primary evaporator unit I.
  • the makeup air supply apparatus of FIG. 2 may conveniently be disposed remotely from the primary evaporator unit and display case of FIG. I and, because of the relatively low volume of makeup air, the apparatus of FIG. 2 may be used with a plurality of primary evaporator units to maintain the circulating air in all such units and in all product zones at a very low humidity level to eliminate frost in the product zones and ice on the primary evaporator unit coils.
  • FIG. 3 a shelf-type open top display case 37 is shown which utilizes a somewhat different ducting arrangement to accommodate the case shape and layout. Similarly, a reconfigured primary evaporator unit 38 may be utilized to effect a compact and efficient installation. As with the FIG. 1 display case 2, the display case 37 illustrated in FIG. 3 may be lengthened by interposing additional openended sections between the final section provided with an end wall 39 and the primary evaporator unit 38.
  • Evaporator coils 62 are disposed in the airflow path within a high-pressure space 40 which receives return air from a low pressure space 41 by means of a blower 42 driven by a motor 43.
  • the refrigerated air flows through a supply air opening 44 into a refrigerated air duct 45 disposed immediately beneath a horizontal portion 46 of a partition.
  • the refrigerated air in the display case 37 is forced to flow upwardly over a vertical portion 48 of the partition.
  • the refrigerated air is directed upwardly between the vertical portion 48 of the partition and the front wall 51 of the case and back downwardly to flow horizontally through a relatively narrow space 52 bounded by the horizontal portion 46 and a horizontal panel 53 of heat conductive material comprising the bottom of a product display zone.
  • the refrigerated air flows rearwardly through the space 52 and returns upwardly through a similar, vertically disposed space 54 bounded by the backwall 49 of the product zone and an interior baffle 55 to exhaust at the terminus of a thermal baffle 55 into the return air duct 56.
  • the return air duct 56 conveys the circulated air at a somewhat lower pressure back to the low-pressure space 41 of the primary evaporator unit 38 where it is again pumped through the blower 42 and chilled prior to reentry into the display case 37.
  • a plurality of apertures 57 are provided in the horizontal heat conductive panel 53 to admit dry, refrigerated air into the product zone of the display case 37. Additionally, conduit 58 disposed between the refrigerated air duct 45 and discharge units 59 permit additional refrigerated, dry air to spill over the shelves 50 at a controlled rate. The cold, dry air supplied to the discharge units 59 is taken from the refrigerated air duct 45 in order to insure superatmospheric pressure at the discharge apertures 60 to guard against the possible entry of undried ambient air into the system.
  • the conduit 61 may be coupled directly to the capillary tube metering apparatus 36 depicted in FIG. 2 to supply makeup air lost through the apertures 57 and 60 which maintain a constant low volume spillage of refrigerated, dry air within the product display zone of the display case 37.
  • a refrigerated display system comprising:
  • A. a first evaporator unit including a first housing having return air and supply air access openings therein, first evaporator coil means disposed in said first housing, 'and forced air-circulating means in said first housing for circulating air from said return air opening across said coil means to cool and dehumidify the air and direct the air to said supply air opening;
  • a second evaporator unit including a second housing, second evaporator coil means disposed in said second housing, and means for introducing ambient air into said second housing;
  • C. compressor means having a low-pressure inlet and a high-pressure outlet, means coupling said low-pressure inlet to said second housing such that ambient air is drawn across and dried by said second evaporator coil and enters said low-pressure inlet, a compressed air storage tank communicating with said high-pressure outlet to receive and store the dried ambient air under superatmospheric pressure, and metering means coupled between said storage tank and said first housing such that the dried ambient air is introduced into said first housing at a controlled rate; and
  • an open display case having no coils therein, said open display case being coupled to said first evaporator unit to receive refrigerated air from said supply air opening and to return air to said return air opening, said display case having a bottom wall, sidewalls, and at least one end wall collectively defining an upwardly opening space between said walls, thermally conductive panel means within said space, said thermally conductive panel means having a bottom portion disposed in substantially parallel relationship with said bottom wall and a plurality of upwardly extending side portions, said thermally conductive panel means being spaced from said walls to divide said space into air-circulating duct means and a product display zone disposed above at least a portion of said air-circulating duct means, a divider partition in said air-circulating duct means dividing said air-circulating duct means into a refrigerated air supply duct and an air return duct, said divider partition configured such that said refrigerated air supply duct is partially defined by said bottom portion of said thermally conductive panel means.

Abstract

In order to provide an open refrigerated display case in which the product zone remains frost-free and in which the evaporator coils remain ice-free, a small secondary evaporator unit is utilized to dry ambient air which is stored under pressure and metered into the air flow path of the primary cooling system. The display case is coilless, the depressed temperature being maintained primarily through conduction panels forming the bottom and walls of the product zone, which conduction panels are disposed in intimate contact with the refrigerated air supply from the primary evaporator unit. Apertures through the conduction panels are provided to leak cold dry air into the product display zone to attain spillage at a low rate. System efficiency is increased by providing baffles to insure intimate contact of the dry refrigerated air against the thermally conductive panels comprising the walls as well as the bottom panel of the product zone.

Description

United States Patent [72] Inventor John F. Mercer P.0. Box 143, Globe, Ariz. 8550i [21] Appl. No. 888,289 [22] Filed Dec. 29, 1969 [45] Patented May 4, 1971 [54] DRY AIR REFRIGERATED DISPLAY CASE SYSTEM 4 Claims, 3 Drawing Figs.
[52] US. Cl 62/256, 62/283, 62/93 [51] Int. Cl. A47f 3/04, F25b 5/00 [50] Field ofSearch 62/256, 283, 93
[56] References Cited UNITED STATES PATENTS 2,890,574 6/1959 Whitesel 62/283 3,063,256 11/1962 Lamb 62/283 3,381,494 5/1968 Steelman 62/283 3,494,138 2/1970 Bird ABSTRACT: In order to provide an open refrigerated display case in which the product zone remains frost-free and in which the evaporator coils remain ice-free, a small secondary evaporator unit is utilized to dry ambient air which is stored under pressure and metered into the air flow path of the primary cooling system. The display case is coilless, the depressed temperature being maintained primarily through conduction panels forming the bottom and walls of the product zone, which conduction panels are disposed in intimate contact with the refrigerated air supply from the primary evaporator unit. Apertures through the conduction panels are provided to leak cold dry air into the product display zone to attain spillage at a low rate. System efficiency is increased by providing baffles to insure intimate contact of the dry refrigerated air against the thermally conductive panels comprising the walls as well as the bottom panel of the product zone.
PATENTEDMAY 4197! 3577744 SHEET 1 BF 3 v INVENTOR.
JOHN F. MERCER ATTORNEYS PATENTEDMAY 4m 3577744 sum 2 BF 3 INVENTOR.
I JOHN F. MERCER ATTORNEYS PATENTEI] MAY 41% I 3577 744 sum 3 OF 3 INVENTOR.
. JOHN E MERCER ATTORNEYS DRY AIR REFRIGERATED DISPLAY CASE SYSTEM This invention relates to refrigerated food display systems and, more particularly, to such a system which utilizes refrigerated air conveyed from a distinctly separate evaporator unit to achieve the cooling.
Prior art refrigerated display cases which utilize evaporator coils integral with the display case and in intimate heat conducting relationship with the product display zone have certain inherent drawbacks which become particularly acute when the humidity exceeds a rather low threshold value. The product display zone can frost up very quickly to the extent that defrosting activity must take place as often as several times per day. A heating element to melt the frost must be energized, and the heating element must have substantial capacity to achieve defrosting within a reasonable time period. Under severe frosting and icing conditions, the products must be removed from the display zone before the defrosting cycle is initiated. When the defrost cycle is completed, the refrigeration unit is again activated, and the problem is often encountered of refreezing melted ice which has not drained properly because of clogged drains or otherwise inadequate drainage. The icing of the evaporator coils can and does cause repeated damage to the refrigeration system such that the cost of maintenance, coupled with the obvious uneconomic situation created by the necessity for frequent defrosting, gives rise to serious objections to the prior art refrigerator display cases.
Some of these objects were met, to an extent, in the refrigerated display case system disclosed in my U.S. Pat. No. 3,250,085, filed Nov. 27, 1964, and issued May 10, 1966. However, my prior art system disclosed therein suffered from certain inefficiencies and drawbacks resulting from the manner in which makeup air was introduced into the system and in which thermal transfer was effected between the product display zone and the refrigeration system per se.
It is a broad object of this invention to provide an improved refrigerated display case.
It is a more specific object of this invention to provide a refrigerated display case which is completely frost-free and in which the necessity for a defrosting heating element is obviated.
It is another specific object of this invention to provide a refrigerator display case in which no drain is required and in which cooling of the display zone is effected primarily through conduction.
These and other objects are achieved; according to a presently preferred embodiment of the invention, by disposing the refrigeration system coils in an airflow path such that cooled and dehydrated air is conveyed from the evaporator coils to the display case and is passed through the display case in intimate contact with the conductive panels comprising the product zone bottom and walls. Apertures are provided in the bottom of the product zone to controllably leak a small amount of the cooled, dehydrated air into the product zone such that a certain amount of constant spillage is achieved. The spillage is made up from a low volume source of dry filtered air. The source of dry filtered air comprises a small secondary evaporator unit and a compressor and storage tank used in conjunction therewith such that a small amount of air is pulled from ambient, dehydrated by the secondary evaporator unit and passed through the compressor for storage in the pressure tank. Makeup air is metered through a capillary tube to the primary system at a rate commensurate with the spillage.
The subject matter of the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention however, both as to organization and method of operation, may best be understood by reference to the following description taken in conjunction with the accompanying drawing of which:
FIG. 1 is a perspective view of the primary evaporator unit used in the refrigerated display case of the present invention coupled to a single section display case incorporating the air flowprincipals of the invention;
FIG. 2 is a partially cutaway perspective view of the apparatus comprising the secondary subsystem for providing dried makeup air to the primary system; and
FIG. 3 is a partially cutaway perspective view of a differently arranged primary evaporator system used in conjunction with a shelf-type open top refrigerated display case.
Referring now to FIG. 1, it will be observed that a primary evaporator unit 1 is fixed to one end of a single section open top display case 2. It will become apparent as the description proceeds that the evaporator unit 1 and display case 2 may be physically separated and that additional display area may be realized by adding intermediate, open ended display sections between the display case 2 and the evaporator unit 1.
The primary evaporator unit 1 comprises a closed housing 3 separated into an upper, high-pressure space 4 and a lower, low-pressure space 5 by a stepped partition 6. The side of the evaporator unit 1 toward the display case 2 is provided with a supply air opening 7 from the high-pressure zone and a return air opening 8 to the low-pressure zone. A centrifugal blower 9, driven by the motor 10, pumps air from the low-pressure zone 5 to the high-pressure zone 4. As the air is circulated through the high-pressure zone 4, it flows across the refrigeration coil unit 11 in heat exchanging relationship such that the air which flows outwardly from the supply air opening 7 is refrigerated. The evaporator coil unit 1 1 comprises one of the heat exchangers of a refrigeration system including other standard components (not shown) to effect the refrigeration cycle.
The display case 2 comprises a bottom 12, sidewalls 13, an end wall 14, and a cap member 15 extending around the top of the case. The display area or product zone bottom 16, the display area sidewalls l7, and the display area end wall 18 comprise panels of thermally conductive material. The space between the case bottom 12 and the product zone bottom 16 and between the sidewalls 13, 17 and between the end walls 14, 18 is divided into a supply air duct 19 and a return duct 20 by a partition having a horizontal portion 21 positioned between the case bottom 12 and the product zone bottom panel 16 and a vertical portion 22 disposed between the outer case walls 13 and 14 and the product zone wall panels 17 and 18.
The supply air duct 19 of the display case 2 receives refrigerated air from the high-pressure space 4 through the supply air opening 7. The refrigerated air in the supply air duct 19 is forced into intimate contact with the product zone bottom panel 16 and the product zone wall panels 17 and 18 by the confining action of the horizontal portion 21 and the vertical portion 22 of the partition bounding the supply air duct 19 and the return air duct 20. A preponderance of the refrigerated air moves from the supply air duct 19 to the return air duct 20 over the uppermost edge of the vertical portion 22 of the partition separating the zones whereupon the circulated air passes through the return air duct 20 and through the return air opening 8 into the low pressure space 5 of the primary evaporator unit 1 such that it can again be cooled and circulated into the display case 2.
A small portion of the refrigerated air in the supply air duct 19 is permitted to escape through apertures 23 into the product zone. For reasons which will become apparent below, the refrigerated air introduced into the product zone through the apertures 23 is very dry. Inasmuch as the airflow through the apertures 23 is constant, the product zone is always filled with the cold, dry air which is permitted to spill slowly over the cap member 15 to ambient. Makeup is introduced into the pri-' mary evaporator unit 1 through a conduit 24 communicating between a source of very dry air and the low pressure space 5.
The source of very dry makeup air is depicted in FIG. 2. A secondary evaporator unit 25 is provided with a housing 26 having one or more apertures 27 for admitting ambient air. A secondary evaporator coil 28 of a small, secondary refrigeration system (other components not shown) is utilized to dehumidify the ambient air as it flows across the secondary coil 28. The intake port 70 of an air compressor 29 is coupled to an opening 30 in the housing 26 of the secondary evaporator unit 25 by a conduit 31. Thus, the dehumidified ambient air is pulled through the conduit 31 and is compressed by the air compressor 29 which has its discharge port 71 connected, through another conduit 32, to a pressurized air storage tank 33. A copper tube 34 conveys dried compressed air through a filter 35 to a capillary tube 36 which serves to meter the necessary volume of makeup air to the conduit 24 which, as noted above, communicates with the low pressure space of the primary evaporator unit I.
The makeup air supply apparatus of FIG. 2 may conveniently be disposed remotely from the primary evaporator unit and display case of FIG. I and, because of the relatively low volume of makeup air, the apparatus of FIG. 2 may be used with a plurality of primary evaporator units to maintain the circulating air in all such units and in all product zones at a very low humidity level to eliminate frost in the product zones and ice on the primary evaporator unit coils.
Referring now to FIG. 3, a shelf-type open top display case 37 is shown which utilizes a somewhat different ducting arrangement to accommodate the case shape and layout. Similarly, a reconfigured primary evaporator unit 38 may be utilized to effect a compact and efficient installation. As with the FIG. 1 display case 2, the display case 37 illustrated in FIG. 3 may be lengthened by interposing additional openended sections between the final section provided with an end wall 39 and the primary evaporator unit 38.
Evaporator coils 62 are disposed in the airflow path within a high-pressure space 40 which receives return air from a low pressure space 41 by means of a blower 42 driven by a motor 43. The refrigerated air flows through a supply air opening 44 into a refrigerated air duct 45 disposed immediately beneath a horizontal portion 46 of a partition.
Similar to the airflow configuration described previously for the display case illustrated in FIG. 1, the refrigerated air in the display case 37 is forced to flow upwardly over a vertical portion 48 of the partition. HOwever, in order to convey sufficiently cold air to the vertical backwalls 49 of the shelves 50, the refrigerated air is directed upwardly between the vertical portion 48 of the partition and the front wall 51 of the case and back downwardly to flow horizontally through a relatively narrow space 52 bounded by the horizontal portion 46 and a horizontal panel 53 of heat conductive material comprising the bottom of a product display zone. The refrigerated air flows rearwardly through the space 52 and returns upwardly through a similar, vertically disposed space 54 bounded by the backwall 49 of the product zone and an interior baffle 55 to exhaust at the terminus of a thermal baffle 55 into the return air duct 56. The return air duct 56 conveys the circulated air at a somewhat lower pressure back to the low-pressure space 41 of the primary evaporator unit 38 where it is again pumped through the blower 42 and chilled prior to reentry into the display case 37.
A plurality of apertures 57, corresponding to the apertures 23 of the display case 2 depicted in FIG. 1, are provided in the horizontal heat conductive panel 53 to admit dry, refrigerated air into the product zone of the display case 37. Additionally, conduit 58 disposed between the refrigerated air duct 45 and discharge units 59 permit additional refrigerated, dry air to spill over the shelves 50 at a controlled rate. The cold, dry air supplied to the discharge units 59 is taken from the refrigerated air duct 45 in order to insure superatmospheric pressure at the discharge apertures 60 to guard against the possible entry of undried ambient air into the system.
The conduit 61 may be coupled directly to the capillary tube metering apparatus 36 depicted in FIG. 2 to supply makeup air lost through the apertures 57 and 60 which maintain a constant low volume spillage of refrigerated, dry air within the product display zone of the display case 37.
While the principles of the invention have now been made clear in an illustrative embodiment, there will be immediately obvious to those skilled in the art many modifications of structure, arrangement, proportions, the elements, materials, and
components, used in the practice of the invention which are particularly adapted for specific environments and operating requirements without departing from those principles.
lclaim:
l. A refrigerated display system comprising:
A. a first evaporator unit including a first housing having return air and supply air access openings therein, first evaporator coil means disposed in said first housing, 'and forced air-circulating means in said first housing for circulating air from said return air opening across said coil means to cool and dehumidify the air and direct the air to said supply air opening;
B. a second evaporator unit including a second housing, second evaporator coil means disposed in said second housing, and means for introducing ambient air into said second housing;
C. compressor means having a low-pressure inlet and a high-pressure outlet, means coupling said low-pressure inlet to said second housing such that ambient air is drawn across and dried by said second evaporator coil and enters said low-pressure inlet, a compressed air storage tank communicating with said high-pressure outlet to receive and store the dried ambient air under superatmospheric pressure, and metering means coupled between said storage tank and said first housing such that the dried ambient air is introduced into said first housing at a controlled rate; and
D. an open display case having no coils therein, said open display case being coupled to said first evaporator unit to receive refrigerated air from said supply air opening and to return air to said return air opening, said display case having a bottom wall, sidewalls, and at least one end wall collectively defining an upwardly opening space between said walls, thermally conductive panel means within said space, said thermally conductive panel means having a bottom portion disposed in substantially parallel relationship with said bottom wall and a plurality of upwardly extending side portions, said thermally conductive panel means being spaced from said walls to divide said space into air-circulating duct means and a product display zone disposed above at least a portion of said air-circulating duct means, a divider partition in said air-circulating duct means dividing said air-circulating duct means into a refrigerated air supply duct and an air return duct, said divider partition configured such that said refrigerated air supply duct is partially defined by said bottom portion of said thermally conductive panel means.
2. The refrigerated display system of claim 1 in which said bottom portion of said thermally conductive panel means is provided with a plurality of apertures such that dry refrigerated air is controllably leaked into said product display zone.
3. The refrigerated display system of claim 2 in which said metering means comprises a capillary tube.
4. The refrigerated display system of claim 2 in which said refrigerated air supply duct is entirely disposed directly above said air return duct.

Claims (4)

1. A refrigerated display system comprising: A. a first evaporator unit including a first housing having return air and supply air access openings therein, first evaporator coil means disposed in said first housing, and forced air-circulating means in said first housing for circulating air from said return air opening across said coil means to cool and dehumidify the air and direct the air to said supply air opening; B. a second evaporator unit including a second housing, second evaporator coil means disposed in said second housing, and means for introducing ambient air into said second housing; C. compressor means having a low-pressure inlet and a highpressure outlet, means coupling said low-pressure inlet to said second housing such that ambient air is drawn across and dried by said second evaporator coil and enters said low-pressure inlet, a compressed air storage tank communicating with said high-pressure outlet to receive and store the dried ambient air under superatmospheric pressure, and metering means coupled between said storage tank and said first housing such that the dried ambient air is introduced into said first housing at a controlled rate; and D. an open display case having no coils therein, said open display case being coupled to said first evaporator unit to receive refrigerated air from said supply air opening and to return air to said return air opening, said display case having a bottom wall, sidewalls, and at least one end wall collectively defining an upwardly opening space between said walls, thermally conductive panel means within said space, said thermally conductive panel means having a bottom portion disposed iN substantially parallel relationship with said bottom wall and a plurality of upwardly extending side portions, said thermally conductive panel means being spaced from said walls to divide said space into air-circulating duct means and a product display zone disposed above at least a portion of said air-circulating duct means, a divider partition in said air-circulating duct means dividing said aircirculating duct means into a refrigerated air supply duct and an air return duct, said divider partition configured such that said refrigerated air supply duct is partially defined by said bottom portion of said thermally conductive panel means.
2. The refrigerated display system of claim 1 in which said bottom portion of said thermally conductive panel means is provided with a plurality of apertures such that dry refrigerated air is controllably leaked into said product display zone.
3. The refrigerated display system of claim 2 in which said metering means comprises a capillary tube.
4. The refrigerated display system of claim 2 in which said refrigerated air supply duct is entirely disposed directly above said air return duct.
US888289A 1969-12-29 1969-12-29 Dry air refrigerated display case system Expired - Lifetime US3577744A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88828969A 1969-12-29 1969-12-29

Publications (1)

Publication Number Publication Date
US3577744A true US3577744A (en) 1971-05-04

Family

ID=25392922

Family Applications (1)

Application Number Title Priority Date Filing Date
US888289A Expired - Lifetime US3577744A (en) 1969-12-29 1969-12-29 Dry air refrigerated display case system

Country Status (1)

Country Link
US (1) US3577744A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666497A1 (en) * 1990-08-14 1992-03-13 Elektro Grosshandel Theodor Ma Item of furniture/display unit for goods to be chilled
US5277039A (en) * 1991-11-12 1994-01-11 Omnimet Industries, Inc. Cabinet refrigeration unit
US5381672A (en) * 1991-11-12 1995-01-17 Omninet Industries, Inc. Cabinet refrigeration system with cold air distributor
EP0903094A2 (en) * 1997-09-17 1999-03-24 Schöller Lebensmittel GmbH & Co. KG Freezer,especially for deep-frozen products
US6311512B1 (en) 2000-05-18 2001-11-06 Carrier Corporation Refrigerated merchandiser system
US6460372B1 (en) 2001-05-04 2002-10-08 Carrier Corporation Evaporator for medium temperature refrigerated merchandiser
US6679080B2 (en) 2001-05-04 2004-01-20 Carrier Corporation Medium temperature refrigerated merchandiser
US20040123613A1 (en) * 2001-05-04 2004-07-01 Chiang Robert Hong Leung Medium temperature refrigerated merchandiser
US20040168456A1 (en) * 2001-05-04 2004-09-02 Chiang Robert Hong Leung Evaporator for medium temperature refrigerated merchandiser
US11116333B2 (en) 2019-05-07 2021-09-14 Carrier Corporation Refrigerated display cabinet including microchannel heat exchangers
US11559147B2 (en) 2019-05-07 2023-01-24 Carrier Corporation Refrigerated display cabinet utilizing a radial cross flow fan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890574A (en) * 1955-05-02 1959-06-16 Amana Refrigeration Inc Frost attractor for refrigerators
US3063256A (en) * 1961-08-17 1962-11-13 Lamb Frank Gilbert Upright refrigerator showcase
US3381494A (en) * 1966-10-27 1968-05-07 Clark Equipment Co Frost collector evaporator coil
US3494138A (en) * 1968-01-02 1970-02-10 Bird F M Cryogenic air compressor with air dehumidifying means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890574A (en) * 1955-05-02 1959-06-16 Amana Refrigeration Inc Frost attractor for refrigerators
US3063256A (en) * 1961-08-17 1962-11-13 Lamb Frank Gilbert Upright refrigerator showcase
US3381494A (en) * 1966-10-27 1968-05-07 Clark Equipment Co Frost collector evaporator coil
US3494138A (en) * 1968-01-02 1970-02-10 Bird F M Cryogenic air compressor with air dehumidifying means

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666497A1 (en) * 1990-08-14 1992-03-13 Elektro Grosshandel Theodor Ma Item of furniture/display unit for goods to be chilled
US5277039A (en) * 1991-11-12 1994-01-11 Omnimet Industries, Inc. Cabinet refrigeration unit
US5381672A (en) * 1991-11-12 1995-01-17 Omninet Industries, Inc. Cabinet refrigeration system with cold air distributor
EP0903094A2 (en) * 1997-09-17 1999-03-24 Schöller Lebensmittel GmbH & Co. KG Freezer,especially for deep-frozen products
EP0903094A3 (en) * 1997-09-17 2000-10-25 Schöller Lebensmittel GmbH & Co. KG Freezer,especially for deep-frozen products
US6311512B1 (en) 2000-05-18 2001-11-06 Carrier Corporation Refrigerated merchandiser system
EP1156288A1 (en) 2000-05-18 2001-11-21 Carrier Corporation Refrigerated merchandiser
US6679080B2 (en) 2001-05-04 2004-01-20 Carrier Corporation Medium temperature refrigerated merchandiser
US6460372B1 (en) 2001-05-04 2002-10-08 Carrier Corporation Evaporator for medium temperature refrigerated merchandiser
US20040123613A1 (en) * 2001-05-04 2004-07-01 Chiang Robert Hong Leung Medium temperature refrigerated merchandiser
US20040168456A1 (en) * 2001-05-04 2004-09-02 Chiang Robert Hong Leung Evaporator for medium temperature refrigerated merchandiser
US6923013B2 (en) 2001-05-04 2005-08-02 Carrier Corporation Evaporator for medium temperature refrigerated merchandiser
US8151587B2 (en) 2001-05-04 2012-04-10 Hill Phoenix, Inc. Medium temperature refrigerated merchandiser
AU2004308347B2 (en) * 2003-12-22 2009-04-23 Carrier Corporation Evaporator for medium temperature refrigerated merchandiser
US11116333B2 (en) 2019-05-07 2021-09-14 Carrier Corporation Refrigerated display cabinet including microchannel heat exchangers
US11559147B2 (en) 2019-05-07 2023-01-24 Carrier Corporation Refrigerated display cabinet utilizing a radial cross flow fan

Similar Documents

Publication Publication Date Title
US3063253A (en) Low temperature refrigerated case
US3590594A (en) Single evaporator multiple temperature refrigerator
US3103796A (en) Refrigeration system
US3364694A (en) Refrigerator apparatus
US3107502A (en) Air circuit means for combined freezer and refrigerator apparatus
US3577744A (en) Dry air refrigerated display case system
US3393530A (en) Radiant defrost panel for refrigerator
US2810267A (en) Refrigerated display case
US2487182A (en) Two-temperature refrigerator having means for defrosting
US3091942A (en) Food merchandiser
US2967404A (en) Refrigerated display case
US3122892A (en) Refrigerated display cabinet and method of operation
US2929229A (en) Evaporator-blower unit for refrigerated equipment
US3104533A (en) Refrigerating apparatus
US3063254A (en) Food merchandiser
US2911799A (en) Refrigerated food display cabinet
US2152291A (en) Refrigerated case
US3084519A (en) Two temperature forced air refrigerator systems
US3050955A (en) Multi-temperature refrigerator
US2008255A (en) Counter flow air conditioner
US3667249A (en) Refrigerator with ice maker and high humidity compartment
US3116615A (en) Household refrigerator including removable unitary refrigerating system
US3872683A (en) Refrigeration defrost system
US4338792A (en) Refrigerated merchandiser display case with defrost device
US3287933A (en) Refrigerating apparatus