Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS3582671 A
Type de publicationOctroi
Date de publication1 juin 1971
Date de dépôt7 juil. 1969
Date de priorité7 juil. 1969
Autre référence de publicationDE2033347A1
Numéro de publicationUS 3582671 A, US 3582671A, US-A-3582671, US3582671 A, US3582671A
InventeursOtt James H
Cessionnaire d'origineNovar Electronics Corp
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Sound-responsive light
US 3582671 A
Résumé  disponible en
Images(2)
Previous page
Next page
Revendications  disponible en
Description  (Le texte OCR peut contenir des erreurs.)

[72] Inventor James H. Ott

Columbus, Ohio [21] Appl. No. 839,524 [22] Filed July 7,1969 [45] Patented June 1, 1971 [73] Assignee Novar Electronics Corporation Barberton, Ohio [54] SOUND-RESPONSIVE LIGHT 10 Claims, 4 Drawing Figs.

[52} U.S.Cl 307/117, 340/148, 307/252 [51] Int.Cl ..H01h 37/00 [50] Field of Search 307/117,

ll6,112,l32,252,2l;340/258,259,148,171

[56] References Cited UNITED STATES PATENTS 2,954,489 9/1960 Brueggeman 307/1 l7 3,270,216 8/1966 Dersch 307/117 3,440,347 4/1969 Spencer et al. 307/l 17X 3,475,092 10/1969 Harvey 307/1 17X Primary ExaminerRobert K. Schaefer Assistant Examiner-HJ. Hohauser Attorneys-Frank H. Foster and Jerome R. Cox

ABSTRACT: A sound-responsive light illuminated by an audio-actuated serially connected switch. The audio-actuated switch includes a thyristor, preferably an SCR, the gate of which is triggered by an audio frequency signal from a microphone and audio amplifier. The amplifier is a class A audio amplifier with biasing and loading provided so that the light will be illuminated by sound above a selected level. A nonlinear potentiometer is used for the load impedance of one of the amplifier stages to permit selection of the desired audio level which triggers the thyristor. The input terminals of a rectified power supply are connected across the principal terminals of the SCR so that the parallel combination may be connected in series with the electric light and an alternating current power source. Coupling is provided from the output of the audio amplifier to the gate of the thyristor by means of a series capacitor and a shunt gate resistor of approximately 1000 ohms.

I THYRISTOR Q SWITCH PATENTEUJUN IIBYI 3582.871

sum 1 [IF 2 FIG IS INVENTOR. JAM ES H. OT T W mwffimbb ATTORNEY PATENTED JUN llQYl 3,582,671

SHEET 2 BF 2 F I G 4 I NVENTOR.

JAMES H OTT ATTORNEY BACKGROUND OF THE INVENTION This invention relates to an audio-actuated electrical device, and more particularly relates to an electric light which is illuminated in response to the presence of sound above a selected level.

Electric lights have traditionally been used for a variety of purposes including illumination and signalling. I have found that there is a need for a device which can provide an instantaneous, active, visual representation of an immediate sound environment.

As an example, many persons have found it pleasurable to listen to stereo music with the aid of stereo earphones. However, with such earphones positioned over the listeners ears, and with music being reproduced by the earphones, a listener, relaxing in a chair, would be unable to hear a ringing telephone or a statement made to him by another person standing in the room. However, with the aid of my audio-actuated light, such sounds would be immediately indicated to the listener.

The audio-actuated light also can find use with children born without hearing, or other persons hard of hearing or deaf. My light is useful in teaching such persons to speak because it gives an immediate indication of the effect of their voices, especially the magnitude of the voices. Furthermore, the characteristics of the light flicker vary somewhat according to the type of sound reaching the light. Therefore, my audio-actuated light can be used to indicate the nature of a sound.

My light can also be used in places such as libraries, hospitals, or study rooms where a low level of noise is desired. Such a light would flicker when the sound level rises above an acceptable level and should serve as an alarm to discourage the making of such noise. The sound-responsive light is also an effective tool for deterring burglars and thieves. For example, the noise created by the opening of a window, walking, or the removal of loot, would create a flash or flashes of light which should alert neighbors and possibly scare a thief or cause him to flee.

The audio-actuated light can also have an interesting effect on conversation between two or more persons. The illumination of the light, modulated by the speaker's voice, seems to make a person more conscious of his manner of speaking. Finally, a light which is audio responsive will provide a stimulus for teaching a songbird to sing by reinforcing him for his sounds. A captive bird, such as a canary, may be rewarded for its singing by the pleasing light variations created by my light in response to his sounds. In effect, this would be a teaching machine for the canary which would not require the attention of the owner.

It is therefore an object of my invention to provide an improved audio-actuated switch.

Another object of my invention is to provide an improved audio-actuated illumination means.

Another object of my invention is to provide an audio-actuated illumination means which is instantaneous in that there is no perceptible time delay between the beginiiing or the cessation of audio stimulus and the beginning or cessation of the illumination.

It is a further object of my invention to provide a light which is illuminated in a manner characteristic of its audio stimulation. BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a block diagram of the invention.

FIG. 2 is a schematic diagram of the preferred embodiment of the invention.

FIG. 3 is a mixed schematic and block diagram illustrating an alternative embodiment of the invention.

FIG. 4 is a schematic view illustrating another alternative embodiment of my invention.

In describing the preferred embodiment of the inventionillustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.

SUMMARY OF THE INVENTION FIG. I illustrates the general principals of the invention. The invention comprises a transducer, such as a microphone l, for converting an input mechanical audio signal, such as sound waves in air, to an electrical audio signal output. A thyristor having a control gate 2 is provided with suitable circuitry to operate as a switch 3. Means, such as an audio amplitier 4, is connected between the output of the transducer I and the gate 2 of the thyristor switch 3 for impressing an audio frequency trigger signal derived from the transducer on the gatev 2. The principal terminals 5 and 6 of the thyristor are connected to an electrical device 7, such as an electric light, which is series connected to a source of electrical energy 8 in order to control the electrical current flow through the electrical device 7.

The word thyristor is used to include not only the more commonly known devices such as the triac and silicon-controlled rectifier which I prefer to use, but also other types of controlled rectifiers such as thyratrons, devices not yet so popularly known, and devices yet to be invented which exhibit the characteristics necessary for switching in the manner of my invention.

Furthermore, I have chosen the word signal and intend it to include not only ordinary sinusoidal waveforms but also pulses of various shapes. Thus when I refer as in the above summary, to an audio frequency trigger signal on the gate of the thyristor, I mean a signal which exhibits substantial magnitude variations at an audio rate. I do not include in the term audio frequency signal, a voltage or current which, although it may have some audio or ripple noise present, is used for its average value averaged over several audio or ripple cycles.

DETAILED DESCRIPTION Briefly described, the preferred embodiment of my invention, as illustrated in FIG. 2, has a source of electrical energy which is a 117 volt outlet at terminals 9 and 10 of the type commonly available in a home, in series connection with a mechanical on-off switch II, an electrical device such as light 12, and a thyristor such as the SCR 13, which has a control gate 14. The principal terminals 15 and 16 of the SCR 13 are connected in series with the light 12 and the source of electrical energy at terminals 9 and It). The SCR I3 operates as a switch which will permit or prevent current flow through the light 12. A microphone l7 converts an input mechanical audio signal, such as sound waves, to an electrical audio signal output. The electrical audio signal output from the microphone 17 is amplified by the class A audio amplifier I8 and then impressed on the gate 14 of the SCR I3.

In more detail, the preferred embodiment has a microphone 17 which is connected to the input of a first audio amplifier stage having a transistor 19 with a load resistor 20. For a ceramic microphone I use a Darlington pair. The amplified output from the transistor I9 is directly coupled to the next audio amplifier stage having a transistor 22 and biasing and load resistors 24 and 26 respectively. An emitter capacitor 28 is provided to perform its conventional function of bypassing the signal around the resistor 24. The load resistor 26, which I prefer, is the stator of a nonlinearly varying potentiometer. The adjustable wiper 30 of the potentiometer provides a variable audio sensitivity control and is connected by a coupling capacitor 32 to the input of a third audio amplifier stage having a transistor 34. A feedback resistor 44 is provided for temperature stability and biasing. The third stage has a load resistor 42 and a feedback resistor 43 for providing operating bias and stability. The output from the third transistor 34 is coupled to the gate 14 of the SCR 13 by a capacitance 48. A gate resistor 50 is provided for biasing and current overload protection and to prevent floating of the gate.

A rectified power supply 51 for biasing and supply power to the audio amplifier 18 is connected across the principal terminals 15 and 16 of the SCR 13. This is preferred so that all of the electrical circuitry which makes up the audio-actuated switch can be connected in series with the light 8 and the source of power at terminals 9 and 10. With such a connection, removal or burning out of the light 8 completely deenergizes the audio-actuated switch circuitry. Furthermore, the light 8 serves as an impedance which limits the current through the audio-actuated switch. The half-wave power supply 15 illustrated comprises an input resistor 52, a diode 54, a filter resistor 56, and a pair of filter capacitors 58 and 60.

Although the power supply can be connected across an SCR it ordinarily can not be connected across a triac. With an SCR, the on time never exceeds one-half cycle so that the other half-cycle is available for the rectified power supply 51. A triac may be on for a full 360 thus in effect shorting any power supply connected across its principal terminals. However, an alternative arrangement using a triac is illustrated in FIG. 3 and described below.

In the preferred embodiment of FIG. 2, the series-connected light 12, SCR 13 and power source at terminals 9 and 10 are arranged so that the amplifier and the bulb socket are both at signal ground. This is done to reduce the coupling of any spurious noise from the power lines to the amplifier which might cause firing of the SCR. Several noise sources exist in a home and examples include light dimmers and electric motors.

The operation of the preferred embodiment begins with the closing of the mechanical switch 11. With the switch 11 closed, the light 12 is ready to be illuminated. In the absence of sound in the environment of the microphone 17, no trigger signal will be present at the gate 14 and the light 12 will not be illuminated. If sound is incident on the microphone 17, the sound will be converted to an electrical audio signal and amplified by the stages of the audio amplifier 18. An audio signal will be present at the gate 14. If the peaks of the audio signal at the gate 14 are below the gate-firing voltage, the lamp will still not be illuminated; if, however, the peaks of the audio signal at the gate 14 are greater than the gate-firing voltage, the lamp 12 will be energized during part of each half-cycle that the principal terminals 15 and 16 of the SCR 13 are forward biased.

The magnitude of the audio signal of the gate 14 is dependent not only on the level of sound input to the microphone 17 but also on the position of the wiper along the resistance 26. Thus, the wiper 30 is a sensitivity control which can be adjusted so that a desired sound input level fires the SCR 13. Preferably, the resistance 26 varies logarithmically in order to give good control at low levels of audio input to the microphone 17 as well as at higher levels.

In the preferred circuit, then, the voltage at the gate 14 is an audio signal resulting from the sound input to the microphone 17. Within an amplitude range for each setting of the wiper 30 the amplitude of the gate signal controls the apparent brightness of the lamp 8. The SCR will almost always be fired at or near the beginning of its conducting half-cycle if the magnitude of the gate signal is sufficient because the audio signal frequency is ordinarily at least ten times larger than the frequency of its source of electrical energy at terminals 9 and 10 (which is applied to the principal terminals of the SCR).

Most sounds, such as that of a human voice, are continuous streams of varying magnitude. If the wiper is positioned to make the circuit very sensitive, almost all spoken sound will illuminate the lamp.

If a low sensitivity is used only the occasional higher magnitude sound will cause the light to be energized. The lamp will be energized for only a few half-cycles. At an intermediate sensitivity, the apparent brightness of the light will seem to flicker during a series of utterances depending upon the relative number of half-cycles the lamp is not energized.

One important feature of the preferred embodiment is that, because the trigger pulses at the gate 14 are at the same frequency as the input at the microphone 17, there is substantially no visible time delay from the time the sound ceases at the microphone 17 until the time that the light 12 is no longer illuminated. This enables the light 12 to flicker more nearly and closely in response to the words and syllables of a speaker talking into the microphone 17. At the beginning of a sufficiently loud word or syllable the light will be immediately illuminated; and when the word is ended or a sentence is ended, it will immediately shut off. This gives the speaker a great awareness that the light is indeed directly reacting to his voice. Conventional audioactuated switches provide rectifier and filter capacitors which rectify and filter the audio signal. This results in a light which will be turned on in a conventional system in response to the sound but which when the sound stops, especially for a small instant of time, maintains the light on until the capacitor can decay. Such a system is not intended to give and does not give a close correspondence between the light illumination and the sounds of a speaker.

The coupling of the output of an audio amplifier by a capacitor to the gate of a thyristor is believed to be new. To accomplish this, I have used a capacitor which provides an impedance 18, small enough so that the input impedance to the gate circuit as the terminal 62 and ground is matched with the output impedance of the third transistor 34 amplifier stage.

It is the intention of my invention that any suitable means could be used to connect the output of the transducer 17 to the gate 14 of the thyristor 13 for impressing an audio frequency trigger signal on the gate. Some clipping of the signal is permissible so that one or more of the transistors 16, 22 and 34 could be biased to operate class AB, class B or class C. These would in effect clip offa portion of the audio signal. Also substantial nonlinear distortion of the audio signal is permissible and therefore the amplifier stage can be operated in the nonlinear range of their characteristics. It is only necessary that the audio rate of substantial magnitude variation be preserved. Therefore, even with clipping or distortion and provided there is no smoothing capacitor used anywhere, an audio frequency trigger signal will be impressed upon the gate 14. Such a signal will provide operation very similar to that provided by the preferred embodiment illustrated in FIG. 1. Such operation would, unlike previously known circuits, provide a light flicker which appears to be an instantaneous representation of the audio input to the transducer 17.

In FIG. 3, I illustrate an alternative embodiment of my invention. It illustrates two alternatives. First it illustrates the use ofa triac 113 rather than an SCR and second it illustrates a rectified power supply 151 which is not connected parallel to the thyristor switch.

The circuit of FIG. 3 has a microphone 117 which provides an electrical audio signal input to the audio amplifier 118. The output of the amplifier 118 is coupled by a capacitor 148 onto the gate 114 of the triac 113. A standard l 17 volt house voltage may be connected at the terminal 109 and so that when the triac 113 is conducting, the light 112 will be illu minated.

In FIG. 4 I illustrate yet another embodiment of my inven tion. This circuit has a full-wave rectifier (but no filtering) connected to an alternating source of electrical energy at ter minals 202 and 203 so that the source of electrical energy at terminals 209 and 210 is full-wave rectified sinusoid. This rectification provides solely positive half-cycles on the SCR 213 so that its principal terminals are essentially always biased for conduction. Conduction can then occur for nearly the full 360 therefore providing the advantage of triac-type output with SCR gate sensitivity.

Since rectification is provided by the full-wave rectifier 201, only a filter 255 need be connected to the rectifier 201 in order to provide power supply to the amplifier 218 having a microphone 217.

It is to be understood that while the detailed drawings and specific examples given described preferred embodiments of my invention, they are for the purposes of illustration only, that the apparatus of the invention is not limited to the precise details and conditions disclosed and that various changes may be made therein without departing from the spirit of the invention which is defined by the following claims.

I claim:

1. An audio-actuated switch for controlling electrical current flow through an electrical device which is in series with a source of electrical energy, the switch comprising:

a. a transducer for converting an input mechanical audio signal to an electrical audio signal output;

b. a thyristor having a control gate, the principal terminals of the thyristor being in series with the electrical device; 1

and

c. means connecting the output of the transducer to the gate of the thyristor for impressing on said gate a nonfiltered audio frequency trigger signal, derived from the transducer, for producing instantaneous on and off operation of the electrical device.

2. A switch according to claim 1, wherein said means comprises an audio amplifier, biasing means,

and coupling means.

3. A switch according to claim 2, wherein the audio amplifier is a class A amplifier and the gate trigger signal is substantially analogous to the mechanical audio signal.

4. A switch according to claim 2, wherein the thyristor is an SCR,

wherein there is provided a rectified power supply, for biasing and supplying power to said audio amplifier, the power supply having two input terminals connected to the principal terminals of the SCR,

wherein said source of electrical energy, said electrical device, and the parallel combination of the SCR and the rectified power supply are series connected so that disconnection of the electrical device deenergizes the SCR and the rectified power supply and so that the current through the SCR and the power supply is limited by the impedance of the electrical device.

5. A switch according to claim 2, wherein the audio amplifier comprises a plurality of amplifier stages, one of the stages having a load impedance comprising the stator of a potentiometer and having the wiper of the potentiometer coupled to the input of the subsequent stage for permitting variable adjustment and selection of a desired audio signal level for triggering the thyristor.

6. A switch according to claim 5, wherein the impedance along the stator of the potentiometer is logarithmic.

7. An audio-actuated light for illumination in response to sound,

the light comprising a switch according to claim 1, wherein said electrical device is an illumination means.

8. An audio light according to claim 7, wherein said source of electrical energy is an alternating current.

9. An audio light according to claim 8, wherein the connecting means comprises an audio amplifier and coupling means for impressing an audio signal on the gate which is derived from said mechanical audio signal and wherein biasing means is provided for triggering the gate in response to a selected audio level.

10. An audio-actuated light comprising a switch according to claim 4, wherein a. the electrical device is a light;

b. the amplifier is an audio amplifier for providing a gate trigger signal which is derived from the input mechanical audio signal and the amplifier comprises a plurality of amplifier stages, one of the stages having a load impedance comprising the stator of a nonlinearly varying potentiometer and having the wiper of the potentiometer coupled to the input of the subsequent stage for variable adjustment and selection of an audio signal level which triggers the thyristor.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US2954489 *1 mai 195827 sept. 1960Brueggeman Karl OSound-responsive relay unit
US3270216 *11 mars 196330 août 1966Voice Systems IncVoice operated safety control unit
US3440347 *2 févr. 196622 avr. 1969Spenko Intern IncRemote control plug-in unit
US3475092 *23 oct. 196728 oct. 1969Eastman Kodak CoWireless remote control slide changer
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US3720939 *15 mars 197113 mars 1973Universal Res Labor IncAudio modulated switching circuit having flashing lights
US3761912 *20 mai 197125 sept. 1973Novar Electronics CorpBurglar deterrent timing switch
US3770981 *29 avr. 19716 nov. 1973Nelsen TVoice controlled target release system
US3893081 *5 avr. 19741 juil. 1975Hopkins Charles LAudio actuated lamp
US3898383 *24 juil. 19735 août 1975Herbits Charles GAutomatic dimming and recycleable lamp
US4024413 *17 nov. 197517 mai 1977Stephen Gregory OlitaSensalight
US4103294 *26 févr. 197325 juil. 1978Novar Electronics CorporationIntruder deterrent apparatus and method
US4107462 *9 juin 197715 août 1978Satya Pal AsijaElectroventriloquist
US4237449 *16 juin 19782 déc. 1980Zibell J ScottSignalling device for hard of hearing persons
US4258291 *1 nov. 197824 mars 1981Robert J. ScottSmoke alarm activated portable lamp
US4297677 *10 déc. 197927 oct. 1981John S. LewisPersonal ambient sound referenced annunciator
US4344071 *10 juil. 198010 août 1982Roger A. HellerLight switching mechanism
US4349747 *21 janv. 198114 sept. 1982Ozen Corp.Sound response time switch for flowing current for a predetermined period of time
US4432041 *27 déc. 198214 févr. 1984Firex CorporationSmoke penetrating emergency light
US4476554 *21 juil. 19839 oct. 1984Jonathan Ehrenreich, Ehrenreich ElectronicsSound actuated light switch
US4630248 *19 oct. 198316 déc. 1986Scott Robert JSound activated lamp arrangement
US4670864 *1 févr. 19852 juin 1987Braun AktiengesellschaftVoice interruptible alarm device
US5603065 *28 févr. 199411 févr. 1997Baneth; Robin C.Hands-free input device for operating a computer having mouthpiece with plurality of cells and a transducer for converting sound into electrical control signals
US5615380 *9 avr. 199125 mars 1997Hyatt; Gilbert P.Integrated circuit computer system having a keyboard input and a sound output
US5697450 *2 juin 199516 déc. 1997Twenty First Century International Fire Equipement And Services Corp.Fire extinguishing systems and methods
US5871057 *30 oct. 199716 févr. 1999Twenty First Century International Fire Equipment And Service Corp.Fire extinguishing systems and methods
US6044913 *11 févr. 19994 avr. 2000Twenty-First Century International Fire Equipment And Services CorporationFire extinguishing systems and methods
US645012815 mai 200117 sept. 2002Mark A. BoyceBird training method and apparatus therefor
US66868394 avr. 20013 févr. 2004International Business Machines CorporationMethod and system for noise notification
US772414713 juil. 200625 mai 2010Cardinal Health 303, Inc.Medical notification apparatus and method
WO1984003973A1 *31 janv. 198411 oct. 1984Jeffrey Edward MalcolmSelf-annunciator
Classifications
Classification aux États-Unis307/117, 367/133, 327/446, 327/463, 327/455, 367/197
Classification internationaleA63J17/00, G09B19/04
Classification coopérativeA63J17/00, G09B19/04
Classification européenneG09B19/04, A63J17/00