US3584770A - Intravenous bottle having expandable inner receptacle - Google Patents

Intravenous bottle having expandable inner receptacle Download PDF

Info

Publication number
US3584770A
US3584770A US3584770DA US3584770A US 3584770 A US3584770 A US 3584770A US 3584770D A US3584770D A US 3584770DA US 3584770 A US3584770 A US 3584770A
Authority
US
United States
Prior art keywords
bottle
receptacle
fluid
intravenous
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Philip Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3584770A publication Critical patent/US3584770A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1406Septums, pierceable membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1462Containers with provisions for hanging, e.g. integral adaptations of the container
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1475Inlet or outlet ports
    • A61J1/1487Inlet or outlet ports with friction fit, e.g. connecting tubes directly to a protruding port
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/18Arrangements for indicating condition of container contents, e.g. sterile condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1468Containers characterised by specific material properties

Definitions

  • An intravenous bottle which dispenses intravenous fluids by gravity feed.
  • the bottle includes a sterile expandable receptacle which is connected to the atmosphere via an inlet port. As the fluid for intravenous injection is dispensed from the bottle, air is drawn into the expandable receptacle.
  • the expandable receptacle acts to prevent the contact of the air from the atmosphere with the fluid to prevent spoilage thereof.
  • This invention relates generally to intravenous injections and more particularly to an intravenous bottle which prevents contamination of the fluid therein during an intravenous injection.
  • an intravenous bottle containing the fluid When making injections of a dextrous solution or other fluids for insertion into the bloodstream of a patient, an intravenous bottle containing the fluid is conventionally suspended above and adjacent to the patient.
  • the intravenous bottle normally includes a stopper at the neck of the bottle having an inlet and an outlet port.
  • the bottle When used in intravenous injection, the bottle is inverted so that the outlet port is connected directly to the patient via an elongated tube and the inlet port is connected to the atmosphere. Consequently, as the fluid is dispensed through the outlet port, air from the atmosphere is drawn into the inlet port in order to take up the volume ofliquid that has been removed from the bottle.
  • the fluid in the bottle is dispensed over a relatively long period of time. During this period, bacteria in the air can contaminate the fluid within the bottle.
  • a host environment is provided which is extremely susceptible to infection from the bacteria in the air. Even in the most sterile environments, such as hospitals, when patients are visited by friends, there is nothing to prevent the bacteria from a harmless sneeze or cough of one of the visitors from ultimately contaminating the fluid in the bottle.
  • One means that has been provided in order to reduce the contamination of the fluid in the bottle is a cotton insert provided at the inlet port of the intravenous bottle.
  • a cotton insert provided at the inlet port of the intravenous bottle.
  • the first of the disadvantages is that many forms of bacteria in the air are not fllterable.
  • a second disadvantage is that where the cotton is packed tightly, the flow of fluid can be completely inhibited because the flow of air into the bottle is impeded which is necessary to take up the volume of liquid which has been removed.
  • Another important disadvantage is that the use of cotton can prevent higher flow rates of the liquid into the bloodstream where it is desired or required.
  • Another object of the invention is to provide a new and improved intravenous bottle having a sterile expandable receptacle connected to the inlet port thereof to prevent the contact of air from the atmosphere with the fluid contained in the bottle.
  • Another object of the invention is to provide a new and improved intravenous bottle which maintains the sterility of the fluid therein during the dispensing thereof.
  • Another object of the invention is to provide a new and improved intravenous bottle which can maintain sterility of the fluid therein while dispensing the fluid quickly by gravity feed.
  • Still another object of the invention is to provide a new and improved intravenous bottle having a safety means for preventing too fast a flow of fluid into the blood system of a patient.
  • Still another object of the invention is to provide a new and improved intravenous bottle having a sterile expandable insert to prevent contamination of the fluid therein, said receptacle acting to identify the fluid being dispensed.
  • a vessel for dispensing fluids which easily spoil during exposure to the atmosphere.
  • the vessel is atmospherically sealed and includes a pair of ports. One of the ports is adapted for the removal of the liquid therein.
  • An expandable receptacle is provided which is connected to the atmosphere via the other of the ports so that as the fluid is dispensed, air is drawn into the expandable receptacle. The receptacle prevents direct contact between the atmosphere and the fluid.
  • FIG. 1 is a side elevational view of an intravenous bottle embodying the invention
  • FIG. 2 is an enlarged vertical sectional view of the intravenous bottle
  • FIG. 3 is a view similar to FIG. 2 wherein a portion of the fluid in the intravenous bottle has been dispensed;
  • FIG. 4 is a side elevational view of an alternate intravenous bottle embodying the invention with portions thereof shown in section for purposes of clarity;
  • FIG. 5 is a side elevational view of a second alternate intravenous bottle embodying the invention.
  • FIG. 1 a liquid dispenser embodying the invention is shown generally at 20 in FIG. 1.
  • the intravenous bottle 20 is a conventional glass vessel having a bracket 22 connected about the periphery adjacent the bottom thereof which is connected to a wire 24 for suspension of the intravenous bottle in an inverted position.
  • Stopper 28 preferably includes a pair of ports which extend vertically through the stopper.
  • a first port is utilized to receive a substantially rigid tube 30, which is connected via conventional intravenous tubing to the bloodstream of a patient.
  • the stopper 28 may also comprise a stopper of the self-sealing type with the ports developed by use of an entry spike.
  • tube 30 is connected via a bulb 32 to flexible tubing 34 which extends to the patient.
  • the flow through the tubing 34 is regulated by a suitable plastic pinch valve 36 which varies the opening in the tubing 34 to regulate flow.
  • the bulb 32 enables the user to visually determine the rate offlow of fluid out ofthe bottle into the bloodstream.
  • the tube 30 is terminated at 38 so that the edge thereof is inclined.
  • the inclination of edge 38 produces a sharp edge which is utilized in insertion of the tube 30 to penetrate the seal in the port of the stopper of the bottle which is provided for sealing the contents thereof.
  • a tube 40 is provided which extends substantially centrally of the bottle.
  • the tube 40 includes a nipple 42 at the end thereof to which an expandable receptacle 44 is attached.
  • the expandable receptacle 44 is basically comprised of a sterilized flexible elastomeric material and suitably comprises a balloon.
  • the tube 40 is preferably permanently secured in the stopper 28 and terminates at the outer surface of the stopper.
  • the port in the stopper connected to tube 40 may include a breakable seal. The seal is optional, however, since the expandable receptacle 44 is provided at the opposite end of the tube 40 and therefore seals the contents of the bottle 20 from the atmosphere.
  • the stopper 28 is placed into the bottle 20 after a predetermined amount of liquid is placed into the bottle.
  • the stopper 28 normally includes a seal over the first port which is penetrable by the end 38 of the outlet tube 30.
  • the expandable receptacle 44 may also take the form of a collapsible or folded bag which has flexible but inelastic walls. As the air enters the bag, the bag unfolds and expands to accommodate the intake of air. Moreover, the receptacle 44 is suitably colored to identify the solution in the bottle that is being dispensed. Not only are different colored receptacles contemplated, but also different patterns (i.e. stripes, dots, etc.).
  • the tube 30 is inserted in the first port of stopper 28. After the intravenous fluid is emitted via tube 30, air from the atmosphere enters tube 40 via the second port and is drawn into the expandable receptacle 44. The air which is drawn into the balloon is equal in volume to the volume of liquid 46 that has been dispensed through the tube 30.
  • the receptacle 44 is expanded automatically as the fluid is dispensed by gravity feed because the removal of the fluid causes the air in the vessel to occupy a larger space and thereby cause a reduced pressure therein.
  • the atmospheric pressure in tube 40 is then larger and causes the receptacle to increase until the pressure in the bottle and the atmospheric pressure are substantially equal.
  • a new and improved intravenous bottle has been provided.
  • the inlet portion to the bottle is connected to an expandable receptacle which is expanded as the fluid is dispensed from the intravenous bottle. Since the receptacle 44 is air tight, the air cannot make contact with the fluid 46. Thus, no matter how contaminated the air about the intravenous bottle 20, the fluid 46 remains sterile throughout thereby preventing any bacterial or other infections from entering the bloodstream of the patient. Moreover, the use of colored patterns on the receptacles 44 enables quick identification of the fluid dispensed.
  • the intravenous bottle shown therein includes an alternate form of expandable receptacle 50.
  • the intravenous bottle 20 is otherwise similar to bottle 20 shown in FIG. 1.
  • the expandable receptacle 50 is connected to the second port of the stopper 28 via a shorter tube 52 than tube 40 in FIG. 1 so that the expandable receptacle is located closer to the stopper of the bottle.
  • the receptacle 50 basically differs from receptacle 44 in that the receptacle includes a wall of varying thickness. That is, the uppermost portion 54 of the wall of the receptacle 50 comprises a very thin and elastic membrane which is more easily expandable than the remaining portion 56 of the wall of the receptacle. in this manner, it assures the receptacle of expanding at the top thereof so that the expansion of the receptacle cannot preclude fluid from reaching the port of the stopper 28.
  • the receptacle 50 is shown in full line in an intermediately expanded condition.
  • the portion shown in phantom shows the receptacle expanded when the fluid has reached the level of dotted line 58 shown therein.
  • the receptacle 40 facilitates the complete removal of fluid from the intravenous bottle. That is, where the intravenous bottle 20 is completely filled, there is the chance that as the fluid is completely removed in the embodiment shown in FIG. 1, the receptacle 44 may be broken because of its deformation about a rigid tube 40. In the embodiment shown in FIG. 4, the receptacle 50 more easily conforms to the shape of the bottle 20 as the fluid is dispensed.
  • an intravenous bottle 20 is shown utilizing an alternate inlet tube 100.
  • the inlet tube 100 is flexible so that a pinch valve 102 may be utilized to regulate the flow of air to the receptacle 44.
  • the valve 102 supplements valve 36 so that if either valve 36 or 102 should be inadvertently removed, the flow of fluid out of the bottle cannot be greatly increased and thereby provide a hazard to the patient.
  • the provision of the flexible tube having a pinch valve 102 is enabled by the provision of having an expandable receptacle 44 provided within the intravenous bottle 20.
  • the expandable insert is not provided, it is necessary to filter the incoming air by means of cotton or other purifying filters. Thus, the flow of air therethrough is not regulatable except by compacting or loosening the cotton.
  • the size of the port in the stopper 28 may be increased to increase the flow of fluid out of the intravenous bottle. In such a case, there is still no problem of contaminating the fluid within the bottle in that the receptacle 44 maintains a barrier between the air from the atmosphere and the fluid.
  • an intravenous bottle for dispensing fluids by gravity feed in an intravenous injection and which fluids should not be exposed to the atmosphere, said bottle having inflexible walls and being atmospherically sealed, said bottle having a pair of ports, one of said ports adapted for the removal of said liquid, an expandable receptacle within said bottle, said expandable receptacle being connected to the atmosphere via the other of said ports so that as said fluid is dispensed, air is drawn into said expandable receptacle; said receptacle is conformable to the shape of the inner surface of said bottle as it expands and contacts the same and prevents direct contact between the atmosphere and said fluid, said receptacle adapted to expand to substantially replace the dispensed fluid contents of said bottle.
  • said receptacle includes an elastomeric wall which is of varying thickness to predetermine the shape as said receptacle expands.

Abstract

An intravenous bottle which dispenses intravenous fluids by gravity feed. The bottle includes a sterile expandable receptacle which is connected to the atmosphere via an inlet port. As the fluid for intravenous injection is dispensed from the bottle, air is drawn into the expandable receptacle. The expandable receptacle acts to prevent the contact of the air from the atmosphere with the fluid to prevent spoilage thereof.

Description

United States Patent 72] Inventor Philip Taylor 1903 E. Moyamensing Ave., Philadelphia, Pa. 19148 [21 1 Appl. No. 794,635 [22] Filed Jan. 28, 1969 [45] Patented June 15, 1971 54] INTRAVENOUS BOTTLE HAVING EXPANDABLE INNER RECEPTACLE 6 Claims, 5 Drawing Figs.
[52] [1.5. CI 222/479, 128/214 [51] Int. Cl 867d 3/00 [50] Field of Search 128/DIG.12, 214; 222/3865, 479
[56] References Cited UNITED STATES PATENTS 2,074,223 3/1937 Horiuchi 128/214 2,409,734 10/1946 Bucher 128/214 2,673,013 3/1954 ZZZ/386.5 3,211,348 10/1965 ZZZ/386.5 3,291,151 12/1966 137/56.5 3,319,837 5/1967 222/3865 X 3,437,243 4/1969 Farnsworth 128/214 X FOREIGN PATENTS 1,097,770 5/1956 Germany ZZZ/386.5
Primary Examiner-Stanley H. Tollberg Attorney-Caesar, Rivise, Berstein and Cohen ABSTRACT: An intravenous bottle which dispenses intravenous fluids by gravity feed. The bottle includes a sterile expandable receptacle which is connected to the atmosphere via an inlet port. As the fluid for intravenous injection is dispensed from the bottle, air is drawn into the expandable receptacle. The expandable receptacle acts to prevent the contact of the air from the atmosphere with the fluid to prevent spoilage thereof.
PATENTED JUN 1 51971 SHEET 1 [IF 2 PHILIP lA/VEAITOH. T AY L 0 R Mmom 4 T TOR/VEYS.
PATENTEDJUNI 5197i 3,584,770
saw 2 UF 2 IAIVE/VTOR. PHILIP TAYLOR ATTORNEYS.
INTRAVENOUS BOTTLE HAVING EXPANDABLE INNER RECEPTACLE This invention relates generally to intravenous injections and more particularly to an intravenous bottle which prevents contamination of the fluid therein during an intravenous injection.
When making injections of a dextrous solution or other fluids for insertion into the bloodstream of a patient, an intravenous bottle containing the fluid is conventionally suspended above and adjacent to the patient. The intravenous bottle normally includes a stopper at the neck of the bottle having an inlet and an outlet port. When used in intravenous injection, the bottle is inverted so that the outlet port is connected directly to the patient via an elongated tube and the inlet port is connected to the atmosphere. Consequently, as the fluid is dispensed through the outlet port, air from the atmosphere is drawn into the inlet port in order to take up the volume ofliquid that has been removed from the bottle.
In many intravenous injections, the fluid in the bottle is dispensed over a relatively long period of time. During this period, bacteria in the air can contaminate the fluid within the bottle. In the case of dextrous solutions as well as fluids such as blood, a host environment is provided which is extremely susceptible to infection from the bacteria in the air. Even in the most sterile environments, such as hospitals, when patients are visited by friends, there is nothing to prevent the bacteria from a harmless sneeze or cough of one of the visitors from ultimately contaminating the fluid in the bottle.
One means that has been provided in order to reduce the contamination of the fluid in the bottle is a cotton insert provided at the inlet port of the intravenous bottle. There are, however, disadvantages in using a medicated cotton. The first of the disadvantages is that many forms of bacteria in the air are not fllterable. A second disadvantage is that where the cotton is packed tightly, the flow of fluid can be completely inhibited because the flow of air into the bottle is impeded which is necessary to take up the volume of liquid which has been removed. Another important disadvantage is that the use of cotton can prevent higher flow rates of the liquid into the bloodstream where it is desired or required.
It is therefore an object of the invention to overcome the aforementioned disadvantages.
Another object of the invention is to provide a new and improved intravenous bottle having a sterile expandable receptacle connected to the inlet port thereof to prevent the contact of air from the atmosphere with the fluid contained in the bottle.
Another object of the invention is to provide a new and improved intravenous bottle which maintains the sterility of the fluid therein during the dispensing thereof.
Another object of the invention is to provide a new and improved intravenous bottle which can maintain sterility of the fluid therein while dispensing the fluid quickly by gravity feed.
Still another object of the invention is to provide a new and improved intravenous bottle having a safety means for preventing too fast a flow of fluid into the blood system of a patient.
Still another object of the invention is to provide a new and improved intravenous bottle having a sterile expandable insert to prevent contamination of the fluid therein, said receptacle acting to identify the fluid being dispensed.
These and other objects of the invention are achieved by providing a vessel for dispensing fluids which easily spoil during exposure to the atmosphere. The vessel is atmospherically sealed and includes a pair of ports. One of the ports is adapted for the removal of the liquid therein. An expandable receptacle is provided which is connected to the atmosphere via the other of the ports so that as the fluid is dispensed, air is drawn into the expandable receptacle. The receptacle prevents direct contact between the atmosphere and the fluid.
Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
FIG. 1 is a side elevational view of an intravenous bottle embodying the invention;
FIG. 2 is an enlarged vertical sectional view of the intravenous bottle;
FIG. 3 is a view similar to FIG. 2 wherein a portion of the fluid in the intravenous bottle has been dispensed;
FIG. 4 is a side elevational view of an alternate intravenous bottle embodying the invention with portions thereof shown in section for purposes of clarity; and
FIG. 5 is a side elevational view of a second alternate intravenous bottle embodying the invention.
Referring now in greater detail to the various figures of the drawing wherein similar reference characters refer to similar parts, a liquid dispenser embodying the invention is shown generally at 20 in FIG. 1.
The intravenous bottle 20 is a conventional glass vessel having a bracket 22 connected about the periphery adjacent the bottom thereof which is connected to a wire 24 for suspension of the intravenous bottle in an inverted position.
As best seen in FIG. 2, at the opposite end of the intravenous bottle 20, a neck 26 of the bottle is provided with a rubber stopper 28 therein. Stopper 28 preferably includes a pair of ports which extend vertically through the stopper. A first port is utilized to receive a substantially rigid tube 30, which is connected via conventional intravenous tubing to the bloodstream of a patient. The stopper 28 may also comprise a stopper of the self-sealing type with the ports developed by use of an entry spike.
As best seen in FIG. 1, tube 30 is connected via a bulb 32 to flexible tubing 34 which extends to the patient. The flow through the tubing 34 is regulated by a suitable plastic pinch valve 36 which varies the opening in the tubing 34 to regulate flow. The bulb 32 enables the user to visually determine the rate offlow of fluid out ofthe bottle into the bloodstream.
As best seen in FIG. 3, the tube 30 is terminated at 38 so that the edge thereof is inclined. The inclination of edge 38 produces a sharp edge which is utilized in insertion of the tube 30 to penetrate the seal in the port of the stopper of the bottle which is provided for sealing the contents thereof. In the second of the ports, a tube 40 is provided which extends substantially centrally of the bottle. The tube 40 includes a nipple 42 at the end thereof to which an expandable receptacle 44 is attached.
The expandable receptacle 44 is basically comprised of a sterilized flexible elastomeric material and suitably comprises a balloon. The tube 40 is preferably permanently secured in the stopper 28 and terminates at the outer surface of the stopper. The port in the stopper connected to tube 40 may include a breakable seal. The seal is optional, however, since the expandable receptacle 44 is provided at the opposite end of the tube 40 and therefore seals the contents of the bottle 20 from the atmosphere.
The stopper 28 is placed into the bottle 20 after a predetermined amount of liquid is placed into the bottle. The stopper 28 normally includes a seal over the first port which is penetrable by the end 38 of the outlet tube 30.
The expandable receptacle 44 may also take the form of a collapsible or folded bag which has flexible but inelastic walls. As the air enters the bag, the bag unfolds and expands to accommodate the intake of air. Moreover, the receptacle 44 is suitably colored to identify the solution in the bottle that is being dispensed. Not only are different colored receptacles contemplated, but also different patterns (i.e. stripes, dots, etc.).
As best seen in FIG. 3, during the use of the bottle, the tube 30 is inserted in the first port of stopper 28. After the intravenous fluid is emitted via tube 30, air from the atmosphere enters tube 40 via the second port and is drawn into the expandable receptacle 44. The air which is drawn into the balloon is equal in volume to the volume of liquid 46 that has been dispensed through the tube 30.
The receptacle 44 is expanded automatically as the fluid is dispensed by gravity feed because the removal of the fluid causes the air in the vessel to occupy a larger space and thereby cause a reduced pressure therein. The atmospheric pressure in tube 40 is then larger and causes the receptacle to increase until the pressure in the bottle and the atmospheric pressure are substantially equal.
It can therefore be seen that a new and improved intravenous bottle has been provided. The inlet portion to the bottle is connected to an expandable receptacle which is expanded as the fluid is dispensed from the intravenous bottle. Since the receptacle 44 is air tight, the air cannot make contact with the fluid 46. Thus, no matter how contaminated the air about the intravenous bottle 20, the fluid 46 remains sterile throughout thereby preventing any bacterial or other infections from entering the bloodstream of the patient. Moreover, the use of colored patterns on the receptacles 44 enables quick identification of the fluid dispensed.
F IG. 4 shows an alternate embodiment of the invention. The intravenous bottle shown therein includes an alternate form of expandable receptacle 50. The intravenous bottle 20 is otherwise similar to bottle 20 shown in FIG. 1. The expandable receptacle 50 is connected to the second port of the stopper 28 via a shorter tube 52 than tube 40 in FIG. 1 so that the expandable receptacle is located closer to the stopper of the bottle. The receptacle 50 basically differs from receptacle 44 in that the receptacle includes a wall of varying thickness. That is, the uppermost portion 54 of the wall of the receptacle 50 comprises a very thin and elastic membrane which is more easily expandable than the remaining portion 56 of the wall of the receptacle. in this manner, it assures the receptacle of expanding at the top thereof so that the expansion of the receptacle cannot preclude fluid from reaching the port of the stopper 28.
In FIG. 4, the receptacle 50 is shown in full line in an intermediately expanded condition. The portion shown in phantom shows the receptacle expanded when the fluid has reached the level of dotted line 58 shown therein. The receptacle 40 facilitates the complete removal of fluid from the intravenous bottle. That is, where the intravenous bottle 20 is completely filled, there is the chance that as the fluid is completely removed in the embodiment shown in FIG. 1, the receptacle 44 may be broken because of its deformation about a rigid tube 40. In the embodiment shown in FIG. 4, the receptacle 50 more easily conforms to the shape of the bottle 20 as the fluid is dispensed.
Referring now to FIG. 5, an intravenous bottle 20 is shown utilizing an alternate inlet tube 100. The inlet tube 100 is flexible so that a pinch valve 102 may be utilized to regulate the flow of air to the receptacle 44. The valve 102 supplements valve 36 so that if either valve 36 or 102 should be inadvertently removed, the flow of fluid out of the bottle cannot be greatly increased and thereby provide a hazard to the patient. The provision of the flexible tube having a pinch valve 102 is enabled by the provision of having an expandable receptacle 44 provided within the intravenous bottle 20.
That is, where the expandable insert is not provided, it is necessary to filter the incoming air by means of cotton or other purifying filters. Thus, the flow of air therethrough is not regulatable except by compacting or loosening the cotton.
it should also be understood that the size of the port in the stopper 28 may be increased to increase the flow of fluid out of the intravenous bottle. In such a case, there is still no problem of contaminating the fluid within the bottle in that the receptacle 44 maintains a barrier between the air from the atmosphere and the fluid.
Without further elaboration, the foregoing will so fully illustrate my invention that others may, by applying current or future knowledge, readily adapt the same for use under various conditions of service.
What I claim as invention is:
1. In an intravenous bottle for dispensing fluids by gravity feed in an intravenous injection and which fluids should not be exposed to the atmosphere, said bottle having inflexible walls and being atmospherically sealed, said bottle having a pair of ports, one of said ports adapted for the removal of said liquid, an expandable receptacle within said bottle, said expandable receptacle being connected to the atmosphere via the other of said ports so that as said fluid is dispensed, air is drawn into said expandable receptacle; said receptacle is conformable to the shape of the inner surface of said bottle as it expands and contacts the same and prevents direct contact between the atmosphere and said fluid, said receptacle adapted to expand to substantially replace the dispensed fluid contents of said bottle.
2. The invention of claim 1 wherein said receptacle is color coded in accordance with the fluid dispensed.
3. The invention of claim 1 wherein said ports are provided in a stopper at the neck of said bottle. v
4. The invention of claim 1 wherein said receptacle comprises a balloon.
5. The invention of claim 1 wherein said receptacle includes an elastomeric wall which is of varying thickness to predetermine the shape as said receptacle expands.
6. The invention of claim 1 wherein a regulating valve is connected to said port adapted for the removal of said liquid and a regulating valve is also connected to said port connected to the atmosphere.

Claims (6)

1. In an intravenous bottle for dispensing fluids by gravity feed in an intravenous injection and which fluids should not be exposed to the atmosphere, said bottle having inflexible walls and being atmospherically sealed, said bottle having a pair of ports, one of said ports adapted for the removal of said liquid, an expandable receptacle within said bottle, said expandable receptacle being connected to the atmosphere via the other of said ports so that as said fluid is dispensed, air is drawn into said expandable receptacle; said receptacle is conformable to the shape of the inner surface of said bottle as it expands and contacts the same and prevents direct contact between the atmosphere and said fluid, said receptacle adapted to expand to substantially replace the dispensed fluid contents of said bottle.
2. The invention of claim 1 wherein said receptacle is color coded in accordance with the fluid dispensed.
3. The invention of claim 1 wherein said ports are provided in a stopper at the neck of said bottle.
4. The invention of claim 1 wherein said receptacle comprises a balloon.
5. The invention of claim 1 wherein said receptacle includes an elastomeric wall which is of varying thickness to predetermine the shape as said receptacle expands.
6. The invention of claim 1 wherein a regulating valve is connected to said port adapted for the removal of said liquid and a regulating valve is also connected to said port connected to the atmosphere.
US3584770D 1969-01-28 1969-01-28 Intravenous bottle having expandable inner receptacle Expired - Lifetime US3584770A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79463569A 1969-01-28 1969-01-28

Publications (1)

Publication Number Publication Date
US3584770A true US3584770A (en) 1971-06-15

Family

ID=25163205

Family Applications (1)

Application Number Title Priority Date Filing Date
US3584770D Expired - Lifetime US3584770A (en) 1969-01-28 1969-01-28 Intravenous bottle having expandable inner receptacle

Country Status (1)

Country Link
US (1) US3584770A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980082A (en) * 1975-03-14 1976-09-14 William Miller Venous pressure indicator
US4142657A (en) * 1975-03-10 1979-03-06 Wanke Ronald L Dispensing closure with nonrigid follower
DE2920975A1 (en) * 1979-05-23 1980-11-27 Siemens Ag EXTRACORPORALLY PORTABLE INFUSION DEVICE
US4601712A (en) * 1983-11-16 1986-07-22 Gould Inc. Drip chamber
US5024663A (en) * 1990-02-21 1991-06-18 Alza Corporation Self-contained suction pump
DE4018195A1 (en) * 1990-05-26 1991-11-28 Straehle & Hess Electrical conductor - is ribbon laid in strips to leave open spaces without cutting the continuous electrical wire
US6641556B1 (en) * 1999-07-06 2003-11-04 Respiratory Support Products, Inc. Intravenous fluid heating system
US20050113759A1 (en) * 2003-11-24 2005-05-26 Mueller Richard L.Jr. Catheter retainer
US20070244466A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US20080071243A1 (en) * 2006-09-20 2008-03-20 Yandell Marion E Vial Assembly and Method for Reducing Nosocomial Infections
US20080249498A1 (en) * 2007-03-09 2008-10-09 Icu Medical, Inc. Vial adaptors and vials for regulating pressure
JP2009533145A (en) * 2006-04-12 2009-09-17 アイシーユー・メディカル・インコーポレーテッド Bin adapter and bin for regulating pressure
WO2010022095A1 (en) * 2008-08-20 2010-02-25 Icu Medical, Inc. Anti-reflux vial adaptors
US20100147402A1 (en) * 2008-12-15 2010-06-17 Carmel Pharma Ab Connector Device
US7789871B1 (en) 2006-09-20 2010-09-07 Yandell Marion E Vial assembly and method for reducing nosocomial infections
US20100298806A1 (en) * 2006-09-20 2010-11-25 Yandell Marion E Vial assembly and method for reducing nosocomial infections
US8357137B2 (en) 2011-06-24 2013-01-22 Yandell Marion E Bung assembly for anti vacuum lock medical vials
US8640930B2 (en) 2010-03-11 2014-02-04 Diversey, Inc. Vent tube apparatus and method
US8662358B2 (en) 2010-02-02 2014-03-04 Diversey, Inc. Liquid dispensing container and method
US9089475B2 (en) 2013-01-23 2015-07-28 Icu Medical, Inc. Pressure-regulating vial adaptors
US9132062B2 (en) 2011-08-18 2015-09-15 Icu Medical, Inc. Pressure-regulating vial adaptors
US9403632B1 (en) * 2013-06-17 2016-08-02 José Luis Marrero Ramos Fluid dispenser
US20160331893A1 (en) * 2015-05-14 2016-11-17 Carefusion 303, Inc. Priming apparatus and method
US9610217B2 (en) 2012-03-22 2017-04-04 Icu Medical, Inc. Pressure-regulating vial adaptors
US9615997B2 (en) 2013-01-23 2017-04-11 Icu Medical, Inc. Pressure-regulating vial adaptors
US9987195B2 (en) 2012-01-13 2018-06-05 Icu Medical, Inc. Pressure-regulating vial adaptors and methods
US10201476B2 (en) 2014-06-20 2019-02-12 Icu Medical, Inc. Pressure-regulating vial adaptors
US10285905B2 (en) * 2016-05-11 2019-05-14 Sumitomo Rubber Industries, Ltd. Medical rubber stopper and method for producing medical rubber stopper
US10292904B2 (en) 2016-01-29 2019-05-21 Icu Medical, Inc. Pressure-regulating vial adaptors
US10406072B2 (en) 2013-07-19 2019-09-10 Icu Medical, Inc. Pressure-regulating fluid transfer systems and methods
US10589896B2 (en) * 2016-04-08 2020-03-17 Pablo IBAÑEZ RAZOLA Anti-spurt device
US11298153B2 (en) * 2006-03-03 2022-04-12 Axcess Instruments Inc. Apparatus and method for minimally invasive surgery
US11744775B2 (en) 2016-09-30 2023-09-05 Icu Medical, Inc. Pressure-regulating vial access devices and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2074223A (en) * 1935-11-05 1937-03-16 Fred T Horiuchi Blood transfusion apparatus
US2409734A (en) * 1941-09-20 1946-10-22 Swiss Firm Of G Laubscher & Co Instrument for blood transfusion
US2673013A (en) * 1949-12-27 1954-03-23 Dwight H Hester Device for dispensing predetermined amounts of liquid from containers
DE1097770B (en) * 1956-05-05 1961-01-19 Wilhelm Stigler Dipl Ing Fluid displacement bodies
US3211348A (en) * 1964-05-21 1965-10-12 Greer Hydraulics Inc Pressure vessels
US3291151A (en) * 1963-11-06 1966-12-13 Selmer M Loken Fluid exchange system
US3319837A (en) * 1965-01-27 1967-05-16 Air Ject Corp Dispensing device
US3437243A (en) * 1967-06-22 1969-04-08 Helen D Farnsworth Means for gauging timed dosages from a dispensing container

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2074223A (en) * 1935-11-05 1937-03-16 Fred T Horiuchi Blood transfusion apparatus
US2409734A (en) * 1941-09-20 1946-10-22 Swiss Firm Of G Laubscher & Co Instrument for blood transfusion
US2673013A (en) * 1949-12-27 1954-03-23 Dwight H Hester Device for dispensing predetermined amounts of liquid from containers
DE1097770B (en) * 1956-05-05 1961-01-19 Wilhelm Stigler Dipl Ing Fluid displacement bodies
US3291151A (en) * 1963-11-06 1966-12-13 Selmer M Loken Fluid exchange system
US3211348A (en) * 1964-05-21 1965-10-12 Greer Hydraulics Inc Pressure vessels
US3319837A (en) * 1965-01-27 1967-05-16 Air Ject Corp Dispensing device
US3437243A (en) * 1967-06-22 1969-04-08 Helen D Farnsworth Means for gauging timed dosages from a dispensing container

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142657A (en) * 1975-03-10 1979-03-06 Wanke Ronald L Dispensing closure with nonrigid follower
US3980082A (en) * 1975-03-14 1976-09-14 William Miller Venous pressure indicator
DE2920975A1 (en) * 1979-05-23 1980-11-27 Siemens Ag EXTRACORPORALLY PORTABLE INFUSION DEVICE
US4601712A (en) * 1983-11-16 1986-07-22 Gould Inc. Drip chamber
US5024663A (en) * 1990-02-21 1991-06-18 Alza Corporation Self-contained suction pump
DE4018195A1 (en) * 1990-05-26 1991-11-28 Straehle & Hess Electrical conductor - is ribbon laid in strips to leave open spaces without cutting the continuous electrical wire
US6641556B1 (en) * 1999-07-06 2003-11-04 Respiratory Support Products, Inc. Intravenous fluid heating system
US20050113759A1 (en) * 2003-11-24 2005-05-26 Mueller Richard L.Jr. Catheter retainer
US11298153B2 (en) * 2006-03-03 2022-04-12 Axcess Instruments Inc. Apparatus and method for minimally invasive surgery
US7547300B2 (en) * 2006-04-12 2009-06-16 Icu Medical, Inc. Vial adaptor for regulating pressure
US7658733B2 (en) 2006-04-12 2010-02-09 Icu Medical, Inc. Vial for regulating pressure
US20070244465A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US20070244460A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US20070244464A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US20070244459A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US20070244463A1 (en) * 2006-04-12 2007-10-18 Warren Dee E Vial adaptor for regulating pressure
US20070244458A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US20070244457A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US20070244461A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial for regulating pressure
US9993390B2 (en) * 2006-04-12 2018-06-12 Icu Medical, Inc. Pressure-regulating vial adaptors and methods
US9993391B2 (en) 2006-04-12 2018-06-12 Icu Medical, Inc. Devices and methods for transferring medicinal fluid to or from a container
US7354427B2 (en) 2006-04-12 2008-04-08 Icu Medical, Inc. Vial adaptor for regulating pressure
US10022302B2 (en) 2006-04-12 2018-07-17 Icu Medical, Inc. Devices for transferring medicinal fluids to or from a container
US20080161770A1 (en) * 2006-04-12 2008-07-03 Fangrow Thomas F Vial adaptor for regulating pressure
US9662272B2 (en) 2006-04-12 2017-05-30 Icu Medical, Inc. Devices and methods for transferring fluid to or from a vial
US7507227B2 (en) 2006-04-12 2009-03-24 Icu Medical, Inc. Vial adaptor for regulating pressure
US7510548B2 (en) 2006-04-12 2009-03-31 Icu Medical, Inc. Vial adaptor for regulating pressure
US7510547B2 (en) 2006-04-12 2009-03-31 Icu Medical, Inc. Vial adaptor for regulating pressure
US7513895B2 (en) 2006-04-12 2009-04-07 Icu Medical, Inc. Vial adaptor for regulating pressure
US7534238B2 (en) 2006-04-12 2009-05-19 Icu Medical, Inc. Vial adaptor for regulating pressure
US8974433B2 (en) 2006-04-12 2015-03-10 Icu Medical, Inc. Pressure-regulating vials and containers
US7569043B2 (en) 2006-04-12 2009-08-04 Icu Medical, Inc. Vial adaptor for regulating pressure
JP2009533145A (en) * 2006-04-12 2009-09-17 アイシーユー・メディカル・インコーポレーテッド Bin adapter and bin for regulating pressure
US10071020B2 (en) 2006-04-12 2018-09-11 Icu Medical, Inc. Devices for transferring fluid to or from a vial
US7645271B2 (en) 2006-04-12 2010-01-12 Icu Medical, Inc. Vial adaptor for regulating pressure
US7654995B2 (en) * 2006-04-12 2010-02-02 Icu Medical, Inc. Vial adaptor for regulating pressure
US20070244462A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US10327989B2 (en) 2006-04-12 2019-06-25 Icu Medical, Inc. Devices and methods for transferring fluid to or from a vial
US10327993B2 (en) 2006-04-12 2019-06-25 Icu Medical, Inc. Vial access devices
US20100137827A1 (en) * 2006-04-12 2010-06-03 Warren Dee E Vial adaptors and methods for withdrawing fluid from a vial
US10327991B2 (en) 2006-04-12 2019-06-25 Icu Medical, Inc. Fluid transfer apparatus with filtered air input
US10327992B2 (en) 2006-04-12 2019-06-25 Icu Medical, Inc. Fluid transfer apparatus with pressure regulation
US10492993B2 (en) 2006-04-12 2019-12-03 Icu Medical, Inc. Vial access devices and methods
US20150202121A1 (en) * 2006-04-12 2015-07-23 Icu Medical, Inc. Pressure-regulating vial adaptors and methods
US9072657B2 (en) 2006-04-12 2015-07-07 Icu Medical, Inc. Pressure-regulating vial adaptors and methods
US9060921B2 (en) 2006-04-12 2015-06-23 Icu Medical, Inc. Air-filtering vial adaptors and methods
US7972321B2 (en) * 2006-04-12 2011-07-05 Icu Medical, Inc Vial adaptor for regulating pressure
US20110190723A1 (en) * 2006-04-12 2011-08-04 Fangrow Thomas F Pressure-regulating vials and containers
US8206367B2 (en) 2006-04-12 2012-06-26 Icu Medical, Inc. Medical fluid transfer devices and methods with enclosures of sterilized gas
US8267913B2 (en) 2006-04-12 2012-09-18 Icu Medical, Inc. Vial adaptors and methods for regulating pressure
US11696871B2 (en) 2006-04-12 2023-07-11 Icu Medical, Inc. Devices for accessing medicinal fluid from a container
AU2007238851B2 (en) * 2006-04-12 2013-02-28 Icu Medical, Inc. Vial adaptors and vials for regulating pressure
US9005180B2 (en) 2006-04-12 2015-04-14 Icu Medical, Inc. Vial adaptors and methods for regulating pressure
JP2013135972A (en) * 2006-04-12 2013-07-11 Icu Medical Inc Device for transferring medical fluid having enclosure for sterilized gas, and method
US9005179B2 (en) 2006-04-12 2015-04-14 Icu Medical, Inc. Pressure-regulating apparatus for withdrawing medicinal fluid from a vial
US11013664B2 (en) 2006-04-12 2021-05-25 Icu Medical, Inc. Devices for transferring fluid to or from a vial
US8992501B2 (en) 2006-04-12 2015-03-31 Icu Medical, Inc. Pressure-regulating vial adaptors and methods
US20070244456A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US20070244466A1 (en) * 2006-04-12 2007-10-18 Fangrow Thomas F Vial adaptor for regulating pressure
US8827977B2 (en) 2006-04-12 2014-09-09 Icu Medical, Inc. Vial adaptors and methods for regulating pressure
US8882738B2 (en) 2006-04-12 2014-11-11 Icu Medical, Inc. Locking vial adaptors and methods
US8945084B2 (en) 2006-04-12 2015-02-03 Icu Medical, Inc. Pressure-regulating vial adaptors and methods
US20080071243A1 (en) * 2006-09-20 2008-03-20 Yandell Marion E Vial Assembly and Method for Reducing Nosocomial Infections
US20100298806A1 (en) * 2006-09-20 2010-11-25 Yandell Marion E Vial assembly and method for reducing nosocomial infections
WO2008039686A2 (en) * 2006-09-20 2008-04-03 Yandell Marion E Vial assembly and method for reducing nosocomial infections
WO2008039686A3 (en) * 2006-09-20 2008-05-29 Marion E Yandell Vial assembly and method for reducing nosocomial infections
US7618408B2 (en) * 2006-09-20 2009-11-17 Yandell Marion E Vial assembly and method for reducing nosocomial infections
US7789871B1 (en) 2006-09-20 2010-09-07 Yandell Marion E Vial assembly and method for reducing nosocomial infections
US7887528B2 (en) 2006-09-20 2011-02-15 Yandell Marion E Vial assembly and method for reducing nosocomial infections
US9107808B2 (en) 2007-03-09 2015-08-18 Icu Medical, Inc. Adaptors for removing medicinal fluids from a container
US7883499B2 (en) 2007-03-09 2011-02-08 Icu Medical, Inc. Vial adaptors and vials for regulating pressure
US8540692B2 (en) 2007-03-09 2013-09-24 Icu Medical, Inc. Adaptors for removing medicinal fluids from vials
US20110073249A1 (en) * 2007-03-09 2011-03-31 Fangrow Thomas F Vial adaptors and vials for regulating pressure
US20080249498A1 (en) * 2007-03-09 2008-10-09 Icu Medical, Inc. Vial adaptors and vials for regulating pressure
US8512307B2 (en) 2007-03-09 2013-08-20 Icu Medical, Inc. Vial adaptors and vials for regulating pressure
US9351905B2 (en) 2008-08-20 2016-05-31 Icu Medical, Inc. Anti-reflux vial adaptors
US20100049157A1 (en) * 2008-08-20 2010-02-25 Fangrow Thomas F Anti-reflux vial adaptors
WO2010022095A1 (en) * 2008-08-20 2010-02-25 Icu Medical, Inc. Anti-reflux vial adaptors
US8409164B2 (en) 2008-08-20 2013-04-02 Icu Medical, Inc. Anti-reflux vial adaptors
US9931275B2 (en) 2008-08-20 2018-04-03 Icu Medical, Inc. Anti-reflux vial adaptors
US20100147402A1 (en) * 2008-12-15 2010-06-17 Carmel Pharma Ab Connector Device
US8523838B2 (en) * 2008-12-15 2013-09-03 Carmel Pharma Ab Connector device
US8662358B2 (en) 2010-02-02 2014-03-04 Diversey, Inc. Liquid dispensing container and method
US8998042B2 (en) 2010-02-02 2015-04-07 Diversey, Inc. Liquid dispensng container and method
US8640930B2 (en) 2010-03-11 2014-02-04 Diversey, Inc. Vent tube apparatus and method
US8357137B2 (en) 2011-06-24 2013-01-22 Yandell Marion E Bung assembly for anti vacuum lock medical vials
US9132062B2 (en) 2011-08-18 2015-09-15 Icu Medical, Inc. Pressure-regulating vial adaptors
US9895291B2 (en) 2011-08-18 2018-02-20 Icu Medical, Inc. Pressure-regulating vial adaptors
US11672734B2 (en) 2011-08-18 2023-06-13 Icu Medical, Inc. Pressure-regulating vial adaptors
US11129773B2 (en) 2011-08-18 2021-09-28 Icu Medical, Inc. Pressure-regulating vial adaptors
US10688022B2 (en) 2011-08-18 2020-06-23 Icu Medical, Inc. Pressure-regulating vial adaptors
US9987195B2 (en) 2012-01-13 2018-06-05 Icu Medical, Inc. Pressure-regulating vial adaptors and methods
US10299989B2 (en) 2012-03-22 2019-05-28 Icu Medical, Inc. Pressure-regulating vial adaptors
US10918573B2 (en) 2012-03-22 2021-02-16 Icu Medical, Inc. Pressure-regulating vial adaptors
US11185471B2 (en) 2012-03-22 2021-11-30 Icu Medical, Inc. Pressure-regulating vial adaptors
US9610217B2 (en) 2012-03-22 2017-04-04 Icu Medical, Inc. Pressure-regulating vial adaptors
US11654086B2 (en) 2012-03-22 2023-05-23 Icu Medical, Inc. Pressure-regulating vial adaptors
US9763855B2 (en) 2013-01-23 2017-09-19 Icu Medical, Inc. Pressure-regulating vial adaptors
US9089475B2 (en) 2013-01-23 2015-07-28 Icu Medical, Inc. Pressure-regulating vial adaptors
US10117807B2 (en) 2013-01-23 2018-11-06 Icu Medical, Inc. Pressure-regulating devices for transferring medicinal fluid
US9615997B2 (en) 2013-01-23 2017-04-11 Icu Medical, Inc. Pressure-regulating vial adaptors
US10806672B2 (en) 2013-01-23 2020-10-20 Icu Medical, Inc. Pressure-regulating vial adaptors
US11857499B2 (en) 2013-01-23 2024-01-02 Icu Medical, Inc. Pressure-regulating vial adaptors
US9403632B1 (en) * 2013-06-17 2016-08-02 José Luis Marrero Ramos Fluid dispenser
US10406072B2 (en) 2013-07-19 2019-09-10 Icu Medical, Inc. Pressure-regulating fluid transfer systems and methods
US11648181B2 (en) 2013-07-19 2023-05-16 Icu Medical, Inc. Pressure-regulating fluid transfer systems and methods
US11504302B2 (en) 2013-07-19 2022-11-22 Icu Medical, Inc. Pressure-regulating fluid transfer systems and methods
US10201476B2 (en) 2014-06-20 2019-02-12 Icu Medical, Inc. Pressure-regulating vial adaptors
US10987277B2 (en) 2014-06-20 2021-04-27 Icu Medical, Inc. Pressure-regulating vial adaptors
US11419981B2 (en) 2015-05-14 2022-08-23 Carefusion 303, Inc. Priming apparatus and method
US20160331893A1 (en) * 2015-05-14 2016-11-17 Carefusion 303, Inc. Priming apparatus and method
US10413662B2 (en) * 2015-05-14 2019-09-17 Carefusion 303, Inc. Priming apparatus and method
US11529289B2 (en) 2016-01-29 2022-12-20 Icu Medical, Inc. Pressure-regulating vial adaptors
US10292904B2 (en) 2016-01-29 2019-05-21 Icu Medical, Inc. Pressure-regulating vial adaptors
US10589896B2 (en) * 2016-04-08 2020-03-17 Pablo IBAÑEZ RAZOLA Anti-spurt device
US10285905B2 (en) * 2016-05-11 2019-05-14 Sumitomo Rubber Industries, Ltd. Medical rubber stopper and method for producing medical rubber stopper
US11744775B2 (en) 2016-09-30 2023-09-05 Icu Medical, Inc. Pressure-regulating vial access devices and methods

Similar Documents

Publication Publication Date Title
US3584770A (en) Intravenous bottle having expandable inner receptacle
US3915212A (en) Flexible medical fluid container having a combined fill and administration port and reinforced hanger
US3001525A (en) Parenteral equipment
US3092106A (en) Administration equipment
US4581013A (en) Doser for orally administering medicine
US4301799A (en) Non-collapsible medical fluid container with air vent filter
US3478743A (en) Closed urinary drainage system
US4303071A (en) Syringe-type liquid container dispenser adapter
US3921630A (en) Thermoplastic bottle with controlled lateral collapse and method of dispensing liquid therefrom
US5176658A (en) Valve assembly for use in medical devices
US4643309A (en) Filled unit dose container
US3216419A (en) Apparatus for administering a parenteral solution provided with a diaphragm float valve
US4317448A (en) Syringe-type liquid container dispenser adapter
US2852024A (en) Closure with integral drip tube
US2812117A (en) Venoclysis apparatus
US2239275A (en) Self-contained liquid dispensing device
US3882909A (en) Trans-a-jet 1
US2663298A (en) Apparatus and method for administering parenteral solutions
US3844283A (en) Apparatus for aseptically dispensing a measured volume of liquid
US3566930A (en) Means for sterilely transferring blood plasma, serum, biological or pharmaceutical fluids, and the like
US3965897A (en) Measured volume drug administration device for use with intravenous feeding pump
US5257986A (en) Container for the separate sterile storage of at least two substances and for mixing said substances
US2969063A (en) Parenteral fluid administration equipment
IL179542A (en) Infusion bag with integrated rinsing system
US3050061A (en) Parenteral solution equipment