US3590815A - Portable mechanical ventricular assistance device - Google Patents

Portable mechanical ventricular assistance device Download PDF

Info

Publication number
US3590815A
US3590815A US789551A US3590815DA US3590815A US 3590815 A US3590815 A US 3590815A US 789551 A US789551 A US 789551A US 3590815D A US3590815D A US 3590815DA US 3590815 A US3590815 A US 3590815A
Authority
US
United States
Prior art keywords
negative pressure
cup
conduit
cylinder
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US789551A
Inventor
Peter Shiff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IABP Corp A DE CORP
Original Assignee
Peter Shiff
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peter Shiff filed Critical Peter Shiff
Application granted granted Critical
Publication of US3590815A publication Critical patent/US3590815A/en
Assigned to IABP CORPORATION A DE CORP reassignment IABP CORPORATION A DE CORP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SCHIFF PETER
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/427Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
    • A61M60/43Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic using vacuum at the blood pump, e.g. to accelerate filling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/117Extracorporeal pumps, i.e. the blood being pumped outside the patient's body for assisting the heart, e.g. transcutaneous or external ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/289Devices for mechanical circulatory actuation assisting the residual heart function by means mechanically acting upon the patient's native heart or blood vessel structure, e.g. direct cardiac compression [DCC] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/31Medical purposes thereof other than the enhancement of the cardiac output for enhancement of in vivo organ perfusion, e.g. retroperfusion
    • A61M60/32Medical purposes thereof other than the enhancement of the cardiac output for enhancement of in vivo organ perfusion, e.g. retroperfusion of heart muscle tissues, e.g. using coronary sinus occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/465Details relating to driving for devices for mechanical circulatory actuation
    • A61M60/468Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being hydraulic or pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/465Details relating to driving for devices for mechanical circulatory actuation
    • A61M60/47Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being mechanical, e.g. mechanically driven members clamping a blood vessel
    • A61M60/473Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being mechanical, e.g. mechanically driven members clamping a blood vessel generated by an electromotor
    • A61M60/476Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being mechanical, e.g. mechanically driven members clamping a blood vessel generated by an electromotor with means converting the rotation into a translational movement of the displacement member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/845Constructional details other than related to driving of extracorporeal blood pumps
    • A61M60/851Valves

Definitions

  • a portable mechanical ventricular assistance device including a ventricular assistor cup designed to receive the ventricles of the heart.
  • the cup assembly is comprised of a rigid shell having a configuration generally conforming to the surface configuration of the heart ventricles and a flexible liner which is caused to contract and expand about the heart ventricles to effect the pumping action.
  • the heart ventricles are retained within the cup by a substantially sustained negative pressure while the pumping action is produced by the application of alternating positive and negative pressure pulses to the cup.
  • Both the sustained negative pressure and the positive and negative pressure pulses are generated by a hand pump assembly which includes a manually operable handle connected through a piston rod to a reciprocating piston mounted within the cylinder of the pump.
  • the piston effectively divides the cylinder into two chambers, one of which is coupled through a conduit to provide the sustained negative pressure to the cup.
  • the remaining chamber is coupled through a second conduit to the ventricle assistor cup to provide for the alternating positive and negative pressure pulses.
  • Suitable adjustable relief valves are provided in each of the conduits to regulate the pressure levels and the positive or negative pressure directed to the cup.
  • the present invention relates to circulatory sustaining devices, and more particularly to a novel portable mechanical ventricular assistance device for sustaining the pumping action ofa heart.
  • bypass systems Numerous devices have been developed to either sustain the circulatory function of a patient, or, alternatively, to sustain the pumping action ofa heart. All such devices may be classified into two basic categories; namely, bypass systems and indirect pumping systems. Devices falling into the category of bypass systems are designed to bypass the flow of blood from the heart and to maintain the pumping action otherwise performed by the heart through mechanical or electromechanical devices. Devices falling into the indirect pumping category are designed to assist the heart in the performance of its pumping function. The present invention falls into the latter category.
  • Devices classified in the former category are usually quite complex in nature and rather large in size so as to limit their use to operating rooms and effectively prohibit their use as a portable device.
  • Devices developed up to the present which are classified in the latter category are normally comprised of motor means for developing the necessary pressure or vacuum levels and are further comprised of electromechanical means for regulating the flow of the necessary pressure levels to the heart pump.
  • Such equipment is likewise heavy in nature and large in size so as to prohibit its use as a truly portable device.
  • the device of the present invention which is designed to be truly portable and to be simple to connect and operate, is extremely advantageous for use during the period of time in which the donor is being moved from one location to another, as well as for other emergency situations.
  • the present invention is comprised of a ventricular assistor cup assembly having a rigid outer shell ofa configuration substantially conforming to the surface configuration of the heart ventricles.
  • the cup contains a flexible liner capable of expanding and contracting about the heart ventricles to perform assistive pumping action.
  • the cup is provided with a first large opening for receiving the heart ventricles.
  • a second opening provided at the apex of the cup receives the sustained negative pressure necessary to retain the ventricles within the cup assembly.
  • a third opening provided in the cup along the surface thereof and intermediate the first and second openings is designed to receive the pulsatile pressures of alternating positive and negative pressure pulses which cause the contraction and expansion of the flexible liner about the heart ventricles.
  • a single portable pump assembly having a first handle adapted to receive and position the operator's foot for holding the pump steady during operation.
  • a second manually operable handle is provided for driving a reciprocating piston mounted within the pump cylinder.
  • the piston effectively divides the pump cylinder into first and second chambers, each of which is coupled through an associated conduit to the sustained negative pressure opening and the pulsatile pressure opening, respectively.
  • Adjustable relief valves are provided in the pulsatile pressure conduit to control the pressure (or vacuum) level of the pulse injected into the pulsatile pressure conduit.
  • Similar adjustable relief vales are provided in the sustained negative pressure conduit for controlling the level of negative pressure and for bypassing positive pressure pulses from reaching the assistor cup assembly.
  • An additional oneway valve assembly is provided in the sustained negative pressure conduit to prevent positive pressure pulses from reaching the assistor cup assembly and to maintain the negative pressure developed in the cup during the application of positive pressure pulses to the sustained negative pressure line.
  • the simplicity and portability of the system make it extremely advantageous for use in a variety of applications, especially those of an emergency nature.
  • the portable system described herein may be easily and rapidly substituted for conventional assemblies in moving donors from one location to another, or may be used in emergency situations to sustain the circulatory function until such time as the patient is moved to a hospital.
  • Still another object of the present invention is to provide a novel pump assembly for use with ventricular assistor cup assemblies, and the like, which is capable of developing a sustained pressure at a first output thereof and which is capable of developing a pulsatile pressure of alternating positive and negative pressure pulses at the second output thereof.
  • Yet a further object of the present invention is to provide a novel pump assembly for use with ventricular assistor cup assemblies, and the like, which is capable of developing a sustained pressure at a first output thereof and which is capable of developing a pulsatile pressure of alternating positive and negative pressure pulses at the second output thereof, whereby the pressure levels of the sustained and alternating pressure pulses are made adjustable through the use of adjustable valve means associated with each of the hand pump outputs.
  • FIG. 1 shows a diagrammatic view partially sectionalized of the pump assembly of the present invention as applied to a ventricular assistor cup assembly.
  • FIGS. 2a and 2b are schematic diagrams showing alternative embodiments for the pump portions of the assembly.
  • the device of the present invention is comprised of a hand pump assembly 10 for use in operating a ventricular assistor cup assembly 20.
  • the assistor cup assembly 20 is comprised of a rigid cup 21 having a first large opening 22 for receiving the ventricles of the heart; a second opening 23 arranged at the apex of the cup for receiving a sustained negative pressure line; and a third opening 24 for receiving a pulsatile pressure line.
  • the interior of the cup is provided with a flexible liner 25 secured at 26 and 27 by suitable adhesive means, for example, near the apex opening 23 and the large opening 22, respectively.
  • the liner 25 is mounted within and sealed to cup 21 in such a manner as to form a hollow interior space whose only opening is opening 24 which receives the pulsatile pressure line.
  • the portable pump assembly for use with the ventricular assistor cup assembly 20 is comprised of a cylinder 13 having secured at one exterior end thereof a handle 12.
  • the cylinder contains a reciprocating piston 14 of the double-acting piston type.
  • Piston 14 is coupled through a piston rod 15 to an exterior mounted handle 11.
  • the opening provided for piston rod 15 at the upper end of cylinder 13 may be provided with a suitable seal such as an O-ring 16 to prevent the escape of compressed air from the cylinder.
  • Piston l4 effectively divides the cylinder into first and second piston chambers 17 and 18.
  • Upper chamber 17 is provided with an opening 18 for receiving a sustained negative pressure conduit 31 which couples chamber 17 through a liquid trap 32 and conduit 33 to the opening 23 provided in the apex of assistor cup 21.
  • Lower chamber 18 is provided with an opening 34 for receiving a conduit 35 coupling the chamber to the pulsatile pressure opening 24 in cup 21.
  • Suitable valve means are provided in the conduits connecting the assistor cup to the pump assembly for regulating the pressure level and pressure direction of pressure pulses in jected into each of the lines.
  • the conduit 31 is provided with a first one-way valve assembly 36 which may, for example, be comprised of first and second spaced annular rings 37 and 38 arranged in the interior of conduit 31.
  • a spherical member or ball 39 is normally urged against annular-shaped ring 38 by a bias spring 40 secured at one end to annular disc 37 and having its opposite end bearing against ball 39.
  • Similar one-way valve assemblies 41 and 46 are arranged at spaced intervals along conduit 31 to perform functions which will be more fully described.
  • positive and negative relief valve assemblies 53 and 58 are arranged at spaced intervals along the surface of conduit 35 for functions to be more fully described.
  • the upper piston chamber 17 provides the sustained negative pressure for the ventricular assistor cup which is obtained on the down" stroke of piston 14.
  • the piston 14 is positioned near the top of cylinder 13 and is moved vertically downward in the direction shown by arrow A.
  • a negative pressure or vacuum is developed in chamber 17. Due to the pressure differential across the right-hand and lefthand sides of one-way valve 36, ball 39 is caused to unseal the opening in ring 38, allowing this negative pressure (i.e., vacuum) state to communicate with the apex opening 23 in cup 21.
  • the relief valve assembly 46 is adjusted to cause ball 49 to unseal the opening in ring 50 when the negative pressure in conduit 31 is greater than a predetermined threshold level.
  • the relief valve 46 thus automatically controls the maximum negative pressure applied to the assistor cup.
  • the maximum negative pressure may be made adjustable by providing suitable means for adjusting the bias applied to ball 49 by bias spring 48.
  • a suitable filter member 51 is secured between ring 50 and-ring 52 to filter out dust or any other unwanted particles carried by the air entering into the system when valve 46 opens.
  • the negative pressure applied to the assistor cup is sustained until the piston 14 reaches the bottom of its stroke.
  • one-way valve 36 On the up' stroke, i.e., when the piston moves from the bottom of its stroke upward in the direction shown by arrow B, one-way valve 36 is sealed to prevent positive pressure from passing the valve and communicating with the assistor cup.
  • the sealing of valve 36 during the entire "up" stroke also acts to maintain the negative pressure in assistor cup until the next down" stroke.
  • One-way valve 41 releases the pressure being developed in upper chamber 17 during the upward stroke by having its ball 42 moved downwardly against the force of bias spring 43 to unseal the opening in annular-shaped ring 44.
  • the negative pressure developed in conduit 31 during a down" stroke of piston 14 is thus sustained during theup" stroke of piston 14.
  • the liquid trap 32 traps any liquid passing from cup assembly 20 toward the sustained negative conduit 31.
  • Lower piston chamber 18 operates in much the same manner as upper chamber 17 except that both positive and negative pulsatile pressures are applied to cup opening 24 by line 35. For this reason, conduit 35 is provided with two relief valves, one for positive pressure 53 and one for negative pressure 58.
  • a negative pressure or vacuum is developed in conduit 35 and is coupled to cup opening 24, causing the flexible liner 25 to move from a contracted position to the relaxed position shown in dotted line fashion in FIG. 1. If this negative pressure exceeds a predetermined threshold level, the ball 59 of relief valve 58 will move downward against the force of biasing spring 60 to unseal the opening in ring 61, thereby automatically controlling the maximum negative pressure which may be developed in conduit 35.
  • a positive pressure is developed in lower piston chamber 18, causing a positive pressure pulse to be injected into opening 24 of the ventricular cup assembly.
  • This causes the flexible liner 25 to contract the ventricles of the heart encircled by the liner.
  • ball 54 of relief valve 53 will be caused to move upwardly against the force of bias spring 55 to relieve the excess positive pressure developed in conduit 35.
  • the relief valves 53 and 58 thereby automatically control the positive and negative pressure pulses delivered to thei'ventricular cup assembly 20.
  • Suitable adjustabie means may be provided in both the positive and negative relief valve assemblies 53 and 58, respectively, to adjust the force of the biasing springs an thereby calibrate the maximum positive and negative pressure levels.
  • the relief valves further limit the pressures as necessary for full strokes, regardless of the ventricular cup-pumping displacement.
  • the negative relief valve assembly is provided with a filter 63 to filter out any unwanted particles or other material which may be in the atmosphere against entering into the system with the air entering through the relief valve assembly 58 whenever it is caused to open.
  • the pump may be operated by one person in a variety of ways.
  • One preferred manner of operating the pump is to place one foot through the opening formed by stationary handle 12 and operating the movable handle 11 in a reciprocating fashion by grasping and moving handle 11 with either one or both hands.
  • each of the handles 11 and 12 may be grasped by one hand, and the pump may be operated in a reciprocating fashion in this manner.
  • two persons may operate the pump, but the simplicity of operation and size of the pump does not necessitate such alternative operation.
  • FIGS. 2a and 2! show alternative arrangements for the pump assembly of FIG. 1.
  • the pump arrangement 10! is a bellows pump selectively expandable and contractable due to its bellows arrangement 70.
  • the interior of the bellows arrangement is divided by a barrier wall 71 forming upper and lower chambers are coupled to conduits 31 and 35 of FIG. 1 in the same manner as the pump assembly shown in FIG. 1.
  • Operation of the pump assembly of FIG. 2a may be performed in the same manner as the device shown in FIG. 1 by grasping the handles 11 and 12 and urging them alternatively together and apart to create the positive and negative pressure phases occurring during each reciprocating cycle.
  • FlG.2b shows an alternative pump assembly having a bellows assembly 70 comprised of a singleinternal chamber 72 having openings 73 and 74 for communicating with the conduits 31 and 35 of FIG. 1.
  • the handles 1] and 12 are alternately urged toward one another and apart from one another to create positive and negative pressures within the internal chamber 72 to provide the positive and negative pressure signals in conduit 35 while providing only a sustained negative pressure signal in conduit 31.
  • the present invention provides a novel portable pump assembly especially advantageous for use with ventricular assistor cup assemblies to maintain and sustain the pumping operation of the heart by providing an independent sustained negative pressure (vacuum) at one output thereof and by providing alternating positive and negative'pressure pulses at a second output thereof for performing the functions necessary in the operation of such a ventricular cup assembly.
  • a one-way valve of the type shown in conduit 31 may be provided in conduit 35 for providing sustained negative pressures in each of the outputs developed by the pump for such applications in which negative pressures of this type might be required.
  • the negative pressure values obtained may be adjusted to be of different values through simple adjustment of the valves.
  • the one-way valves provided within each of the conduits 31 and 35 may be reversed in direction of operation so as to provide a first output for generating a positive sustained pressure and a second output for generating a sustained negative pressure.
  • the one-way valve assembly 36 provided in conduit 31 may be omitted to provide a pump having two outputs, each of which is capable of providing alternating positive and negative pressures wherein each of the positive and negative pressures developed by each of the outputs may be set at any predetermined threshold levels, depending upon the needs of the user.
  • the single cylinder having a double-acting piston may be replaced by two cylinders each having a reciprocating piston. The cylinders may be placed side-by-side and arranged to be reciprocated by a single operating handle.
  • a motor M may drive a reciprocating arm A through shaft S which is coupled to handle 11 of FIG. 1.
  • a rotary to reciprocating motion device D converts the rotation of the shaft S into reciprocating movement.
  • a relay R having a reciprocating armature RA may be alternately energized and deenergized to reciprocate up and down (for example) to impart reciprocating movement to the piston rod (for example).
  • the down stroke may be imparted by energizing the relay driving its armature downward. Deenergization of relay R will cause the upstroke under control of a biassing spring (not shown).
  • a portable mechanical ventricular assistance device comprising:
  • a ventricular assistor cup assembly including a rigid cup having an interior configuration adapted to receive the ventricles of the heart;
  • a flexible liner mounted within said cup having a first opening for receiving the ventricles of the heart; a first port positioned at the apex of the cup opposite the first opening, and a second port positioned intermediate the first opening and the first port;
  • said flexible liner being sealed to the interior surface of said cup along a first marginal portion adjacent to and surrounding said first opening and along a second marginal portion adjacent -to and surrounding said first opening and along a second marginal portion adjacent to and surrounding said first ports;
  • a first-sustained negative pressure conduit having a first end coupled to said first port
  • a second pulsed positive and negative pressure line having a first end coupled to said second port
  • reciprocating pump means having first and second outputs each capable of developing positive and negative pressure pulses during reciprocation of said pump;
  • said first and second outputs being respectively coupled to the second ends of said first and second conduits
  • valve means coupled in said first conduit for coupling only negative pressure pulses to said first port.
  • the device of claim 1 further comprising first and second relief valve means connected to said second conduit for limiting the maximum positive and negative pressure pulses delivered to said second port.
  • the device of claim 1 further comprising first relief valve means coupled to said first conduit for limiting the negative pressure pulses delivered to said first port to a predetermined threshold level; and second one-way valve means for releasing positive pressure pulses injected into said first conduit to the atmosphere.
  • the device of claim 1 further comprising a liquid trap coupled between said first conduit and said first port for preventing the flow of any liquid toward said pump means.
  • said pump means is comprised of a cylinder containing a reciprocally mounted doubleacting piston dividing said cylinder into first and second chambers;
  • said first and second outputs communicating respectively with said first and second chambers.
  • said pump means is comprised of a cylinder having a collapsible bellows-type wall
  • said pump means is comprised of a cylinder having a collapsible bellows-type wall
  • said first and second outputs respectively communicating with the interiors of said first and second chambers.

Abstract

A portable mechanical ventricular assistance device including a ventricular assistor cup designed to receive the ventricles of the heart. The cup assembly is comprised of a rigid shell having a configuration generally conforming to the surface configuration of the heart ventricles and a flexible liner which is caused to contract and expand about the heart ventricles to effect the pumping action. The heart ventricles are retained within the cup by a substantially sustained negative pressure while the pumping action is produced by the application of alternating positive and negative pressure pulses to the cup. Both the sustained negative pressure and the positive and negative pressure pulses are generated by a hand pump assembly which includes a manually operable handle connected through a piston rod to a reciprocating piston mounted within the cylinder of the pump. The piston effectively divides the cylinder into two chambers, one of which is coupled through a conduit to provide the sustained negative pressure to the cup. The remaining chamber is coupled through a second conduit to the ventricle assistor cup to provide for the alternating positive and negative pressure pulses. Suitable adjustable relief valves are provided in each of the conduits to regulate the pressure levels and the positive or negative pressure directed to the cup.

Description

United States Patent Inventor Peter Schifl RD #2. Lambertville. NJ. 08530 Appl. No. 789,551 Filed Jan. 7, 1969 Patented July 6, I971 PORTABLE MECHANICAL VENTRICULAR Primary Examiner-L. W. Trapp Anomey0strolenk, Faber, Gerb & Soffen ABSTRACT: A portable mechanical ventricular assistance device including a ventricular assistor cup designed to receive the ventricles of the heart. The cup assembly is comprised of a rigid shell having a configuration generally conforming to the surface configuration of the heart ventricles and a flexible liner which is caused to contract and expand about the heart ventricles to effect the pumping action. The heart ventricles are retained within the cup by a substantially sustained negative pressure while the pumping action is produced by the application of alternating positive and negative pressure pulses to the cup. Both the sustained negative pressure and the positive and negative pressure pulses are generated by a hand pump assembly which includes a manually operable handle connected through a piston rod to a reciprocating piston mounted within the cylinder of the pump. The piston effectively divides the cylinder into two chambers, one of which is coupled through a conduit to provide the sustained negative pressure to the cup. The remaining chamber is coupled through a second conduit to the ventricle assistor cup to provide for the alternating positive and negative pressure pulses. Suitable adjustable relief valves are provided in each of the conduits to regulate the pressure levels and the positive or negative pressure directed to the cup.
PORTABLE MECHANICAL VENTRICULAR ASSISTANCE DEVICE The present invention relates to circulatory sustaining devices, and more particularly to a novel portable mechanical ventricular assistance device for sustaining the pumping action ofa heart.
Numerous devices have been developed to either sustain the circulatory function of a patient, or, alternatively, to sustain the pumping action ofa heart. All such devices may be classified into two basic categories; namely, bypass systems and indirect pumping systems. Devices falling into the category of bypass systems are designed to bypass the flow of blood from the heart and to maintain the pumping action otherwise performed by the heart through mechanical or electromechanical devices. Devices falling into the indirect pumping category are designed to assist the heart in the performance of its pumping function. The present invention falls into the latter category.
Devices classified in the former category are usually quite complex in nature and rather large in size so as to limit their use to operating rooms and effectively prohibit their use as a portable device.
Devices developed up to the present which are classified in the latter category are normally comprised of motor means for developing the necessary pressure or vacuum levels and are further comprised of electromechanical means for regulating the flow of the necessary pressure levels to the heart pump. Such equipment is likewise heavy in nature and large in size so as to prohibit its use as a truly portable device.
Devices of the indirect type have been used with great success in the fields of heart and organ transplants. When a potential cadaver (donor), whose organ or organs are available for transplant purposes, isto receive mechanical ventricular assitance, the assistor system is rushed to him for the purpose of sustaining the heart pumping action. Under presentday techniques and with present-day device, in order to transport the cadaver to the operating room, the assistor is temporarily disconnected, due to the fact that it is too bulky and requires too much electrical power to perform the circulatory function during the time in which the donor is being moved. The period during which the assistor device is disconnected may thus have a harmful effect upon the organ or organs to be transplanted.
The device of the present invention, which is designed to be truly portable and to be simple to connect and operate, is extremely advantageous for use during the period of time in which the donor is being moved from one location to another, as well as for other emergency situations.
The present invention is comprised of a ventricular assistor cup assembly having a rigid outer shell ofa configuration substantially conforming to the surface configuration of the heart ventricles. The cup contains a flexible liner capable of expanding and contracting about the heart ventricles to perform assistive pumping action.
The cup is provided with a first large opening for receiving the heart ventricles. A second opening provided at the apex of the cup receives the sustained negative pressure necessary to retain the ventricles within the cup assembly. A third opening provided in the cup along the surface thereof and intermediate the first and second openings is designed to receive the pulsatile pressures of alternating positive and negative pressure pulses which cause the contraction and expansion of the flexible liner about the heart ventricles.
All of the above-mentioned pressures are provided through the use of a single portable pump assembly having a first handle adapted to receive and position the operator's foot for holding the pump steady during operation. A second manually operable handle is provided for driving a reciprocating piston mounted within the pump cylinder. The piston effectively divides the pump cylinder into first and second chambers, each of which is coupled through an associated conduit to the sustained negative pressure opening and the pulsatile pressure opening, respectively. Adjustable relief valves are provided in the pulsatile pressure conduit to control the pressure (or vacuum) level of the pulse injected into the pulsatile pressure conduit. Similar adjustable relief vales are provided in the sustained negative pressure conduit for controlling the level of negative pressure and for bypassing positive pressure pulses from reaching the assistor cup assembly. An additional oneway valve assembly is provided in the sustained negative pressure conduit to prevent positive pressure pulses from reaching the assistor cup assembly and to maintain the negative pressure developed in the cup during the application of positive pressure pulses to the sustained negative pressure line.
The simplicity and portability of the system make it extremely advantageous for use in a variety of applications, especially those of an emergency nature. The portable system described herein may be easily and rapidly substituted for conventional assemblies in moving donors from one location to another, or may be used in emergency situations to sustain the circulatory function until such time as the patient is moved to a hospital.
It is, therefore, one object of the present invention to provide a nevel portable mechanical ventricular assistance device.
Still another object of the present invention is to provide a novel pump assembly for use with ventricular assistor cup assemblies, and the like, which is capable of developing a sustained pressure at a first output thereof and which is capable of developing a pulsatile pressure of alternating positive and negative pressure pulses at the second output thereof.
Yet a further object of the present invention is to provide a novel pump assembly for use with ventricular assistor cup assemblies, and the like, which is capable of developing a sustained pressure at a first output thereof and which is capable of developing a pulsatile pressure of alternating positive and negative pressure pulses at the second output thereof, whereby the pressure levels of the sustained and alternating pressure pulses are made adjustable through the use of adjustable valve means associated with each of the hand pump outputs.
These as well as other objects of the present invention will become apparent when reading the accompanying description and drawings in which:
FIG. 1 shows a diagrammatic view partially sectionalized of the pump assembly of the present invention as applied to a ventricular assistor cup assembly.
FIGS. 2a and 2b are schematic diagrams showing alternative embodiments for the pump portions of the assembly.
The device of the present invention is comprised of a hand pump assembly 10 for use in operating a ventricular assistor cup assembly 20.
The ventricular assistor cup assembly is described in greater detail in copending application (M-60l9) Ser. No. 785,652, filed Dec. 20, 1968 and assigned to the assignee of the present invention, which description is incorporated herein by reference thereto. For this reason, a detailed description of the assistor cup assembly will be omitted from this application for purposes of simplicity. For purposes of understanding the.
present invention it is sufficient to understand that the assistor cup assembly 20 is comprised of a rigid cup 21 having a first large opening 22 for receiving the ventricles of the heart; a second opening 23 arranged at the apex of the cup for receiving a sustained negative pressure line; and a third opening 24 for receiving a pulsatile pressure line. The interior of the cup is provided with a flexible liner 25 secured at 26 and 27 by suitable adhesive means, for example, near the apex opening 23 and the large opening 22, respectively. The liner 25 is mounted within and sealed to cup 21 in such a manner as to form a hollow interior space whose only opening is opening 24 which receives the pulsatile pressure line. The injection of positive pressure into this hollow interior space causes the contraction of liner 25 which, in turn, contracts the ventricles of the heart embraced by the liner. Injection of a negative pressure pulse returns the liner 25 substantially to the position shown in FIG. 1 to allow for expansion of the heart ventricles. This operation is continuously repeated to assist the heart in sustaining its pumping function. The apex opening 23 receives the substantially sustained negative pressure to retain the ven tricles within the cup throughout the entire pumping operation and independently of the pulsatile pressure applied to opening 24.
The portable pump assembly for use with the ventricular assistor cup assembly 20 is comprised of a cylinder 13 having secured at one exterior end thereof a handle 12. The cylinder contains a reciprocating piston 14 of the double-acting piston type. Piston 14 is coupled through a piston rod 15 to an exterior mounted handle 11. The opening provided for piston rod 15 at the upper end of cylinder 13 may be provided with a suitable seal such as an O-ring 16 to prevent the escape of compressed air from the cylinder.
Piston l4 effectively divides the cylinder into first and second piston chambers 17 and 18.
Upper chamber 17 is provided with an opening 18 for receiving a sustained negative pressure conduit 31 which couples chamber 17 through a liquid trap 32 and conduit 33 to the opening 23 provided in the apex of assistor cup 21.
Lower chamber 18 is provided with an opening 34 for receiving a conduit 35 coupling the chamber to the pulsatile pressure opening 24 in cup 21.
Suitable valve means are provided in the conduits connecting the assistor cup to the pump assembly for regulating the pressure level and pressure direction of pressure pulses in jected into each of the lines. The conduit 31 is provided with a first one-way valve assembly 36 which may, for example, be comprised of first and second spaced annular rings 37 and 38 arranged in the interior of conduit 31. A spherical member or ball 39 is normally urged against annular-shaped ring 38 by a bias spring 40 secured at one end to annular disc 37 and having its opposite end bearing against ball 39.
Similar one- way valve assemblies 41 and 46 are arranged at spaced intervals along conduit 31 to perform functions which will be more fully described.
In a like manner, positive and negative relief valve assemblies 53 and 58 are arranged at spaced intervals along the surface of conduit 35 for functions to be more fully described.
The upper piston chamber 17 provides the sustained negative pressure for the ventricular assistor cup which is obtained on the down" stroke of piston 14. Let it be assumed that the piston 14 is positioned near the top of cylinder 13 and is moved vertically downward in the direction shown by arrow A. A negative pressure or vacuum is developed in chamber 17. Due to the pressure differential across the right-hand and lefthand sides of one-way valve 36, ball 39 is caused to unseal the opening in ring 38, allowing this negative pressure (i.e., vacuum) state to communicate with the apex opening 23 in cup 21.
The relief valve assembly 46 is adjusted to cause ball 49 to unseal the opening in ring 50 when the negative pressure in conduit 31 is greater than a predetermined threshold level. The relief valve 46 thus automatically controls the maximum negative pressure applied to the assistor cup. The maximum negative pressure may be made adjustable by providing suitable means for adjusting the bias applied to ball 49 by bias spring 48. A suitable filter member 51 is secured between ring 50 and-ring 52 to filter out dust or any other unwanted particles carried by the air entering into the system when valve 46 opens.
The negative pressure applied to the assistor cup is sustained until the piston 14 reaches the bottom of its stroke. On the up' stroke, i.e., when the piston moves from the bottom of its stroke upward in the direction shown by arrow B, one-way valve 36 is sealed to prevent positive pressure from passing the valve and communicating with the assistor cup. The sealing of valve 36 during the entire "up" stroke also acts to maintain the negative pressure in assistor cup until the next down" stroke. One-way valve 41 releases the pressure being developed in upper chamber 17 during the upward stroke by having its ball 42 moved downwardly against the force of bias spring 43 to unseal the opening in annular-shaped ring 44. The negative pressure developed in conduit 31 during a down" stroke of piston 14 is thus sustained during theup" stroke of piston 14. The liquid trap 32 traps any liquid passing from cup assembly 20 toward the sustained negative conduit 31.
Lower piston chamber 18 operates in much the same manner as upper chamber 17 except that both positive and negative pulsatile pressures are applied to cup opening 24 by line 35. For this reason, conduit 35 is provided with two relief valves, one for positive pressure 53 and one for negative pressure 58.
During an up" stroke of piston 14, i.e., when piston 14 moves in the direction of arrow B, a negative pressure or vacuum is developed in conduit 35 and is coupled to cup opening 24, causing the flexible liner 25 to move from a contracted position to the relaxed position shown in dotted line fashion in FIG. 1. If this negative pressure exceeds a predetermined threshold level, the ball 59 of relief valve 58 will move downward against the force of biasing spring 60 to unseal the opening in ring 61, thereby automatically controlling the maximum negative pressure which may be developed in conduit 35.
During a down" stroke of position 14, i.e., when the piston moves from its uppermost position downward in the direction shown by arrow A, a positive pressure is developed in lower piston chamber 18, causing a positive pressure pulse to be injected into opening 24 of the ventricular cup assembly. This causes the flexible liner 25 to contract the ventricles of the heart encircled by the liner. If the positive pressure injected into conduit 35 exceeds a predetermined threshold level, ball 54 of relief valve 53 will be caused to move upwardly against the force of bias spring 55 to relieve the excess positive pressure developed in conduit 35. The relief valves 53 and 58 thereby automatically control the positive and negative pressure pulses delivered to thei'ventricular cup assembly 20. Suitable adjustabie means may be provided in both the positive and negative relief valve assemblies 53 and 58, respectively, to adjust the force of the biasing springs an thereby calibrate the maximum positive and negative pressure levels. The relief valves further limit the pressures as necessary for full strokes, regardless of the ventricular cup-pumping displacement. The negative relief valve assembly is provided with a filter 63 to filter out any unwanted particles or other material which may be in the atmosphere against entering into the system with the air entering through the relief valve assembly 58 whenever it is caused to open.
The pump may be operated by one person in a variety of ways. One preferred manner of operating the pump is to place one foot through the opening formed by stationary handle 12 and operating the movable handle 11 in a reciprocating fashion by grasping and moving handle 11 with either one or both hands. Alternatively, each of the handles 11 and 12 may be grasped by one hand, and the pump may be operated in a reciprocating fashion in this manner. Obviously, if desired, two persons may operate the pump, but the simplicity of operation and size of the pump does not necessitate such alternative operation.
FIGS. 2a and 2!) show alternative arrangements for the pump assembly of FIG. 1. Considering FIG. 2a, the pump arrangement 10! is a bellows pump selectively expandable and contractable due to its bellows arrangement 70. The interior of the bellows arrangement is divided by a barrier wall 71 forming upper and lower chambers are coupled to conduits 31 and 35 of FIG. 1 in the same manner as the pump assembly shown in FIG. 1. Operation of the pump assembly of FIG. 2a may be performed in the same manner as the device shown in FIG. 1 by grasping the handles 11 and 12 and urging them alternatively together and apart to create the positive and negative pressure phases occurring during each reciprocating cycle.
FlG.2b shows an alternative pump assembly having a bellows assembly 70 comprised of a singleinternal chamber 72 having openings 73 and 74 for communicating with the conduits 31 and 35 of FIG. 1. In operation, the handles 1] and 12 are alternately urged toward one another and apart from one another to create positive and negative pressures within the internal chamber 72 to provide the positive and negative pressure signals in conduit 35 while providing only a sustained negative pressure signal in conduit 31.
When using the double-acting piston type of FIG. 1, it is possible to develop sustained negative pressure in conduit 31 during both the up" and down stroke by coupling an additional conduit near the bottom of cylinder 13 which is provided with valve'assemblies substantially identical to the assemblies 36, 41 and 46. This additional conduit may be coupled into conduit 31 as shown by dotted line 31'. Thus, each stroke, whether up" or down, of the piston willcontribute to sustaining the negative pressure in the assistor cup assembly. This alternative embodiment may be used in cases where the pump assembly is capable of providing a sufficient negative pressure pulse for operating the flexible liner 25 and for simultaneously sustaining the negative pressure maintained at the opening 23 of the assistor cup assembly.
It can be seen from the foregoing description that the present invention provides a novel portable pump assembly especially advantageous for use with ventricular assistor cup assemblies to maintain and sustain the pumping operation of the heart by providing an independent sustained negative pressure (vacuum) at one output thereof and by providing alternating positive and negative'pressure pulses at a second output thereof for performing the functions necessary in the operation of such a ventricular cup assembly. It should be obvious that various modifications may be made in the pump assembly without departing from'the scope of the invention. For example, a one-way valve of the type shown in conduit 31 may be provided in conduit 35 for providing sustained negative pressures in each of the outputs developed by the pump for such applications in which negative pressures of this type might be required. The negative pressure values obtained may be adjusted to be of different values through simple adjustment of the valves. As a further modification, the one-way valves provided within each of the conduits 31 and 35 may be reversed in direction of operation so as to provide a first output for generating a positive sustained pressure and a second output for generating a sustained negative pressure. As still another alternative, the one-way valve assembly 36 provided in conduit 31 may be omitted to provide a pump having two outputs, each of which is capable of providing alternating positive and negative pressures wherein each of the positive and negative pressures developed by each of the outputs may be set at any predetermined threshold levels, depending upon the needs of the user. In addition, the single cylinder having a double-acting piston may be replaced by two cylinders each having a reciprocating piston. The cylinders may be placed side-by-side and arranged to be reciprocated by a single operating handle.
The assemblies of the figures may be operated by mechanical or electromechanical means, if desired. For example, a motor M may drive a reciprocating arm A through shaft S which is coupled to handle 11 of FIG. 1. A rotary to reciprocating motion device D converts the rotation of the shaft S into reciprocating movement. Alternatively, a relay R having a reciprocating armature RA may be alternately energized and deenergized to reciprocate up and down (for example) to impart reciprocating movement to the piston rod (for example). The down stroke may be imparted by energizing the relay driving its armature downward. Deenergization of relay R will cause the upstroke under control of a biassing spring (not shown).
Although this invention has been described with respect to particular embodiments, it should be understood that many variations and modifications will now be obvious to those skilled in the art, and, therefore, the scope of this invention is limited not by the specific disclosure herein, but only by the appended claims.
lclaim:
1. A portable mechanical ventricular assistance device comprising:
a ventricular assistor cup assembly including a rigid cup having an interior configuration adapted to receive the ventricles of the heart;
a flexible liner mounted within said cup having a first opening for receiving the ventricles of the heart; a first port positioned at the apex of the cup opposite the first opening, and a second port positioned intermediate the first opening and the first port;
said flexible liner being sealed to the interior surface of said cup along a first marginal portion adjacent to and surrounding said first opening and along a second marginal portion adjacent -to and surrounding said first opening and along a second marginal portion adjacent to and surrounding said first ports;
A first-sustained negative pressure conduit having a first end coupled to said first port;
a second pulsed positive and negative pressure line having a first end coupled to said second port;
reciprocating pump means having first and second outputs each capable of developing positive and negative pressure pulses during reciprocation of said pump;
said first and second outputs being respectively coupled to the second ends of said first and second conduits;
valve means coupled in said first conduit for coupling only negative pressure pulses to said first port.
2. The device of claim 1 further comprising first and second relief valve means connected to said second conduit for limiting the maximum positive and negative pressure pulses delivered to said second port.
3. The device of claim 1 further comprising first relief valve means coupled to said first conduit for limiting the negative pressure pulses delivered to said first port to a predetermined threshold level; and second one-way valve means for releasing positive pressure pulses injected into said first conduit to the atmosphere.
4. The device of claim 1 further comprising a liquid trap coupled between said first conduit and said first port for preventing the flow of any liquid toward said pump means.
5. The device of claim 1 wherein said pump means is comprised of a cylinder containing a reciprocally mounted doubleacting piston dividing said cylinder into first and second chambers;
said first and second outputs communicating respectively with said first and second chambers.
6. The device of claim 1 wherein said pump means is comprised of a cylinder having a collapsible bellows-type wall;
said first and second outputs communicating with the interior of said cylinder.
7. The device of claim 1 wherein said pump means is comprised of a cylinder having a collapsible bellows-type wall;
a barrier wall in said cylinder dividing said cylinder into first and second chambers;
said first and second outputs respectively communicating with the interiors of said first and second chambers.

Claims (7)

1. A portable mechanical ventricular assistance device comprising: a ventricular assistor cup assembly including a rigid cup having an interior configuration adapted to receive the ventricles of the heart; a flexible liner mounted within said cup having a first opening for receiving the ventricles of the heart; a first port positioned at the apex of the cup opposite the first opening, and a second port positioned intermediate the first opening and the first port; said flexible liner being sealed to the interior surface of said cup along a first marginal portion adjacent to and surrounding said first opening and along a second marginal portion adjacent to and surrounding said first opening and along a second marginal portion adjacent to and surrounding said first ports; A first-sustained negative pressure conduit having a first end coupled to said first port; a second pulsed positive and negative pressure line having a first end coupled to said second port; reciprocating pump means having first and second outputs each capable of developing positive and negative pressure pulses during reciprocation of said pump; said first and second outputs being respectively coupled to the second ends of said first and second conduits; valve means coupled in said firSt conduit for coupling only negative pressure pulses to said first port.
2. The device of claim 1 further comprising first and second relief valve means connected to said second conduit for limiting the maximum positive and negative pressure pulses delivered to said second port.
3. The device of claim 1 further comprising first relief valve means coupled to said first conduit for limiting the negative pressure pulses delivered to said first port to a predetermined threshold level; and second one-way valve means for releasing positive pressure pulses injected into said first conduit to the atmosphere.
4. The device of claim 1 further comprising a liquid trap coupled between said first conduit and said first port for preventing the flow of any liquid toward said pump means.
5. The device of claim 1 wherein said pump means is comprised of a cylinder containing a reciprocally mounted double-acting piston dividing said cylinder into first and second chambers; said first and second outputs communicating respectively with said first and second chambers.
6. The device of claim 1 wherein said pump means is comprised of a cylinder having a collapsible bellows-type wall; said first and second outputs communicating with the interior of said cylinder.
7. The device of claim 1 wherein said pump means is comprised of a cylinder having a collapsible bellows-type wall; a barrier wall in said cylinder dividing said cylinder into first and second chambers; said first and second outputs respectively communicating with the interiors of said first and second chambers.
US789551A 1969-01-07 1969-01-07 Portable mechanical ventricular assistance device Expired - Lifetime US3590815A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78955169A 1969-01-07 1969-01-07

Publications (1)

Publication Number Publication Date
US3590815A true US3590815A (en) 1971-07-06

Family

ID=25147955

Family Applications (1)

Application Number Title Priority Date Filing Date
US789551A Expired - Lifetime US3590815A (en) 1969-01-07 1969-01-07 Portable mechanical ventricular assistance device

Country Status (1)

Country Link
US (1) US3590815A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2321266A1 (en) * 1975-08-20 1977-03-18 Guiset Jacques Pressure applying cardiac prosthesis - comprises hollow sleeve with deformable faces bearing against surfaces of heart
US4048990A (en) * 1976-09-17 1977-09-20 Goetz Robert H Heart massage apparatus
US4192293A (en) * 1978-09-05 1980-03-11 Manfred Asrican Cardiac assist device
US4577626A (en) * 1981-02-09 1986-03-25 Nikki Co., Ltd. Massager
US5119804A (en) * 1990-11-19 1992-06-09 Anstadt George L Heart massage apparatus
US5245990A (en) * 1992-02-14 1993-09-21 Millo Bertinin Apparatus for enhancing venous circulation and for massage
US5738627A (en) * 1994-08-18 1998-04-14 Duke University Bi-ventricular cardiac assist device
US5749839A (en) * 1994-08-18 1998-05-12 Duke University Direct mechanical bi-ventricular cardiac assist device
US5957977A (en) * 1996-01-02 1999-09-28 University Of Cincinnati Activation device for the natural heart including internal and external support structures
US6238334B1 (en) 1997-11-03 2001-05-29 Cardio Technologies, Inc. Method and apparatus for assisting a heart to pump blood
US6361512B1 (en) * 2000-02-23 2002-03-26 Spencer L. Mackay Massaging apparatus using inflatable bladders
US6409760B1 (en) 1998-03-05 2002-06-25 University Of Cincinnati Device and method for restructuring heart chamber geometry
US6520904B1 (en) 1996-01-02 2003-02-18 The University Of Cincinnati Device and method for restructuring heart chamber geometry
US20030078471A1 (en) * 2001-10-18 2003-04-24 Foley Frederick J. Manipulation of an organ
US6558314B1 (en) 2000-02-11 2003-05-06 Iotek, Inc. Devices and method for manipulation of organ tissue
US6592619B2 (en) 1996-01-02 2003-07-15 University Of Cincinnati Heart wall actuation device for the natural heart
US20030176765A1 (en) * 2002-01-23 2003-09-18 Foley Frederick J. Devices for holding a body organ
US6641604B1 (en) 2000-02-11 2003-11-04 Iotek, Inc. Devices and method for manipulation of organ tissue
US6663622B1 (en) 2000-02-11 2003-12-16 Iotek, Inc. Surgical devices and methods for use in tissue ablation procedures
US20040015039A1 (en) * 2002-07-16 2004-01-22 The University Of Cincinnati Modular power system and method for a heart wall actuation system for the natural heart
US20040015041A1 (en) * 2002-07-18 2004-01-22 The University Of Cincinnati Protective sheath apparatus and method for use with a heart wall actuation system for the natural heart
US20040034271A1 (en) * 2002-08-19 2004-02-19 The University Of Cincinnati Heart wall actuation system for the natural heart with shape limiting elements
US20040059180A1 (en) * 2002-09-23 2004-03-25 The University Of Cincinnati Basal mounting cushion frame component to facilitate extrinsic heart wall actuation
US20040267086A1 (en) * 2003-06-26 2004-12-30 Anstadt Mark P. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
US20060155159A1 (en) * 2003-06-09 2006-07-13 Melvin David B Power system for a heart actuation device
US20060155160A1 (en) * 2003-06-09 2006-07-13 Melvin David B Actuation mechanisms for a heart actuation device
US20060178551A1 (en) * 2003-06-09 2006-08-10 Melvin David B Securement system for a heart actuation device
US20060187550A1 (en) * 2002-07-18 2006-08-24 Melvin David B Deforming jacket for a heart actuation device
US20070004310A1 (en) * 2005-06-06 2007-01-04 Mark Trageser Pneumatic action figure
US20090187123A1 (en) * 2006-04-25 2009-07-23 Sung-Oh Hwang Cardiopulmonary resuscitation unit control apparatus
US20090270981A1 (en) * 2008-04-23 2009-10-29 Syncardia Systems, Inc. Apparatus and method for pneumatically driving an implantable medical device
US7715918B2 (en) 2005-10-18 2010-05-11 University Of Cincinnati Muscle energy converter with smooth continuous tissue interface
US20100152523A1 (en) * 2005-11-28 2010-06-17 Myocardiocare, Inc. Method and Apparatus for Minimally Invasive Direct Mechanical Ventricular Actuation
WO2010135279A1 (en) * 2009-05-18 2010-11-25 Syncardia Systems, Inc. Actuating mechanism for pneumatically-driven artificial heart
US20110196189A1 (en) * 2010-02-09 2011-08-11 Myocardiocare, Inc. Extra-cardiac differential ventricular actuation by inertial and baric partitioning
US11285281B2 (en) * 2007-05-30 2022-03-29 Gilbert Jacobus Kuypers Electrically operable resuscitators
US11383076B2 (en) 2020-10-01 2022-07-12 Lifebridge Technologies, Llc Pump regulation based on heart size and function
US11896812B1 (en) 2023-01-27 2024-02-13 Lifebridge Technologies Llc Versatile modular heart pump for non-blood contacting ventricular function augmentation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376863A (en) * 1966-02-09 1968-04-09 Health Education Welfare Usa Biventricular cardiac assister
US3455298A (en) * 1967-04-10 1969-07-15 George L Anstadt Instrument for direct mechanical cardiac massage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376863A (en) * 1966-02-09 1968-04-09 Health Education Welfare Usa Biventricular cardiac assister
US3455298A (en) * 1967-04-10 1969-07-15 George L Anstadt Instrument for direct mechanical cardiac massage

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2321266A1 (en) * 1975-08-20 1977-03-18 Guiset Jacques Pressure applying cardiac prosthesis - comprises hollow sleeve with deformable faces bearing against surfaces of heart
US4048990A (en) * 1976-09-17 1977-09-20 Goetz Robert H Heart massage apparatus
US4192293A (en) * 1978-09-05 1980-03-11 Manfred Asrican Cardiac assist device
US4577626A (en) * 1981-02-09 1986-03-25 Nikki Co., Ltd. Massager
WO1993023004A1 (en) * 1990-11-19 1993-11-25 Anstadt George L Heart massage apparatus
US5119804A (en) * 1990-11-19 1992-06-09 Anstadt George L Heart massage apparatus
US5245990A (en) * 1992-02-14 1993-09-21 Millo Bertinin Apparatus for enhancing venous circulation and for massage
US5738627A (en) * 1994-08-18 1998-04-14 Duke University Bi-ventricular cardiac assist device
US5749839A (en) * 1994-08-18 1998-05-12 Duke University Direct mechanical bi-ventricular cardiac assist device
US5957977A (en) * 1996-01-02 1999-09-28 University Of Cincinnati Activation device for the natural heart including internal and external support structures
US20040024286A1 (en) * 1996-01-02 2004-02-05 The University Of Cincinnati Heart wall actuation device for the natural heart
US7361191B2 (en) 1996-01-02 2008-04-22 The University Of Cincinnati Heart wall actuation device for the natural heart
US6592619B2 (en) 1996-01-02 2003-07-15 University Of Cincinnati Heart wall actuation device for the natural heart
US6520904B1 (en) 1996-01-02 2003-02-18 The University Of Cincinnati Device and method for restructuring heart chamber geometry
US6238334B1 (en) 1997-11-03 2001-05-29 Cardio Technologies, Inc. Method and apparatus for assisting a heart to pump blood
US6409760B1 (en) 1998-03-05 2002-06-25 University Of Cincinnati Device and method for restructuring heart chamber geometry
US6558314B1 (en) 2000-02-11 2003-05-06 Iotek, Inc. Devices and method for manipulation of organ tissue
US6641604B1 (en) 2000-02-11 2003-11-04 Iotek, Inc. Devices and method for manipulation of organ tissue
US6663622B1 (en) 2000-02-11 2003-12-16 Iotek, Inc. Surgical devices and methods for use in tissue ablation procedures
US20040073206A1 (en) * 2000-02-11 2004-04-15 Iotek, Inc. Surgical devices and methods for use in tissue ablation procedures
US6361512B1 (en) * 2000-02-23 2002-03-26 Spencer L. Mackay Massaging apparatus using inflatable bladders
US20030078471A1 (en) * 2001-10-18 2003-04-24 Foley Frederick J. Manipulation of an organ
US20030176765A1 (en) * 2002-01-23 2003-09-18 Foley Frederick J. Devices for holding a body organ
US20040015039A1 (en) * 2002-07-16 2004-01-22 The University Of Cincinnati Modular power system and method for a heart wall actuation system for the natural heart
US7081084B2 (en) 2002-07-16 2006-07-25 University Of Cincinnati Modular power system and method for a heart wall actuation system for the natural heart
US20040015041A1 (en) * 2002-07-18 2004-01-22 The University Of Cincinnati Protective sheath apparatus and method for use with a heart wall actuation system for the natural heart
US7850729B2 (en) 2002-07-18 2010-12-14 The University Of Cincinnati Deforming jacket for a heart actuation device
US7662085B2 (en) 2002-07-18 2010-02-16 Cardioenergetics, Inc. Protective sheath apparatus and method for use with a heart wall actuation system for the natural heart
US20060009676A1 (en) * 2002-07-18 2006-01-12 The University Of Cincinnati Protective sheath apparatus and method for use with a heart wall actuation system for the natural heart
US20060187550A1 (en) * 2002-07-18 2006-08-24 Melvin David B Deforming jacket for a heart actuation device
US20050250976A1 (en) * 2002-08-19 2005-11-10 The University Of Cincinnati Heart wall actuation system for the natural heart with shape limiting elements
US6988982B2 (en) 2002-08-19 2006-01-24 Cardioenergetics Heart wall actuation system for the natural heart with shape limiting elements
US20040034271A1 (en) * 2002-08-19 2004-02-19 The University Of Cincinnati Heart wall actuation system for the natural heart with shape limiting elements
US20040059180A1 (en) * 2002-09-23 2004-03-25 The University Of Cincinnati Basal mounting cushion frame component to facilitate extrinsic heart wall actuation
US20060155160A1 (en) * 2003-06-09 2006-07-13 Melvin David B Actuation mechanisms for a heart actuation device
US20060178551A1 (en) * 2003-06-09 2006-08-10 Melvin David B Securement system for a heart actuation device
US20060155159A1 (en) * 2003-06-09 2006-07-13 Melvin David B Power system for a heart actuation device
US7753837B2 (en) 2003-06-09 2010-07-13 The University Of Cincinnati Power system for a heart actuation device
US7658705B2 (en) 2003-06-09 2010-02-09 Cardioenergetics, Inc. Actuation mechanisms for a heart actuation device
US20060142634A1 (en) * 2003-06-26 2006-06-29 Advanced Resuscitation, Llc Sensor-equipped and algorithm controlled direct mechanical ventricular assist device
US20040267086A1 (en) * 2003-06-26 2004-12-30 Anstadt Mark P. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
US7494459B2 (en) 2003-06-26 2009-02-24 Biophan Technologies, Inc. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
US20070004310A1 (en) * 2005-06-06 2007-01-04 Mark Trageser Pneumatic action figure
US7934973B2 (en) * 2005-06-06 2011-05-03 Mattel, Inc. Pneumatic action figure
US7715918B2 (en) 2005-10-18 2010-05-11 University Of Cincinnati Muscle energy converter with smooth continuous tissue interface
US20100152523A1 (en) * 2005-11-28 2010-06-17 Myocardiocare, Inc. Method and Apparatus for Minimally Invasive Direct Mechanical Ventricular Actuation
US20090187123A1 (en) * 2006-04-25 2009-07-23 Sung-Oh Hwang Cardiopulmonary resuscitation unit control apparatus
US11285281B2 (en) * 2007-05-30 2022-03-29 Gilbert Jacobus Kuypers Electrically operable resuscitators
US20090270981A1 (en) * 2008-04-23 2009-10-29 Syncardia Systems, Inc. Apparatus and method for pneumatically driving an implantable medical device
US7811318B2 (en) 2008-04-23 2010-10-12 Syncardia Systems, Inc. Apparatus and method for pneumatically driving an implantable medical device
WO2010135279A1 (en) * 2009-05-18 2010-11-25 Syncardia Systems, Inc. Actuating mechanism for pneumatically-driven artificial heart
US20110196189A1 (en) * 2010-02-09 2011-08-11 Myocardiocare, Inc. Extra-cardiac differential ventricular actuation by inertial and baric partitioning
US11383076B2 (en) 2020-10-01 2022-07-12 Lifebridge Technologies, Llc Pump regulation based on heart size and function
US11896812B1 (en) 2023-01-27 2024-02-13 Lifebridge Technologies Llc Versatile modular heart pump for non-blood contacting ventricular function augmentation

Similar Documents

Publication Publication Date Title
US3590815A (en) Portable mechanical ventricular assistance device
US3674381A (en) Portable mechanical ventricular assistance device
US10112308B2 (en) Vacuum cup assembly
US3455298A (en) Instrument for direct mechanical cardiac massage
US4302854A (en) Electrically activated ferromagnetic/diamagnetic vascular shunt for left ventricular assist
US4468177A (en) Diaphragm pump arrangement in which alternately expanded and contracted chambers are used independently
US3327322A (en) Artificial heart powered by a fluid pressure pump means simulating the action of the human heart
RU2013108847A (en) PISTON PUMP WITH ADJUSTABLE BUFFER
JPH01113502A (en) Double-acting fluid piston-cylinder-unit
ATE108518T1 (en) DOUBLE DIAPHRAGM PUMP.
US4047849A (en) Pneumatic pulsator pumping system with pulsator fluid venting valve
EP0156781B1 (en) Blood pump
US4820300A (en) Artificial heart
US4231715A (en) Clinically usable pump apparatus for a dilatation device
US4133616A (en) Stroke volume limiter for collapsible wall blood pump system
GB1532719A (en) Blood circulatory assist device and control therefor
US3630644A (en) Fluid pump and actuation thereof
KR20190121384A (en) Ventilation device system and method of venting in a chamber of a reciprocating device assembly
JPH0762473B2 (en) Pump device
JPS5596381A (en) Diaphragm type air pump device
RU2046607C1 (en) Artificial heart
JPS6231948B2 (en)
US1169980A (en) Exhaust-pump for milking-machines.
US4416270A (en) Percussor
JPH0617063Y2 (en) Fluid shutoff valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: IABP CORPORATION A DE CORP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SCHIFF PETER;REEL/FRAME:004445/0504

Effective date: 19850731