US3603284A - Vapor deposition apparatus - Google Patents

Vapor deposition apparatus Download PDF

Info

Publication number
US3603284A
US3603284A US344A US3603284DA US3603284A US 3603284 A US3603284 A US 3603284A US 344 A US344 A US 344A US 3603284D A US3603284D A US 3603284DA US 3603284 A US3603284 A US 3603284A
Authority
US
United States
Prior art keywords
chamber
baffle
gaseous phase
reaction
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US344A
Inventor
Richard R Garnache
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Application granted granted Critical
Publication of US3603284A publication Critical patent/US3603284A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
    • C23C16/4588Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Definitions

  • Walter ABSTRACT A vapor deposition reactor having a gaseous phase inlet and exit system including inlet means, located at one end of a reaction chamber, including a porous gas distribution baffle which forms a plenum and which uniformly delivers gaseous materials to substantially all of the horizontal cross-sectional area of the reaction chamber and further including an exit means, located at the other end of the chamber, comprising a porous pressure baffle for uniformly allowing the removal of gaseous materials from the chamber to prevent recirculation of reaction byproducts.
  • This invention relates to vapor transport chemical vapor deposition processes, and more particularly, to an improved apparatus for carrying out these processes.
  • One object of many chemical vapor deposition systems is to produce a uniform product. ll uniform products cannot be produced, great expense is entailed either by redesigning device specifications to fit the variations of the product produced or by the rejection of a large percentage of the products.
  • the problems which have been faced previously in chemical vapor deposition processes include: contamination of the reaction chamber; lack of uniformity of deposit thickness on all substrates in a single reaction vessel, as well as individual substrates; the presence of spikes on the surface of the sub strates; and long cycles involved in the batch operations currently employed.
  • the barrel reactor consists of a barrellihe chamber which contains a cylindrical susceptor upon which a number of sub strates may be mounted circumferentially. Gaseous reactants admitted at the bottom of the reactor by a halo-shaped inlet system are passed over the substrate surfaces, usually heated by an externally located RF coil. Exhaust gases are removed from the reactor through a port located in the top of the reaclllowever, the barrel reactor did not solve all of the problems found in the prior art.
  • the primary advantage of the barrel reactor was to increase batch sizes over the open tube method. Deposits produced in barrel reactors still had many drawbacks. For example, dust particle counts as high as 100,000 particles per it, could easily cause contamination of substrates. Film thickness variations on the order of i 0.5 microns on a single wafer are also common. Other problems such as the presence of op xia these e often found.
  • Another object is to reduce the contamination level in deposited films by reducing the dust count inside the reactor.
  • a further object of this invention is to provide more uniform chemical vapor deposition deposits.
  • a still further object of this invention is to substantially reduce or eliminate the number of spikes formed in deposited films.
  • the reactor of the present invention is constructed to realize the aforementioned objects, goals and advantages and comprises a barrel reactor having a gaseous phase inlet system including a gas distribution baffle extending substantially across the entire horizontal cross-sectional area of the reaction chamber which provides uniform distribution of reactants entering the chamber and a planar velocity front substantially throughout the chamber.
  • An exit pressure baffle also extending substantially across the entire horizontal crosssectional area of the chamber is utilized to maintain a constant mass flow from the chamber and to prevent recirculation of the gaseous products leaving the chamber.
  • the FlGUlRE shows a partial sectional view of a preferred embodiment of the present invention.
  • SiCll,,+2ll-2l Heat Si +4HCL. (i in actuality the reaction is more complex and depends upon the reactant concentrations, temperature, pressure, and reactor geometry, all of which may result in various side reactions. Since the reaction is reversible, etching and mass transport processing may also occur.
  • a partial sectional view of a vapor deposition reactor comprising an opaque quartz cylinder 112, which is capped at both ends by hollow plates M and lid made of stainless steel, through which cooling water may be circulated, by means not shown, defining a reaction chamber ill.
  • the reaction chamber may, for example, be 9 inches in diameter and 18 inches high.
  • Tie rods 2b, with the aid ot'G-rings 22 and 2d, enable chamber id to remain airtight during the vapor deposition process.
  • the lower plate lb and O-ring 2d are attached to a hydraulic cylinder (not shown) which opens and closes the reactor.
  • a substrate holder, graphite susceptor 2d Situated within the reaction chamber iii, and mounted on a fusedquartz rod 16 is a substrate holder, graphite susceptor 2d, having mounted around its circumference, and substantially parallel to the chambers longitudinal axis, as defined by rod 2a, a plurality of substrates Illl upon which deposition is desired.
  • the susceptor may he cut from commercially available high purity graphite and is substantially in the form of a hollow right cylinder having a wall thickness of about three tribution in the reaction chamber 18.
  • the substrate holder is preferably tapered about 3 from bottom to top and is counterbored in order to provide recesses to support substrates.
  • the susceptor may be mounted on rod 26 by a star plate.
  • a gaseous phase inlet means including a gas distribution baffle 38 forming, with plate 14, a first plenum 36.
  • Gaseous phase materials, reactant gases SiCl4 and H2, generally designated by arrow 32, are introduced through tube 34 into the plenum 36.
  • Plenum 36 and gas distribution baffle 38 together provide a means for evenly delivering the reactant gases 32 over substantially all of the horizontal cross-sectional area at the top of the reaction chamber 18.
  • Gas distribution baffle 38 may be constructed from a perforated plate or a sintered material having a gas resistance sufficient to develop substantially uniform back pressure to maintain even gas distribution over the entire surface area of the baffle, and thg eby deliver a uniform rna ssiflowinto substantially theentire horizontal cross-sectional area a the chamber 18.
  • Baffle 38 may be one-.eighth inch thick sintered stainless steel filter plate having an average pore size of microns.
  • gas distribution baffle 38 may be a perforated metal plate providing that the proper number and size holes may be provided to achieve the desired pressure drop and gas dis- Also shown is a heat shield 40 which may be mounted on the reaction chamber side of gas distribution baffle 38.
  • heat shield 40 is to reflect energy radiated from the heat shield 40 is to reflect energy radiated from the heated susceptor 28 which may prove harmful to baffle 38, depending upon the material of which the baffle is constructed.
  • Heat shield 40 is merely a thin stainless steel, or molybdenum plate, about 0.040 inch thick, having a number of 0.08 l-inch diameter holes 41 drilled on 0.25-inch centers. The plate is constructed such that it will not substantially disturb the gas flow through the chamber but will effectively prevent baffle 38 from overheating and perhaps out-gassing or decomposing. It should be understood that the addition of heat shield 40 is merely optional as it is used, or not used, depending upon the temperature at the top of the reaction chamber and the material of which gas distribution baffle 38 is made. u
  • the gaseous materials after passing through heat shield 40, enter chamber 18 having a planar velocity fronti.e., the gas velocity at all points on a horizontal cross-sectional area of the chamber is constant. Because susceptor 28 is a thin walled cylinder and substrates 30 are substantially flush with the outer surface of the susceptor, little resistance is met by the gas as it passes over susceptor 28. Thus, a substantially planar velocity front is maintained throughout the length of chamber 18.
  • gaseous phase exit pressure baffle 42 which like gas distribution baffle 38 may be made of a sintered or porous material.
  • gas distribution baffle 38 may be made of a sintered or porous material.
  • the porosity of baffle 42 be greater than baffle 38. The reason for this is twofold; first, because various deposits may tend to form in the pores of exit pressure baffle 42 thereby gradually increasing its resistance to gas flow, and second, because it is important only to maintain the planar velocity front until the gaseous materials have passed the susceptor.
  • baffle 42 is substantially less than that of gas distribution baffle 38, on the order of one-twentieth. This may be achieved by utilizing a perforated plate, or sintered material, that is more porous, or less dense, than utilized at the inlet of the chamber.
  • Pressure baffle filame t 2 beg n Pl .9.”? n meivsskx sass and 46. Exhaust gases are passed from a second plenum 48 through exhaust tubes 50 and delivered to the atmosphere or a reclamation process.
  • a heating means is required.
  • An RF source is preferred, although a resistance heater may also be used.
  • An RF generator not shown, is used to inductively heat susceptor 28 to the required temperatures.
  • the generator is coupled to a water-cooled helical coil 52 which is permanently positioned outside quartz cylinder 12. It will be noted that this arrangement of a cylindrical load coupled to the helical RF coil 52 provides excellent heating efficiency Since all pointson the circumference of the susceptor 28 are the same distance away from the RF coil, temperature uniformity can be readily established in the horizontal direction (within a row of substrates 30 on susceptor 28). To achieve temperature uniformity in a vertical direction, the coil spacings are adjusted.
  • the susceptor 28 is rotated at a rate of approximately 3 r.p.m. by motor 54 to maintain temperature uniformity of i 5 C. at a temperature of 1 C. (which is the preferred temperature selected for the aforedescribed reaction) over the entire circumferential surface area of susceptor 28.
  • the purge gas passes into plenum 36, it is uniformly dis tributed across the surface of gas distribution baffle 38 providing a back pressure of about 2-4 psi. and a substantially planar velocity front within chamber 18. Due to the relatively wide chamber cross section, as compared with its length, the formation of a boundary layer, caused by frictional contact between gas flowing through the reaction chamber and the internal surfaces of quartz cylinder 12, is for all practical purposes, insignificant.
  • reaction chamber 18 is effectively purged in a very short period of time.
  • the inert purge gas is replaced by hydrogen at a flow rate of about liters per minute for a period of about 2 minutes to displace the purge gas and establish a total hydrogen ambient for the vapor deposition reaction. This rate will produce a streaming velocity in excess of the diffusion velocity for impurities in the hydrogen gas.
  • the RF heating coils are energized while additional hydrogen is passed through the chamber for about 7 minutes while the substrates are raised to the reaction temperature of 1 130 5 C.
  • the reactant gas flow is vented to purge the feed system and establish inch long susceptor the SiCl, is admitted to the reaction chamber in a hydrogen carrier at a rate of about 150 liters per minute in a SiCl /l-l ratio of about 0.01 for 6-14 minutes depending upon the film thickness desired.
  • higher streaming velocities are required for longer susceptors.
  • the gas distribution baffle 38 and exit gas pressure baffle 42 act on the reactant gases in the same manner as described above with reference to the purge gas. Additionally, due to the fact that the reactant gas concentration is substantially equal throughout the cross-sectional area of the chamber, because of the relatively short length of susceptor 28, uniquely uniform deposition of reaction byproducts are obtained.
  • the RF power is then turned off and the substrates are cooled in hydrogen for about 6 minutes.
  • the hydrogen is purged from the chamber with argon which further cools the substrates for about 2 minutes.
  • the reactor is opened and the coated substrates are removed from the susceptor.
  • the dust particle count of particles( greater than one-half micron) in the chamber is about I00 particles/ft". This is a 1,000 to l reduction from the count of 100,000 particles/ftFas found in a reactor not equipped with the novel inlet and exit system.
  • spikes found on substrates was reduced from about 80 to 100 per substrate to about one or two per substrate.
  • Such a reactor includes a gas distribution baffle which delivers gases to the reaction chamber uniformly throughout its horizontal cross section and a pressure baffle which assures uniform removal of the gases from each portion of the horizontal crosss qn ssent thsqheslbsr at r n fqrmratst.
  • Apparatus for performing substrate surfaces utilizing gaseous phase materials comprismg:
  • reaction chamber having a longitudinal axis; a substrate holder for maintaining substrate surfaces substantially parallel to said longitudinal axis; heating means for uniformly heating substrate surfaces to the reaction temperature; gaseous phase inlet means located at one end of said equilibrium flow before it is injected into the reactor.
  • a gas distribution baffle forming a plenum, said baffle extending substantially throughout the cross-sectional area of said chamber, said baffle capable of providing sufficient gas resistance to develop substantially uniform back pressure across said baffle, and said baffle also capable of delivering substantially uniform mass flow into said chamber with a planar velocity front, said velocity from moving parallel to said chamber axis and said substrate surfaces; and a gaseous phase exit pressure baffle located at the other end of said chamber and extending over substantially all of the cross-sectional area of said chamber, said exit baffle capable of providing substantially uniform gas resistance for maintaining a uniform mass flow rate per unit area across said other end of said chamber to prevent recirculation of the gaseous phase materials and reaction byproducts in said chamber.
  • heating means is an RF coil for inductively coupling energy to said substrate holder.
  • Apparatus as claimed in claim l wherein there is provided a heat shield mounted between said gaseous phase inlet means and said substrate holder to protect said gas distribution baffle from energy radiated by said substrate holder.
  • a vapor transport reactor including a reaction chamber having a longitudinal axis, a substrate holder for holding substrates having reaction surfaces, heating means for heating means for heating substrates to a reaction temperature, gaseous phase inlet means and gaseous phase exit means, the improvement comprising:
  • gaseous phase inlet means located at one end of the reaction chamber comprising: a gas distribution baffle forming a plenum, said baffle extending substantially throughout the cross-sectional area of the chamber, said baffle capable of providing sufiicient gas resistance to gaseous phase material to develop substantially uniform back pressure across said baffle, and said baffle also capable of delivering substantially uniform mass flow into the chamber, said flow having a substantially planar velocity front moving parallel to the longitudinal axis of the chamber and the substrate surfaces; and
  • gaseous phase exit means comprising: an exit pressure baffle located at the other end of the chamber and extending over substantially all of the cross-sectional area of the chamber, said exit pressure baffle capable of providing substantially uniform gas resistance to gaseous phase material in the chamber to maintain a uniform mass flow rate per unit area across the chamber to prevent recirculation of gaseous phase materials and reaction byproducts.

Abstract

A vapor deposition reactor having a gaseous phase inlet and exit system including inlet means, located at one end of a reaction chamber, including a porous gas distribution baffle which forms a plenum and which uniformly delivers gaseous materials to substantially all of the horizontal cross-sectional area of the reaction chamber and further including an exit means, located at the other end of the chamber, comprising a porous pressure baffle for uniformly allowing the removal of gaseous materials from the chamber to prevent recirculation of reaction byproducts.

Description

United States Patent [72] Inventor Richard R. Garnache South Burlington, Vt. [21] Appl. No, 344 [22] Filed Jan. 2, 1970 [45] Patented Sept. 7, 1971 [731 Assignee International Business Machines Corporation Armonk, N.Y.
[54] VAPOR DEPOSITION APPARATUS 10 Claims, 1 Drawing Fig.
[52] U.S.Cl 118/48 [51] lnt.Cl .j C23c 11/00 [50] Field of Search 1 18/4849.5; 117/106-1072 R, 107.2 P, 106 R,
[56] References Cited UNITED STATES PATENTS 2,378,476 6/1945 Guellich 118/49 2,489,127 11/1949 Forgue 117/106 R Primary Examiner-Morris Kaplan Attorneys-Hamlin and J ancin and Howard J. Walter ABSTRACT: A vapor deposition reactor having a gaseous phase inlet and exit system including inlet means, located at one end of a reaction chamber, including a porous gas distribution baffle which forms a plenum and which uniformly delivers gaseous materials to substantially all of the horizontal cross-sectional area of the reaction chamber and further including an exit means, located at the other end of the chamber, comprising a porous pressure baffle for uniformly allowing the removal of gaseous materials from the chamber to prevent recirculation of reaction byproducts.
PATENTEU SEP' 7 19m 3 03 2 INVENTOR RICHARD R. GARNACHE BY WM MM AGENT tOI'.
meager VAiPllllll lii lilll tlSll'llllflN APPARATUS This invention relates to vapor transport chemical vapor deposition processes, and more particularly, to an improved apparatus for carrying out these processes.
BACKGROUND As is well known in the art, vapor transport chemical vapor deposition reactions have many applications in the area of semiconductor and other solid state device manufacturing. in essence, any heat induced gar/court reaction producing desirable byproducts might be utilimd.
Many ditfcrent processes and reactions have been used in what is generally tenned vapor growth; for example, various pyrolytic and disproportionation reactions have been em ployed, in addition to the well-known epitaxial semiconductor deposition process, for the deposition of oxides, nitrides, and metals. One of the most frequently used of these already developed processes is one involving the hydrogen reduction of silicon tetrachloride at an elevated temperature.
One object of many chemical vapor deposition systems is to produce a uniform product. ll uniform products cannot be produced, great expense is entailed either by redesigning device specifications to fit the variations of the product produced or by the rejection of a large percentage of the products.
The problems which have been faced previously in chemical vapor deposition processes include: contamination of the reaction chamber; lack of uniformity of deposit thickness on all substrates in a single reaction vessel, as well as individual substrates; the presence of spikes on the surface of the sub strates; and long cycles involved in the batch operations currently employed.
lPlRllOR ART of such a reactor is disclosed in US. Pat. No. 3,424,629,to
Ernst et al., issued .lan. 28, 1969,2md assigned to the assignee of the instant invention. W
The barrel reactor consists of a barrellihe chamber which contains a cylindrical susceptor upon which a number of sub strates may be mounted circumferentially. Gaseous reactants admitted at the bottom of the reactor by a halo-shaped inlet system are passed over the substrate surfaces, usually heated by an externally located RF coil. Exhaust gases are removed from the reactor through a port located in the top of the reaclllowever, the barrel reactor did not solve all of the problems found in the prior art. The primary advantage of the barrel reactor was to increase batch sizes over the open tube method. Deposits produced in barrel reactors still had many drawbacks. For example, dust particle counts as high as 100,000 particles per it, could easily cause contamination of substrates. Film thickness variations on the order of i 0.5 microns on a single wafer are also common. Other problems such as the presence of op xia these e often found.
it is therefore an obje t of this inve tion to improve the quality of vapor deposition products and the operating characteristics of barrel reactors in general by decreasing the duty cycle required to perform each batch operation.
Another object is to reduce the contamination level in deposited films by reducing the dust count inside the reactor.
A further object of this invention is to provide more uniform chemical vapor deposition deposits.
A still further object of this invention is to substantially reduce or eliminate the number of spikes formed in deposited films.
SUMMARY OF THE INVENTION Briefly considered, the reactor of the present invention is constructed to realize the aforementioned objects, goals and advantages and comprises a barrel reactor having a gaseous phase inlet system including a gas distribution baffle extending substantially across the entire horizontal cross-sectional area of the reaction chamber which provides uniform distribution of reactants entering the chamber and a planar velocity front substantially throughout the chamber. An exit pressure baffle also extending substantially across the entire horizontal crosssectional area of the chamber is utilized to maintain a constant mass flow from the chamber and to prevent recirculation of the gaseous products leaving the chamber.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention as illustrated in the accompanying drawing.
The FlGUlRE shows a partial sectional view of a preferred embodiment of the present invention.
DETAELED DESCRlPTlON The reaction that is illustratively employed to demonstrate the preferred embodiment is the reduction of silicon tetrachloride by hydrogen, described by the equation:
SiCll,,+2ll-2l Heat Si +4HCL. (i in actuality the reaction is more complex and depends upon the reactant concentrations, temperature, pressure, and reactor geometry, all of which may result in various side reactions. Since the reaction is reversible, etching and mass transport processing may also occur.
Although the method and apparatus of the present invention will be described in the specific context of the above reaction, it will be apparent to those skilled in the art that other vapor transport reactions may be similarly utilized. Thus, the apparatus of the present invention is not. Tied to a single reaction or process since the only limiting criteria for advantagco-us application of the instant apparatus is that a reducible vapor source, or a heat induced chemical reaction byproduct be available. For example, the following types of reaction are possible: disproportionation, decomposition, condensation and gas cracking. Additionally, since a number of such reactions are reversible, the removal offilms, or material, from substrate surfaces, as well as the deposition of material, is possible. Thus, reference to vapor deposition processes in describing the instant invention may also be considered to include any heat induced chemical vapor deposition or etching process.
Referring to the FIGURE, there is shown a partial sectional view of a vapor deposition reactor, generally designated ill), comprising an opaque quartz cylinder 112, which is capped at both ends by hollow plates M and lid made of stainless steel, through which cooling water may be circulated, by means not shown, defining a reaction chamber ill. The reaction chamber may, for example, be 9 inches in diameter and 18 inches high. Tie rods 2b, with the aid ot'G-rings 22 and 2d, enable chamber id to remain airtight during the vapor deposition process. The lower plate lb and O-ring 2d, are attached to a hydraulic cylinder (not shown) which opens and closes the reactor. Situated within the reaction chamber iii, and mounted on a fusedquartz rod 16 is a substrate holder, graphite susceptor 2d, having mounted around its circumference, and substantially parallel to the chambers longitudinal axis, as defined by rod 2a, a plurality of substrates Illl upon which deposition is desired. The susceptor may he cut from commercially available high purity graphite and is substantially in the form of a hollow right cylinder having a wall thickness of about three tribution in the reaction chamber 18.
eighths inch. The substrate holder is preferably tapered about 3 from bottom to top and is counterbored in order to provide recesses to support substrates. The susceptor may be mounted on rod 26 by a star plate.
Supported by the top plate 14 and extending across the horizontal cross section of the chamber, there is provided a gaseous phase inlet means including a gas distribution baffle 38 forming, with plate 14, a first plenum 36. Gaseous phase materials, reactant gases SiCl4 and H2, generally designated by arrow 32, are introduced through tube 34 into the plenum 36. Plenum 36 and gas distribution baffle 38 together provide a means for evenly delivering the reactant gases 32 over substantially all of the horizontal cross-sectional area at the top of the reaction chamber 18. Gas distribution baffle 38 may be constructed from a perforated plate or a sintered material having a gas resistance sufficient to develop substantially uniform back pressure to maintain even gas distribution over the entire surface area of the baffle, and thg eby deliver a uniform rna ssiflowinto substantially theentire horizontal cross-sectional area a the chamber 18. Baffle 38 may be one-.eighth inch thick sintered stainless steel filter plate having an average pore size of microns. Additionally, gas distribution baffle 38 may be a perforated metal plate providing that the proper number and size holes may be provided to achieve the desired pressure drop and gas dis- Also shown is a heat shield 40 which may be mounted on the reaction chamber side of gas distribution baffle 38. The purpose of heat shield 40 is to reflect energy radiated from the heat shield 40 is to reflect energy radiated from the heated susceptor 28 which may prove harmful to baffle 38, depending upon the material of which the baffle is constructed. Heat shield 40 is merely a thin stainless steel, or molybdenum plate, about 0.040 inch thick, having a number of 0.08 l-inch diameter holes 41 drilled on 0.25-inch centers. The plate is constructed such that it will not substantially disturb the gas flow through the chamber but will effectively prevent baffle 38 from overheating and perhaps out-gassing or decomposing. It should be understood that the addition of heat shield 40 is merely optional as it is used, or not used, depending upon the temperature at the top of the reaction chamber and the material of which gas distribution baffle 38 is made. u
The gaseous materials, after passing through heat shield 40, enter chamber 18 having a planar velocity fronti.e., the gas velocity at all points on a horizontal cross-sectional area of the chamber is constant. Because susceptor 28 is a thin walled cylinder and substrates 30 are substantially flush with the outer surface of the susceptor, little resistance is met by the gas as it passes over susceptor 28. Thus, a substantially planar velocity front is maintained throughout the length of chamber 18.
After passing over the susceptor 28, reactant gases leave the bottom of the chamber 18 through the following means. Mounted in the bottom of the reaction chamber, and extending across substantially the entire horizontal cross-sectional area of the chamber is a gaseous phase exit pressure baffle 42 which like gas distribution baffle 38 may be made of a sintered or porous material. Although it is desirable to provide the same pressure drop across exit pressure baffle 42 as that provided by gas distribution baffle 38, it is preferable that the porosity of baffle 42 be greater than baffle 38. The reason for this is twofold; first, because various deposits may tend to form in the pores of exit pressure baffle 42 thereby gradually increasing its resistance to gas flow, and second, because it is important only to maintain the planar velocity front until the gaseous materials have passed the susceptor. it is only necessary to maintain a pressure drop across exit pressure baffle 42. Therefore, the gas resistance presented by baffle 42 is substantially less than that of gas distribution baffle 38, on the order of one-twentieth. This may be achieved by utilizing a perforated plate, or sintered material, that is more porous, or less dense, than utilized at the inlet of the chamber. Pressure baffle filame t 2", beg n Pl .9."? n meivsskx sass and 46. Exhaust gases are passed from a second plenum 48 through exhaust tubes 50 and delivered to the atmosphere or a reclamation process.
In order to raise and maintain the temperature of the substrate surfaces to the proper reaction temperature, a heating means is required. An RF source is preferred, Although a resistance heater may also be used. An RF generator, not shown, is used to inductively heat susceptor 28 to the required temperatures. The generator is coupled to a water-cooled helical coil 52 which is permanently positioned outside quartz cylinder 12. It will be noted that this arrangement of a cylindrical load coupled to the helical RF coil 52 provides excellent heating efficiency Since all pointson the circumference of the susceptor 28 are the same distance away from the RF coil, temperature uniformity can be readily established in the horizontal direction (within a row of substrates 30 on susceptor 28). To achieve temperature uniformity in a vertical direction, the coil spacings are adjusted. The susceptor 28 is rotated at a rate of approximately 3 r.p.m. by motor 54 to maintain temperature uniformity of i 5 C. at a temperature of 1 C. (which is the preferred temperature selected for the aforedescribed reaction) over the entire circumferential surface area of susceptor 28. For a more'complete description of the structural details of the graphite susceptor 28, reference 7 is made to the aforementioned patent.
EXAMPLE In order to show an example of the operation and results achieved by the instant invention, the following description of the reactors operation and performance is provided.
The basic operating procedure of the instant invention is best described in terms of the specific example of its operation as already referred to abovei.e., the hydrogen reduction of silicon tetrachloride.
Substrates 30, highly polished semiconductor wafers, are
loaded onto graphite susceptor 28 while bottom plate 16 is in the previously referred to lowered position. During this time, it may be desirable to allow a nominal flow of inert gas, such as argon, to enter inlet tube 34 in order to maintain chamber 18 in a relatively clean condition. Bottom plate 16 is then raised in order to close reactor 10 for the deposition process. Chamber 18 is then purged for about one minute by an inert gas, preferably argon, which is maintained at any desirable flow rate which will insure adequate purging. Due to the high cost of argon, it is acceptable to utilize a purge rate of about one-tenth that of the reactant gases to be referred to later. The
rate used in the preferred embodiment should be sufficient to produce a streaming velocity in excess of the diffusion velocity for impurities in the purging gas.
As the purge gas passes into plenum 36, it is uniformly dis tributed across the surface of gas distribution baffle 38 providing a back pressure of about 2-4 psi. and a substantially planar velocity front within chamber 18. Due to the relatively wide chamber cross section, as compared with its length, the formation of a boundary layer, caused by frictional contact between gas flowing through the reaction chamber and the internal surfaces of quartz cylinder 12, is for all practical purposes, insignificant.
Because the purged gas enters chamber 18 with a planar velocity front and because of the low gas resistance presented by susceptor 28, reaction chamber 18 is effectively purged in a very short period of time.
After the chamber has been purged, the inert purge gas is replaced by hydrogen at a flow rate of about liters per minute for a period of about 2 minutes to displace the purge gas and establish a total hydrogen ambient for the vapor deposition reaction. This rate will produce a streaming velocity in excess of the diffusion velocity for impurities in the hydrogen gas. The RF heating coils are energized while additional hydrogen is passed through the chamber for about 7 minutes while the substrates are raised to the reaction temperature of 1 130 5 C., Just prior to admission the reactant gas flow is vented to purge the feed system and establish inch long susceptor the SiCl, is admitted to the reaction chamber in a hydrogen carrier at a rate of about 150 liters per minute in a SiCl /l-l ratio of about 0.01 for 6-14 minutes depending upon the film thickness desired. In general, higher streaming velocities are required for longer susceptors.
The gas distribution baffle 38 and exit gas pressure baffle 42 act on the reactant gases in the same manner as described above with reference to the purge gas. Additionally, due to the fact that the reactant gas concentration is substantially equal throughout the cross-sectional area of the chamber, because of the relatively short length of susceptor 28, uniquely uniform deposition of reaction byproducts are obtained.
After the desired deposition time has elapsed hydrogen alone is passed through the chamber for about seconds to remove all traces of SiCl,
The RF power is then turned off and the substrates are cooled in hydrogen for about 6 minutes. Finally, the hydrogen is purged from the chamber with argon which further cools the substrates for about 2 minutes. The reactor is opened and the coated substrates are removed from the susceptor.
A summary of the improvements achieved by the novel inlet and exit system of the subject invention, as compared with the prior art barrel reactor is given below.
The dust particle count of particles( greater than one-half micron) in the chamber, as determined by a commercial dust counter, is about I00 particles/ft". This is a 1,000 to l reduction from the count of 100,000 particles/ftFas found in a reactor not equipped with the novel inlet and exit system.
The uniformity of deposit, as determined by the infrared interference technique, for a o-micron film, previously 0.5 microns on a single substrate, was reduced to i 0.1 microns for all substrates within the chamber.
The presence of spikes found on substrates was reduced from about 80 to 100 per substrate to about one or two per substrate.
The duty cyclefor the entire deposition operation was reduced by a factor of from two to three times that required by prior art reactors due primarily to the efficient purging action 0f h r a atee xelqe txfrer r In summary, what has been disclosed is a novel structure for a vapor deposition reactor which significantly improves the quality of vapor deposition products. A structure which enables shortened duty cycles due to more efficient purging of the reaction chamber both before and after deposition. Such a reactor includes a gas distribution baffle which delivers gases to the reaction chamber uniformly throughout its horizontal cross section and a pressure baffle which assures uniform removal of the gases from each portion of the horizontal crosss qn ssent thsqheslbsr at r n fqrmratst.
While the invention has been particularly shown and described with reference to a preferred embodiment thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.
hats c aimed. s-
ll. Apparatus for performing substrate surfaces utilizing gaseous phase materials, comprismg:
a reaction chamber having a longitudinal axis; a substrate holder for maintaining substrate surfaces substantially parallel to said longitudinal axis; heating means for uniformly heating substrate surfaces to the reaction temperature; gaseous phase inlet means located at one end of said equilibrium flow before it is injected into the reactor. For a 7- i chamber comprising: a gas distribution baffle, forming a plenum, said baffle extending substantially throughout the cross-sectional area of said chamber, said baffle capable of providing sufficient gas resistance to develop substantially uniform back pressure across said baffle, and said baffle also capable of delivering substantially uniform mass flow into said chamber with a planar velocity front, said velocity from moving parallel to said chamber axis and said substrate surfaces; and a gaseous phase exit pressure baffle located at the other end of said chamber and extending over substantially all of the cross-sectional area of said chamber, said exit baffle capable of providing substantially uniform gas resistance for maintaining a uniform mass flow rate per unit area across said other end of said chamber to prevent recirculation of the gaseous phase materials and reaction byproducts in said chamber.
2. Apparatus as defined in claim 1 wherein said gas distribution baffle and said exit pressure baffle are perforated steel plates.
3. Apparatus as defined in claim ll wherein said gas distribution baffle is a sintered steel plate and said exit pressure baffle is a perforated steel plate.
4. Apparatus as described in claim 1 wherein the gas resistance of said exit pressure baffle is about one-twentieth that of said gas distribution baffle.
5. Apparatus as defined in claim 1 wherein said substrate holder is a graphite susceptor.
6. Apparatus as defined in claim 1 wherein said substrate holder is substantially in the form of a hollow right circular cylinder.
7. Apparatus as defined in claim 6 wherein said heating means is an RF coil for inductively coupling energy to said substrate holder.
8. Apparatus as described in claim 7 wherein said substrate holder is rotated in said chamber to insure uniform heating of said substrate surfaces.
9. Apparatus as claimed in claim l wherein there is provided a heat shield mounted between said gaseous phase inlet means and said substrate holder to protect said gas distribution baffle from energy radiated by said substrate holder.
110. in a vapor transport reactor including a reaction chamber having a longitudinal axis, a substrate holder for holding substrates having reaction surfaces, heating means for heating means for heating substrates to a reaction temperature, gaseous phase inlet means and gaseous phase exit means, the improvement comprising:
gaseous phase inlet means located at one end of the reaction chamber comprising: a gas distribution baffle forming a plenum, said baffle extending substantially throughout the cross-sectional area of the chamber, said baffle capable of providing sufiicient gas resistance to gaseous phase material to develop substantially uniform back pressure across said baffle, and said baffle also capable of delivering substantially uniform mass flow into the chamber, said flow having a substantially planar velocity front moving parallel to the longitudinal axis of the chamber and the substrate surfaces; and
gaseous phase exit means comprising: an exit pressure baffle located at the other end of the chamber and extending over substantially all of the cross-sectional area of the chamber, said exit pressure baffle capable of providing substantially uniform gas resistance to gaseous phase material in the chamber to maintain a uniform mass flow rate per unit area across the chamber to prevent recirculation of gaseous phase materials and reaction byproducts.

Claims (9)

  1. 2. Apparatus as defined in claim 1 wherein said gas distribution baffle and said exit pressure baffle are perforated steel plates.
  2. 3. Apparatus as defined in claim 1 wherein said gas distribution baffle is a sintered steel plate and said exit pressure baffle is a perforated steel plate.
  3. 4. Apparatus as described in claim 1 wherein the gas resistance of said exit pressure baffle is about one-twentieth that of said gas distribution baffle.
  4. 5. Apparatus as defined in claim 1 wherein said substrate holder is a graphite susceptor.
  5. 6. Apparatus as defined in claim 1 wherein said substrate holder is substantially in the form of a hollow right circular cylinder.
  6. 7. Apparatus as defined in claim 6 wherein said heating means is an RF coil for inductively coupling energy to said substrate holder.
  7. 8. Apparatus as described in claim 7 wherein said substrate holder is rotated in said chamber to insure uniform heating of said substrate surfaces.
  8. 9. Apparatus as claimed in claim 1 wherein there is provided a heat shield mounted between said gaseous phase inlet means and said substrate holder to protect said gas distribution baffle from energy radiated by said substrate holder.
  9. 10. In a vapor transport reactor including a reaction chamber having a longitudinal axis, a substrate holder for holding substrates having reaction surfaces, heating means for heating means for heating substrates to a reaction temperature, gaseous phase inlet means and gaseous phasE exit means, the improvement comprising: gaseous phase inlet means located at one end of the reaction chamber comprising: a gas distribution baffle forming a plenum, said baffle extending substantially throughout the cross-sectional area of the chamber, said baffle capable of providing sufficient gas resistance to gaseous phase material to develop substantially uniform back pressure across said baffle, and said baffle also capable of delivering substantially uniform mass flow into the chamber, said flow having a substantially planar velocity front moving parallel to the longitudinal axis of the chamber and the substrate surfaces; and gaseous phase exit means comprising: an exit pressure baffle located at the other end of the chamber and extending over substantially all of the cross-sectional area of the chamber, said exit pressure baffle capable of providing substantially uniform gas resistance to gaseous phase material in the chamber to maintain a uniform mass flow rate per unit area across the chamber to prevent recirculation of gaseous phase materials and reaction byproducts.
US344A 1970-01-02 1970-01-02 Vapor deposition apparatus Expired - Lifetime US3603284A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34470A 1970-01-02 1970-01-02

Publications (1)

Publication Number Publication Date
US3603284A true US3603284A (en) 1971-09-07

Family

ID=21691104

Family Applications (1)

Application Number Title Priority Date Filing Date
US344A Expired - Lifetime US3603284A (en) 1970-01-02 1970-01-02 Vapor deposition apparatus

Country Status (7)

Country Link
US (1) US3603284A (en)
JP (1) JPS4822902B1 (en)
CA (1) CA922502A (en)
CH (1) CH516342A (en)
DE (1) DE2049229A1 (en)
FR (1) FR2075031A5 (en)
GB (1) GB1328838A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865072A (en) * 1973-10-18 1975-02-11 Hls Ind Apparatus for chemically depositing epitaxial layers on semiconductor substrates
US4322592A (en) * 1980-08-22 1982-03-30 Rca Corporation Susceptor for heating semiconductor substrates
US4365588A (en) * 1981-03-13 1982-12-28 Rca Corporation Fixture for VPE reactor
US4419332A (en) * 1979-10-29 1983-12-06 Licentia Patent-Verwaltungs-G.M.B.H. Epitaxial reactor
US4496828A (en) * 1983-07-08 1985-01-29 Ultra Carbon Corporation Susceptor assembly
US4597986A (en) * 1984-07-31 1986-07-01 Hughes Aircraft Company Method for photochemical vapor deposition
US4615294A (en) * 1984-07-31 1986-10-07 Hughes Aircraft Company Barrel reactor and method for photochemical vapor deposition
US4638762A (en) * 1985-08-30 1987-01-27 At&T Technologies, Inc. Chemical vapor deposition method and apparatus
GB2206608A (en) * 1987-04-14 1989-01-11 Toshiba Kk Vapour deposition apparatus
US4950870A (en) * 1987-11-21 1990-08-21 Tel Sagami Limited Heat-treating apparatus
WO1990010092A1 (en) * 1989-02-24 1990-09-07 Massachusetts Institute Of Technology A modified stagnation flow apparatus for chemical vapor deposition providing excellent control of the deposition
US4977855A (en) * 1987-01-29 1990-12-18 Tadahiro Ohmi Apparatus for forming film with surface reaction
US4997677A (en) * 1987-08-31 1991-03-05 Massachusetts Institute Of Technology Vapor phase reactor for making multilayer structures
US5038711A (en) * 1987-03-10 1991-08-13 Sitesa S.A. Epitaxial facility
US5091207A (en) * 1989-07-20 1992-02-25 Fujitsu Limited Process and apparatus for chemical vapor deposition
US5268034A (en) * 1991-06-25 1993-12-07 Lsi Logic Corporation Fluid dispersion head for CVD appratus
US5286519A (en) * 1991-06-25 1994-02-15 Lsi Logic Corporation Fluid dispersion head
US5494522A (en) * 1993-03-17 1996-02-27 Tokyo Electron Limited Plasma process system and method
US5522933A (en) * 1994-05-19 1996-06-04 Geller; Anthony S. Particle-free microchip processing
US5821175A (en) * 1988-07-08 1998-10-13 Cauldron Limited Partnership Removal of surface contaminants by irradiation using various methods to achieve desired inert gas flow over treated surface
US6194030B1 (en) 1999-03-18 2001-02-27 International Business Machines Corporation Chemical vapor deposition velocity control apparatus
EP1085107A2 (en) * 1999-09-20 2001-03-21 Moore Epitaxial, Inc. Gas dispersion head and method
US6331212B1 (en) * 2000-04-17 2001-12-18 Avansys, Llc Methods and apparatus for thermally processing wafers
US20020061605A1 (en) * 1999-08-31 2002-05-23 Mitsubishi Materials Silicon Corporation And Nippon Sanso Corporation Method of purging CVD apparatus and method for judging maintenance of times of semiconductor production apparatuses
US20030106581A1 (en) * 1995-08-22 2003-06-12 Matsushita Electric Industrial Co., Ltd. Silicon structure, method for producing the same, and solar battery using the silicon structure
US6660126B2 (en) * 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US20040149211A1 (en) * 2002-07-18 2004-08-05 Jae-Young Ahn Systems including heated shower heads for thin film deposition and related methods
US20070087533A1 (en) * 2005-10-19 2007-04-19 Moore Epitaxial Inc. Gas ring and method of processing substrates
US7314526B1 (en) * 1999-03-25 2008-01-01 Lpe S.P.A. Reaction chamber for an epitaxial reactor
US20090148352A1 (en) * 2006-03-29 2009-06-11 Zubrin Robert M Portable gas generating device
US20110277690A1 (en) * 2010-05-14 2011-11-17 Sierra Solar Power, Inc. Multi-channel gas-delivery system
US20120220108A1 (en) * 2011-02-28 2012-08-30 Hitachi Kokusai Electric Inc. Substrate processing apparatus, and method of manufacturing substrate
US8328939B2 (en) * 2004-05-12 2012-12-11 Applied Materials, Inc. Diffuser plate with slit valve compensation
CN103628039A (en) * 2012-08-28 2014-03-12 北京北方微电子基地设备工艺研究中心有限责任公司 MOCVD reaction chamber and MOCVD apparatus
CN103898473A (en) * 2012-12-27 2014-07-02 北京北方微电子基地设备工艺研究中心有限责任公司 Process reaction chamber and process equipment
CN104233225A (en) * 2013-06-17 2014-12-24 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber and semiconductor treating equipment with same
US9240513B2 (en) 2010-05-14 2016-01-19 Solarcity Corporation Dynamic support system for quartz process chamber
US9391230B1 (en) 2015-02-17 2016-07-12 Solarcity Corporation Method for improving solar cell manufacturing yield
EP3061845A3 (en) * 2015-02-03 2016-12-28 LG Electronics Inc. Metal organic chemical vapor deposition apparatus for solar cell
US9748434B1 (en) 2016-05-24 2017-08-29 Tesla, Inc. Systems, method and apparatus for curing conductive paste
US9954136B2 (en) 2016-08-03 2018-04-24 Tesla, Inc. Cassette optimized for an inline annealing system
US9972740B2 (en) 2015-06-07 2018-05-15 Tesla, Inc. Chemical vapor deposition tool and process for fabrication of photovoltaic structures
US10115856B2 (en) 2016-10-31 2018-10-30 Tesla, Inc. System and method for curing conductive paste using induction heating
US10378108B2 (en) * 2015-10-08 2019-08-13 Applied Materials, Inc. Showerhead with reduced backside plasma ignition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517018Y2 (en) * 1974-03-20 1980-04-21
US4501766A (en) * 1982-02-03 1985-02-26 Tokyo Shibaura Denki Kabushiki Kaisha Film depositing apparatus and a film depositing method
GB8620273D0 (en) * 1986-08-20 1986-10-01 Gen Electric Co Plc Deposition of thin films
DE3816788A1 (en) * 1988-05-17 1989-11-23 Siemens Ag Epitaxy apparatus
FR2670507B1 (en) * 1990-12-18 1993-12-31 Propulsion Ste Europeenne CHEMICAL STEAM INFILTRATION PROCESS.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378476A (en) * 1943-02-11 1945-06-19 American Optical Corp Coating apparatus
US2489127A (en) * 1947-06-14 1949-11-22 Rca Corp High capacitance target
GB722866A (en) * 1951-11-10 1955-02-02 Philips Electrical Ind Ltd Improvements in or relating to apparatus applying, by vaporisation in vacuo, layers of vaporisable substance
US2853969A (en) * 1953-06-10 1958-09-30 Erie Resistor Ltd Apparatus for producing electric resistors
US3208888A (en) * 1960-06-13 1965-09-28 Siemens Ag Process of producing an electronic semiconductor device
US3397094A (en) * 1965-03-25 1968-08-13 James E. Webb Method of changing the conductivity of vapor deposited gallium arsenide by the introduction of water into the vapor deposition atmosphere
US3424629A (en) * 1965-12-13 1969-01-28 Ibm High capacity epitaxial apparatus and method
US3441000A (en) * 1966-01-03 1969-04-29 Monsanto Co Apparatus and method for production of epitaxial films
US3517643A (en) * 1968-11-25 1970-06-30 Sylvania Electric Prod Vapor deposition apparatus including diffuser means

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378476A (en) * 1943-02-11 1945-06-19 American Optical Corp Coating apparatus
US2489127A (en) * 1947-06-14 1949-11-22 Rca Corp High capacitance target
GB722866A (en) * 1951-11-10 1955-02-02 Philips Electrical Ind Ltd Improvements in or relating to apparatus applying, by vaporisation in vacuo, layers of vaporisable substance
US2853969A (en) * 1953-06-10 1958-09-30 Erie Resistor Ltd Apparatus for producing electric resistors
US3208888A (en) * 1960-06-13 1965-09-28 Siemens Ag Process of producing an electronic semiconductor device
US3397094A (en) * 1965-03-25 1968-08-13 James E. Webb Method of changing the conductivity of vapor deposited gallium arsenide by the introduction of water into the vapor deposition atmosphere
US3424629A (en) * 1965-12-13 1969-01-28 Ibm High capacity epitaxial apparatus and method
US3441000A (en) * 1966-01-03 1969-04-29 Monsanto Co Apparatus and method for production of epitaxial films
US3517643A (en) * 1968-11-25 1970-06-30 Sylvania Electric Prod Vapor deposition apparatus including diffuser means

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865072A (en) * 1973-10-18 1975-02-11 Hls Ind Apparatus for chemically depositing epitaxial layers on semiconductor substrates
US4419332A (en) * 1979-10-29 1983-12-06 Licentia Patent-Verwaltungs-G.M.B.H. Epitaxial reactor
US4322592A (en) * 1980-08-22 1982-03-30 Rca Corporation Susceptor for heating semiconductor substrates
US4365588A (en) * 1981-03-13 1982-12-28 Rca Corporation Fixture for VPE reactor
US4496828A (en) * 1983-07-08 1985-01-29 Ultra Carbon Corporation Susceptor assembly
US4597986A (en) * 1984-07-31 1986-07-01 Hughes Aircraft Company Method for photochemical vapor deposition
US4615294A (en) * 1984-07-31 1986-10-07 Hughes Aircraft Company Barrel reactor and method for photochemical vapor deposition
US4638762A (en) * 1985-08-30 1987-01-27 At&T Technologies, Inc. Chemical vapor deposition method and apparatus
US4977855A (en) * 1987-01-29 1990-12-18 Tadahiro Ohmi Apparatus for forming film with surface reaction
US5038711A (en) * 1987-03-10 1991-08-13 Sitesa S.A. Epitaxial facility
GB2206608A (en) * 1987-04-14 1989-01-11 Toshiba Kk Vapour deposition apparatus
GB2206608B (en) * 1987-04-14 1990-12-19 Toshiba Kk Vapor deposition apparatus
US5002011A (en) * 1987-04-14 1991-03-26 Kabushiki Kaisha Toshiba Vapor deposition apparatus
US4997677A (en) * 1987-08-31 1991-03-05 Massachusetts Institute Of Technology Vapor phase reactor for making multilayer structures
US4950870A (en) * 1987-11-21 1990-08-21 Tel Sagami Limited Heat-treating apparatus
US5821175A (en) * 1988-07-08 1998-10-13 Cauldron Limited Partnership Removal of surface contaminants by irradiation using various methods to achieve desired inert gas flow over treated surface
WO1990010092A1 (en) * 1989-02-24 1990-09-07 Massachusetts Institute Of Technology A modified stagnation flow apparatus for chemical vapor deposition providing excellent control of the deposition
US5091207A (en) * 1989-07-20 1992-02-25 Fujitsu Limited Process and apparatus for chemical vapor deposition
US5286519A (en) * 1991-06-25 1994-02-15 Lsi Logic Corporation Fluid dispersion head
US5268034A (en) * 1991-06-25 1993-12-07 Lsi Logic Corporation Fluid dispersion head for CVD appratus
US5494522A (en) * 1993-03-17 1996-02-27 Tokyo Electron Limited Plasma process system and method
US5522933A (en) * 1994-05-19 1996-06-04 Geller; Anthony S. Particle-free microchip processing
US20030106581A1 (en) * 1995-08-22 2003-06-12 Matsushita Electric Industrial Co., Ltd. Silicon structure, method for producing the same, and solar battery using the silicon structure
US6194030B1 (en) 1999-03-18 2001-02-27 International Business Machines Corporation Chemical vapor deposition velocity control apparatus
US7314526B1 (en) * 1999-03-25 2008-01-01 Lpe S.P.A. Reaction chamber for an epitaxial reactor
US20020061605A1 (en) * 1999-08-31 2002-05-23 Mitsubishi Materials Silicon Corporation And Nippon Sanso Corporation Method of purging CVD apparatus and method for judging maintenance of times of semiconductor production apparatuses
US6887721B2 (en) * 1999-08-31 2005-05-03 Mitsubishi Materials Silicon Corporation Method of purging CVD apparatus and method for judging maintenance of times of semiconductor production apparatuses
EP1085107A2 (en) * 1999-09-20 2001-03-21 Moore Epitaxial, Inc. Gas dispersion head and method
US6475284B1 (en) * 1999-09-20 2002-11-05 Moore Epitaxial, Inc. Gas dispersion head
EP1085107A3 (en) * 1999-09-20 2003-07-16 Moore Epitaxial, Inc. Gas dispersion head and method
SG106045A1 (en) * 1999-09-20 2004-09-30 Moore Epitaxial Inc Gas dispersion head and method
US6331212B1 (en) * 2000-04-17 2001-12-18 Avansys, Llc Methods and apparatus for thermally processing wafers
US6660126B2 (en) * 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US20040149211A1 (en) * 2002-07-18 2004-08-05 Jae-Young Ahn Systems including heated shower heads for thin film deposition and related methods
US8328939B2 (en) * 2004-05-12 2012-12-11 Applied Materials, Inc. Diffuser plate with slit valve compensation
US20070087533A1 (en) * 2005-10-19 2007-04-19 Moore Epitaxial Inc. Gas ring and method of processing substrates
US7794667B2 (en) 2005-10-19 2010-09-14 Moore Epitaxial, Inc. Gas ring and method of processing substrates
US9101898B2 (en) * 2006-03-29 2015-08-11 Robert M. Zubrin Portable gas generating device
US20090148352A1 (en) * 2006-03-29 2009-06-11 Zubrin Robert M Portable gas generating device
US8652402B2 (en) * 2006-03-29 2014-02-18 Pioneer Astronautics Portable gas generating device
US9283530B2 (en) 2006-03-29 2016-03-15 Pioneer Astronautics Portable gas generating device
US20110277690A1 (en) * 2010-05-14 2011-11-17 Sierra Solar Power, Inc. Multi-channel gas-delivery system
US9441295B2 (en) * 2010-05-14 2016-09-13 Solarcity Corporation Multi-channel gas-delivery system
US9240513B2 (en) 2010-05-14 2016-01-19 Solarcity Corporation Dynamic support system for quartz process chamber
US9028614B2 (en) * 2011-02-28 2015-05-12 Hitachi Kokusai Electric Inc. Substrate processing apparatus
US20120220108A1 (en) * 2011-02-28 2012-08-30 Hitachi Kokusai Electric Inc. Substrate processing apparatus, and method of manufacturing substrate
CN103628039A (en) * 2012-08-28 2014-03-12 北京北方微电子基地设备工艺研究中心有限责任公司 MOCVD reaction chamber and MOCVD apparatus
CN103898473A (en) * 2012-12-27 2014-07-02 北京北方微电子基地设备工艺研究中心有限责任公司 Process reaction chamber and process equipment
CN104233225A (en) * 2013-06-17 2014-12-24 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber and semiconductor treating equipment with same
CN104233225B (en) * 2013-06-17 2017-03-22 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber and semiconductor treating equipment with same
US10388820B2 (en) 2015-02-03 2019-08-20 Lg Electronics Inc. Metal organic chemical vapor deposition apparatus for solar cell
EP3061845A3 (en) * 2015-02-03 2016-12-28 LG Electronics Inc. Metal organic chemical vapor deposition apparatus for solar cell
US9391230B1 (en) 2015-02-17 2016-07-12 Solarcity Corporation Method for improving solar cell manufacturing yield
US9972740B2 (en) 2015-06-07 2018-05-15 Tesla, Inc. Chemical vapor deposition tool and process for fabrication of photovoltaic structures
US10378108B2 (en) * 2015-10-08 2019-08-13 Applied Materials, Inc. Showerhead with reduced backside plasma ignition
US10745807B2 (en) 2015-10-08 2020-08-18 Applied Materials, Inc. Showerhead with reduced backside plasma ignition
US10074765B2 (en) 2016-05-24 2018-09-11 Tesla, Inc. Systems, method and apparatus for curing conductive paste
US9748434B1 (en) 2016-05-24 2017-08-29 Tesla, Inc. Systems, method and apparatus for curing conductive paste
US9954136B2 (en) 2016-08-03 2018-04-24 Tesla, Inc. Cassette optimized for an inline annealing system
US10115856B2 (en) 2016-10-31 2018-10-30 Tesla, Inc. System and method for curing conductive paste using induction heating

Also Published As

Publication number Publication date
GB1328838A (en) 1973-09-05
JPS4822902B1 (en) 1973-07-10
CA922502A (en) 1973-03-13
FR2075031A5 (en) 1971-10-08
DE2049229A1 (en) 1971-07-08
CH516342A (en) 1971-12-15

Similar Documents

Publication Publication Date Title
US3603284A (en) Vapor deposition apparatus
US7851019B2 (en) Method for controlling the sublimation of reactants
US4421786A (en) Chemical vapor deposition reactor for silicon epitaxial processes
US4232063A (en) Chemical vapor deposition reactor and process
US3805736A (en) Apparatus for diffusion limited mass transport
US5735960A (en) Apparatus and method to increase gas residence time in a reactor
US4709655A (en) Chemical vapor deposition apparatus
US3699298A (en) Methods and apparatus for heating and/or coating articles
JP2941426B2 (en) Apparatus and method for producing SiC single crystal
GB1560982A (en) Apparatus and method for chemical vapour deposition
US3608519A (en) Deposition reactor
GB1328390A (en) Vapour processing of semiconductor material
JPH1025576A (en) Sublimation method of raw material compound in cvd film formation method
JPH0811718B2 (en) Gas source molecular beam epitaxy system
US3206331A (en) Method for coating articles with pyrolitic graphite
TW483053B (en) Chemical vapor deposition apparatus and chemical vapor deposition process
JP4486794B2 (en) Method for generating vapor from solid precursor, substrate processing system and mixture
JPH09245957A (en) High frequency induction heating furnace
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JPS6251919B2 (en)
JPH0430514A (en) Thermal cvd apparatus
JPH05125543A (en) Silicon carbide film producing device
JPS6144179A (en) Chemical vapor deposition wafer boat
US3450558A (en) Vapor plating beryllium
JP2534080Y2 (en) Artificial diamond deposition equipment