US3612048A - Rebreathing apparatus for anesthesia - Google Patents

Rebreathing apparatus for anesthesia Download PDF

Info

Publication number
US3612048A
US3612048A US12598A US3612048DA US3612048A US 3612048 A US3612048 A US 3612048A US 12598 A US12598 A US 12598A US 3612048D A US3612048D A US 3612048DA US 3612048 A US3612048 A US 3612048A
Authority
US
United States
Prior art keywords
gases
tube
end part
canister
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12598A
Inventor
Kentaro Takaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3612048A publication Critical patent/US3612048A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/104Preparation of respiratory gases or vapours specially adapted for anaesthetics

Definitions

  • the present invention relates to a rebreathing apparatus for use in anesthesia to provide a continued supply of air or an anesthetic gas mixture to a patient by purifying and returning exhaled gases to a patient mingled with freshly supplied gases.
  • the type of rebreathing device known as a circle absorber comprises two tubular branches connected by a Y- piece to a fitting or mask through which the, patient breathes, with exhaled gases passing through one branch to a carbonic gas removing element, and recycled gases for inhalation flowing to the patient through the other branch.
  • the second type of rebreathing device is called the to and fro" or pendular" absorber.
  • the construction of the to and fro absorber is simpler than that of the circle absorber, but there are serious disadvantages to its use.
  • the rebreathing apparatus of the invention comprises a cylindrical canister for CO, absorbing material, fitted at each end with a truncated conical cap.
  • One cap has a fitting for a breathing bag and an inlet for gases under pressure, and the other has a tubular extension provided with a right-angle mask elbow for direct connection to a breathing mask or endotracheal tube.
  • the device differs from the to and fro absorber in that a bypass hose or tube extends externally of the canister for circulatory flow of pure gases from the bag end to the patient end of the system.
  • a venturi is provided near each end of the bypass tube. At the inlet end, gas admitted has its velocity increased, flowing rapidly through the bypass tube after picking up purified gases leaving the canister.
  • a second venturi directs the flow of expired gases into the canister and compensates for pressure differences so that the system presents virtually no resistance to respiration.
  • a selectively adjustable exit.valve at the patient and of the system permits control of the venting of excess gas, thereby keeping the breathing bag semiinfiated without any need for precise inflow adjustment.
  • a further object is to provide a semiclosed rebreathing system for economy of anesthetic agents and which allows spontaneous, assisted or manually controlled ventilation.
  • Another object of the invention is to provide a versatile, portable rebreathing apparatus having minimal respiratory resistance due to the absence of inspiratory and expiratory valves.
  • FIG. 1 is a view in perspective of a rebreathing device in accordance with the invention
  • FIG. 2 is an enlarged sectional view of the apparatus of FIG. 1 with some parts omitted;
  • FIG. 3 is a side view of the apparatus of FIG. 1 taken along a line perpendicular to FIG. 2 with some parts shown in section and some parts omitted;
  • FIG. 4 is a detail view of an adjustable exit valve of the apparatus.
  • the rebreathing device of the invention is generally indicated by the reference numeral 10.
  • a generally cylindrical canister 11 having truncated tubular end pieces 12 and 12a is adapted to contain a quantity of carbonic gas absorbing material, such as that distributed under the trademark SODASORB.
  • the canister 11 and end pieces I2 are of sheet metal, but the canister might also be of synthetic resinous material, such as Lucite.
  • a reversible canister might be employed, if desired.
  • the lower end part 12a is removably secured to the canister 11 by a knurled ringlike fitting 13 within which an annular gasket 14 is fitted to seal the joint against gas leakage.
  • the upper end piece 12 may be permanently secured to the canister II as shown. This arrangement permits removal of the canister I I for refilling with CO absorbing material.
  • the inlet end of the device shown lowermost in FIGS. 2 and 3, includes a male bag holder fitting 15, generally tubular in shape with an outwardly directed lip 16 for engaging a breathing bag, the fitting tapering inwardly beyond the lip 16 at 17.
  • a basketlike element 20 mounted within the fitting 15 and extending outwardly therefrom is a basketlike element 20 for insertion into a breathing bag to keep the bags mouth open for entry and exit of gases.
  • the bag holder 15 is formed as an extension of a generally tubular member 21, mounted on and extending into the lower conical end piece 12a.
  • the member 21 has a central cavity 23.
  • the member 21 is secured to the end piece 12 by a sleeve 22 fitted into the end piece.
  • the sleeve 22 receives inwardly the tubular member 21 and tightly seals the connection against gas leakage.
  • a gas inlet and circulation element 24 extends transversely through the tubular member 21.
  • the element 24 serves as inlet conduit for input anesthesia gases and/or air and as an means for mixing input gases with recycled purified gases.
  • One end of the element 24 is formed generally as a nipple 25 for connection to a connective tube.
  • a tapering passage 26 through the nipple 25 is fitted with a porous filter element 27 forcleaning the input gases.
  • the passage 26 has a gradually stepped, inwardly narrowing taper, terminating in a very narrow passageway at 30, centrally of the chamber 23, serving to greatly increase the velocity of input gases.
  • the inner end 31 of a generally tubular outlet element 32 for the mixture of input gases and recycled gases.
  • the outlet element 32 is fonned as a nipple at 33 for connection to a bypass hose or other conduit 34 shown in FIG. 1.
  • a generally conical central orifice 35 through the outlet branch element 32 has a gradual outwardly widening taper.
  • the orifice 35 of the outlet branch 32 is aligned with and in registry with the central orifice 26 of the inlet branch 24. Adjacent the point where the orifices 26 and 35 approach each other the stream of gases flowing rapidly therethrough contacts the gases within the chamber 23, thereby acting as a venturi to suck in gases from the surrounding chamber 23.
  • the narrowed inner ends of the orifices 26 and 35 open into a small chamber 31 formed within the outlet branch element 32.
  • the small chamber 31 is in communication with the surrounding chamber 23 by way of a plurality of openings 310 formed through the wall of the outlet branch element 32.
  • the inlet branch element 24 and the outlet branch element 32 have outer diameters smaller than the diameter of the tubular chamber 23 so that gases may flow freely to and from the breathing bag through the chamber 23. As shown in FIG. 2, the inner end of the inlet branch element 24 is threadly received within the inner end of the outlet branch 32 for easy assembly and disassembly.
  • the conical end piece 12 is threadedly secured to a generally cup-shaped end piece into which a transversely extending circulation tube 41 is fitted.
  • the circulation pipe 41 is formed as a nipple at 42 is fitted.
  • the circulation pipe 41 is formed as a nipple at 42 to receive the patient end of the bypass tube 34.
  • a mask elbow 43 Threadedly secured to the end piece 40.
  • a sealing gasket 43a serves to prevent leakages at the joint.
  • Both the mask elbow 43 and the circulation pipe 42 have axially extending passages in communication with a generally cylindrical chamber 44 fonned within the end piece 40.
  • the chamber 44 opens on to the conical end piece 12 so that gases may flow freely therethrough to the canister 11.
  • the circulation pipe 42 is tubular and has its end in abutment with a wall of the end part 40.
  • An aperture 45 through the wall of the circulation pipe 42, directed toward the canister 11, permits gases flowing through the end pipe 42 to enter into the chamber 44. Since the gases flow rapidly through the restricted aperture 45 into the larger chamber 44 the venturi efi'ect operates, inducing gases in the chamber 44 to tend to flow towards the canister 11. This second venturi overcomes resistance to patient respiration.
  • the mask elbow 43 has double generally annular walls, an outer wall and an inner wall 51, formed with a slight double conical taper for easy connection either to a conventional breathing mask for a patient, as shown in FIG. 1, or for connection to an endotracheal tube.
  • FIGS. 2, 3 and 4 there is an exit valve 52 at the base of the cuplike end part 40.
  • the valve 52 has a disc 53 rotatably secured at its axis to the end part 40 by a pin 54.
  • Five exit apertures 55 two of which are shown in the FIG. 3 at 55a and 55b pass through the valve disc 53 at radially spaced locations, so that by rotation of the disc 53 any one of the apertures 55 can be brought into registry with a passage 56 extending through the base of the end part 40 from the chamber 44.
  • Each of the exit apertures 55 is of a different diameter, so that by bringing a selected one of the apertures 55 into registry with the passage 56, a particular rate of flow of exiting gas can be achieved.
  • the canister 11, as shown in FIG. 2 is adapted to securely contain a quantity of closely packed granules of a carbonic gas-absorbing substance. Since suitableabsorbing materials tend to become reduced in volume with use, a spring-biased mechanism is preferably provided to hold the absorbing material.
  • a perforated disc or screen 60, slidably fitted within the canister 11, has a centrally positioned baffle plate 61 to which the narrow end of a generally helical spring 62 is received between a pair of annular lips or flanges 65 extending outwardly from the sleeve 11 within the conical end piece 12a.
  • the patient end of the canister 11 is fitted with a perforated plate or screen 66 for containing the carbonic gas-absorbing material while permitting passage of gases to and through the absorbent material.
  • a second baffle plate 67 in the fonn of a flat disc is secured at the center of the perforated disc 66 in alignment with the baffle plate 61.
  • the two baffles 61 and 66 prevent gas from following a direct course through the middle of the canister 11, since such channeling results in inefiicient nonuniform consumption of the absorbing material.
  • the breathing bag 70 shown in operating position secured to the bag holder 15 in FIG. 1, is of the conventional pecan shape and is preferably of lightweight elastic material.
  • FIG. 1 also shows a conventional respiratory face mask 71 in operating position secured to the mask elbow 43.
  • the inlet branch element 24 may be provided with a small transversely extending nipple 24a for connection to a pressure-measuring manometer for determining the flow through the rebreathing devices.
  • the inlet branch 24 is connected to a source of air or anesthetic gases under pressure and a face mask or other means supplying gases to a patients respiratory circuit is connected to the elbow 43.
  • the exhaled gases pass into the chamber 44 and thence through the carbonic gas-absorbing material in the canister 11 to be either recycled to the patient through the bypass tube 14 or held in the breathing bag 70, which serves as a gas reservoir.
  • Gas entering the inlet branch 24 is diluted with exhaled air from which carbon dioxide has been removed by its passage through the carbonic gas-absorbing material in the canister 11. This effect is produced by the action of the venturi at 31 where gases from the chamber 23 are drawn through the apertures 31a into the swiftly flowing stream passing from the inlet branch 24 to the outlet branch 32.
  • the dimensions of the system are so elected that the hydrodynamic forces active at the venturi result in a 10 l dilution of input gas by gases to be recycled.
  • a flow rate of 20 liters per minute has been achieved with an input rate of 2 liters per minute.
  • the mixed stream of input gases and gases recycled from the patients breathing circuit then passes through the bypass conduit 34 to the chamber 44 at the patient end of the device.
  • the action of the second venturi removes expired gases from the mask of the patient by suction produced in the swift flow of recycled gases through the narrow aperture 45 into the upwardly widening chamber 44.
  • This second venturi balances the flow so that there is negligible resistance even to the breathing of newborn infants.
  • the patient always inhales CO,-free gas because of the absorption efficiency of the system. Exhaled gases are quickly swept into the canister by the flow through the second venturi so the patient does not rebreathe unpurified gases.
  • Pressure in the system is easily controlled without any necessity for repeated adjustments of the rate of input flow. Any excess gas can be vented out at the desired rate through the exit valve 52 by opening the valve to one of its five open positions.
  • the absorber can be used in combination with commercially available vaporizers such as the Takaoka Universal Vaporizer for maintaining anesthetic concentration constant during spontaneous, assisted or controlled ventilation.
  • commercially available vaporizers such as the Takaoka Universal Vaporizer for maintaining anesthetic concentration constant during spontaneous, assisted or controlled ventilation.
  • the semiclosed nature of the system of the invention results in economical consumption of anesthetic agents while assuring easy pressure control.
  • Any gaseous or volatile anesthetic agent compatible with the material used for the absorption of carbonic gases can be administered with the device of the invention.
  • the rebreathing device of the invention is particularly suited to use for pediatric and neonatal anesthesia.
  • a rebreathing apparatus for the recirculation to a patient of air or air plus an anesthetic combined with fresh gases from a source of gases, of the type in which carbonic gas is removed from the gases exhaled by a patient comprising: a canister adapted to contain carbonic gas-absorbing material for purifying gases passing through it; two hollow end parts mounted on opposite ends of the canister, one end part being fitted with a gas reservoir means and the other and part including an offtake tube connected to means adapted for delivery of gases to a patient; an inlet tube on said one end part for admitting fresh gases under pressure and an outlet tube on said one end part aligned with the inlet tube, the inlet tube having an inwardly tapering orifice forming a venturi within the one end member for drawing gas circulated through the canister into a stream flowing from the inlet tube to the outlet tube; means in communication with said other end part permitting controlled escape of gases from said other end part; and conduit means extending from the outlet tube to the other end part adjacent the offtake
  • conduit means is a flexible tube extending longitudinally alongside the canister connected to said outlet tube and to an intake tube on said other end part, the intake tube lying perpendicular to the ofitake tube.
  • Apparatus according to claim 1 including a perforated element extending transversely across the inside of the canister and a spring means for biasing the perforated member toward said other end part for compacting carbonic gas-absorbing materials within the canister.
  • said means permitting controlled escape of gases includes and exit valve having a plurality of apertures, the valve being selectively adjustable to bring one of said apertures into registry with an exhaust passage from said other end part for selectively controlling gas pressure to a patient.
  • said canister includes two transversely extending perforated plates for containing said absorbing material therebetween, each of said plates having a centrally disposed bafile for preventing channeling of gases through the absorbing material.

Abstract

A device for recirculating air to a patient combining the simplicity of the to and fro type of apparatus with the advantages of the circle type. Dead space is avoided by use of two venturis which enhance flow rate through a canister of carbonic gas-absorbing material. The absence of valves lowers resistance and increases efficiency.

Description

United States Patent [72] lnventor Kentaro Takaoka 2,325,049 7/1943 Frye et a1 128/191 R 1 a a par Laurenco l-c, Sao Paulo, Brazil 2,352,523 6/ 1944 Emerson 128/202 21 A L N 2,891,542 6/1959 Pentecost. .1 128/188 [22] Filed 3,097,642 7/1963 Russell 128/202 X [45] Patented 3,200,818 8/1965 Johannisson 128/202 Continuation-impart of application Ser. No. FOREIGN PATENTS 596,266 1966 569,201 1 1924 France 128/202 1,298,409 6/1962 France 128/202 277,995 9/1914 Germany.. 128/191 318,786 2/1920 Germany.. 128/191 277,961 9/1930 Italy 128/191 78,842 8/1955 Netherlands 128/195 [54] REBREATHING APPARATUS FOR ANESTHESIA 10 Claims, 4 Drawing Figs Przmary Examiner-Richard A. Gaudet Assistant Examiner-Kyle L. Howell [52] U.S. Cl 128/188, mmmey Alben Parker 128/191,128/195,128/202,128/205 [51] Int. Cl A6lm 17/00 [50] Field of Search 128/188, ABSTRACT; A device for recirculating air to a patient com- 195, 191 A bining the simplicity of the to and fro type of apparatus with the advantages of the circle type. Dead space is avoided by use [56] Reierences cued of two venturis which enhance flow rate through a canister of UNlTED STATES PATENTS carbonic gas-absorbing material. The absence of valves lowers 802,339 10/1905 DeTrey 128/202 resistance and increases efficiency.
1i 'IIIIIII'IIIIII/IIM m VIIIIMIM'IIIIIIIII'III' REBREATI'IING APPARATUS FOR ANESTHESIA CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of my copending application Ser. No. 596,266, filed Nov. 22, 1966, now abandoned and entitled REBREATHING APPARATUS FOR ANES'IHESIA.
BACKGROUND OF THE INVENTION 1. Field of the Invention g The present invention relates to a rebreathing apparatus for use in anesthesia to provide a continued supply of air or an anesthetic gas mixture to a patient by purifying and returning exhaled gases to a patient mingled with freshly supplied gases.
2. Description of the Prior Art There are two well-known types of rebreathing devices in the art of anesthesiology. Since exhaled gases in both such types of rebreathing devices include means for removing carbonic gases by absorption, these rebreathing devices are commonly called absorbers."
The type of rebreathing device known as a circle absorber comprises two tubular branches connected by a Y- piece to a fitting or mask through which the, patient breathes, with exhaled gases passing through one branch to a carbonic gas removing element, and recycled gases for inhalation flowing to the patient through the other branch.
In the circle-type absorber two directional valves are necessary to control gas circulation. Because of the resistance suchvalves present, it is necessary that different models of a circle absorber of any given design be provided, one model being adapted to use in the anesthesia of children.
The second type of rebreathing device is called the to and fro" or pendular" absorber. The construction of the to and fro absorber is simpler than that of the circle absorber, but there are serious disadvantages to its use.
In both types of absorber carbonic gas is removed by passage of exhaled gas through a canister of CO absorbing material, such as crystalline soda lime. In the to and fro type of absorber gases pass back and forth through the CO absorbing material. As the granules of absorbent material become saturated with CO some intergranular space in the canister is exhausted. This henceforth useless space is called dead space." Since the tidal volume, or volume of air or gases breathed in and out by an infant or child is much less than that of an adults respiration, the amount of dead space in the device is critical, and devices of varied sizes must be used for the various age groups to avoid endangering the life of the patient.
SUMMARY OF THE INVENTION The rebreathing apparatus of the invention comprises a cylindrical canister for CO, absorbing material, fitted at each end with a truncated conical cap. One cap has a fitting for a breathing bag and an inlet for gases under pressure, and the other has a tubular extension provided with a right-angle mask elbow for direct connection to a breathing mask or endotracheal tube.
The device differs from the to and fro absorber in that a bypass hose or tube extends externally of the canister for circulatory flow of pure gases from the bag end to the patient end of the system. A venturi is provided near each end of the bypass tube. At the inlet end, gas admitted has its velocity increased, flowing rapidly through the bypass tube after picking up purified gases leaving the canister. At the patient end a second venturi directs the flow of expired gases into the canister and compensates for pressure differences so that the system presents virtually no resistance to respiration.
A selectively adjustable exit.valve at the patient and of the system permits control of the venting of excess gas, thereby keeping the breathing bag semiinfiated without any need for precise inflow adjustment.
Thus absorption efficiency is increased by a high-velocity circulation of gases, eliminating canister dead space. The capacity of the CO, absorbing material is uniformly exhausted. Thus the system provides the advantages of a circle absorber while retaining the simplicity of a to and fro absorber.
It is accordingly an object of the invention to provide a rebreathing device for anesthesia characterized by efficient CO absorption and maximum reduction of apparatus dead space.
A further object is to provide a semiclosed rebreathing system for economy of anesthetic agents and which allows spontaneous, assisted or manually controlled ventilation.
Another object of the invention is to provide a versatile, portable rebreathing apparatus having minimal respiratory resistance due to the absence of inspiratory and expiratory valves.
Other objects and advantages of the invention will become apparent from the following detailed description, taken together with the accompanying drawings illustrating a specific embodiment of the rebreathing device.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a view in perspective of a rebreathing device in accordance with the invention;
FIG. 2 is an enlarged sectional view of the apparatus of FIG. 1 with some parts omitted;
FIG. 3 is a side view of the apparatus of FIG. 1 taken along a line perpendicular to FIG. 2 with some parts shown in section and some parts omitted;
FIG. 4 is a detail view of an adjustable exit valve of the apparatus.
DETAILED DESCRIPTION OF THE INVENTION Referring to FIG. 1, the rebreathing device of the invention is generally indicated by the reference numeral 10. A generally cylindrical canister 11 having truncated tubular end pieces 12 and 12a is adapted to contain a quantity of carbonic gas absorbing material, such as that distributed under the trademark SODASORB. As shown, the canister 11 and end pieces I2 are of sheet metal, but the canister might also be of synthetic resinous material, such as Lucite. A reversible canister might be employed, if desired.
Referring now to FIG. 2, it can be seen that the lower end part 12a is removably secured to the canister 11 by a knurled ringlike fitting 13 within which an annular gasket 14 is fitted to seal the joint against gas leakage. The upper end piece 12 may be permanently secured to the canister II as shown. This arrangement permits removal of the canister I I for refilling with CO absorbing material.
The inlet end of the device, shown lowermost in FIGS. 2 and 3, includes a male bag holder fitting 15, generally tubular in shape with an outwardly directed lip 16 for engaging a breathing bag, the fitting tapering inwardly beyond the lip 16 at 17. Mounted within the fitting 15 and extending outwardly therefrom is a basketlike element 20 for insertion into a breathing bag to keep the bags mouth open for entry and exit of gases.
As best shown in FIG. 3 the bag holder 15 is formed as an extension of a generally tubular member 21, mounted on and extending into the lower conical end piece 12a. The member 21 has a central cavity 23. The member 21 is secured to the end piece 12 by a sleeve 22 fitted into the end piece.
The sleeve 22 receives inwardly the tubular member 21 and tightly seals the connection against gas leakage.
A gas inlet and circulation element 24 extends transversely through the tubular member 21.
The element 24 serves as inlet conduit for input anesthesia gases and/or air and as an means for mixing input gases with recycled purified gases.
One end of the element 24 is formed generally as a nipple 25 for connection to a connective tube. A tapering passage 26 through the nipple 25 is fitted with a porous filter element 27 forcleaning the input gases. As clearly shown, the passage 26 has a gradually stepped, inwardly narrowing taper, terminating in a very narrow passageway at 30, centrally of the chamber 23, serving to greatly increase the velocity of input gases.
Interfitted with the inner end of the inlet element 24 adjacent the end of the passageway is the inner end 31 of a generally tubular outlet element 32 for the mixture of input gases and recycled gases. Like the element 24 the outlet element 32 is fonned as a nipple at 33 for connection to a bypass hose or other conduit 34 shown in FIG. 1.
A generally conical central orifice 35 through the outlet branch element 32 has a gradual outwardly widening taper. The orifice 35 of the outlet branch 32 is aligned with and in registry with the central orifice 26 of the inlet branch 24. Adjacent the point where the orifices 26 and 35 approach each other the stream of gases flowing rapidly therethrough contacts the gases within the chamber 23, thereby acting as a venturi to suck in gases from the surrounding chamber 23.
As shown in FIG. 2, the narrowed inner ends of the orifices 26 and 35 open into a small chamber 31 formed within the outlet branch element 32. The small chamber 31 is in communication with the surrounding chamber 23 by way of a plurality of openings 310 formed through the wall of the outlet branch element 32. Thus, as stream of rapidly flowing gases from the constricted portion 30 of the inlet orifice 26 pass toward and into the outlet orifice 35 the venturi effect in the small chamber 31 draws purified gases from the chamber 23 into the rapidly flowing gas stream through the openings 31a.
The inlet branch element 24 and the outlet branch element 32 have outer diameters smaller than the diameter of the tubular chamber 23 so that gases may flow freely to and from the breathing bag through the chamber 23. As shown in FIG. 2, the inner end of the inlet branch element 24 is threadly received within the inner end of the outlet branch 32 for easy assembly and disassembly.
At the opposite end of the canister 12, i.e., the patient end of the apparatus, the conical end piece 12 is threadedly secured to a generally cup-shaped end piece into which a transversely extending circulation tube 41 is fitted. The circulation pipe 41 is formed as a nipple at 42 is fitted. The circulation pipe 41 is formed as a nipple at 42 to receive the patient end of the bypass tube 34.
At right angles to the circulation pipe 41 and transversely oriented with respect to the end piece 40 is a mask elbow 43, threadedly secured to the end piece 40. A sealing gasket 43a serves to prevent leakages at the joint. Both the mask elbow 43 and the circulation pipe 42 have axially extending passages in communication with a generally cylindrical chamber 44 fonned within the end piece 40. The chamber 44 opens on to the conical end piece 12 so that gases may flow freely therethrough to the canister 11.
The circulation pipe 42 is tubular and has its end in abutment with a wall of the end part 40. An aperture 45 through the wall of the circulation pipe 42, directed toward the canister 11, permits gases flowing through the end pipe 42 to enter into the chamber 44. Since the gases flow rapidly through the restricted aperture 45 into the larger chamber 44 the venturi efi'ect operates, inducing gases in the chamber 44 to tend to flow towards the canister 11. This second venturi overcomes resistance to patient respiration.
The mask elbow 43 has double generally annular walls, an outer wall and an inner wall 51, formed with a slight double conical taper for easy connection either to a conventional breathing mask for a patient, as shown in FIG. 1, or for connection to an endotracheal tube.
As shown in FIGS. 2, 3 and 4, there is an exit valve 52 at the base of the cuplike end part 40. The valve 52 has a disc 53 rotatably secured at its axis to the end part 40 by a pin 54. Five exit apertures 55, two of which are shown in the FIG. 3 at 55a and 55b pass through the valve disc 53 at radially spaced locations, so that by rotation of the disc 53 any one of the apertures 55 can be brought into registry with a passage 56 extending through the base of the end part 40 from the chamber 44. Each of the exit apertures 55 is of a different diameter, so that by bringing a selected one of the apertures 55 into registry with the passage 56, a particular rate of flow of exiting gas can be achieved.
A spring and ball check device 57 mounted in a recess in the end part 50 cooperates with spaced depressions in the back of the valve disc 53 to lock the valve 52 in the chosen position.
The canister 11, as shown in FIG. 2 is adapted to securely contain a quantity of closely packed granules of a carbonic gas-absorbing substance. Since suitableabsorbing materials tend to become reduced in volume with use, a spring-biased mechanism is preferably provided to hold the absorbing material. A perforated disc or screen 60, slidably fitted within the canister 11, has a centrally positioned baffle plate 61 to which the narrow end of a generally helical spring 62 is received between a pair of annular lips or flanges 65 extending outwardly from the sleeve 11 within the conical end piece 12a.
The patient end of the canister 11 is fitted with a perforated plate or screen 66 for containing the carbonic gas-absorbing material while permitting passage of gases to and through the absorbent material. A second baffle plate 67 in the fonn of a flat disc is secured at the center of the perforated disc 66 in alignment with the baffle plate 61. The two baffles 61 and 66 prevent gas from following a direct course through the middle of the canister 11, since such channeling results in inefiicient nonuniform consumption of the absorbing material.
The breathing bag 70, shown in operating position secured to the bag holder 15 in FIG. 1, is of the conventional pecan shape and is preferably of lightweight elastic material. FIG. 1 also shows a conventional respiratory face mask 71 in operating position secured to the mask elbow 43.
The inlet branch element 24 may be provided with a small transversely extending nipple 24a for connection to a pressure-measuring manometer for determining the flow through the rebreathing devices.
v MODE OF OPERATION In ordinary operation the inlet branch 24 is connected to a source of air or anesthetic gases under pressure and a face mask or other means supplying gases to a patients respiratory circuit is connected to the elbow 43.
As the patient exhales the exhaled gases pass into the chamber 44 and thence through the carbonic gas-absorbing material in the canister 11 to be either recycled to the patient through the bypass tube 14 or held in the breathing bag 70, which serves as a gas reservoir.
Gas entering the inlet branch 24 is diluted with exhaled air from which carbon dioxide has been removed by its passage through the carbonic gas-absorbing material in the canister 11. This effect is produced by the action of the venturi at 31 where gases from the chamber 23 are drawn through the apertures 31a into the swiftly flowing stream passing from the inlet branch 24 to the outlet branch 32.
Preferably the dimensions of the system are so elected that the hydrodynamic forces active at the venturi result in a 10 l dilution of input gas by gases to be recycled. Thus a flow rate of 20 liters per minute has been achieved with an input rate of 2 liters per minute.
The mixed stream of input gases and gases recycled from the patients breathing circuit then passes through the bypass conduit 34 to the chamber 44 at the patient end of the device. Here the action of the second venturi removes expired gases from the mask of the patient by suction produced in the swift flow of recycled gases through the narrow aperture 45 into the upwardly widening chamber 44.
The action of this second venturi balances the flow so that there is negligible resistance even to the breathing of newborn infants.
A constant rapid velocity circulation of gases is maintained through the system, regardless of whether the patient is inspiring or expiring. This results in higher absorption efficiency by eliminating canister in circulating through the system the temperature of inhaled gases is kept low.
The patient always inhales CO,-free gas because of the absorption efficiency of the system. Exhaled gases are quickly swept into the canister by the flow through the second venturi so the patient does not rebreathe unpurified gases.
Pressure in the system is easily controlled without any necessity for repeated adjustments of the rate of input flow. Any excess gas can be vented out at the desired rate through the exit valve 52 by opening the valve to one of its five open positions.
In inducing narcosis in a patient the input flow of gases and anesthetic is diluted to a concentration of one-tenth that of the supply by the rebreathed gases. Gradually but steadily the concentration of anesthetic in the gas mixture increases as the gases with entrained anesthetic are recycled to the patient. Induction is smooth and quick.
The absorber can be used in combination with commercially available vaporizers such as the Takaoka Universal Vaporizer for maintaining anesthetic concentration constant during spontaneous, assisted or controlled ventilation.
The semiclosed nature of the system of the invention results in economical consumption of anesthetic agents while assuring easy pressure control. Any gaseous or volatile anesthetic agent compatible with the material used for the absorption of carbonic gases can be administered with the device of the invention.
The rebreathing device of the invention is particularly suited to use for pediatric and neonatal anesthesia.
It will be apparent to those skilled in the art that various modifications and substitutions can be made in the rebreathing apparatus disclosed herein without departing from the spirit and scope of the invention.
What is claimed is:
l. A rebreathing apparatus for the recirculation to a patient of air or air plus an anesthetic combined with fresh gases from a source of gases, of the type in which carbonic gas is removed from the gases exhaled by a patient, comprising: a canister adapted to contain carbonic gas-absorbing material for purifying gases passing through it; two hollow end parts mounted on opposite ends of the canister, one end part being fitted with a gas reservoir means and the other and part including an offtake tube connected to means adapted for delivery of gases to a patient; an inlet tube on said one end part for admitting fresh gases under pressure and an outlet tube on said one end part aligned with the inlet tube, the inlet tube having an inwardly tapering orifice forming a venturi within the one end member for drawing gas circulated through the canister into a stream flowing from the inlet tube to the outlet tube; means in communication with said other end part permitting controlled escape of gases from said other end part; and conduit means extending from the outlet tube to the other end part adjacent the offtake tube for supplying a patient with recirculated gases mixed with fresh gases.
2. Apparatus according to claim 1 wherein said conduit means is a flexible tube extending longitudinally alongside the canister connected to said outlet tube and to an intake tube on said other end part, the intake tube lying perpendicular to the ofitake tube.
3. Apparatus according to claim 2 wherein said intake tube has a tube portion extending within said other hollow end part, the tube portion having an opening directed toward the canister thus providing a second venturi for enhancing circulation.
4. Apparatus according to claim 1 including a perforated element extending transversely across the inside of the canister and a spring means for biasing the perforated member toward said other end part for compacting carbonic gas-absorbing materials within the canister.
5. Apparatus according to claim 1 wherein the canister is cylindrical, and the hollow end parts include truncated conical extensions terminating in hollow cylindrical members.
6. Apparatus according to claim 5 wherein said offtake tube extends perpendicularly from the hollow cylindrical member of said other end part.
7. Apparatus according to claim 1, wherein an inner end of said inlet tube and an inner end of said outlet tube are interfitted within a space defined inside said one hollow end part, a small chamber being defined by said outlet tube adjacent the point at which said inlet and outlet tubes are interfitted, said small chamber being in communication with the space defined within said one end part whereby recirculated gases may flow into the chamber from said space.
8. Apparatus according to claim 1 wherein said means permitting controlled escape of gases includes and exit valve having a plurality of apertures, the valve being selectively adjustable to bring one of said apertures into registry with an exhaust passage from said other end part for selectively controlling gas pressure to a patient.
9. Apparatus according to claim 1 wherein said gas reservoir means is an inflatable breathing bag.
10. Apparatus according to claim 1 wherein said canister includes two transversely extending perforated plates for containing said absorbing material therebetween, each of said plates having a centrally disposed bafile for preventing channeling of gases through the absorbing material.

Claims (10)

1. A rebreathing apparatus for the recirculation to a patient of air or air plus an anesthetic combined with fresh gases from a source of gases, of the type in which carbonic gas is removed from the gases exhaled by a patient, comprising: a canister adapted to contain carbonic gas-absorbing material for purifying gases passing through it; two hollow end parts mounted on opposite ends of the canister, one end part being fitted with a gas reservoir means and the other end part including an offtake tube connected to means adapted for delivery of gases to a patient; an inlet tube on said one end part for admitting fresh gases under pressure and an outlet tube on said one end part aligned with the inlet tube, the inlet tube having an inwardly tapering orifice forming a venturi within the one end member for drawing gas circulated through the canister into a stream flowing from the inlet tube to the outlet tube; means in communication with said other end part permitting controlled escape of gases from said other end part; and conduit means extending from the outlet tube to the other end part adjacent the offtake tube for supplying a patient with recirculated gases mixed with fresh gases.
2. Apparatus according to claim 1 wherein said conduit means is a flexible tube extending longitudinally alongside the canister connected to said outlet tube and to an intake tube on said other end part, the intake tube lying perpendicular to the offtake tube.
3. Apparatus according to claim 2 wherein said intake tube has a tube portion extending within said other hollow end part, the tube portion having an opening directed toward the canister thus providing a second venturi for enhancing circulation.
4. Apparatus according to claim 1 including a perforated element extending transversely across the inside of the canister and a spring means for biasing the perforated member toward said other end part for compacting carbonic gas-absorbing materials within the canister.
5. Apparatus according to claim 1 wherein the canister is cylindrical, and the hollow end parts include truncated conical extensions terminating in hollow cylindrical members.
6. Apparatus according to claim 5 wherein said offtake tube extends perpendicularly from the hollow cylindrical member of said other end part.
7. Apparatus according to claim 1, wherein an inner end of said inlet tube and an inner end of said outlet tube are interfitted within a space defined inside said one hollow end part, a small chamber being defined by said outlet tube adjacent the point at which said inlet and outlet tubes are interfitted, said small chamber being in communication with the space defined within said one end part whereby recirculated gases may flow into the chamber from said space.
8. Apparatus according to claim 1 wherein said means permitting controlled escape of gases includes and exit valve having a plurality of apertures, the valve being selectively adjustable to bring one of said apertures into registry with an exhaust passage from said other end part for selectively controlling gas pressure to a patient.
9. Apparatus according to claim 1 wherein said gas reservoir means is an inflatable breathing bag.
10. Apparatus according to claim 1 wherein said canister includes two transversely extending perforated plates for containing said absorbing material therebetween, each of said plates having a centrally disposed baffle for preventing channeling of gases through the absorbing material.
US12598A 1970-02-19 1970-02-19 Rebreathing apparatus for anesthesia Expired - Lifetime US3612048A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1259870A 1970-02-19 1970-02-19

Publications (1)

Publication Number Publication Date
US3612048A true US3612048A (en) 1971-10-12

Family

ID=21755738

Family Applications (1)

Application Number Title Priority Date Filing Date
US12598A Expired - Lifetime US3612048A (en) 1970-02-19 1970-02-19 Rebreathing apparatus for anesthesia

Country Status (1)

Country Link
US (1) US3612048A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894537A (en) * 1974-02-07 1975-07-15 Nat Camp Steam nebulizer
US3942524A (en) * 1974-11-08 1976-03-09 The United States Of America As Represented By The Secretary Of The Interior Emergency breather apparatus
US4108172A (en) * 1975-09-25 1978-08-22 Moore Jr George B Carbon dioxide absorption canister for use with analgesia equipment
US4350662A (en) * 1981-01-22 1982-09-21 The United States Of America As Represented By The Secretary Of The Navy Carbon dioxide absorbent canister with breathing gas temperature and flow control
US4781184A (en) * 1984-01-13 1988-11-01 Fife William P Closed circuit breathing apparatus and method of using same
US5279289A (en) * 1991-10-15 1994-01-18 Kirk Gilbert M Resuscitator regulator with carbon dioxide detector
US5375592A (en) * 1993-04-08 1994-12-27 Kirk; Gilbert M. Carbon dioxide detector and shield
US5558088A (en) * 1991-05-13 1996-09-24 Smith; Charles A. Single patient use disposable carbon dioxide absorber which is patient tidal volume dependent and self-regulating
US5749358A (en) * 1996-10-10 1998-05-12 Nellcor Puritan Bennett Incorporated Resuscitator bag exhaust port with CO2 indicator
WO2000002610A1 (en) * 1998-07-10 2000-01-20 Enternet Medical, Inc. Apparatus for providing heat/moisture to respiratory gases
US6095135A (en) * 1998-07-10 2000-08-01 Enternet Medical, Inc. Apparatus for providing benefits to respiratory gases
US6123075A (en) * 1991-10-15 2000-09-26 Mallinckrodt, Inc. Resuscitator regulator with carbon dioxide detector
EP1192968A1 (en) * 2000-09-29 2002-04-03 DHD Healthcare Corporation HME bypass system
US20060130839A1 (en) * 2002-12-12 2006-06-22 Oleg Bassovitch Breathing apparatus for hypoxic pre-acclimatization and training
US20060150977A1 (en) * 2003-01-17 2006-07-13 Arthas Flabouris Respiratory assist device and method of providing respiratory assistance
US20070083094A1 (en) * 2005-10-11 2007-04-12 Colburn Joel C Medical sensor and technique for using the same
US20080072905A1 (en) * 2006-09-25 2008-03-27 Baker Clark R Carbon dioxide-sensing airway products and technique for using the same
US20080078394A1 (en) * 2006-09-25 2008-04-03 Rafael Ostrowski Carbon dioxide detector having borosilicate substrate
US20080081003A1 (en) * 2006-09-25 2008-04-03 Rafael Ostrowski Carbon dioxide detector having borosilicate substrate
US20080083265A1 (en) * 2006-09-25 2008-04-10 Rafael Ostrowski Carbon dioxide detector having borosilicate substrate
US20090165801A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Carbon dioxide detector having an acrylic based substrate
US20090246797A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Medical device for the assessment of internal organ tissue and technique for using the same
US20100192947A1 (en) * 2009-02-04 2010-08-05 Jeff Mandel Anesthetic delivery system and methods of use
US7811276B2 (en) 2005-11-10 2010-10-12 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7993071B2 (en) 2006-10-25 2011-08-09 Burrell E. Clawson Assemblies for coupling two elements and coupled assemblies
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US20120255547A1 (en) * 2009-10-07 2012-10-11 Alcmair Partners Bv Apparatus for respirating of patients
US8396524B2 (en) 2006-09-27 2013-03-12 Covidien Lp Medical sensor and technique for using the same
US8431088B2 (en) 2006-09-25 2013-04-30 Covidien Lp Carbon dioxide detector having borosilicate substrate
US20200289780A1 (en) * 2014-09-17 2020-09-17 Fisher & Paykel Healthcare Limited Connectors for respiratory assistance systems

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE277995C (en) *
DE318786C (en) * 1900-01-01
US802339A (en) * 1905-04-17 1905-10-17 August De Trey Inhaler.
FR569201A (en) * 1922-10-04 1924-04-09 General anesthesia machine
US2325049A (en) * 1942-02-27 1943-07-27 Henry H Frye Breathing apparatus
US2352523A (en) * 1941-08-13 1944-06-27 John H Emerson Apparatus and method for artificially inducing breathing
US2891542A (en) * 1956-10-25 1959-06-23 Paul S Pentecost Infant anesthetic machine
FR1298409A (en) * 1961-05-30 1962-07-13 Respiratory System Improvements
US3097642A (en) * 1956-08-21 1963-07-16 Allan M Russell Face mask
US3200818A (en) * 1961-11-17 1965-08-17 Gasaccumulator Svenska Ab Breathing apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE277995C (en) *
DE318786C (en) * 1900-01-01
US802339A (en) * 1905-04-17 1905-10-17 August De Trey Inhaler.
FR569201A (en) * 1922-10-04 1924-04-09 General anesthesia machine
US2352523A (en) * 1941-08-13 1944-06-27 John H Emerson Apparatus and method for artificially inducing breathing
US2325049A (en) * 1942-02-27 1943-07-27 Henry H Frye Breathing apparatus
US3097642A (en) * 1956-08-21 1963-07-16 Allan M Russell Face mask
US2891542A (en) * 1956-10-25 1959-06-23 Paul S Pentecost Infant anesthetic machine
FR1298409A (en) * 1961-05-30 1962-07-13 Respiratory System Improvements
US3200818A (en) * 1961-11-17 1965-08-17 Gasaccumulator Svenska Ab Breathing apparatus

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894537A (en) * 1974-02-07 1975-07-15 Nat Camp Steam nebulizer
US3942524A (en) * 1974-11-08 1976-03-09 The United States Of America As Represented By The Secretary Of The Interior Emergency breather apparatus
US4108172A (en) * 1975-09-25 1978-08-22 Moore Jr George B Carbon dioxide absorption canister for use with analgesia equipment
US4350662A (en) * 1981-01-22 1982-09-21 The United States Of America As Represented By The Secretary Of The Navy Carbon dioxide absorbent canister with breathing gas temperature and flow control
US4781184A (en) * 1984-01-13 1988-11-01 Fife William P Closed circuit breathing apparatus and method of using same
US5558088A (en) * 1991-05-13 1996-09-24 Smith; Charles A. Single patient use disposable carbon dioxide absorber which is patient tidal volume dependent and self-regulating
US5679884A (en) * 1991-10-15 1997-10-21 Kirk; Gilbert M. Resuscitator with carbon dioxide detector
US6123075A (en) * 1991-10-15 2000-09-26 Mallinckrodt, Inc. Resuscitator regulator with carbon dioxide detector
US5279289A (en) * 1991-10-15 1994-01-18 Kirk Gilbert M Resuscitator regulator with carbon dioxide detector
US6427687B1 (en) 1991-10-15 2002-08-06 Mallinckrodt, Inc. Resuscitator regulator with carbon dioxide detector
US5456249A (en) * 1991-10-15 1995-10-10 Kirk; Gilbert M. Resuscitator with carbon dioxide detector
US5517985A (en) * 1993-04-08 1996-05-21 Kirk; Gilbert M. Carbon dioxide detector and shield
US5375592A (en) * 1993-04-08 1994-12-27 Kirk; Gilbert M. Carbon dioxide detector and shield
US5749358A (en) * 1996-10-10 1998-05-12 Nellcor Puritan Bennett Incorporated Resuscitator bag exhaust port with CO2 indicator
US6095135A (en) * 1998-07-10 2000-08-01 Enternet Medical, Inc. Apparatus for providing benefits to respiratory gases
US6363930B1 (en) * 1998-07-10 2002-04-02 Enternet Medical, Inc. Apparatus for providing heat/moisture to respiratory gases
WO2000002610A1 (en) * 1998-07-10 2000-01-20 Enternet Medical, Inc. Apparatus for providing heat/moisture to respiratory gases
EP1192968A1 (en) * 2000-09-29 2002-04-03 DHD Healthcare Corporation HME bypass system
US6588421B1 (en) 2000-09-29 2003-07-08 Dhd Healthcare Corporation HME bypass system
AU782790B2 (en) * 2000-09-29 2005-08-25 Smiths Medical Asd, Inc. HME bypass system
US20060130839A1 (en) * 2002-12-12 2006-06-22 Oleg Bassovitch Breathing apparatus for hypoxic pre-acclimatization and training
US20060150977A1 (en) * 2003-01-17 2006-07-13 Arthas Flabouris Respiratory assist device and method of providing respiratory assistance
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US20070083094A1 (en) * 2005-10-11 2007-04-12 Colburn Joel C Medical sensor and technique for using the same
US7811276B2 (en) 2005-11-10 2010-10-12 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7992561B2 (en) 2006-09-25 2011-08-09 Nellcor Puritan Bennett Llc Carbon dioxide-sensing airway products and technique for using the same
US8128574B2 (en) 2006-09-25 2012-03-06 Nellcor Puritan Bennett Llc Carbon dioxide-sensing airway products and technique for using the same
US20080072905A1 (en) * 2006-09-25 2008-03-27 Baker Clark R Carbon dioxide-sensing airway products and technique for using the same
US20080081003A1 (en) * 2006-09-25 2008-04-03 Rafael Ostrowski Carbon dioxide detector having borosilicate substrate
US20080083265A1 (en) * 2006-09-25 2008-04-10 Rafael Ostrowski Carbon dioxide detector having borosilicate substrate
US8431088B2 (en) 2006-09-25 2013-04-30 Covidien Lp Carbon dioxide detector having borosilicate substrate
US20080077034A1 (en) * 2006-09-25 2008-03-27 Baker Clark R Carbon dioxide-sensing airway products and technique for using the same
US20080077036A1 (en) * 2006-09-25 2008-03-27 Baker Clark R Carbon dioxide-sensing airway products and technique for using the same
US20080072913A1 (en) * 2006-09-25 2008-03-27 Baker Clark R Carbon dioxide-sensing airway products and technique for using the same
US8109272B2 (en) 2006-09-25 2012-02-07 Nellcor Puritan Bennett Llc Carbon dioxide-sensing airway products and technique for using the same
US20080078394A1 (en) * 2006-09-25 2008-04-03 Rafael Ostrowski Carbon dioxide detector having borosilicate substrate
US8454526B2 (en) 2006-09-25 2013-06-04 Covidien Lp Carbon dioxide-sensing airway products and technique for using the same
US8420405B2 (en) 2006-09-25 2013-04-16 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8431087B2 (en) 2006-09-25 2013-04-30 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8449834B2 (en) 2006-09-25 2013-05-28 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8396524B2 (en) 2006-09-27 2013-03-12 Covidien Lp Medical sensor and technique for using the same
US7993071B2 (en) 2006-10-25 2011-08-09 Burrell E. Clawson Assemblies for coupling two elements and coupled assemblies
US20090165801A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Carbon dioxide detector having an acrylic based substrate
US20090246797A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Medical device for the assessment of internal organ tissue and technique for using the same
US20100192947A1 (en) * 2009-02-04 2010-08-05 Jeff Mandel Anesthetic delivery system and methods of use
US20120255547A1 (en) * 2009-10-07 2012-10-11 Alcmair Partners Bv Apparatus for respirating of patients
US10835698B2 (en) * 2009-10-07 2020-11-17 Löwenstein Medical Technology S.A. Apparatus for respirating of patients
US20200289780A1 (en) * 2014-09-17 2020-09-17 Fisher & Paykel Healthcare Limited Connectors for respiratory assistance systems

Similar Documents

Publication Publication Date Title
US3612048A (en) Rebreathing apparatus for anesthesia
US4676239A (en) Anesthetic system
US10722674B2 (en) Respiratory face mask and breathing circuit assembly
JP5977786B2 (en) Nitric oxide generation system
US3945378A (en) Positive pressure breathing circuit
JP3249146B2 (en) Method and apparatus for reusing anesthetic gas in inhalation anesthesia
US5360002A (en) Single patient use disposable carbon dioxide absorber
US4120300A (en) Breathing apparatus
GB1498211A (en) Positive pressure breathing circuit
JPS59101159A (en) Artificial respirator having double-barreled jet pipe
US7007693B2 (en) Device and method of reducing bias flow in oscillatory ventilators
US4702241A (en) Self-contained jet pump breathing apparatus
US2868198A (en) Unidirectional valve for anesthesia equipment
US3794027A (en) Animal anesthesia machine
EP0047185B1 (en) Anaesthetic system
US5220915A (en) Air delivery and circulation means for a surgical drape
Lee A ventilating laryngoscope for inhalation anaesthesia and augmented ventilation during laryngoscopic procedures
Sykes Nonrebreathing valves
RU2219964C2 (en) Minimum-flow inhalation anesthesia apparatus
Baraka Functional classification of anaesthesia circuits
CN111375110A (en) Gas inhalation device capable of keeping concentration of gas entering respiratory tract constant and having no respiratory resistance
CN212491049U (en) Fool type double-level respirator
Jun et al. CIRCLE SYSTEM
CN215961605U (en) Special respirator of department of respiration air duct of being convenient for to fix
Milner Anaesthetic breathing systems