US3613672A - Mechanical ventricular assistance cup - Google Patents

Mechanical ventricular assistance cup Download PDF

Info

Publication number
US3613672A
US3613672A US840253A US3613672DA US3613672A US 3613672 A US3613672 A US 3613672A US 840253 A US840253 A US 840253A US 3613672D A US3613672D A US 3613672DA US 3613672 A US3613672 A US 3613672A
Authority
US
United States
Prior art keywords
cup
opening
liner
heart
apex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US840253A
Inventor
Peter Schiff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IABP Corp A DE CORP
Original Assignee
Peter Schiff
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peter Schiff filed Critical Peter Schiff
Application granted granted Critical
Publication of US3613672A publication Critical patent/US3613672A/en
Assigned to IABP CORPORATION A DE CORP reassignment IABP CORPORATION A DE CORP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SCHIFF PETER
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/191Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart mechanically acting upon the outside of the patient's native heart, e.g. compressive structures placed around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/289Devices for mechanical circulatory actuation assisting the residual heart function by means mechanically acting upon the patient's native heart or blood vessel structure, e.g. direct cardiac compression [DCC] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/465Details relating to driving for devices for mechanical circulatory actuation
    • A61M60/468Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being hydraulic or pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/861Connections or anchorings for connecting or anchoring pumps or pumping devices to parts of the patient's body

Definitions

  • PATENTEDUBT 19 Ian SHEET 1 BF 3 PETER ScH/FF INVEN'IYJR.
  • PATENTEDUCT 19 IHYI 3613.67 2 sum 2 ur 3 PETER SCH/FF INVILN'I'UR.
  • Conventional mechanical ventricular assistance cups for example, of the type described in copending application Ser. No. 785,652, filed Dec. 20, 1968 are normally comprised of a rigid shell or cup member having a large opening for receiving and positioning the heart therein and at least first and second ports for applying negative pressure and pulsatile pressure, respectively, to retain the heart within the cup and to provide assistive pumping action.
  • mechanical ventricular assistance cups of this general type are employed, the rigid shell structure requires a relatively large surgical incision to be made in the patient in order to insert and position the cup assembly around the ventricles of the heart.
  • This invention relates to improvements in mechanical ventricular assistance so as to yield a more flexible, versatile and effectively indestructible cup assembly.
  • Mechanical ventricular assistance may generally be utilized to provide either constant short term circulatory support or partial periodic longterm circulatory support.
  • ventricular assistance devices When mechanical ventricular assistance devices are used in either of the above-mentioned modes, it is desirable to be able to implant the device with a surgical incision of minimal size.
  • a semiflexible cup shell In order to reduce the size of the surgical incision, a semiflexible cup shell is utilized, which shell is of sufficient rigidity to aid in mechanical assistance during the diastole cycle and yet be manually compressible for insertion of the cup through a small surgical opening.
  • the cup has a construction which permits recording of an electrocardiogram in spite of the electrical insulating properties of the cup as well as providing long-term reliability as a result of its unique mechanical design.
  • cup assembly If such as cup assembly is utilized in a partial circulatory support or in a periodic long-term circulatory support mode, a rigid shell would severely interfere with the natural pumping of the heart such as, for example, in cases where the heart, when enlarged, would attempt to increase its size beyond the size of the rigid cup and thereby be restrained by the cup.
  • the cup shell is formed of a flexible material and is of such a nature, when dormant, as to be similar to the sack or periocardium which normally surrounds the heart.
  • the sacklike assistance device Upon demand, the sacklike assistance device must be capable of being made rigid so that it will support not only the systole action, but also the diastole or filling action of the ventricles.
  • the present invention is comprised of a mechanical ventricular assistance device having a flexible cup shell with the first large opening provided for receiving the ventricles of the heart.
  • a second opening provided at or near the apex of the cup is adapted to receive a negative pressure of an amplitude sufficient to retain the heart within the cup at least during 1 those periods in which the mechanical ventricular assistanc device is being activated.
  • a flexible shell or membrane is positioned within the interior of the cup and is sealed about the margin of the cup large opening and in the region of the opening located near the apex of the cup so as to form a hollow enclosure which communicates with a third cup opening for receiving alternating positive and negative (pulsatile) pressure to alternately expand and contract the flexible membrane and thereby impart a pumping action to the heart ventricles.
  • a conductive member positioned within the interior of the cup andadapted to engage the heart ventricles is electrically connected through a suitable lead to enable electrocardiograms of the heart action to be taken when the cup is either in its dormant or active state.
  • cup shell permits it to be manually squeezed or contracted together so as to reduce its overall size during insertion and thereby reduce the size of the incision required for insertion.
  • the flexible membrane is preferably formed of a material having a high tensile strength was to be capable of being easily collapsed while being substantially incapable of being stretched.
  • Theflexible membrane is preferably secured within the interior of the cup in the region of the apex by suitable adhesive means and is sandwiched between the metallic electrode and the semiflexible cup shell.
  • the remaining seal between the flexible diaphragm and the cup is obtained through the use of an adhesive material which adheres a marginal portion of the flexible membrance along the marginal exterior surface of the cup shell in the region of the cup shell large opening so as to eliminate tearing stresses at the seals between shell and membrane and causing the flexiblemembrane to experience only tensile or pulling stresses.
  • Theme of a flexible membrane having a high tensile strength renders the shell structure substantially indestructible due to the nature of the seals employed.
  • Another object of the present invention is to provide a novel mechanical ventricular assistance assembly having a cup shell which is flexible and inflatable to facilitate implantation within the body of a patient and necessitating only a minimal size incision for insertion thereof.
  • Still another object of the present invention is to provide a novel mechanical ventricular assistance assembly having a cup shell which is flexible and inflatable to facilitate implantation within the body of a patient and necessitating only a minimal size incision for insertion thereof and whereby the flexible membrane of the assembly which assists in the pumping action is formed of materials and is of a design such as to render the cup totally compatible with body tissue and substantially indestructible.
  • FIG. 1 is a perspective view showing one mechanical ventricular assistance cup assembly designed in accordance with the principles of the present invention.
  • FIG. 2 is a sectional view of the assembly shown in FIG. 1.
  • FIG. 4 is a sectional view of the cup assembly of FIG. 3.
  • FIG. 5 is a perspective view showing another preferred embodiment of the cup assembly of the present invention.
  • FIG. 6 is a sectional view of a portion of the cup assembly of FIG. 5 looking in the direction of arrows A-A.
  • FIG. 7 is a perspective view of a single tubular, inflated ring portion of the assembly of FIG. 3 useful in describing the effectiveness of the cup assembly shown therein.
  • FIG. 8 shows a portion of the cup assembly of FIG. 2, for example, in detail for purposes of explaining the structural advantages of the invention.
  • FIG. 8a shows a detailed sectional view of a portion of a conventional cup assembly for purposes of further explaining the advantages of the cup structure of the present invention.
  • FIG. I illustrates a perspective view of a mechanical ventricular assistance cup.
  • the assembly is comprised of a semiflexible cup shell 21 which may, for example, be formed of a rubber or plastic material having a fibrous matrix so as to prevent the cup material from being stretched while being yieldable and capable of being bent or contracted.
  • a large opening 21a is provided at the top end of the cup shell 21 as designated by numeral 21a, andis adapted to receive the ventricles of the heart.
  • the apex of the cup is provided with an opening, as shown best in FIG. 2, communicating with a fitting '10 which acts to secure a hollow tubular member 14 to the apex opening of the cup.
  • a sustained vacuum or negative holding pressure is applied through tube 14 t fitting 10 to retain the ventricles of the heart within the cup interior.
  • Pulsatile (i.e. alternating positive and negative) pumping pressures are applied through a hollow tubular member 11 and a fitting 12 to an opening provided intermediate the openings 21a and 21b.
  • This opening 21c which is provided along one surface of the cup, communicates with an enclosed interior volume to be more fully described.
  • a lip member 38 maintains a seal between the cup assembly and the AV groove, not shown, of the heart.
  • FIG. 2 shows the internal structure of the cup assembly in greater detail and includes an electrode member adapted to permit electrocardiogram recording, fibrillation and defibrillation in the manner set forth in detail, for example, in copending application Ser. No. 785,652, filed Dec. 20, I968.
  • FIG. 2 of this copending application shows the particular pressure sources employed for sustaining the heart within the cup and for providing the assistive mechanical pumping action.
  • the cup assembly further incorporates a flexible shell or membrane 35 having a construction which insures against the possible bursting of the membrane due to weaknessesin the design or material of the liner.
  • the lip 38 surrounding the large opening 21a of the cup is secured to liner 35 such as, for example, by a heating-sealing or by a suitable adhesive.
  • Liner 35 extends at its upper 'end about the margin of the cup defining opening 21a and the marginal portion of the liner extends downwardly along the outer surface of the cup and is secured to the marginal exterior portion of the cup 21 immediately adjacent opening 21a.
  • Liner 35 is preferably cemented by a suitable cement or adhesive applied at 22.
  • Liner, or membrane, 35 is further cemented in the region of the apex of the cup wherein one surface of liner 35 is cemented at 19 to the portion 21d of reduced cup thickness and is further cemented in the region 190 to the convex surface of stainless steel electrode 18 so that the liner 35 is sandwiched between electrode 18 and the reduced thickness portion 21d of cup 21.
  • a wire 15 is electrically connected to the stainless steel electrode 18 and extends through a suitable opening 2Ie provided in the reduced thickness portion 21d of cup 2] for connection to peripheral circuitry.
  • this electrode may be employed to couple the signals detected from the heart ventricle to an electrocardiogram.
  • the material of cup shell 21 is preferably of flexible nonstretchable material which may be, for example, a plastic material or a combination of a plastic or rubber material in conjunction with a fiberlike matrix embedded therein.
  • tubular member 14 retains the heart ventricles within the cup assembly.
  • Alternating positive and negative pressure pulses applied through tubular member 11 cause the flexible membrane 35 to alternately expand in the manner shown in FIG. 2 and contract so as to move closer to the interior surface of cup 21,
  • FIG. 3 The sectional view of FIG. 3, shown in FIG. 4, depicts the cup lip member 38 as being bonded to the exterior surface of liner 35 which is stretched about the marginal exterior portion of the tubular coil 52 in a manner similar to that shown in FIG. 2.
  • the liner is cemented in the region 22 which comprises the marginal exterior surface of the outer cup shell immediately surrounding opening 21a.
  • Adjacent coilsof elongated helically coiled tube 52 are preferably cemented to one another by a suitable adhesive or alternatively may be heat-sealed to one another.
  • FIG. 8a shows a sectional view of an upper cup portion of a conventional cup assembly such as, for example, of the type described in the above-mentioned application Ser. No. 785,652.
  • the liner or membrane 35 is joined to the upper marginal interior surface portion 220 of cup 22, which marginal portion is immediately adjacent the large cup opening 21a.
  • the portion 35a of membrane 35 is bonded to marginal portion 22a of the rigid glass cup by a suitable adhesive 36. Assuming that a membrane 35 of high tensile strength is employed, the membrane itself, although bendable, will undergo almost no stretching.
  • FIG. 8 shows the upper marginal portion of the cup structures of FIGS. 2 or 4, for example, wherein the membrane 35 formed of a material having high-tensile strength extends upwardly over the lip of the cup shell and downwardly along its outer marginal portion where it is bonded in the region 22 by a suitable bonding cement 36.
  • Dotted line portion 35 shows the membrane in the collapsed state.
  • the membrane moves to the expanded position shown by the solid line portion 35. Due to the high tensile strength of the membrane, substantially no tear stress is placed upon the bond between the membrane and the liner.
  • the tensile stress as represented by arrow 38a is distributed substantially equally over the entire bond between membrane 35 and cup 21.
  • the sandwiching of the bottom portion of liner 35 between electrode 18 and reduced thickness shell portion 21d similarly distributes the pulling stress substantially equally along the length of the membrane portion sandwiched between electrode 18 and shell portion 21d so as to provide a substantially indestructible structure in the apex region of the cup.
  • the flexible characteristics of either shell 21 of FIG. 2 or coiled shell 52 of FIG. 4 permits the cup to be squeezed (for example, by the hand) so as to be inserted through a relatively small surgical incision.
  • the fitting 12 shown in FIGS. I through 4 may be replaced by a right-angle" fitting of the type shown by fitting of FIGS. 1 through 4 to further reduce the amount of clearance required for insertion and implantation into the body of a patient.
  • the cup shown in FIGS. 3 and 4 may be made rigid by the injection ofa high-pressure pulse applied through tube 57.
  • the cup shown in FIGS. 3 and 4 may be caused to remain in a dormant state by removal of the pressure pulse, thereby deflating the coiled cup section. When in a dormant state, the cup assembly provides minimal interference to a heart unassisted by the mechanical pumping action.
  • FIG. 7 serves to explain the reason why the coiled cup assembly will remain rigid when in the inflated condition.
  • FIG. 7 shows in schematic fashion one full turn of the coiled cup 52.
  • the air pressure within each coil will be substantially equally distributed throughout.
  • the pressure along the interior surface of the coil shown in FIG. 7 will be equal to Kh'ird, where d is equal to the diameter of the coil shown in FIG. 7; h is equal to the height of the interior surface of the coil (assuming the coil to be of a square cross-sectional configuration for purposes of simplifying the description set forth herein); and where K is equal to a constant.
  • the pressure along the outer wall of the single loop of coil is equal to Kh(d+ Ar) wherein (d+Ar) is equal to the diameter of the outer wall of the single loop coil. Since the surface area of the outer wall of the single loop of coil is greater than the surface area of the inner wall of the single loop of coil (due to the increased diameter d-l-Ar), the equally distributed air pressure will cause the coiled shell portion 52 to assume the shape as shown best in FIG. 3, which structure will remain substantially rigid when inflated.
  • FIGS. 5 and 6 show another alternative embodiment of the present invention wherein the helically coiled portion of FIG. 3 is replaced by a vertically ribbed inflatable portion 52' which is comprised of first and second plastic sheets 53 and 54 (shown best in FIG. 6) which are joined by a suitable adhesive 55 at regularly spaced intervals to form the vertical ribs 56.
  • Inflating of the structure may occur in a manner similar to that shown in FIGS. 3 and 4 wherein a positive pressure pulse is applied through narrow diameter tube 57 to fill the inflatable structure with air.
  • Each of the hollow interior portions 58 may be joined to adjacent hollow interior portions by providing narrow communicating passageways 59 arranged in alternating fashion near the bottom edge of the structure 52' and providing similar narrow communicating portions (not shown) near the top edge of structure 52' interspersed with portions 59 so that a positive pressure pulse applied through narrow diameter tube 57 will pass through each of the hollow interior sections 58 in a serpentine fashion, until the air pressure is equally distributed throughout interior hollow sections 58.
  • the ribs 56 are shown as being vertically aligned in FIG. 5, it should be understood that these ribs may be arranged in horizontal fashion similar to the coiled tubular arrangement shown in FIG. 3.
  • the shell structure 52 will form a substantially rigid structure when inflated for the reasons as set forth in connection with the description of FIG. 7.
  • the structure of FIG. 5 is equally as versatile as that shown in FIGS. I and 3 insofar as being capable of being retained in either a dormant or active state while implanted within a patient.
  • the flexible membrane 35 shown in the present invention has a further advantage of the membrane structure 35 employed in conventional cup assemblies (for example, of the type described in copending application 785,652) in that the liner, by being bonded to the outside of the cup, increases the effective pumping area of the diaphragm as compared with conventional design, which has the liner bonded to the inside of the shell just below the cup lip 38. For this reason, higher pumping volumes and pressures are obtainable with the structure described herein.
  • FIG. 9 shows one preferred embodiment for the cup liner 35 wherein the liner may be comprised of a sheet of material 60 having high-tensile strength.
  • the liner may be comprised of a sheet of material 60 having high-tensile strength.
  • Some materials which have been found advantageous for use in this application are polyurethane which has a tensile strength of approximately 7,000 p.s.i. or Mylar which has a tensile strength of about 40,000 p.s.i.
  • Such materials are substantially nonstretchable when employed as a membrane in the present invention and are, therefore, practically indestructible.
  • these materials if sharply bent or creased, will deform along the crease and possibly develop a weakness along the crease which may be caused to tear after prolonged use essentially due to the repeated application of positive and negative pressure pulses to.
  • the sheet 60 of high-tensile strength material shown in FIG. 9 is coated along both surfaces thereof by silicone rubber layers 61 and 61a, which coating process may be performed, for example, by dipping the high-tensile strength sheet 60 into a bath of silicon rubber in liquid form contained in an enclosure having a moisture-free atmosphere.
  • the dipping operation may be so timed and so performed so as to preferably fonn a coating of approximately 3 mils thickness on a sheet of high-tensilestrength material having a thickness of the order of 0.5 to l mil.
  • the cup assembly 22 or 52 may be dipped in the liquid silicone rubber to provide a similar coating thereon.
  • Altemative approaches which may be taken consist either of coating the membrane 35 on both sides thereof, as shown in FIG. 9, and then bonding the membrane to the cup shell, or, alternatively, initially bonding the cup membrane to the cup shell and then dipping the entire structure within a liquid bath of silicone rubber.
  • the latter method can be seen to provide a silicone rubber coating on only the exposed surface of the membrane which has been found to be satisfactory, since only this surface will be exposed to body tissue. Coating the entire exposed surface of the cup shell 22 or 52 renders it compatible with body tissue.
  • the lip 38 of the shell structure may also be formed of silicone rubber of a thickness of the order of 40 mils.
  • the membrane 35 may be formed exclusively of silicone rubber of a thickness of the order to 30 mils.
  • the present invention provides a novel mechanical ventricular assistance cup assembly which is capable of being contracted when implanted within the body of a patient to permit incisions of minimal size for insertion thereof wherein the cup assembly may lie dormant for prolonged periods of time when implanted so as to have no impairing effect upon normal heart pumping action, and may further be inflated to form a substantially rigid cup structure upon demand when assistive mechanical pumping action is desired.
  • a cup assembly for use in applying mechanical assistivc pumping action to the heart comprising:
  • a substantially flexible nonstretchable cup-shaped member having a configuration generally conforming to the configuration of at least a portion of the heart;
  • said cup having a first substantially large diameter opening for receiving a portion of the heart and positioning said portion within the interior of the cup, and having second and third small diameter openings;
  • said second and third openings being located at the apex of said cup which is furthest removed from said first opening and the remaining one of said second and third openings being located along the surface of said cup at a position intermediate said first opening and the opening at the apex of said cup;
  • a flexible liner being positioned within said cup and having a configuration substantially conforming to the interior of said cup when the liner is in an unstressed condition;
  • bonding means for securing the continuous marginal edges of said liner to the exterior and interior cup surfaces, respectively, located in the region of said first opening and the opening located in the cup apex;
  • said liner cooperating with said cup to form a hollow interior region communicating with said remaining one of said second and third openings, which hollow region is adapted to receive pulsatile pressure to cause the liner to expand and contract and thereby assist the heart in the performance of its pumping activity; said flexible cup being contractable to reduce the cup size when implanted in the body of a patient to minimize the size of the required incision.
  • a device of the type described in claim 1 further comprising a metallic electrode positioned within the interior of the cup in the region of the cup apex;
  • the device of claim 1 further comprising a tube connected to the opening provided in the apex of the cup for communicating a sustained negative pressure thereto for retaining said heart portion within the cup.
  • a major portion of said cup extending between said electrode and said first opening is comprised of an inflatable structure comprising inner and outer flexible inelastic members defining a hollow interior;
  • a narrow diameter tubular member being connected to said inflatable structure to fill said inflatable structure with air and thereby form a substantially rigid cup configuration when mechanical assistive pumping action is required.
  • said inflatable structure is comprised of an elongated tubular member being coiled to form the configuration of the cup portion extending between said electrode and said first opening;
  • said inflatable structure is comprised of first and second substantially flexible, nonstretchable sheets of material extending between said electrode and said first opening;
  • bonding means for joining said first and second sheets at spaced intervals to form spaced, substantially parallel ribs defining elongated hollow interior portions communicating with one another to receive air under pressure from said narrow diameter tubular member and thereby form an inflated substantially rigid cuplike configuration generally conforming to the shape of the portion of the heart positioned therein.

Abstract

An improved mechanical ventricular assistance cup for assisting a heart in the performance of its pumping operations or for aiding the heart in achieving normal pumping rhythm, which cup assembly is provided with a semiflexible or inflatable powder shell to reduce the size of the incision required for implanting the mechanical pump and further being comprised of constituent materials which render the cup effectively indestructible, make the cup compatible with blood and body tissue and further act to provide a sturdier cup structure.

Description

United States Patent Peter Schiff I RD. #2, Lambertville, NJ. 08530 840,253
July 9, 1969 Oct. 19, 1971 Inventor Appl. No Filed Patented MECHANICAL VENTRICULAR ASSISTANCE CUP 1] Claims, 10 Drawing Figs.
US. Cl l28/24.5, 128/64 Int. Cl A6lh 29/00 Field ofSearch 128/24, 24.2, 24.5, 44, 64
References Cited UNITED STATES PATENTS 3/1968 Heid et al.
3,034,501 5/1962 Hewson 128/64 3,455,298 7/1969 Anstadt 128/64 3,478,737 11/1969 Rassman 128/64 Primary Examiner-L. W. Trapp Attorney-Ostrolenk, Faber, Gerb & Solfen ABSTRACT: An improved mechanical ventricular assistance cup for assisting a heart in the performance of its pumping operations or for aiding the heart in achieving normal pumping rhythm, which cup assembly is provided with a semiflexible or inflatable powder shell to reduce the size of the incision required for implanting the mechanical pump and further being comprised of constituent materials which render the cup effectively indestructible, make the cup compatible with blood and body tissue and further act to provide a sturdier cup structure.
PATENTEDUBT 19 Ian SHEET 1 BF 3 PETER ScH/FF INVEN'IYJR.
PATENTEDUCT 19 IHYI 3613.67 2 sum 2 ur 3 PETER SCH/FF INVILN'I'UR.
drawn/n; 575:4: fete: f inrlv MECHANICAL VENTRICULAR ASSISTANCE CUP Conventional mechanical ventricular assistance cups, for example, of the type described in copending application Ser. No. 785,652, filed Dec. 20, 1968 are normally comprised of a rigid shell or cup member having a large opening for receiving and positioning the heart therein and at least first and second ports for applying negative pressure and pulsatile pressure, respectively, to retain the heart within the cup and to provide assistive pumping action. When mechanical ventricular assistance cups of this general type are employed, the rigid shell structure requires a relatively large surgical incision to be made in the patient in order to insert and position the cup assembly around the ventricles of the heart. In addition thereto, it is frequently desirable to implant such a circulator assistance cup for long periods of time and have the cup remain in a dormant state around theheart during its implantation period until it becomes necessary to mechanically activate the cup so as tosupport any temporary or long term inadequacy of the natural heart pumping function. In such instances, the rigid assistance cup severely impairs the natural heart function when the assistance cup is not mechanically activated.
The invention is characterized by providing a mechanical ventricular assistance cup assembly which is made more readily insertable through a relatively small surgical incision by the provision of a semiflexible outer shell. In addition, the use of an inflatable outer shell as one alternative embodiment advantageously adapts the cup for long term implantations wherein the cup may remain dormant and in an unimpairing state until it is inflated for mechanical assistance.
BACKGROUND This invention relates to improvements in mechanical ventricular assistance so as to yield a more flexible, versatile and effectively indestructible cup assembly. Mechanical ventricular assistance may generally be utilized to provide either constant short term circulatory support or partial periodic longterm circulatory support.
When mechanical ventricular assistance devices are used in either of the above-mentioned modes, it is desirable to be able to implant the device with a surgical incision of minimal size. In order to reduce the size of the surgical incision, a semiflexible cup shell is utilized, which shell is of sufficient rigidity to aid in mechanical assistance during the diastole cycle and yet be manually compressible for insertion of the cup through a small surgical opening. In addition, the cup has a construction which permits recording of an electrocardiogram in spite of the electrical insulating properties of the cup as well as providing long-term reliability as a result of its unique mechanical design.
If such as cup assembly is utilized in a partial circulatory support or in a periodic long-term circulatory support mode, a rigid shell would severely interfere with the natural pumping of the heart such as, for example, in cases where the heart, when enlarged, would attempt to increase its size beyond the size of the rigid cup and thereby be restrained by the cup. As a result thereof, the cup shell is formed of a flexible material and is of such a nature, when dormant, as to be similar to the sack or periocardium which normally surrounds the heart. Upon demand, the sacklike assistance device must be capable of being made rigid so that it will support not only the systole action, but also the diastole or filling action of the ventricles.
The present invention is comprised of a mechanical ventricular assistance device having a flexible cup shell with the first large opening provided for receiving the ventricles of the heart. A second opening provided at or near the apex of the cup is adapted to receive a negative pressure of an amplitude sufficient to retain the heart within the cup at least during 1 those periods in which the mechanical ventricular assistanc device is being activated. I A flexible shell or membrane is positioned within the interior of the cup and is sealed about the margin of the cup large opening and in the region of the opening located near the apex of the cup so as to form a hollow enclosure which communicates with a third cup opening for receiving alternating positive and negative (pulsatile) pressure to alternately expand and contract the flexible membrane and thereby impart a pumping action to the heart ventricles.
A conductive member positioned within the interior of the cup andadapted to engage the heart ventricles is electrically connected through a suitable lead to enable electrocardiograms of the heart action to be taken when the cup is either in its dormant or active state.
The flexibility of the cup shell permits it to be manually squeezed or contracted together so as to reduce its overall size during insertion and thereby reduce the size of the incision required for insertion.
The flexible membrane is preferably formed of a material having a high tensile strength was to be capable of being easily collapsed while being substantially incapable of being stretched. Theflexible membrane is preferably secured within the interior of the cup in the region of the apex by suitable adhesive means and is sandwiched between the metallic electrode and the semiflexible cup shell. The remaining seal between the flexible diaphragm and the cup is obtained through the use of an adhesive material which adheres a marginal portion of the flexible membrance along the marginal exterior surface of the cup shell in the region of the cup shell large opening so as to eliminate tearing stresses at the seals between shell and membrane and causing the flexiblemembrane to experience only tensile or pulling stresses. Theme of a flexible membrane having a high tensile strength renders the shell structure substantially indestructible due to the nature of the seals employed.
The cup shell may alternatively be formed of a ribbed inflatable structure having a plurality of internally inflatable chambers preferably communicating with one another for the receipt of air pressure therein so as to form a substantially rigid shell structure when inflated and a highly flexible shell structure when deflated and in the dormant state. This structure also serves to minimize the size of the surgical incision required during implantation of the device.
It is therefore one object of the present invention to provide a mechanical ventricular assistance cup for assistinga heart in the performance of its pumping operations for aiding the heart in achieving normal pumping rhythm.
Another object of the present invention is to provide a novel mechanical ventricular assistance assembly having a cup shell which is flexible and inflatable to facilitate implantation within the body of a patient and necessitating only a minimal size incision for insertion thereof.
Still another object of the present invention is to provide a novel mechanical ventricular assistance assembly having a cup shell which is flexible and inflatable to facilitate implantation within the body of a patient and necessitating only a minimal size incision for insertion thereof and whereby the flexible membrane of the assembly which assists in the pumping action is formed of materials and is of a design such as to render the cup totally compatible with body tissue and substantially indestructible.
These as well as other objects of the present invention will become apparent when reading the accompanying description and drawings in which:
FIG. 1 is a perspective view showing one mechanical ventricular assistance cup assembly designed in accordance with the principles of the present invention.
FIG. 2 is a sectional view of the assembly shown in FIG. 1.
FIG. 3 is a perspective view of a cup assembly showing another preferred embodiment of the invention.
FIG. 4 is a sectional view of the cup assembly of FIG. 3.
FIG. 5 is a perspective view showing another preferred embodiment of the cup assembly of the present invention.
FIG. 6 is a sectional view of a portion of the cup assembly of FIG. 5 looking in the direction of arrows A-A.
FIG. 7 is a perspective view of a single tubular, inflated ring portion of the assembly of FIG. 3 useful in describing the effectiveness of the cup assembly shown therein.
FIG. 8 shows a portion of the cup assembly of FIG. 2, for example, in detail for purposes of explaining the structural advantages of the invention.
FIG. 8a shows a detailed sectional view of a portion of a conventional cup assembly for purposes of further explaining the advantages of the cup structure of the present invention.
FIG. 9 shows a sectional view of a portion of the flexible membrane which may be employed in the present invention.
FIG. I illustrates a perspective view of a mechanical ventricular assistance cup. The assembly is comprised of a semiflexible cup shell 21 which may, for example, be formed of a rubber or plastic material having a fibrous matrix so as to prevent the cup material from being stretched while being yieldable and capable of being bent or contracted. A large opening 21a is provided at the top end of the cup shell 21 as designated by numeral 21a, andis adapted to receive the ventricles of the heart. The apex of the cup is provided with an opening, as shown best in FIG. 2, communicating with a fitting '10 which acts to secure a hollow tubular member 14 to the apex opening of the cup. A sustained vacuum or negative holding pressure is applied through tube 14 t fitting 10 to retain the ventricles of the heart within the cup interior. Pulsatile (i.e. alternating positive and negative) pumping pressures are applied through a hollow tubular member 11 and a fitting 12 to an opening provided intermediate the openings 21a and 21b. This opening 21c, which is provided along one surface of the cup, communicates with an enclosed interior volume to be more fully described. A lip member 38 maintains a seal between the cup assembly and the AV groove, not shown, of the heart.
FIG. 2 shows the internal structure of the cup assembly in greater detail and includes an electrode member adapted to permit electrocardiogram recording, fibrillation and defibrillation in the manner set forth in detail, for example, in copending application Ser. No. 785,652, filed Dec. 20, I968. For example, FIG. 2 of this copending application shows the particular pressure sources employed for sustaining the heart within the cup and for providing the assistive mechanical pumping action.
The cup assembly further incorporates a flexible shell or membrane 35 having a construction which insures against the possible bursting of the membrane due to weaknessesin the design or material of the liner. The lip 38 surrounding the large opening 21a of the cup is secured to liner 35 such as, for example, by a heating-sealing or by a suitable adhesive. Liner 35 extends at its upper 'end about the margin of the cup defining opening 21a and the marginal portion of the liner extends downwardly along the outer surface of the cup and is secured to the marginal exterior portion of the cup 21 immediately adjacent opening 21a. Liner 35 is preferably cemented by a suitable cement or adhesive applied at 22.
Liner, or membrane, 35 is further cemented in the region of the apex of the cup wherein one surface of liner 35 is cemented at 19 to the portion 21d of reduced cup thickness and is further cemented in the region 190 to the convex surface of stainless steel electrode 18 so that the liner 35 is sandwiched between electrode 18 and the reduced thickness portion 21d of cup 21. A wire 15 is electrically connected to the stainless steel electrode 18 and extends through a suitable opening 2Ie provided in the reduced thickness portion 21d of cup 2] for connection to peripheral circuitry. For example, this electrode may be employed to couple the signals detected from the heart ventricle to an electrocardiogram. As was previously mentioned, the material of cup shell 21 is preferably of flexible nonstretchable material which may be, for example, a plastic material or a combination of a plastic or rubber material in conjunction with a fiberlike matrix embedded therein.
In operation, the negative pressure applied through tubular member 14 retains the heart ventricles within the cup assembly. Alternating positive and negative pressure pulses applied through tubular member 11 cause the flexible membrane 35 to alternately expand in the manner shown in FIG. 2 and contract so as to move closer to the interior surface of cup 21,
thereby assisting the heart in the performance of its pumping action.
Another preferred embodiment of the present invention is shown in FIGS. 3 and 4 wherein the inflatable shell structure is comprised of a continuously helically wound tubular coil 52. The coil 52 forms the outer shell of the cup and is joined at its lower edge 52a to a solid, substantially rigid cup portion 21d. It should be noted that the bottom portion of the cup assembly is substantially identical to that shown in FIG. 2 wherein like elements have been designated by like numerals. A tubular member 57 of small diameter is connected to the coiled tubular structure 52 and serves to selectively either inflate or deflate coiled section 52 to form a rigid cup structure. In cases where the structure is deflated, the upper shell portion may lie dormant when implanted into the body of a patient in cases where the pumping action of the patient is satisfactory and requires no mechanical pumping assistance.
The sectional view of FIG. 3, shown in FIG. 4, depicts the cup lip member 38 as being bonded to the exterior surface of liner 35 which is stretched about the marginal exterior portion of the tubular coil 52 in a manner similar to that shown in FIG. 2. The liner is cemented in the region 22 which comprises the marginal exterior surface of the outer cup shell immediately surrounding opening 21a. Adjacent coilsof elongated helically coiled tube 52 are preferably cemented to one another by a suitable adhesive or alternatively may be heat-sealed to one another.
The design principles employed in the attachment of liner 35 in FIGS. 1 through 4 provide extremely high tensile strength and substantially eliminate any tear stresses in the structure in a manner to be more fully described.
FIG. 8a shows a sectional view of an upper cup portion of a conventional cup assembly such as, for example, of the type described in the above-mentioned application Ser. No. 785,652. As shown in FIG. 8a, the liner or membrane 35 is joined to the upper marginal interior surface portion 220 of cup 22, which marginal portion is immediately adjacent the large cup opening 21a. The portion 35a of membrane 35 is bonded to marginal portion 22a of the rigid glass cup by a suitable adhesive 36. Assuming that a membrane 35 of high tensile strength is employed, the membrane itself, although bendable, will undergo almost no stretching. Thus, when the hollow interior region defined by membrane 35 and cup 21 is filled with a positive pressure pulse, the high-tensile strength of the membrane places a strong tear stress upon the bonding cement 36, causing the liner portion 35a to be pulled away from glass shell 22 in the direction substantially as shown by arrow 37. The application of repeated positive pressure pulses over prolonged periods of time will weaken the bonding agent and thereby tear the membrane away from marginal portion 22 a of the cup shell.
FIG. 8 shows the upper marginal portion of the cup structures of FIGS. 2 or 4, for example, wherein the membrane 35 formed of a material having high-tensile strength extends upwardly over the lip of the cup shell and downwardly along its outer marginal portion where it is bonded in the region 22 by a suitable bonding cement 36. Dotted line portion 35 shows the membrane in the collapsed state. When a positive pressure pulse is applied through tubular member 11, the membrane moves to the expanded position shown by the solid line portion 35. Due to the high tensile strength of the membrane, substantially no tear stress is placed upon the bond between the membrane and the liner. Alternatively, the tensile stress as represented by arrow 38a is distributed substantially equally over the entire bond between membrane 35 and cup 21. Thus, even after repeated application of positive pressure pulses over prolonged periods of time, the bond between liner and shell will be unaflected, yielding a substantially indestructible structure.
In a similar manner, the sandwiching of the bottom portion of liner 35 between electrode 18 and reduced thickness shell portion 21d (by a suitable bonding cement) similarly distributes the pulling stress substantially equally along the length of the membrane portion sandwiched between electrode 18 and shell portion 21d so as to provide a substantially indestructible structure in the apex region of the cup.
The flexible characteristics of either shell 21 of FIG. 2 or coiled shell 52 of FIG. 4 permits the cup to be squeezed (for example, by the hand) so as to be inserted through a relatively small surgical incision. If desired, the fitting 12 shown in FIGS. I through 4 may be replaced by a right-angle" fitting of the type shown by fitting of FIGS. 1 through 4 to further reduce the amount of clearance required for insertion and implantation into the body of a patient. Upon demand, the cup shown in FIGS. 3 and 4 may be made rigid by the injection ofa high-pressure pulse applied through tube 57. Alternatively, the cup shown in FIGS. 3 and 4 may be caused to remain in a dormant state by removal of the pressure pulse, thereby deflating the coiled cup section. When in a dormant state, the cup assembly provides minimal interference to a heart unassisted by the mechanical pumping action.
FIG. 7 serves to explain the reason why the coiled cup assembly will remain rigid when in the inflated condition. FIG. 7 shows in schematic fashion one full turn of the coiled cup 52. When inflated, the air pressure within each coil will be substantially equally distributed throughout. Thus, the pressure along the interior surface of the coil shown in FIG. 7 will be equal to Kh'ird, where d is equal to the diameter of the coil shown in FIG. 7; h is equal to the height of the interior surface of the coil (assuming the coil to be of a square cross-sectional configuration for purposes of simplifying the description set forth herein); and where K is equal to a constant. The pressure along the outer wall of the single loop of coil is equal to Kh(d+ Ar) wherein (d+Ar) is equal to the diameter of the outer wall of the single loop coil. Since the surface area of the outer wall of the single loop of coil is greater than the surface area of the inner wall of the single loop of coil (due to the increased diameter d-l-Ar), the equally distributed air pressure will cause the coiled shell portion 52 to assume the shape as shown best in FIG. 3, which structure will remain substantially rigid when inflated.
FIGS. 5 and 6 show another alternative embodiment of the present invention wherein the helically coiled portion of FIG. 3 is replaced by a vertically ribbed inflatable portion 52' which is comprised of first and second plastic sheets 53 and 54 (shown best in FIG. 6) which are joined by a suitable adhesive 55 at regularly spaced intervals to form the vertical ribs 56. Inflating of the structure may occur in a manner similar to that shown in FIGS. 3 and 4 wherein a positive pressure pulse is applied through narrow diameter tube 57 to fill the inflatable structure with air. Each of the hollow interior portions 58 may be joined to adjacent hollow interior portions by providing narrow communicating passageways 59 arranged in alternating fashion near the bottom edge of the structure 52' and providing similar narrow communicating portions (not shown) near the top edge of structure 52' interspersed with portions 59 so that a positive pressure pulse applied through narrow diameter tube 57 will pass through each of the hollow interior sections 58 in a serpentine fashion, until the air pressure is equally distributed throughout interior hollow sections 58. Although the ribs 56 are shown as being vertically aligned in FIG. 5, it should be understood that these ribs may be arranged in horizontal fashion similar to the coiled tubular arrangement shown in FIG. 3. Whether vertically or horizontally aligned ribs are employed, the shell structure 52 will form a substantially rigid structure when inflated for the reasons as set forth in connection with the description of FIG. 7. Thus, the structure of FIG. 5 is equally as versatile as that shown in FIGS. I and 3 insofar as being capable of being retained in either a dormant or active state while implanted within a patient.
The flexible membrane 35 shown in the present invention has a further advantage of the membrane structure 35 employed in conventional cup assemblies (for example, of the type described in copending application 785,652) in that the liner, by being bonded to the outside of the cup, increases the effective pumping area of the diaphragm as compared with conventional design, which has the liner bonded to the inside of the shell just below the cup lip 38. For this reason, higher pumping volumes and pressures are obtainable with the structure described herein.
FIG. 9 shows one preferred embodiment for the cup liner 35 wherein the liner may be comprised of a sheet of material 60 having high-tensile strength. Some materials which have been found advantageous for use in this application are polyurethane which has a tensile strength of approximately 7,000 p.s.i. or Mylar which has a tensile strength of about 40,000 p.s.i. Such materials are substantially nonstretchable when employed as a membrane in the present invention and are, therefore, practically indestructible. However, these materials, if sharply bent or creased, will deform along the crease and possibly develop a weakness along the crease which may be caused to tear after prolonged use essentially due to the repeated application of positive and negative pressure pulses to.
the cup assembly.
In addition thereto, it is most advantageous to provide a cup assembly whose materials are most favorably compatible with body tissue and blood cells. It has been found that silicone rubber exhibits excellent compatibility withbody tissue and blood. However, the tensile strength of silicone rubber is of the order of 400 p.s.i., making it highly stretchable as compared with polyurethane or Mylar. Thus, in order to make most advantageous use of these materials, the sheet 60 of high-tensile strength material shown in FIG. 9 is coated along both surfaces thereof by silicone rubber layers 61 and 61a, which coating process may be performed, for example, by dipping the high-tensile strength sheet 60 into a bath of silicon rubber in liquid form contained in an enclosure having a moisture-free atmosphere. The dipping operation may be so timed and so performed so as to preferably fonn a coating of approximately 3 mils thickness on a sheet of high-tensilestrength material having a thickness of the order of 0.5 to l mil. Likewise, the cup assembly 22 or 52 may be dipped in the liquid silicone rubber to provide a similar coating thereon. Altemative approaches which may be taken consist either of coating the membrane 35 on both sides thereof, as shown in FIG. 9, and then bonding the membrane to the cup shell, or, alternatively, initially bonding the cup membrane to the cup shell and then dipping the entire structure within a liquid bath of silicone rubber. The latter method can be seen to provide a silicone rubber coating on only the exposed surface of the membrane which has been found to be satisfactory, since only this surface will be exposed to body tissue. Coating the entire exposed surface of the cup shell 22 or 52 renders it compatible with body tissue. The lip 38 of the shell structure may also be formed of silicone rubber of a thickness of the order of 40 mils. Alternatively, the membrane 35 may be formed exclusively of silicone rubber of a thickness of the order to 30 mils.
It can be seen from the foregoing description that the present invention provides a novel mechanical ventricular assistance cup assembly which is capable of being contracted when implanted within the body of a patient to permit incisions of minimal size for insertion thereof wherein the cup assembly may lie dormant for prolonged periods of time when implanted so as to have no impairing effect upon normal heart pumping action, and may further be inflated to form a substantially rigid cup structure upon demand when assistive mechanical pumping action is desired.
Although this invention has been described with respect to its preferred embodiments, it should be understood that many variations and modifications will now be obvious to those skilled in the art, and it is preferred, therefore, that the invention be limited not by the specific disclosure herein but only by the appended claims.
The embodiments of the invention in which an exclusive privilege or property is claimed are defined as follows:
I. A cup assembly for use in applying mechanical assistivc pumping action to the heart comprising:
a substantially flexible nonstretchable cup-shaped member having a configuration generally conforming to the configuration of at least a portion of the heart;
said cup having a first substantially large diameter opening for receiving a portion of the heart and positioning said portion within the interior of the cup, and having second and third small diameter openings;
at least one of said second and third openings being located at the apex of said cup which is furthest removed from said first opening and the remaining one of said second and third openings being located along the surface of said cup at a position intermediate said first opening and the opening at the apex of said cup;
a flexible liner being positioned within said cup and having a configuration substantially conforming to the interior of said cup when the liner is in an unstressed condition;
a first continuous marginal edge of said liner being positionedagainst the marginal exterior surface portion of said cup which surrounds said first opening;
a second continuous marginal portion of said liner being positioned against the interior surface of said cup and adjacent to and surrounding the opening in said cup provided in the cup apex;
bonding means for securing the continuous marginal edges of said liner to the exterior and interior cup surfaces, respectively, located in the region of said first opening and the opening located in the cup apex;
said liner cooperating with said cup to form a hollow interior region communicating with said remaining one of said second and third openings, which hollow region is adapted to receive pulsatile pressure to cause the liner to expand and contract and thereby assist the heart in the performance of its pumping activity; said flexible cup being contractable to reduce the cup size when implanted in the body of a patient to minimize the size of the required incision.
2. A device of the type described in claim 1 further comprising a metallic electrode positioned within the interior of the cup in the region of the cup apex;
means for bonding said electrode to the marginal portion of said liner surrounding the cup apex.
3. The device of claim 1 further comprising a tube connected to the opening provided in the apex of the cup for communicating a sustained negative pressure thereto for retaining said heart portion within the cup.
4. The device of claim 1 wherein a major portion of said cup extending between said electrode and said first opening is comprised of an inflatable structure comprising inner and outer flexible inelastic members defining a hollow interior;
a narrow diameter tubular member being connected to said inflatable structure to fill said inflatable structure with air and thereby form a substantially rigid cup configuration when mechanical assistive pumping action is required.
5. The device of claim 4 wherein said inflatable structure is comprised of an elongated tubular member being coiled to form the configuration of the cup portion extending between said electrode and said first opening;
bonding means for joining adjacent exterior surface portions of said coiled tubular member.
6. The device of claim 4 wherein said inflatable structure is comprised of first and second substantially flexible, nonstretchable sheets of material extending between said electrode and said first opening;
bonding means for joining said first and second sheets at spaced intervals to form spaced, substantially parallel ribs defining elongated hollow interior portions communicating with one another to receive air under pressure from said narrow diameter tubular member and thereby form an inflated substantially rigid cuplike configuration generally conforming to the shape of the portion of the heart positioned therein.
7. The device of claim 6 wherein said ribs extend in a direction transverse to the edge of the cup surrounding said first o enin 8. The tfevice of claim 6 wherein said ribs extend in a direction substantially parallel to the edge of the cup surrounding said first opening to form a singular helically shaped elongated hollow interior portion.
9. The device of claim 1 wherein said liner material is a sheet of flexible material having high-tensile strength.
10. The device of claim 9 wherein the surface of said sheet making contact with the heart is coated with silicone rubber.
11. The device of claim 1 wherein all of the exposed surface of said device is coated with silicon rubber.

Claims (11)

1. A cup assembly for use in applying mechanical assistive pumping action to the heart comprising: a substantially flexible nonstretchable cup-shaped member having a configuration generally conforming to the configuration of at least a portion of the heart; said cup having a first substantially large diameter opening for receiving a portion of the heart and positioning said portion within the interior of the cup, and having second and third small diameter openings; at least one of said second and third openings being located at the apex of said cup which is furthest removed from said first opening and the remaining one of said second and third openings being located along the surface of said cup at a position intermediate said first opening and the opening at the apex of said cup; a flexible liner being positioned within said cup and having a configuration substantially conforming to the interior of said cup when the liner is in an unstressed condition; a first continuous marginal edge of said liner being positioned against the marginal exterior surface portion of said cup which surrounds said first opening; a second continuous marginal portion of said liner being positioned against the interior suRface of said cup and adjacent to and surrounding the opening in said cup provided in the cup apex; bonding means for securing the continuous marginal edges of said liner to the exterior and interior cup surfaces, respectively, located in the region of said first opening and the opening located in the cup apex; said liner cooperating with said cup to form a hollow interior region communicating with said remaining one of said second and third openings, which hollow region is adapted to receive pulsatile pressure to cause the liner to expand and contract and thereby assist the heart in the performance of its pumping activity; said flexible cup being contractable to reduce the cup size when implanted in the body of a patient to minimize the size of the required incision.
2. A device of the type described in claim 1 further comprising a metallic electrode positioned within the interior of the cup in the region of the cup apex; means for bonding said electrode to the marginal portion of said liner surrounding the cup apex.
3. The device of claim 1 further comprising a tube connected to the opening provided in the apex of the cup for communicating a sustained negative pressure thereto for retaining said heart portion within the cup.
4. The device of claim 1 wherein a major portion of said cup extending between said electrode and said first opening is comprised of an inflatable structure comprising inner and outer flexible inelastic members defining a hollow interior; a narrow diameter tubular member being connected to said inflatable structure to fill said inflatable structure with air and thereby form a substantially rigid cup configuration when mechanical assistive pumping action is required.
5. The device of claim 4 wherein said inflatable structure is comprised of an elongated tubular member being coiled to form the configuration of the cup portion extending between said electrode and said first opening; bonding means for joining adjacent exterior surface portions of said coiled tubular member.
6. The device of claim 4 wherein said inflatable structure is comprised of first and second substantially flexible, nonstretchable sheets of material extending between said electrode and said first opening; bonding means for joining said first and second sheets at spaced intervals to form spaced, substantially parallel ribs defining elongated hollow interior portions communicating with one another to receive air under pressure from said narrow diameter tubular member and thereby form an inflated substantially rigid cuplike configuration generally conforming to the shape of the portion of the heart positioned therein.
7. The device of claim 6 wherein said ribs extend in a direction transverse to the edge of the cup surrounding said first opening.
8. The device of claim 6 wherein said ribs extend in a direction substantially parallel to the edge of the cup surrounding said first opening to form a singular helically shaped elongated hollow interior portion.
9. The device of claim 1 wherein said liner material is a sheet of flexible material having high-tensile strength.
10. The device of claim 9 wherein the surface of said sheet making contact with the heart is coated with silicone rubber.
11. The device of claim 1 wherein all of the exposed surface of said device is coated with silicon rubber.
US840253A 1969-07-09 1969-07-09 Mechanical ventricular assistance cup Expired - Lifetime US3613672A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84025369A 1969-07-09 1969-07-09

Publications (1)

Publication Number Publication Date
US3613672A true US3613672A (en) 1971-10-19

Family

ID=25281856

Family Applications (1)

Application Number Title Priority Date Filing Date
US840253A Expired - Lifetime US3613672A (en) 1969-07-09 1969-07-09 Mechanical ventricular assistance cup

Country Status (1)

Country Link
US (1) US3613672A (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865102A (en) * 1973-06-13 1975-02-11 Hemodyne Inc External cardiac assist apparatus
FR2321266A1 (en) * 1975-08-20 1977-03-18 Guiset Jacques Pressure applying cardiac prosthesis - comprises hollow sleeve with deformable faces bearing against surfaces of heart
US4192293A (en) * 1978-09-05 1980-03-11 Manfred Asrican Cardiac assist device
US5119804A (en) * 1990-11-19 1992-06-09 Anstadt George L Heart massage apparatus
US5484391A (en) * 1992-07-30 1996-01-16 Univ Temple Direct manual cardiac compression method
US5713954A (en) * 1995-06-13 1998-02-03 Abiomed R&D, Inc. Extra cardiac ventricular assist device
US5738627A (en) * 1994-08-18 1998-04-14 Duke University Bi-ventricular cardiac assist device
US5749839A (en) * 1994-08-18 1998-05-12 Duke University Direct mechanical bi-ventricular cardiac assist device
US5800528A (en) * 1995-06-13 1998-09-01 Abiomed R & D, Inc. Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
US5910124A (en) * 1994-01-10 1999-06-08 Cardiassist Incorporated Ventricular assist device and method
US5931850A (en) * 1992-08-03 1999-08-03 Zadini; Filiberto P. (Percutaneous cardiac pump for cardiopulmonary resuscitation) cardiac resuscitation device for percutaneous direct cardiac massage
US5957977A (en) * 1996-01-02 1999-09-28 University Of Cincinnati Activation device for the natural heart including internal and external support structures
US5971910A (en) * 1996-10-18 1999-10-26 Cardio Technologies, Inc. Method and apparatus for assisting a heart to pump blood by applying substantially uniform pressure to the ventricles
WO2000025842A1 (en) * 1998-11-04 2000-05-11 Cardio Technologies, Inc. Ventricular assist device with pre-formed inflation bladder
EP1030701A1 (en) * 1997-11-03 2000-08-30 Cardio Technologies, Inc. Method and apparatus for assisting a heart to pump blood
US6200280B1 (en) 1998-05-29 2001-03-13 Theracardia, Inc. Cardiac massage apparatus and method
EP1126887A2 (en) * 1998-11-04 2001-08-29 Cardio Technologies, Inc. Cardiac assist system and method thereof
US6287267B1 (en) 1998-05-29 2001-09-11 Theracardia, Inc. Cardiac massage apparatus and method
US20020028981A1 (en) * 1999-12-23 2002-03-07 Lilip Lau Expandable cardiac harness for treating congestive heart failure
US6409760B1 (en) 1998-03-05 2002-06-25 University Of Cincinnati Device and method for restructuring heart chamber geometry
US6432039B1 (en) 1998-12-21 2002-08-13 Corset, Inc. Methods and apparatus for reinforcement of the heart ventricles
US6520904B1 (en) 1996-01-02 2003-02-18 The University Of Cincinnati Device and method for restructuring heart chamber geometry
US6540659B1 (en) 2000-11-28 2003-04-01 Abiomed, Inc. Cardiac assistance systems having bi-directional pumping elements
US6547716B1 (en) 2000-11-28 2003-04-15 Abiomed, Inc. Passive cardiac restraint systems having multiple layers of inflatable elements
US20030078471A1 (en) * 2001-10-18 2003-04-24 Foley Frederick J. Manipulation of an organ
US6558314B1 (en) 2000-02-11 2003-05-06 Iotek, Inc. Devices and method for manipulation of organ tissue
US6572534B1 (en) 2000-09-14 2003-06-03 Abiomed, Inc. System and method for implanting a cardiac wrap
US6592619B2 (en) 1996-01-02 2003-07-15 University Of Cincinnati Heart wall actuation device for the natural heart
US6602182B1 (en) 2000-11-28 2003-08-05 Abiomed, Inc. Cardiac assistance systems having multiple fluid plenums
US6612978B2 (en) 1999-12-22 2003-09-02 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6616596B1 (en) 2000-11-28 2003-09-09 Abiomed, Inc. Cardiac assistance systems having multiple layers of inflatable elements
US20030176765A1 (en) * 2002-01-23 2003-09-18 Foley Frederick J. Devices for holding a body organ
US6626821B1 (en) 2001-05-22 2003-09-30 Abiomed, Inc. Flow-balanced cardiac wrap
US6641604B1 (en) 2000-02-11 2003-11-04 Iotek, Inc. Devices and method for manipulation of organ tissue
US6663622B1 (en) 2000-02-11 2003-12-16 Iotek, Inc. Surgical devices and methods for use in tissue ablation procedures
US20040015039A1 (en) * 2002-07-16 2004-01-22 The University Of Cincinnati Modular power system and method for a heart wall actuation system for the natural heart
US20040015041A1 (en) * 2002-07-18 2004-01-22 The University Of Cincinnati Protective sheath apparatus and method for use with a heart wall actuation system for the natural heart
US20040034271A1 (en) * 2002-08-19 2004-02-19 The University Of Cincinnati Heart wall actuation system for the natural heart with shape limiting elements
US6695769B2 (en) 2001-09-25 2004-02-24 The Foundry, Inc. Passive ventricular support devices and methods of using them
US20040059180A1 (en) * 2002-09-23 2004-03-25 The University Of Cincinnati Basal mounting cushion frame component to facilitate extrinsic heart wall actuation
US20040267086A1 (en) * 2003-06-26 2004-12-30 Anstadt Mark P. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
US6846296B1 (en) 2000-09-14 2005-01-25 Abiomed, Inc. Apparatus and method for detachably securing a device to a natural heart
US20050049611A1 (en) * 2002-11-15 2005-03-03 Lilip Lau Cardiac harness delivery device and method
US7060023B2 (en) 2001-09-25 2006-06-13 The Foundry Inc. Pericardium reinforcing devices and methods of using them
US20060155160A1 (en) * 2003-06-09 2006-07-13 Melvin David B Actuation mechanisms for a heart actuation device
US20060155159A1 (en) * 2003-06-09 2006-07-13 Melvin David B Power system for a heart actuation device
US20060178551A1 (en) * 2003-06-09 2006-08-10 Melvin David B Securement system for a heart actuation device
US20060187550A1 (en) * 2002-07-18 2006-08-24 Melvin David B Deforming jacket for a heart actuation device
US7146226B2 (en) 2003-11-07 2006-12-05 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7158839B2 (en) 2003-11-07 2007-01-02 Paracor Medical, Inc. Cardiac harness for treating heart disease
US7174896B1 (en) 2002-01-07 2007-02-13 Paracor Medical, Inc. Method and apparatus for supporting a heart
US20070073218A1 (en) * 2005-09-26 2007-03-29 Lilip Lau Inflatable cardiac device for treating and preventing ventricular remodeling
WO2007062239A2 (en) * 2005-11-28 2007-05-31 Myotech Llc Method and apparatus for minimally invasive direct mechanical ventricular actuation
US7229405B2 (en) 2002-11-15 2007-06-12 Paracor Medical, Inc. Cardiac harness delivery device and method of use
US7276021B2 (en) 2001-10-31 2007-10-02 Paracor Medical, Inc. Heart failure treatment device and method
US7282024B2 (en) 2004-01-12 2007-10-16 Paracor Medical, Inc. Cardiac harness having interconnected strands
US7291105B2 (en) 2003-07-10 2007-11-06 Paracor Medical, Inc. Self-anchoring cardiac harness
US20070276179A1 (en) * 2002-11-15 2007-11-29 Paracor Medical, Inc. Method of loading a cardiac harness in a housing
US7381181B2 (en) 2001-09-10 2008-06-03 Paracor Medical, Inc. Device for treating heart failure
US7485089B2 (en) 2002-09-05 2009-02-03 Paracor Medical, Inc. Cardiac harness
US20090096497A1 (en) * 2007-10-16 2009-04-16 Feng Kai D Design structures including multiple reference frequency fractional-n pll (phase locked loop)
US7587247B2 (en) 2005-08-01 2009-09-08 Paracor Medical, Inc. Cardiac harness having an optimal impedance range
US7611455B2 (en) * 1995-09-20 2009-11-03 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US7715918B2 (en) 2005-10-18 2010-05-11 University Of Cincinnati Muscle energy converter with smooth continuous tissue interface
US7734344B2 (en) 2003-12-02 2010-06-08 Uab Research Foundation Methods, systems and computer program products to inhibit ventricular fibrillation during cardiopulmonary resuscitation
US7736299B2 (en) 2002-11-15 2010-06-15 Paracor Medical, Inc. Introducer for a cardiac harness delivery
JP2010264079A (en) * 2009-05-15 2010-11-25 Tohoku Univ Insertion type artificial cardiac muscle system
US7976454B2 (en) 2002-01-07 2011-07-12 Paracor Medical, Inc. Cardiac harness
US20110196189A1 (en) * 2010-02-09 2011-08-11 Myocardiocare, Inc. Extra-cardiac differential ventricular actuation by inertial and baric partitioning
US8192351B2 (en) 2007-08-13 2012-06-05 Paracor Medical, Inc. Medical device delivery system having integrated introducer
CN104146855A (en) * 2014-08-29 2014-11-19 刘超 Heart auxiliary device
US20150100041A1 (en) * 2013-10-07 2015-04-09 Regentis Biomaterials Ltd. Treatment of cavities in a human body
US20150209562A1 (en) * 2013-10-07 2015-07-30 Regentis Biomaterials Ltd. Treatment of cavities in a human body
US20210093763A1 (en) * 2011-12-01 2021-04-01 The Trustees Of The University Of Pennsylvania Non-Blood Contacting Mechanical Device That Improves Heart Function After Injury
US11383076B2 (en) 2020-10-01 2022-07-12 Lifebridge Technologies, Llc Pump regulation based on heart size and function
US11896812B1 (en) 2023-01-27 2024-02-13 Lifebridge Technologies Llc Versatile modular heart pump for non-blood contacting ventricular function augmentation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034501A (en) * 1958-08-05 1962-05-15 Carl E Hewson Inflatable heart massager
US3371662A (en) * 1965-11-22 1968-03-05 Villamos Automatika Intezet Device for automatically effecting cardiac massage
US3455298A (en) * 1967-04-10 1969-07-15 George L Anstadt Instrument for direct mechanical cardiac massage
US3478737A (en) * 1967-02-23 1969-11-18 William R Rassman Heart massager

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034501A (en) * 1958-08-05 1962-05-15 Carl E Hewson Inflatable heart massager
US3371662A (en) * 1965-11-22 1968-03-05 Villamos Automatika Intezet Device for automatically effecting cardiac massage
US3478737A (en) * 1967-02-23 1969-11-18 William R Rassman Heart massager
US3455298A (en) * 1967-04-10 1969-07-15 George L Anstadt Instrument for direct mechanical cardiac massage

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865102A (en) * 1973-06-13 1975-02-11 Hemodyne Inc External cardiac assist apparatus
FR2321266A1 (en) * 1975-08-20 1977-03-18 Guiset Jacques Pressure applying cardiac prosthesis - comprises hollow sleeve with deformable faces bearing against surfaces of heart
US4192293A (en) * 1978-09-05 1980-03-11 Manfred Asrican Cardiac assist device
US5119804A (en) * 1990-11-19 1992-06-09 Anstadt George L Heart massage apparatus
WO1993023004A1 (en) * 1990-11-19 1993-11-25 Anstadt George L Heart massage apparatus
US5571074A (en) * 1992-07-30 1996-11-05 Temple University-Of The Commonwealth System Of Higher Education Inflatable and expandable direct manual cardiac compression device
US5582580A (en) * 1992-07-30 1996-12-10 Temple University - Of The Commonwealth System Of Higher Education Direct manual cardiac compression device
US5484391A (en) * 1992-07-30 1996-01-16 Univ Temple Direct manual cardiac compression method
US5931850A (en) * 1992-08-03 1999-08-03 Zadini; Filiberto P. (Percutaneous cardiac pump for cardiopulmonary resuscitation) cardiac resuscitation device for percutaneous direct cardiac massage
US6296653B1 (en) 1992-08-03 2001-10-02 Filiberto P. Zadini Cardiac resuscitation device for percutaneous direct cardiac massage
US5910124A (en) * 1994-01-10 1999-06-08 Cardiassist Incorporated Ventricular assist device and method
US5738627A (en) * 1994-08-18 1998-04-14 Duke University Bi-ventricular cardiac assist device
US5749839A (en) * 1994-08-18 1998-05-12 Duke University Direct mechanical bi-ventricular cardiac assist device
US6224540B1 (en) 1995-06-13 2001-05-01 Abiomed, Inc. Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
US6508756B1 (en) 1995-06-13 2003-01-21 Abiomed, Inc. Passive cardiac assistance device
US5713954A (en) * 1995-06-13 1998-02-03 Abiomed R&D, Inc. Extra cardiac ventricular assist device
US5800528A (en) * 1995-06-13 1998-09-01 Abiomed R & D, Inc. Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
US7611455B2 (en) * 1995-09-20 2009-11-03 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US20040024286A1 (en) * 1996-01-02 2004-02-05 The University Of Cincinnati Heart wall actuation device for the natural heart
US7361191B2 (en) 1996-01-02 2008-04-22 The University Of Cincinnati Heart wall actuation device for the natural heart
US5957977A (en) * 1996-01-02 1999-09-28 University Of Cincinnati Activation device for the natural heart including internal and external support structures
US6592619B2 (en) 1996-01-02 2003-07-15 University Of Cincinnati Heart wall actuation device for the natural heart
US6520904B1 (en) 1996-01-02 2003-02-18 The University Of Cincinnati Device and method for restructuring heart chamber geometry
EP0951313A1 (en) * 1996-10-18 1999-10-27 Cardio Technologies, Inc. Method and apparatus for assisting a heart
EP0951313A4 (en) * 1996-10-18 2001-12-19 Cardio Tech Inc Method and apparatus for assisting a heart
US5971910A (en) * 1996-10-18 1999-10-26 Cardio Technologies, Inc. Method and apparatus for assisting a heart to pump blood by applying substantially uniform pressure to the ventricles
EP1030701A4 (en) * 1997-11-03 2001-02-28 Cardio Tech Inc Method and apparatus for assisting a heart to pump blood
EP1030701A1 (en) * 1997-11-03 2000-08-30 Cardio Technologies, Inc. Method and apparatus for assisting a heart to pump blood
US6238334B1 (en) 1997-11-03 2001-05-29 Cardio Technologies, Inc. Method and apparatus for assisting a heart to pump blood
US6409760B1 (en) 1998-03-05 2002-06-25 University Of Cincinnati Device and method for restructuring heart chamber geometry
US6200280B1 (en) 1998-05-29 2001-03-13 Theracardia, Inc. Cardiac massage apparatus and method
US6287267B1 (en) 1998-05-29 2001-09-11 Theracardia, Inc. Cardiac massage apparatus and method
US6406444B2 (en) 1998-05-29 2002-06-18 Theracardia, Inc. Cardiac message apparatus
EP1126887A4 (en) * 1998-11-04 2003-05-02 Cardio Tech Inc Cardiac assist system and method thereof
WO2000025842A1 (en) * 1998-11-04 2000-05-11 Cardio Technologies, Inc. Ventricular assist device with pre-formed inflation bladder
EP1126887A2 (en) * 1998-11-04 2001-08-29 Cardio Technologies, Inc. Cardiac assist system and method thereof
US6432039B1 (en) 1998-12-21 2002-08-13 Corset, Inc. Methods and apparatus for reinforcement of the heart ventricles
US6702732B1 (en) 1999-12-22 2004-03-09 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6612978B2 (en) 1999-12-22 2003-09-02 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US20020028981A1 (en) * 1999-12-23 2002-03-07 Lilip Lau Expandable cardiac harness for treating congestive heart failure
US6663558B2 (en) 1999-12-23 2003-12-16 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6558314B1 (en) 2000-02-11 2003-05-06 Iotek, Inc. Devices and method for manipulation of organ tissue
US20040073206A1 (en) * 2000-02-11 2004-04-15 Iotek, Inc. Surgical devices and methods for use in tissue ablation procedures
US6663622B1 (en) 2000-02-11 2003-12-16 Iotek, Inc. Surgical devices and methods for use in tissue ablation procedures
US6641604B1 (en) 2000-02-11 2003-11-04 Iotek, Inc. Devices and method for manipulation of organ tissue
US7410461B2 (en) 2000-03-10 2008-08-12 Paracor Medical, Inc. Cardiac treatment apparatus
US7097611B2 (en) 2000-03-10 2006-08-29 Paracor Medical, Inc. Expandable cardiac harness for treating congestive heart failure
US7077802B2 (en) 2000-03-10 2006-07-18 Paracor Medical, Inc. Expandable cardiac harness for treating congestive heart failure
US6612979B2 (en) 2000-03-10 2003-09-02 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6602184B2 (en) 2000-03-10 2003-08-05 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US7081086B2 (en) 2000-03-10 2006-07-25 Paracor Medical, Inc. Expandable cardiac harness for treating congestive heart failure
US6595912B2 (en) 2000-03-10 2003-07-22 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6682474B2 (en) 2000-03-10 2004-01-27 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US7189202B2 (en) 2000-03-10 2007-03-13 Paracor Medical, Inc. Self-sizing cardiac harness for treating congestive heart failure
US7124493B2 (en) 2000-03-10 2006-10-24 Paracor Medical, Inc. Method of manufacturing a cardiac harness
US6572534B1 (en) 2000-09-14 2003-06-03 Abiomed, Inc. System and method for implanting a cardiac wrap
US6846296B1 (en) 2000-09-14 2005-01-25 Abiomed, Inc. Apparatus and method for detachably securing a device to a natural heart
US6602182B1 (en) 2000-11-28 2003-08-05 Abiomed, Inc. Cardiac assistance systems having multiple fluid plenums
US6540659B1 (en) 2000-11-28 2003-04-01 Abiomed, Inc. Cardiac assistance systems having bi-directional pumping elements
US6547716B1 (en) 2000-11-28 2003-04-15 Abiomed, Inc. Passive cardiac restraint systems having multiple layers of inflatable elements
US6616596B1 (en) 2000-11-28 2003-09-09 Abiomed, Inc. Cardiac assistance systems having multiple layers of inflatable elements
US6626821B1 (en) 2001-05-22 2003-09-30 Abiomed, Inc. Flow-balanced cardiac wrap
US7381181B2 (en) 2001-09-10 2008-06-03 Paracor Medical, Inc. Device for treating heart failure
US7422558B2 (en) 2001-09-10 2008-09-09 Paracor Medical, Inc. Device for treating heart failure
US7435213B2 (en) 2001-09-10 2008-10-14 Paracor Medical, Inc. Device for treating heart failure
US20040097787A1 (en) * 2001-09-25 2004-05-20 The Foundry, Inc. Passive ventricular support devices and methods of using them
US7060023B2 (en) 2001-09-25 2006-06-13 The Foundry Inc. Pericardium reinforcing devices and methods of using them
US7354396B2 (en) 2001-09-25 2008-04-08 The Foundry, Inc. Passive ventricular support devices and methods of using them
US6695769B2 (en) 2001-09-25 2004-02-24 The Foundry, Inc. Passive ventricular support devices and methods of using them
US20070073100A1 (en) * 2001-09-25 2007-03-29 The Foundry Inc. Pericardium reinforcing devices and methods for using them
US20030078471A1 (en) * 2001-10-18 2003-04-24 Foley Frederick J. Manipulation of an organ
US7404793B2 (en) 2001-10-31 2008-07-29 Paracor Medical, Inc. Heart failure treatment device and method
US7276021B2 (en) 2001-10-31 2007-10-02 Paracor Medical, Inc. Heart failure treatment device and method
US7174896B1 (en) 2002-01-07 2007-02-13 Paracor Medical, Inc. Method and apparatus for supporting a heart
US7976454B2 (en) 2002-01-07 2011-07-12 Paracor Medical, Inc. Cardiac harness
US20030176765A1 (en) * 2002-01-23 2003-09-18 Foley Frederick J. Devices for holding a body organ
US7081084B2 (en) 2002-07-16 2006-07-25 University Of Cincinnati Modular power system and method for a heart wall actuation system for the natural heart
US20040015039A1 (en) * 2002-07-16 2004-01-22 The University Of Cincinnati Modular power system and method for a heart wall actuation system for the natural heart
US20060187550A1 (en) * 2002-07-18 2006-08-24 Melvin David B Deforming jacket for a heart actuation device
US7850729B2 (en) 2002-07-18 2010-12-14 The University Of Cincinnati Deforming jacket for a heart actuation device
US20060009676A1 (en) * 2002-07-18 2006-01-12 The University Of Cincinnati Protective sheath apparatus and method for use with a heart wall actuation system for the natural heart
US7662085B2 (en) 2002-07-18 2010-02-16 Cardioenergetics, Inc. Protective sheath apparatus and method for use with a heart wall actuation system for the natural heart
US20040015041A1 (en) * 2002-07-18 2004-01-22 The University Of Cincinnati Protective sheath apparatus and method for use with a heart wall actuation system for the natural heart
US20050250976A1 (en) * 2002-08-19 2005-11-10 The University Of Cincinnati Heart wall actuation system for the natural heart with shape limiting elements
US6988982B2 (en) 2002-08-19 2006-01-24 Cardioenergetics Heart wall actuation system for the natural heart with shape limiting elements
US20040034271A1 (en) * 2002-08-19 2004-02-19 The University Of Cincinnati Heart wall actuation system for the natural heart with shape limiting elements
US7485089B2 (en) 2002-09-05 2009-02-03 Paracor Medical, Inc. Cardiac harness
US20040059180A1 (en) * 2002-09-23 2004-03-25 The University Of Cincinnati Basal mounting cushion frame component to facilitate extrinsic heart wall actuation
US7229405B2 (en) 2002-11-15 2007-06-12 Paracor Medical, Inc. Cardiac harness delivery device and method of use
US7338435B2 (en) 2002-11-15 2008-03-04 Paracor Medical, Inc. Cardiac harness delivery device and method
US7572219B2 (en) 2002-11-15 2009-08-11 Paracor Medical, Inc. Cardiac harness delivery device and method
US20050049611A1 (en) * 2002-11-15 2005-03-03 Lilip Lau Cardiac harness delivery device and method
US7736299B2 (en) 2002-11-15 2010-06-15 Paracor Medical, Inc. Introducer for a cardiac harness delivery
US7500946B2 (en) 2002-11-15 2009-03-10 Paracor Medical, Inc. Cardiac harness delivery device and method
US7189203B2 (en) 2002-11-15 2007-03-13 Paracor Medical, Inc. Cardiac harness delivery device and method
US20070276179A1 (en) * 2002-11-15 2007-11-29 Paracor Medical, Inc. Method of loading a cardiac harness in a housing
US7361139B2 (en) 2002-11-15 2008-04-22 Paracor Medical, Inc. Cardiac harness delivery device and method
US20060155160A1 (en) * 2003-06-09 2006-07-13 Melvin David B Actuation mechanisms for a heart actuation device
US20060178551A1 (en) * 2003-06-09 2006-08-10 Melvin David B Securement system for a heart actuation device
US20060155159A1 (en) * 2003-06-09 2006-07-13 Melvin David B Power system for a heart actuation device
US7658705B2 (en) 2003-06-09 2010-02-09 Cardioenergetics, Inc. Actuation mechanisms for a heart actuation device
US7753837B2 (en) 2003-06-09 2010-07-13 The University Of Cincinnati Power system for a heart actuation device
US20040267086A1 (en) * 2003-06-26 2004-12-30 Anstadt Mark P. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
US7494459B2 (en) 2003-06-26 2009-02-24 Biophan Technologies, Inc. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
US20060142634A1 (en) * 2003-06-26 2006-06-29 Advanced Resuscitation, Llc Sensor-equipped and algorithm controlled direct mechanical ventricular assist device
US7291105B2 (en) 2003-07-10 2007-11-06 Paracor Medical, Inc. Self-anchoring cardiac harness
US7158839B2 (en) 2003-11-07 2007-01-02 Paracor Medical, Inc. Cardiac harness for treating heart disease
US7164952B2 (en) 2003-11-07 2007-01-16 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7146226B2 (en) 2003-11-07 2006-12-05 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7149588B2 (en) 2003-11-07 2006-12-12 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7225036B2 (en) 2003-11-07 2007-05-29 Paracor Medical, Inc Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7187984B2 (en) 2003-11-07 2007-03-06 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7155295B2 (en) 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US8843195B2 (en) 2003-12-02 2014-09-23 Uab Research Foundation Methods, systems and computer program products to inhibit ventricular fibrillation during cardiopulmonary resuscitation
US20100204623A1 (en) * 2003-12-02 2010-08-12 Ideker Raymond E Methods, Systems and Computer Program Products to Inhibit Ventricular Fibrillation During Cardiopulmonary Resuscitation
US7734344B2 (en) 2003-12-02 2010-06-08 Uab Research Foundation Methods, systems and computer program products to inhibit ventricular fibrillation during cardiopulmonary resuscitation
US7282024B2 (en) 2004-01-12 2007-10-16 Paracor Medical, Inc. Cardiac harness having interconnected strands
US7587247B2 (en) 2005-08-01 2009-09-08 Paracor Medical, Inc. Cardiac harness having an optimal impedance range
US20070073218A1 (en) * 2005-09-26 2007-03-29 Lilip Lau Inflatable cardiac device for treating and preventing ventricular remodeling
US7715918B2 (en) 2005-10-18 2010-05-11 University Of Cincinnati Muscle energy converter with smooth continuous tissue interface
US20100152523A1 (en) * 2005-11-28 2010-06-17 Myocardiocare, Inc. Method and Apparatus for Minimally Invasive Direct Mechanical Ventricular Actuation
WO2007062239A3 (en) * 2005-11-28 2008-01-03 Myotech Llc Method and apparatus for minimally invasive direct mechanical ventricular actuation
WO2007062239A2 (en) * 2005-11-28 2007-05-31 Myotech Llc Method and apparatus for minimally invasive direct mechanical ventricular actuation
US8192351B2 (en) 2007-08-13 2012-06-05 Paracor Medical, Inc. Medical device delivery system having integrated introducer
US20090096497A1 (en) * 2007-10-16 2009-04-16 Feng Kai D Design structures including multiple reference frequency fractional-n pll (phase locked loop)
JP2010264079A (en) * 2009-05-15 2010-11-25 Tohoku Univ Insertion type artificial cardiac muscle system
US20110196189A1 (en) * 2010-02-09 2011-08-11 Myocardiocare, Inc. Extra-cardiac differential ventricular actuation by inertial and baric partitioning
US20210093763A1 (en) * 2011-12-01 2021-04-01 The Trustees Of The University Of Pennsylvania Non-Blood Contacting Mechanical Device That Improves Heart Function After Injury
US11752321B2 (en) * 2011-12-01 2023-09-12 The Trustees Of The University Of Pennsylvania Non-blood contacting mechanical device that improves heart function after injury
US20150100041A1 (en) * 2013-10-07 2015-04-09 Regentis Biomaterials Ltd. Treatment of cavities in a human body
US20150209562A1 (en) * 2013-10-07 2015-07-30 Regentis Biomaterials Ltd. Treatment of cavities in a human body
US9872705B2 (en) * 2013-10-07 2018-01-23 Regentis Biomaterials Ltd. Treatment of cavities in a human body
US9895519B2 (en) * 2013-10-07 2018-02-20 Regentis Biomaterials Ltd. Treatment of cavities in a human body
CN104146855A (en) * 2014-08-29 2014-11-19 刘超 Heart auxiliary device
US11383076B2 (en) 2020-10-01 2022-07-12 Lifebridge Technologies, Llc Pump regulation based on heart size and function
US11896812B1 (en) 2023-01-27 2024-02-13 Lifebridge Technologies Llc Versatile modular heart pump for non-blood contacting ventricular function augmentation

Similar Documents

Publication Publication Date Title
US3613672A (en) Mechanical ventricular assistance cup
US4685446A (en) Method for using a ventricular assist device
US4902273A (en) Heart assist device
US4630597A (en) Dynamic aortic patch for thoracic or abdominal implantation
US4771765A (en) Heart assist device and method of use
US6846296B1 (en) Apparatus and method for detachably securing a device to a natural heart
US5626618A (en) Mechanical adjunct to cardiopulmonary resuscitation (CPR), and an electrical adjunct to defibrillation countershock, cardiac pacing, and cardiac monitoring
US5256132A (en) Cardiac assist envelope for endoscopic application
US5131905A (en) External cardiac assist device
US6508756B1 (en) Passive cardiac assistance device
US4690134A (en) Ventricular assist device
US9833551B2 (en) Fully implantable direct cardiac and aortic compression device
US5273518A (en) Cardiac assist apparatus
US10507271B2 (en) Fully implantable direct myocardium assist device
US6471633B1 (en) Mechanical auxillary ventricle blood pump with reduced waist portion
US6282445B1 (en) Passive defibrillation electrodes for use with cardiac assist device
JPH09500549A (en) Devices for assisting heart function
US20070066862A1 (en) Devices and methods for providing cardiac assistance
US20080207986A1 (en) Heart assist device
US6918870B1 (en) Assist device for the failing heart
WO2000025842A1 (en) Ventricular assist device with pre-formed inflation bladder
US7846083B2 (en) Left ventricle assist device (LVAD)
US20100298932A1 (en) Implantable artificial ventricle having low energy requirement
CN108888813A (en) A kind of left ventricular assist device and application method
CN217091800U (en) Ventricular assist device with diastole function

Legal Events

Date Code Title Description
AS Assignment

Owner name: IABP CORPORATION A DE CORP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SCHIFF PETER;REEL/FRAME:004445/0504

Effective date: 19850731