US3616943A - Stacking system - Google Patents

Stacking system Download PDF

Info

Publication number
US3616943A
US3616943A US858746A US3616943DA US3616943A US 3616943 A US3616943 A US 3616943A US 858746 A US858746 A US 858746A US 3616943D A US3616943D A US 3616943DA US 3616943 A US3616943 A US 3616943A
Authority
US
United States
Prior art keywords
protuberances
row
rows
row group
stackable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US858746A
Inventor
Delbert L Brink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co
Original Assignee
WR Grace and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co filed Critical WR Grace and Co
Application granted granted Critical
Publication of US3616943A publication Critical patent/US3616943A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D21/00Nestable, stackable or joinable containers; Containers of variable capacity
    • B65D21/02Containers specially shaped, or provided with fittings or attachments, to facilitate nesting, stacking, or joining together
    • B65D21/0235Containers stackable in a staggered configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S206/00Special receptacle or package
    • Y10S206/821Stacking member

Definitions

  • ABSTRACT A body such as a box may be stacked with substantial rigidity and provided with the capability of spacing [56] References cued and staggering by providing single and/or multiple rows of UNITED STATES PATENTS protuberances such as beads on upper and lower surfaces ar- 879,455 2/1908 Frost 46/25 ranged so that the beads nest or interlock upon stacking.
  • FIG. 1 A first figure.
  • FIG. I2 is a diagrammatic representation of FIG. I2
  • the invention relates to stackable bodies in particular to container boxes which are to be stacked wherein it is desired that a rigid stack or formation of stacks be fonned.
  • the invention relates to such bodies which may be stacked in staggered or overlapped formation to an optional degree with or without spaces between the bodies.
  • boxes molded of foamed, agglutinated polystyrene beads are provided with the stacking means of the invention.
  • this stacking means only permits single stacks to be formed which must then, if a rigid multistack formation is desired, be joined by some other means such as tying or wrapping, e.g. if more than one stack is desired to be transported. If spacing is desired between containers this can be accomplished only by quite inconvenient spacers between stacks and spacing is effectively impractical within a stack.
  • FIG. 1 is a perspective view showing the top of a box embodying the invention.
  • FIG. 2 is a perspective view showing the bottom of the box of FIG. 1.
  • FIG. 3 is a side view of the rows of interposed beads of the embodiment of FIG. 1.
  • FIG. 4 is an end view ofthe rows of interposed beads.
  • FIG. 5 is an elevation view of boxes of FIG. 1 vertically stacked.
  • FIG. 6 is a section view through line 6-6 of FIG. 3.
  • FIG. 7 is a side view of an alternate embodiment of the invention.
  • FIG. 8 is an end view ofthe embodiment of FIG. 7.
  • FIG. 9 is an elevation view of boxes of FIG. 1 stacked with offset and spacing.
  • FIG. 10 is a perspective schematic view of boxes embodying the invention cross-stacked in a solid formation.
  • FIG. 11 is a plan view ofmatrix ofFlG. 10.
  • FIG. 12 is an elevational partially schematic view of another embodiment ofthe invention.
  • a stackable body is provided on upwardand downwardfacing surfaces with groups of protuberances oriented in rows wherein upon stacking, the rows mate such that the protuberances of one row are axially interposed and offset between the protuberances of another row.
  • the rows are parallel and the protuberances equally spaced so that the bodies may be stacked vertically aligned or may be staggered to form interconnected solid or spaced formations of stacks.
  • FIGS. 1 and 2 a form of the invention is shown as employed in a box 1 having an upper surface or top 2 and a lower surface or bottom 4.
  • the top 2 might typically be a removable cover although that would have no consequence as regards the invention except that the cover should be fairly well secured to the box.
  • Upon the top 2 is a series of pads 6 and upon the bottom 4 a series of similar pads 8. Extending from each of the pads 6 are two parallel rows 10 consisting of protuberances 12 in this particular embodiment in the shape of semispherical beads which can be more plainly seen by reference to FIGS. 3 and 4 and more particular mention of which will be made later.
  • each of the pads 8 Extending from each of the pads 8 are three parallel rows 14 consisting: of the same protuberances or beads 12 as in the rows 10.
  • the sets of two and three rows may be conveniently referred to respectively as row groups 10 and 14 or alternatively as matrices.
  • the row groups 10 and 14 are oriented on the upper and lower surfaces 2 and 4 respectively so that when boxes I are stacked as shown in FIG. 5 the rows are adjacent and interlock or nest in a manner now to be explained.
  • the rows must parallel and the beads must be equally spaced along the axis or the row as shown by the center distance X in FIG. 3.
  • the transaxial distance between rows should be the same distance X as shown in FIG. 4.
  • the upward-facing row groups 10 will be axially and transaxially offset one-half the center distance X (FIG. 3) from the beads of the downward-facing row groups 14 to be interposed between and in contact with them.
  • the complete interlocking of the thus mating row groups is shown in partial section in FIG.
  • dimension X may be chosen according to a number of factors which are apparent to those comprehending the invention. It is preferable that the beads be so spaced that contact be accomplished without bottoming that is, contacting the planar surface from which the opposing protuberances extend.
  • the interlocking effect will not resist vertical separation of stacked boxes but will resist horizontal movement.
  • the relative resistance to dislodgement can be varied according to the number of rows in each mating row group, the ultimate number of interposed protuberances determining the total contact area and thereby the total force resisting rows dislodgement.
  • the shape of the protuberances is also significant in effecting more or less strength in the stack. For example, the truncated cones 16 shown in FIGS.
  • protuberances 7 and 8 would be more resistive than the beads shown in FIGS. 3 and 4.
  • one of the essential advantages of the invention is that the protuberances be not easily deformed or broken and that they be of sufficient number to distribute the weight of the box evenly especially when they are not stacked and more importantly as to the bottom box in the stack. Thus they should not protrude excessively for it is in their number that the versatility, stacking strength, and other features of the invention are achieved rather than in their individual ability to resist horizontal movement. This advantage is best achieved when the extension or height of the protuberance is equal to or less than its cross distance or width at the place of joinder to the box.
  • protuberances within the scope of the invention that would resist vertical dislodgement as well by shaping them for interference fit as by a terminal enlargement.
  • the bead or semispherical form 12 shown herein is particularly advantageous as the interposed beads show good interlocking and resistance to damage when the bead is hemispherical or less in its protrusion from the box.
  • This form is especially useful in boxes of foamed agglutinated polystyrene granules (commonly called beads, but not so here to avoid confusion) having been found to be superior to other forms in daily commercial use.
  • the strength of a polystyrene body (of a given density) is most effected by the agglutination of the granules, for it is along the granule boundaries that failure usually occurs. Failure through fracture of the granules is considered to indicate the maximum achievable strength. Normally in production products, failure is at granule boundaries. It would seem then that for maximum strength the beads 12 should be formed of as few granules as possible which would also extend into the box.
  • the protuberance would have less area of granule boundaries and be less susceptible to damage. It has been found to the contrary, however, that such relatively large granules do not work well. They tend to bridge and fail to fill the mold cavity constituting the protuberance. In addition, it has been found that beads formed from a plurality of smaller granules have higher compressive strength and are stronger and more resistant to deformation or splitting at granule boundaries than a few larger granules as long as there is no easy starting point for granule boundary separation. Thus the semispherical bead 12 shown in FIG.
  • FIG. shows a stack in vertical alignment with maximum interlocking of the matrices. It is noted that the interlocking shown in FIGS. 5 and 9 is partially schematic since in practice, one row is partially hidden as in FIGS. 3 and 4.
  • the boxes 1 can be staggered along the row in increments equal to the center distance X so as to form a staggered spaced formation such as in FIG. 9.
  • the formation need not be spaced but may be solid as shown schematically in FIG. 10 where rectangular boxes having long sides and short sides 22 and row groups as in FIG. 1 are stacked according to the pattern shown in FIG, II where the pattern is reversed in alternate levels.
  • the overlap of row groups is shown by the dotted lines indicating a subsequent level where interlocking of protuberances takes place as shown in part in the shaded areas 24.
  • Ventilation and environmental control are available even with a solid formation by choosing an appropriate size and number of row groups so that there is some space between the interlocked protuberances. At a minimum the channel is the height of the protuberance. More effective ventilation and environmental control is possible by providing the open channels between row groups as described and shown herein, the pads 6 and 8 providing an increased spacing. By adoption of a staggered formation even greater ventilation is possible.
  • polystyrene box is used for transporting frozen fish.
  • the box is approximately I6Xl2inches and has first row groups of two rows on its upper surface; one row group along each of the long sides and one down the center. These row groups are interrupted by a channel across the width at the center to essentially form the six row groups 10 shown in FIG. 1.
  • Second similar row groups 14 are formed on the bottom surface, each having three rows.
  • the beads are seven-sixteenths inch at their greatest diameter, are spaced one-half inch on center, and have a height of about one-eighth inch. The beads tend to become somewhat flattened in use which does not interfere with their nesting function and is in fact advantageous for overcoming irregularities when placing the box on a planar surface.
  • the six first row groups 10 have l3 beads per row and six second row groups 14 have 14 beads per row.
  • Another application of staggered formation is the ability to tightly pack fixed-size transports, such as trucks and trains by merely stacking the boxes at appropriate spacing to tightly pack the space. It is noted that if the center distance between rows of a row group is the same as that along the row axis, then it is possible to use the compound formation of FIGS. 10 and 11 where boxes are turned at right angles.
  • Rigid stacking of nonsymmetrical bodies can be achieved if mating surfaces are available such as in the embodiment shown in FIG, 12. All that is required is that each surface be capable of adjacentwise coincidence with at least one other surface.
  • the box 26 has on one side a flat surface 28 and on the other side two surfaces 30 and 32.
  • the flat surfaces 28 When stacked, the flat surfaces 28 mate and the surfaces 30 and 32 mate by alternately inverting the boxes.
  • Four row groups 34-40 are provided. It is possible in any case where a flat surface such as 28 is found to stagger and interconnect stacks, although this can be done only to a limited extent with the unsymmetrical surfaces 30 and 32 because the boxes cannot be stacked cross wise in the later case. So many variations are possible within the broad scope of the invention that further explication is unnecessary.
  • a stackable body comprising; an upper surface and a lower surface each of said surfaces being capable of adjacentwise coincidence with at least one of them; at least one first row group comprising at least one row of equally spaced protuberances; at least one second row group comprising at least two rows of said equally spaced protuberances; the row groups being mounted on pads upon the body and oriented upon the surfaces so that upon stacking by adjacentwise coincidence of the surface the protuberances of each first row group are axially interposed between and in ofiset contact with the protuberances ofa second row group.
  • a stackable body comprising an upper and lower surface, each of said surfaces being capable of adjacentwise coincidence with at least one of them; at least one first row group comprising at least one row of equally spaced protuberances; at least one second row group comprising at least two rows of said equally spaced protuberances; the row groups being oriented upon the surfaces so that upon stacking by adjacentwise coincidence of the surfaces the protuberances of each first row group are axially interposed between and in offset contact with the protuberances of the second row group and the protuberances are ofdiminishing circular cross section are equally spaced both axially and transaxially of the rows a distance such that the protuberances are interposed in contact without bottoming on the surfaces.
  • the stackable body of claim 6 wherein the body is rectangular in plan having a single planar upper surface and a single planar lower surface and having row groups extending parallel to one dimension of the rectangle along the edges thereof.
  • the stackable body of claim 7 further comprising a row group extending centrally of the rectangle and parallel to the other row groups.

Abstract

A body such as a box may be stacked with substantial rigidity and provided with the capability of spacing and staggering by providing single and/or multiple rows of protuberances such as beads on upper and lower surfaces arranged so that the beads nest or interlock upon stacking.

Description

Unite States Patent [72] Inventor Delbert L. Brink 3,005,282 10/1961 Christiansen 46/25 South Seattle, Wash. 2,849,151 8/1958 Heil 220/97 [211 Appl. No. 858,746 3,371,816 3/1968 Ricci. 220/97 X [22] Filed Sept. 17,1969 3,393,858 7/1968 Heel..... 217/42 UX [45] Patented Nov. 2, 1971 3,481,502 12/1969 Slayman 217/42 [73] Assignee W. R. Grace & Co. FOREIGN PATENTS cambr'dge Mass" 1,300,206 6/1962 France 46/25 Primary Examiner-Gerald M. Forlenza [54] STACKING SYSTEM Assistant Examiner-Frank E. Werner 9 Claims, 12 Drawing Figs. At!0rneys Theodore C. Browne, Metro Kalimon, C. E. [52] U S Cl 214/10 5 R Parker, William L. Baker. Armand McMillan and Lawrence 220/97 B, 46/25 [51] Int. Cl 865g 1/14 [50] Field of Search 214/105;
206/65; 46/25; 220/97, 97 B; 217/42 ABSTRACT: A body such as a box may be stacked with substantial rigidity and provided with the capability of spacing [56] References cued and staggering by providing single and/or multiple rows of UNITED STATES PATENTS protuberances such as beads on upper and lower surfaces ar- 879,455 2/1908 Frost 46/25 ranged so that the beads nest or interlock upon stacking.
m' m n m A n Tux/0W? PATENTEDunv 2 I971 SHEET 1 [IF 3 FIG. I
FIG. 5
nnnmmm \JUUVUUU uvuvvuu FIG. 6
. INVENTOR DELBERT L. BRINK PATENTEDNUV 2 I97! SHEET 2 BF 3 FIG.
FIG.
FIG. 9
vuuuuvu VVVVUV vvvuvuu VVUVVUU PATENTEDuuv 2 197i SHEET 3 [1F 3 FIG. ll
rlllllllllllllll.
FIG. I2
STACKING SYSTEM BACKGROUND OF THE INVENTION The invention relates to stackable bodies in particular to container boxes which are to be stacked wherein it is desired that a rigid stack or formation of stacks be fonned. In particular, the invention relates to such bodies which may be stacked in staggered or overlapped formation to an optional degree with or without spaces between the bodies. In one particularly advantageous embodiment, boxes molded of foamed, agglutinated polystyrene beads are provided with the stacking means of the invention.
In the past it has been known to permit rigid stacking of bodies such as container boxes by shaping them so that some portion of the bottom of one container is captured by the top of another identical container, or visa versa, as in nesting. One common form is where the lower portion of the container is smaller than its upper portion, as by being tapered, and the latter has a cavity for receiving an identical container up to some desired depth. This form is excellent for forming single stacks of empty containers such as nested drinking cups. However, it is inefficient when it is desired to stack filled containers or solid bodies since the space needed to nest is not available for the basic purpose of the container or body. Furthermore, this stacking means only permits single stacks to be formed which must then, if a rigid multistack formation is desired, be joined by some other means such as tying or wrapping, e.g. if more than one stack is desired to be transported. If spacing is desired between containers this can be accomplished only by quite inconvenient spacers between stacks and spacing is effectively impractical within a stack.
Some of these problems have been alleviated by another form of stacking means in which projections or legs are provided at the bottom corners of the container and mating cavities in the top comers. This form permits spacing within a stack but is still ineffective for multistack formations. In addition, in cases where a high degree of rigidity or resistance to dislodgment is desired, it is necessary that the projections and mating cavities be relatively massive and deep thus consuming an undesirably large amount ofspace.
Other severe disadvantages are that the projections or legs interfere with conveyor systems, are easily broken especially if the container is dropped on a corner; and require careful preparation of the floor to assure equal support for all the legs. The cavities of such systems are often found to contain dirt or debris which interferes with proper functioning.
These and other problems are alleviated in the present invention as will be seen by the following discussion.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing the top of a box embodying the invention.
FIG. 2 is a perspective view showing the bottom of the box of FIG. 1.
FIG. 3 is a side view of the rows of interposed beads of the embodiment of FIG. 1.
FIG. 4 is an end view ofthe rows of interposed beads.
FIG. 5 is an elevation view of boxes of FIG. 1 vertically stacked.
FIG. 6 is a section view through line 6-6 of FIG. 3.
FIG. 7 is a side view of an alternate embodiment of the invention.
FIG. 8 is an end view ofthe embodiment of FIG. 7.
FIG. 9 is an elevation view of boxes of FIG. 1 stacked with offset and spacing.
FIG. 10 is a perspective schematic view of boxes embodying the invention cross-stacked in a solid formation.
FIG. 11 is a plan view ofmatrix ofFlG. 10.
FIG. 12 is an elevational partially schematic view of another embodiment ofthe invention.
LII
SUMMARY OF THE INVENTION A stackable body is provided on upwardand downwardfacing surfaces with groups of protuberances oriented in rows wherein upon stacking, the rows mate such that the protuberances of one row are axially interposed and offset between the protuberances of another row. The rows are parallel and the protuberances equally spaced so that the bodies may be stacked vertically aligned or may be staggered to form interconnected solid or spaced formations of stacks.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIGS. 1 and 2 a form of the invention is shown as employed in a box 1 having an upper surface or top 2 and a lower surface or bottom 4. The top 2 might typically be a removable cover although that would have no consequence as regards the invention except that the cover should be fairly well secured to the box. Upon the top 2 is a series of pads 6 and upon the bottom 4 a series of similar pads 8. Extending from each of the pads 6 are two parallel rows 10 consisting of protuberances 12 in this particular embodiment in the shape of semispherical beads which can be more plainly seen by reference to FIGS. 3 and 4 and more particular mention of which will be made later. Extending from each of the pads 8 are three parallel rows 14 consisting: of the same protuberances or beads 12 as in the rows 10. The sets of two and three rows may be conveniently referred to respectively as row groups 10 and 14 or alternatively as matrices. The row groups 10 and 14 are oriented on the upper and lower surfaces 2 and 4 respectively so that when boxes I are stacked as shown in FIG. 5 the rows are adjacent and interlock or nest in a manner now to be explained.
In order to exploit all the advantages of the invention all the rows must parallel and the beads must be equally spaced along the axis or the row as shown by the center distance X in FIG. 3. In the preferred embodiment where: the protuberances are symmetrical in cross section, the transaxial distance between rows should be the same distance X as shown in FIG. 4. As suming a datum position for the box 1 as being stacked in ver tical alignment as shown in FIG. 5, then the upward-facing row groups 10 will be axially and transaxially offset one-half the center distance X (FIG. 3) from the beads of the downward-facing row groups 14 to be interposed between and in contact with them. The complete interlocking of the thus mating row groups is shown in partial section in FIG. 6 taken through the line 6-6 of FIG. 3. The: dimension X may be chosen according to a number of factors which are apparent to those comprehending the invention. It is preferable that the beads be so spaced that contact be accomplished without bottoming that is, contacting the planar surface from which the opposing protuberances extend.
In order to effect the interposition of protuberances it is necessary as a minimum that one of the mating row groups have one row and that the other have two rows; or in other words, that one row group have at least one row and the other row group have at least one more row. As can be seen the interlocking effect will not resist vertical separation of stacked boxes but will resist horizontal movement. The relative resistance to dislodgement can be varied according to the number of rows in each mating row group, the ultimate number of interposed protuberances determining the total contact area and thereby the total force resisting rows dislodgement. The shape of the protuberances is also significant in effecting more or less strength in the stack. For example, the truncated cones 16 shown in FIGS. 7 and 8 would be more resistive than the beads shown in FIGS. 3 and 4. However, one of the essential advantages of the invention is that the protuberances be not easily deformed or broken and that they be of sufficient number to distribute the weight of the box evenly especially when they are not stacked and more importantly as to the bottom box in the stack. Thus they should not protrude excessively for it is in their number that the versatility, stacking strength, and other features of the invention are achieved rather than in their individual ability to resist horizontal movement. This advantage is best achieved when the extension or height of the protuberance is equal to or less than its cross distance or width at the place of joinder to the box.
It would also be possible to provide protuberances within the scope of the invention that would resist vertical dislodgement as well by shaping them for interference fit as by a terminal enlargement.
The bead or semispherical form 12 shown herein is particularly advantageous as the interposed beads show good interlocking and resistance to damage when the bead is hemispherical or less in its protrusion from the box.
This form is especially useful in boxes of foamed agglutinated polystyrene granules (commonly called beads, but not so here to avoid confusion) having been found to be superior to other forms in daily commercial use. The strength of a polystyrene body (of a given density) is most effected by the agglutination of the granules, for it is along the granule boundaries that failure usually occurs. Failure through fracture of the granules is considered to indicate the maximum achievable strength. Normally in production products, failure is at granule boundaries. It would seem then that for maximum strength the beads 12 should be formed of as few granules as possible which would also extend into the box. Thus the protuberance would have less area of granule boundaries and be less susceptible to damage. It has been found to the contrary, however, that such relatively large granules do not work well. They tend to bridge and fail to fill the mold cavity constituting the protuberance. In addition, it has been found that beads formed from a plurality of smaller granules have higher compressive strength and are stronger and more resistant to deformation or splitting at granule boundaries than a few larger granules as long as there is no easy starting point for granule boundary separation. Thus the semispherical bead 12 shown in FIG. 3 with at least about five and preferably about 6-8 polystyrene granules 18 across its width is exceptionally resistant to damage and may be conveniently molded while providing good stacking effectiveness. The truncated cones 16 of FigS. 7 and 8 are not as desirable because the sharp corner is an easy starting point for granule separation. Having described the form of the protuberances and their general and preferred function in stacking there will now be described some of the special capabilities available with the invention. FIG. shows a stack in vertical alignment with maximum interlocking of the matrices. It is noted that the interlocking shown in FIGS. 5 and 9 is partially schematic since in practice, one row is partially hidden as in FIGS. 3 and 4. The boxes 1 can be staggered along the row in increments equal to the center distance X so as to form a staggered spaced formation such as in FIG. 9. The formation need not be spaced but may be solid as shown schematically in FIG. 10 where rectangular boxes having long sides and short sides 22 and row groups as in FIG. 1 are stacked according to the pattern shown in FIG, II where the pattern is reversed in alternate levels. The overlap of row groups is shown by the dotted lines indicating a subsequent level where interlocking of protuberances takes place as shown in part in the shaded areas 24.
Ventilation and environmental control are available even with a solid formation by choosing an appropriate size and number of row groups so that there is some space between the interlocked protuberances. At a minimum the channel is the height of the protuberance. More effective ventilation and environmental control is possible by providing the open channels between row groups as described and shown herein, the pads 6 and 8 providing an increased spacing. By adoption of a staggered formation even greater ventilation is possible.
In a commercial application of this preferred embodiment polystyrene box is used for transporting frozen fish. The box is approximately I6Xl2inches and has first row groups of two rows on its upper surface; one row group along each of the long sides and one down the center. These row groups are interrupted by a channel across the width at the center to essentially form the six row groups 10 shown in FIG. 1. Second similar row groups 14 are formed on the bottom surface, each having three rows. The beads are seven-sixteenths inch at their greatest diameter, are spaced one-half inch on center, and have a height of about one-eighth inch. The beads tend to become somewhat flattened in use which does not interfere with their nesting function and is in fact advantageous for overcoming irregularities when placing the box on a planar surface. The six first row groups 10 have l3 beads per row and six second row groups 14 have 14 beads per row. Another application of staggered formation is the ability to tightly pack fixed-size transports, such as trucks and trains by merely stacking the boxes at appropriate spacing to tightly pack the space. It is noted that if the center distance between rows of a row group is the same as that along the row axis, then it is possible to use the compound formation of FIGS. 10 and 11 where boxes are turned at right angles.
Rigid stacking of nonsymmetrical bodies can be achieved if mating surfaces are available such as in the embodiment shown in FIG, 12. All that is required is that each surface be capable of adjacentwise coincidence with at least one other surface.
The box 26 has on one side a flat surface 28 and on the other side two surfaces 30 and 32. When stacked, the flat surfaces 28 mate and the surfaces 30 and 32 mate by alternately inverting the boxes. Four row groups 34-40 are provided. It is possible in any case where a flat surface such as 28 is found to stagger and interconnect stacks, although this can be done only to a limited extent with the unsymmetrical surfaces 30 and 32 because the boxes cannot be stacked cross wise in the later case. So many variations are possible within the broad scope of the invention that further explication is unnecessary.
I claim:
1. A stackable body comprising; an upper surface and a lower surface each of said surfaces being capable of adjacentwise coincidence with at least one of them; at least one first row group comprising at least one row of equally spaced protuberances; at least one second row group comprising at least two rows of said equally spaced protuberances; the row groups being mounted on pads upon the body and oriented upon the surfaces so that upon stacking by adjacentwise coincidence of the surface the protuberances of each first row group are axially interposed between and in ofiset contact with the protuberances ofa second row group.
2. The stackable body of claim I wherein the protuberances are of diminishing circular cross section and are equally spaced both axially and transaxially of the rows.
3. The stackable body of claim 2 wherein the protuberances are semispherical in shape.
4. The stackable body of claim 3 wherein the body is foamed agglutinated polystyrene granules.
5. The stackable body of claim 4 wherein an average of at least five granules extend across the greatest diameter of the protuberances.
6. A stackable body comprising an upper and lower surface, each of said surfaces being capable of adjacentwise coincidence with at least one of them; at least one first row group comprising at least one row of equally spaced protuberances; at least one second row group comprising at least two rows of said equally spaced protuberances; the row groups being oriented upon the surfaces so that upon stacking by adjacentwise coincidence of the surfaces the protuberances of each first row group are axially interposed between and in offset contact with the protuberances of the second row group and the protuberances are ofdiminishing circular cross section are equally spaced both axially and transaxially of the rows a distance such that the protuberances are interposed in contact without bottoming on the surfaces.
7. The stackable body of claim 6 wherein the body is rectangular in plan having a single planar upper surface and a single planar lower surface and having row groups extending parallel to one dimension of the rectangle along the edges thereof.
8. The stackable body of claim 7 further comprising a row group extending centrally of the rectangle and parallel to the other row groups.
9. The stackable body of claim 7 wherein the row groups are mounted on pads upon the body. 5
a i i l 1!

Claims (9)

1. A stackable body comprising; an upper surface and a lower surface each of said surfaces being capable of adjacentwise coincidence with at least one of them; at least one first row group comprising at least one row of equally spaced protuberances; at least one second row group comprising at least two rows of said equally spaced protuberances; the row groups being mounted on pads upon the body and oriented upon the surfaces so that upon stacking by adjacentwise coincidence of the surface the protuberances of each first row group are axially interposed between and in offset contact with the protuberances of a second row group.
2. The stackable body of claim 1 wherein the protuberances are of diminishing circular cross section and are equally spaced both axially and transaxially of the rows.
3. The stackable body of claim 2 wherein the protuberances are semispherical in shape.
4. The stackable body of claim 3 wherein the Body is foamed agglutinated polystyrene granules.
5. The stackable body of claim 4 wherein an average of at least five granules extend across the greatest diameter of the protuberances.
6. A stackable body comprising an upper and lower surface, each of said surfaces being capable of adjacentwise coincidence with at least one of them; at least one first row group comprising at least one row of equally spaced protuberances; at least one second row group comprising at least two rows of said equally spaced protuberances; the row groups being oriented upon the surfaces so that upon stacking by adjacentwise coincidence of the surfaces the protuberances of each first row group are axially interposed between and in offset contact with the protuberances of the second row group and the protuberances are of diminishing circular cross section are equally spaced both axially and transaxially of the rows a distance such that the protuberances are interposed in contact without bottoming on the surfaces.
7. The stackable body of claim 6 wherein the body is rectangular in plan having a single planar upper surface and a single planar lower surface and having row groups extending parallel to one dimension of the rectangle along the edges thereof.
8. The stackable body of claim 7 further comprising a row group extending centrally of the rectangle and parallel to the other row groups.
9. The stackable body of claim 7 wherein the row groups are mounted on pads upon the body.
US858746A 1969-09-17 1969-09-17 Stacking system Expired - Lifetime US3616943A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85874669A 1969-09-17 1969-09-17

Publications (1)

Publication Number Publication Date
US3616943A true US3616943A (en) 1971-11-02

Family

ID=25329084

Family Applications (1)

Application Number Title Priority Date Filing Date
US858746A Expired - Lifetime US3616943A (en) 1969-09-17 1969-09-17 Stacking system

Country Status (2)

Country Link
US (1) US3616943A (en)
CA (1) CA918088A (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942654A (en) * 1974-03-22 1976-03-09 Performance Packaging, Inc. Self-adhering support
US4234092A (en) * 1978-04-17 1980-11-18 Edwin Axel Container
US4609106A (en) * 1983-11-22 1986-09-02 Vittorio Gentili Portable jerrican-like container having a suitable-to-be-palletized casing
EP0058003B1 (en) * 1981-01-28 1987-01-21 Bigelow-Sanford, Inc. Shipping pallet and a package formed therefrom
US4796757A (en) * 1986-06-02 1989-01-10 Strunkmann Meister Karl E Vessel
FR2618757A1 (en) * 1987-07-31 1989-02-03 Duclair Usines Chimiques System for the locking, interlocking and stacking of packing cases made of expanded polystyrene
US4815591A (en) * 1988-05-09 1989-03-28 Tivy Michael B Oil change container
US4844263A (en) * 1988-02-19 1989-07-04 Hercules, Incorporated Food container
US4910033A (en) * 1988-05-13 1990-03-20 W. R. Grace & Co. Vacuum skin packages with reduced product discoloration
US4938358A (en) * 1989-08-18 1990-07-03 Pantasote, Inc. Storage container
US5060819A (en) * 1988-04-26 1991-10-29 Rehrig-Pacific Company, Inc. Nestable low depth tray
US5061218A (en) * 1990-07-09 1991-10-29 Real Blocks, Inc. Toy building blocks
US5087462A (en) * 1988-05-13 1992-02-11 W. R. Grace & Co.-Conn Vacuum skin packages with reduced product discoloration and method of making
US5176272A (en) * 1991-03-25 1993-01-05 United Plastic Films, Inc. Container for spooled materials
EP0522450A1 (en) * 1991-07-08 1993-01-13 Hoechst Aktiengesellschaft Flange for core of rolled material having increased resistance to damage to its sides
US5186330A (en) * 1991-12-27 1993-02-16 Mcclure Industries, Inc. Stackable container
US5248035A (en) * 1990-09-06 1993-09-28 Patrick Gallagher Collection and storage unit for recyclable containers
US5273175A (en) * 1993-01-28 1993-12-28 Rehrig Pacific Company, Inc. Split box case construction
US5324919A (en) * 1992-09-11 1994-06-28 Adams Industries, Inc. Open coil heater for efficient transport with nestable heating elements
US5368183A (en) * 1993-04-23 1994-11-29 Singer; Stuart H. Meal tray system
US5392945A (en) * 1992-08-19 1995-02-28 Eastman Kodak Company Stackable container for premoistened wipes
US5555996A (en) * 1993-08-06 1996-09-17 Rehrig Pacific Company Bag-in box with split lid
USD377887S (en) * 1996-04-04 1997-02-11 The Coca-Cola Company Building block drink container
US5642810A (en) * 1996-01-02 1997-07-01 Carlisle Plastics, Inc. Container/dispenser for rolled plastic bags
US5676251A (en) * 1994-08-22 1997-10-14 The Coca-Cola Company Food service kit and method for using
US5833115A (en) * 1997-02-04 1998-11-10 Dean Foods Company Container
US5855310A (en) * 1997-02-18 1999-01-05 Lear Corporation Removable interior storage container for motor vehicle
US5967322A (en) * 1995-02-02 1999-10-19 Rehrig Pacific Company, Inc. Container assembly with tamper evident seal
US20030102309A1 (en) * 1999-12-28 2003-06-05 Peter Hartwall Collapsible bulk container
WO2004060760A1 (en) * 2003-01-07 2004-07-22 Rentapack S.A. Containers suitable for being stacked and placed side by side, with means for their alignment
US6889838B2 (en) * 2000-08-03 2005-05-10 Atlas Copco Electric Tools Gmbh Tool Box
US20060006187A1 (en) * 2004-06-25 2006-01-12 Hanno Kortleven Interlockable seal
US20060254946A1 (en) * 2005-05-12 2006-11-16 Environmental Container Systems, Inc., D/B/A Ecs Composites, Inc. Stackable container apparatus and methods
US20070045310A1 (en) * 2005-08-29 2007-03-01 Tdk Corporation Storage container
US20070138045A1 (en) * 2005-12-21 2007-06-21 Sonoco Development, Inc. Stackable blow-molded container and cap therefor
US20070209960A1 (en) * 2006-03-09 2007-09-13 Nalge Nunc International Flexible Container Handling System
US20070221670A1 (en) * 2004-04-13 2007-09-27 Orsey Venture Llc. Package Assembly, in Particular a Returnable Type Package Assembly
ES2283167A1 (en) * 2004-09-15 2007-10-16 Valentin Masa Alcorlo Container packing for product in multiple compartments, involves insulating contents properly and preserved in good condition and joint or separate lids that allow separation
US20070245651A1 (en) * 2006-04-06 2007-10-25 Hardigg Industries, Inc. Modular case and method of forming the same
US20080060966A1 (en) * 2006-09-13 2008-03-13 Petfast Limited Stack of containers
US20080308439A1 (en) * 2007-06-13 2008-12-18 Freshxtend Technologies Corp. Grooved Lid for Packaging of Fresh Fruits, Vegetables and Flowers in Corresponding Modified Atmosphere Trays
US20090057306A1 (en) * 2007-08-29 2009-03-05 Graphic Packaging International, Inc. Interconnecting container system for food or other product
US20090065560A1 (en) * 2007-09-05 2009-03-12 Colgate-Palmolive Company Multi-pack of product packages
US20090145790A1 (en) * 2007-12-10 2009-06-11 Michael Harmik Panosian Modular storage system
US20090178946A1 (en) * 2008-01-15 2009-07-16 Hardigg Industries, Inc. Container assembly
US20100038328A1 (en) * 2008-08-13 2010-02-18 Environmental Container Systems, inc., dba ECS Composites Systems and method for securing electronics equipment
US20100102055A1 (en) * 2008-10-28 2010-04-29 Environmental Container Systems, Inc., D/B/A Ecs Composites Strengthened equipment cases and methods of making same
US20100140270A1 (en) * 2008-12-08 2010-06-10 Environmental Container Systems, Inc. D/B/A Ecs Composites Modular equipment case
US20100219193A1 (en) * 2009-02-27 2010-09-02 Environmental Container Systems, D/B/A Ecs Composites Container stacking system with universal members
US20110139745A1 (en) * 2008-08-25 2011-06-16 Ben Ezra Modular bottle closure
US20110180452A1 (en) * 2010-01-25 2011-07-28 Mattel, Inc. Display Assembly
US20130036707A1 (en) * 2009-12-30 2013-02-14 Luca Zacchi Modular packing system
US20140305829A1 (en) * 2013-04-12 2014-10-16 Peter Roesler Organizing system with packing boxes
US20150083632A1 (en) * 2010-07-12 2015-03-26 Becklin Holdings, Inc. Hybrid stacking system for containers
US9108766B2 (en) 2013-07-19 2015-08-18 S.C. Johnson & Son, Inc. Storage container systems
US20150344174A1 (en) * 2014-05-28 2015-12-03 Shenzhen China Star Optoelectronics Technology Co. Ltd. Pallet and packaging case
US9738198B2 (en) 2015-03-23 2017-08-22 Robert Quinn Swink Load and lock containers for carrying goods in vehicles and associated methods
US9802741B2 (en) 2014-12-10 2017-10-31 Becklin Holdings, Inc. Container with padlock mount
US20180169949A1 (en) * 2015-06-26 2018-06-21 Analyticware, Inc. Composite object and composite object producing method
US10633154B2 (en) * 2014-05-05 2020-04-28 Preddis, Llc Combination cap and work support system
US20210107700A1 (en) * 2019-10-10 2021-04-15 Ethyl Ambrosia Llc Apparatus for storing and extracting an edible substance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695087A (en) * 1995-04-28 1997-12-09 Canada Post Corporation Container with latching lid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US879455A (en) * 1907-05-29 1908-02-18 Charles W Frost Toy building-block.
US2849151A (en) * 1955-01-27 1958-08-26 American Viscose Corp Stacking container
US3005282A (en) * 1958-01-28 1961-10-24 Interlego Ag Toy building brick
FR1300206A (en) * 1961-06-17 1962-08-03 Construction game
US3371816A (en) * 1965-10-22 1968-03-05 Fausto M. Ricci Collapsible receptacle
US3393858A (en) * 1966-10-08 1968-07-23 Laeisz F Rectangular collapsible carton for the shipment of bananas
US3481502A (en) * 1968-06-27 1969-12-02 Mitchell J Slayman Containers with interfitted cleats

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US879455A (en) * 1907-05-29 1908-02-18 Charles W Frost Toy building-block.
US2849151A (en) * 1955-01-27 1958-08-26 American Viscose Corp Stacking container
US3005282A (en) * 1958-01-28 1961-10-24 Interlego Ag Toy building brick
FR1300206A (en) * 1961-06-17 1962-08-03 Construction game
US3371816A (en) * 1965-10-22 1968-03-05 Fausto M. Ricci Collapsible receptacle
US3393858A (en) * 1966-10-08 1968-07-23 Laeisz F Rectangular collapsible carton for the shipment of bananas
US3481502A (en) * 1968-06-27 1969-12-02 Mitchell J Slayman Containers with interfitted cleats

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942654A (en) * 1974-03-22 1976-03-09 Performance Packaging, Inc. Self-adhering support
US4234092A (en) * 1978-04-17 1980-11-18 Edwin Axel Container
EP0058003B1 (en) * 1981-01-28 1987-01-21 Bigelow-Sanford, Inc. Shipping pallet and a package formed therefrom
US4609106A (en) * 1983-11-22 1986-09-02 Vittorio Gentili Portable jerrican-like container having a suitable-to-be-palletized casing
US4796757A (en) * 1986-06-02 1989-01-10 Strunkmann Meister Karl E Vessel
FR2618757A1 (en) * 1987-07-31 1989-02-03 Duclair Usines Chimiques System for the locking, interlocking and stacking of packing cases made of expanded polystyrene
US4844263A (en) * 1988-02-19 1989-07-04 Hercules, Incorporated Food container
US5060819A (en) * 1988-04-26 1991-10-29 Rehrig-Pacific Company, Inc. Nestable low depth tray
US4815591A (en) * 1988-05-09 1989-03-28 Tivy Michael B Oil change container
US4910033A (en) * 1988-05-13 1990-03-20 W. R. Grace & Co. Vacuum skin packages with reduced product discoloration
US5087462A (en) * 1988-05-13 1992-02-11 W. R. Grace & Co.-Conn Vacuum skin packages with reduced product discoloration and method of making
US4938358A (en) * 1989-08-18 1990-07-03 Pantasote, Inc. Storage container
US5061218A (en) * 1990-07-09 1991-10-29 Real Blocks, Inc. Toy building blocks
US5248035A (en) * 1990-09-06 1993-09-28 Patrick Gallagher Collection and storage unit for recyclable containers
US5176272A (en) * 1991-03-25 1993-01-05 United Plastic Films, Inc. Container for spooled materials
EP0522450A1 (en) * 1991-07-08 1993-01-13 Hoechst Aktiengesellschaft Flange for core of rolled material having increased resistance to damage to its sides
US5205411A (en) * 1991-07-08 1993-04-27 Hoechst Aktiengesellschaft End wall for a wound roll, exhibiting improved resistance to lateral breaking
US5186330A (en) * 1991-12-27 1993-02-16 Mcclure Industries, Inc. Stackable container
US5392945A (en) * 1992-08-19 1995-02-28 Eastman Kodak Company Stackable container for premoistened wipes
US5507389A (en) * 1992-08-19 1996-04-16 Reckitt & Colman, Inc. Stackable container for premoistened wipes
US5324919A (en) * 1992-09-11 1994-06-28 Adams Industries, Inc. Open coil heater for efficient transport with nestable heating elements
US5329098A (en) * 1992-09-11 1994-07-12 Adams Industries, Inc. Open coil heater for efficient transport
US5273175A (en) * 1993-01-28 1993-12-28 Rehrig Pacific Company, Inc. Split box case construction
US5368183A (en) * 1993-04-23 1994-11-29 Singer; Stuart H. Meal tray system
US5555996A (en) * 1993-08-06 1996-09-17 Rehrig Pacific Company Bag-in box with split lid
US5876776A (en) * 1994-08-22 1999-03-02 The Coca-Cola Company Method for using food service kit
US5676251A (en) * 1994-08-22 1997-10-14 The Coca-Cola Company Food service kit and method for using
US5709304A (en) * 1994-08-22 1998-01-20 The Coca-Cola Company Food service kit
US5890595A (en) * 1994-08-22 1999-04-06 The Coca-Cola Company Food service kit
US5967322A (en) * 1995-02-02 1999-10-19 Rehrig Pacific Company, Inc. Container assembly with tamper evident seal
US5642810A (en) * 1996-01-02 1997-07-01 Carlisle Plastics, Inc. Container/dispenser for rolled plastic bags
USD377887S (en) * 1996-04-04 1997-02-11 The Coca-Cola Company Building block drink container
US5833115A (en) * 1997-02-04 1998-11-10 Dean Foods Company Container
US5855310A (en) * 1997-02-18 1999-01-05 Lear Corporation Removable interior storage container for motor vehicle
US20030102309A1 (en) * 1999-12-28 2003-06-05 Peter Hartwall Collapsible bulk container
US6955273B2 (en) * 1999-12-28 2005-10-18 Arca Systems Ab Collapsible bulk container
US6889838B2 (en) * 2000-08-03 2005-05-10 Atlas Copco Electric Tools Gmbh Tool Box
WO2004060760A1 (en) * 2003-01-07 2004-07-22 Rentapack S.A. Containers suitable for being stacked and placed side by side, with means for their alignment
US20070221670A1 (en) * 2004-04-13 2007-09-27 Orsey Venture Llc. Package Assembly, in Particular a Returnable Type Package Assembly
US9511895B2 (en) * 2004-04-13 2016-12-06 Free Pack Net Holding Sagl Package assembly, in particular a returnable type package assembly
US7337917B2 (en) * 2004-06-25 2008-03-04 Dart Industries Inc. Interlockable seal
US20060006187A1 (en) * 2004-06-25 2006-01-12 Hanno Kortleven Interlockable seal
ES2283167A1 (en) * 2004-09-15 2007-10-16 Valentin Masa Alcorlo Container packing for product in multiple compartments, involves insulating contents properly and preserved in good condition and joint or separate lids that allow separation
US7740138B2 (en) 2005-05-12 2010-06-22 Environmental Container Systems, Inc. Stackable container apparatus and methods
US20060254946A1 (en) * 2005-05-12 2006-11-16 Environmental Container Systems, Inc., D/B/A Ecs Composites, Inc. Stackable container apparatus and methods
US20080264820A1 (en) * 2005-05-12 2008-10-30 Environmental Container Systems Inc., D/B/A Ecs Composites Stackable container apparatus and methods
USRE45448E1 (en) 2005-05-12 2015-04-07 Becklin Holdings, Inc. Stackable container apparatus and methods
USRE44656E1 (en) 2005-05-12 2013-12-24 Becklin Holdings, Inc. Stackable container apparatus and methods
US7537119B2 (en) * 2005-05-12 2009-05-26 Environmental Container Systems Stackable container apparatus and methods
US20070045310A1 (en) * 2005-08-29 2007-03-01 Tdk Corporation Storage container
US20070138045A1 (en) * 2005-12-21 2007-06-21 Sonoco Development, Inc. Stackable blow-molded container and cap therefor
US20070209960A1 (en) * 2006-03-09 2007-09-13 Nalge Nunc International Flexible Container Handling System
US8905255B2 (en) 2006-03-09 2014-12-09 Nalge Nunc International Corporation Flexible container handling system
US8146762B2 (en) * 2006-03-09 2012-04-03 Nalge Nunc International Corporation Flexible container handling system
US20070245651A1 (en) * 2006-04-06 2007-10-25 Hardigg Industries, Inc. Modular case and method of forming the same
US8850681B2 (en) 2006-04-06 2014-10-07 Hardigg Industries, Inc. Modular case and method of forming the same
US8640911B2 (en) * 2006-04-06 2014-02-04 Hardigg Industries, Inc. Modular case and method of forming the same
US20080060966A1 (en) * 2006-09-13 2008-03-13 Petfast Limited Stack of containers
US20080308439A1 (en) * 2007-06-13 2008-12-18 Freshxtend Technologies Corp. Grooved Lid for Packaging of Fresh Fruits, Vegetables and Flowers in Corresponding Modified Atmosphere Trays
US20090057306A1 (en) * 2007-08-29 2009-03-05 Graphic Packaging International, Inc. Interconnecting container system for food or other product
US8087527B2 (en) * 2007-08-29 2012-01-03 Graphic Packaging International, Inc. Interconnecting container system for food or other product
US20090065560A1 (en) * 2007-09-05 2009-03-12 Colgate-Palmolive Company Multi-pack of product packages
US20090145790A1 (en) * 2007-12-10 2009-06-11 Michael Harmik Panosian Modular storage system
US20090178946A1 (en) * 2008-01-15 2009-07-16 Hardigg Industries, Inc. Container assembly
US8789699B2 (en) * 2008-01-15 2014-07-29 Hardigg Industries, Inc. Container assembly
US20100038328A1 (en) * 2008-08-13 2010-02-18 Environmental Container Systems, inc., dba ECS Composites Systems and method for securing electronics equipment
US8668285B2 (en) 2008-08-13 2014-03-11 Becklin Holdings, Inc. Systems and method for securing electronics equipment
US20110139745A1 (en) * 2008-08-25 2011-06-16 Ben Ezra Modular bottle closure
US11203470B2 (en) * 2008-08-25 2021-12-21 Ben Ezra Modular bottle closure for coupling and assembly
US8016966B2 (en) 2008-10-28 2011-09-13 Environmental Cotainer Systems Strengthened equipment cases and methods of making same
US20100102055A1 (en) * 2008-10-28 2010-04-29 Environmental Container Systems, Inc., D/B/A Ecs Composites Strengthened equipment cases and methods of making same
US8763836B2 (en) 2008-12-08 2014-07-01 Becklin Holdings, Inc. Modular equipment case with sealing system
US20100140270A1 (en) * 2008-12-08 2010-06-10 Environmental Container Systems, Inc. D/B/A Ecs Composites Modular equipment case
US8851287B2 (en) 2009-02-27 2014-10-07 Becklin Holdings, Inc. Container stacking system with universal members
US20100219193A1 (en) * 2009-02-27 2010-09-02 Environmental Container Systems, D/B/A Ecs Composites Container stacking system with universal members
US9994375B2 (en) * 2009-12-30 2018-06-12 Luca Zacchi Modular packing system
US20130036707A1 (en) * 2009-12-30 2013-02-14 Luca Zacchi Modular packing system
US20110180452A1 (en) * 2010-01-25 2011-07-28 Mattel, Inc. Display Assembly
US20150083632A1 (en) * 2010-07-12 2015-03-26 Becklin Holdings, Inc. Hybrid stacking system for containers
US10023356B2 (en) * 2010-07-12 2018-07-17 Becklin Holdings, Inc. Hybrid stacking system for containers
US20140305829A1 (en) * 2013-04-12 2014-10-16 Peter Roesler Organizing system with packing boxes
US9682799B2 (en) 2013-07-19 2017-06-20 S. C. Johnson & Son, Inc. Storage container systems
US10138020B2 (en) 2013-07-19 2018-11-27 S. C. Johnson & Son, Inc. Storage container systems
US10583961B2 (en) 2013-07-19 2020-03-10 S. C. Johnson & Son, Inc. Storage container systems
US9108766B2 (en) 2013-07-19 2015-08-18 S.C. Johnson & Son, Inc. Storage container systems
US10633154B2 (en) * 2014-05-05 2020-04-28 Preddis, Llc Combination cap and work support system
US20150344174A1 (en) * 2014-05-28 2015-12-03 Shenzhen China Star Optoelectronics Technology Co. Ltd. Pallet and packaging case
US9802741B2 (en) 2014-12-10 2017-10-31 Becklin Holdings, Inc. Container with padlock mount
US10384844B2 (en) 2014-12-10 2019-08-20 Becklin Holdings, Inc. Container with padlock mount
US9738198B2 (en) 2015-03-23 2017-08-22 Robert Quinn Swink Load and lock containers for carrying goods in vehicles and associated methods
US20180169949A1 (en) * 2015-06-26 2018-06-21 Analyticware, Inc. Composite object and composite object producing method
US11472112B2 (en) * 2015-06-26 2022-10-18 Analyticware, Inc. Composite object and composite object producing method
US20210107700A1 (en) * 2019-10-10 2021-04-15 Ethyl Ambrosia Llc Apparatus for storing and extracting an edible substance

Also Published As

Publication number Publication date
CA918088A (en) 1973-01-02

Similar Documents

Publication Publication Date Title
US3616943A (en) Stacking system
US4523681A (en) Multilevel stacking container
US3326410A (en) Stackable, nestable, interlocking container
US3656650A (en) Compartmentalized container
US3889834A (en) Container construction
US4319685A (en) Openwork crate for transporting bottles or the like
US4258847A (en) Nondeformable container
US4256224A (en) Nestable and stackable six-bottle carrier
CA1087117A (en) Container
US4619366A (en) Two-level stacking container
US2821327A (en) Bottle carrier
US4440303A (en) Tray
US4548320A (en) Heavy-duty full-depth beverage case
US3750596A (en) Interlocking storage pallet
US4848573A (en) Stackable packaging system
US4756420A (en) Multi size nesting containers with anti jamming
EP0138281B1 (en) Stackable carrier or crate for goods or articles
US4286752A (en) Nesting track section for model vehicles
US6811050B2 (en) Packing tray
US3013692A (en) Nesting and stacking container
AU592125B2 (en) Container connector system
US2233044A (en) Fragile article support
US4079077A (en) Crate
US4269309A (en) Bottle packaging
US3966111A (en) Container partitioning