US3633044A - Gamma correction circuit - Google Patents

Gamma correction circuit Download PDF

Info

Publication number
US3633044A
US3633044A US889367A US3633044DA US3633044A US 3633044 A US3633044 A US 3633044A US 889367 A US889367 A US 889367A US 3633044D A US3633044D A US 3633044DA US 3633044 A US3633044 A US 3633044A
Authority
US
United States
Prior art keywords
film
amplifier
input
video signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US889367A
Inventor
Stanley A Buckstad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Link Flight Simulation Corp
Original Assignee
Singer General Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singer General Precision Inc filed Critical Singer General Precision Inc
Application granted granted Critical
Publication of US3633044A publication Critical patent/US3633044A/en
Assigned to LINK FLIGHT SIMULATION CORPORATION, KIRKWOOD INDUSTRIAL PARK, BINGHAMTON, NY 13902-1237, A DE CORP. reassignment LINK FLIGHT SIMULATION CORPORATION, KIRKWOOD INDUSTRIAL PARK, BINGHAMTON, NY 13902-1237, A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SINGER COMPANY, THE, A NJ CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/26Arbitrary function generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/202Gamma control

Definitions

  • the disclosed embodiment of this invention is a circuit for correcting the error which results during the exposure of a photographic film or in the transmission of light through a layer of phosphor, such as found on the face of a CRT, clue to the gamma characteristic thereof.
  • the circuit is formed of an amplifier having a resistance feedback and a second resistance connecting the video signal to an input of the amplifier.
  • the input resistance is formed of a F.E.T.
  • the feedback resistance is formed of an F.E.T.
  • the operating characteristics of the F.E.T. establish the amount of correction provided to the video signal by the circuit.
  • the operating characteristics of the F.E.T. in both embodiments of the invention can be varied by applying the video signal to a gate electrode of that F.E.T.
  • This invention relates to a circuit for correcting the record ing error caused by the nonlinear response of a photographic film to the luminous energy impinged thereon by a recording device.
  • the present invention also has application in the enhancement of images recorded on film or displayed on the face of a CRT.
  • the response or optical density of a film is, within certain limits, equal to the logarithm of the exposure.
  • exposure refers to the total amount of luminous energy which acts on the photographic material.
  • the slope of the linear portion of a plot of density versus exposure is referred to as gamma.”
  • gamma Because of this nonlinear response of film, when a light beam which is increasing linearly in luminence is swept across the film, the resulting information-density recorded on the film will not increase linearly, but exponentially across the film. If, for example, a CRT is employed for exposing a film, the response or optical density of the film will not be linearly proportional to the video signal applied to the CRT.
  • the resulting information-density recorded on the film will increase exponentially with distance across the scanned portion of the film.
  • the exposed image on the film is not a true replica of the image represented by the video signal.
  • the light emission from the phosphorous layer is not linearly proportional to the intensity of the electron beam impinging thereon.
  • the visible display on the face of the CRT is not a true replica of the image represented by the video signal applied thereto.
  • the combined error when a CRT is employed to record on a film is also a logarithmic function.
  • the present invention overcomes the above described recording problems by modifying the video signal logarithmically. By proper selection of the amount of correction made to the video signal, portions of the resulting recorded image may also be enhanced. Such enhancement is desirable in photographs to be analyzing, such as may be required in aerial surveillance.
  • Another object of the present invention is to provide a circuit for correcting the error caused by the nonlinear response of a phosphorous layer to the energy of an electron beam impinging thereon.
  • Still another object of the present invention is to provide a circuit for modifying a video signal to correct for the nonlinear recording response of a recording material to that signal.
  • Yet a further object of the present invention is to provide a circuit for modifying a video signal to correct the combined errors which exist in the nonlinear responses of a CRT-filmrecording system.
  • a feature of the present invention resides in the provision of means for adjusting the amount of correction to the video signal to provide various corrections in accordance with various film characteristics.
  • FIG. 1 is a circuit diagram of one preferred embodiment of the present invention
  • FIG. 2 is a plot of a typical characteristic curve of photographic film
  • FIG. 3 is an approximate plot of the output voltage versus the input voltage of the gamma correction circuit of the present invention and showing curves for various values of gamma;
  • FIG. 3 is a circuit diagram of another embodiment of the present invention.
  • FIG. ll there is shown a circuit for modifying a video signal to correct for the gamma characteristic of a film. If a ramp signal having a waveform 10 is applied to an input terminal 112, an output will be derived on terminal 14 having a waveform 16. In particular, the input video signal is modified logarithmically to provide an output video signal to the grid of a CRT.
  • the graph illustrated in FIG. 2 shows the relationship of density versus exposure on a photographic film.
  • the slope of the straight line portion of the curve between points 18 and 20 is designated as gamma. Because of the relationship between density and exposure, the video signal which drives the film exposing CRT must be modified.
  • the circuit illustrated in FIG. ll performs this modification by employing the operating characteristic of an F.E.T.
  • the input terminal 12 is connected through a variable resistor 22 to one input 24 of an amplifier 26.
  • an F.E.T. 28 is connected with the drain electrode thereof to the terminal 12 and the source electrode thereof to the input 24 of the amplifier 26.
  • the video signal on the input terminal 12 is also connected through a variable resistor 30 to one input 32 of an amplifier 34.
  • a source of positive voltage on the terminal 36 is connected through a resistor 38 to the input 32 of the amplifier 34.
  • the amplifier 34 is provided with a feedback in the form of a resistor 40 connected between an output thereof and the input 32.
  • the second input of the amplifier 34 is connected to the ground potential.
  • the output of the amplifier 34 is connected to the gate electrode of the F.E.T. 28.
  • the amplifier 26 is also provided with a feedback in the form of a variable resistor 42.
  • the second input of the amplifier 26 is connected to ground potential.
  • the output of the amplifier 26 is connected through a resistor 44 to the terminal 114, which is in turn connected through a resistor 46 to a ground potential.
  • the gain of the amplifier 26 is determined by the ratio of the resistance value of the variable resistor 42 and the resistance value of the input circuit formed by the combination of the variable resistor 22 and the F.E.T. 28.
  • a fixed bias such as provided by the DC voltage on the terminal 36 applied to the gate of the F .E.T. 28
  • the effective resistance of the F.E.T. 28 varies approximately logarithmically with a signal applied to the drain electrode thereof.
  • the effective resistance of the F ET. is further modified by a video signal applied to the gate electrode thereof via the resistance 30 and amplifier 34.
  • the effect of video signal to DC voltage on the input 32 of the amplifier 34 can be varied.
  • the effective resistance of the input circuit of the amplifier 26 can also be varied by adjusting the value of the resistance 22.
  • the gain of the amplifier 26 will be affected by changing the effective resistance of the input circuit thereto, but such effect can be controlled and the gain of the amplifier 26 can be varied by adjustment of the variable resistor d2.
  • FIG. 3 is a plot of the voltage developed at the output terminal 14 versus the voltage applied to the input terminal 12.
  • the straight-line curve 48 represents the relationship between the input voltage and the output voltage when no correction is made to the video signal, such as in the case when the FELT. 28 is inoperative or not connected in the circuit.
  • the curve 50 represents one relationship between the input voltage and the output voltage when the F .E.T. 28 is operative in the circuit illustrated in FIG. ll.
  • This maximum point can, as explained above, be established by adjustment of the resistors 22 and 30.
  • the portion of the curve 50 between the origin and the maximum point can be varied substantially to any configuration as required by the characteristics of the recorder and recording medium by judicious adjustment of the variable resistors 22 and 30.
  • variable resistors 22 and 30 can be adjusted such that the maximum point on the curve 50 coincides with the value of the input signal corresponding to that gray-shade level. If the resistors 22 and 30 are so adjusted to provide such enhancement, the gray-shade levels which are darker than the particular gray-shade level to be enhanced will be exposed on the film as lighter gray-shade levels. As a result, the desired gray-shade level to be enhanced will be the darkest shade recorded on the film or recording media which is employed.
  • the circuit illustrated in FIG. 4 includes a variable resistor 54 connected between the input terminal 12 and the input 24 of the amplifier 26.
  • An F .E.T. 56 is connected in the feedback path of the amplifier 26.
  • the bias circuit for F.E.T. 56 is similar to the bias circuit for the F.E.T. 28 shown in FIG. 1.
  • a variable resistor 58 is connected between the terminal 12 and one input 60 of an amplifier 62.
  • a source of positive voltage on a terminal 64 is connected through a resistor 66 to the input 60 of the amplifier 62.
  • a feedback in the form of a resistor 68 is connected from the output to the input of the amplifier 62.
  • the other input of the amplifier 62 is connected to ground potential.
  • the output of the amplifier 62 is connected to the gate electrode of the F.E.T. 56.
  • the outputvoltage versus the input-voltage of the circuit illustrated in FIG. 4 is represented by a curve 70 in FIG. 3.
  • the input to output voltage relationship can be altered to provide any desired family of curves in the plot illustrated in FIG. 3.
  • a signal-correction circuit comprising a signal-input terminal and a signal-output terminal, an amplifier having at least one input and an output, a first variable impedance means connected between said input terminal and an input of said amplifier, a second variable impedance means connected from the output of said amplifier to an input of said amplifier, one of said first and second impedance means having a main conduction path and a control member, and means connected between said input terminal and said control member to modify the impedance of said main conduction path in response to variations in the amplitude of signals applied to said input terminal.
  • variable impedance means having the main conduction path and the control member comprises a means whose impedance varies nonlinearly with respect to the control voltage applied to the means connected to the control member.
  • variable impedance means having a main conduction path and a control member comprises a transistor.
  • said first variable impedance comprises said impedance with the main conduction path and the control member.

Abstract

In the exposure of film with a CRT, for example, the resulting recorded information density on the film is not proportional to the amplitude of the video signal applied to the CRT. That is, if a linear ramp function is applied to a CRT for the purpose of exposing film, the resulting exposed density on the film will be an exponential function. This response is defined as the gamma of the film and produces an error in recording an image on film. The disclosed embodiment of this invention is a circuit for correcting the error which results during the exposure of a photographic film or in the transmission of light through a layer of phosphor, such as found on the face of a CRT, due to the gamma characteristic thereof. The circuit is formed of an amplifier having a resistance feedback and a second resistance connecting the video signal to an input of the amplifier. In one embodiment, the input resistance is formed of a F.E.T., and in a second embodiment the feedback resistance is formed of an F.E.T. The operating characteristics of the F.E.T. establish the amount of correction provided to the video signal by the circuit. The operating characteristics of the F.E.T. in both embodiments of the invention can be varied by applying the video signal to a gate electrode of that F.E.T.

Description

United States Patent 72 Inventor StrinleyA.Buckstad SanJose,Calif.
21 AppLNo. 889,367
[22] Filed Dec.3l, 1969 [45] Patented Jan.4, 1972 [73] Assignee Singer-General Precislomlnc.
Blnghamton, N.Y.
[54] GAMMA CORRECTION CIRCUIT 6 Claims, 4 Drawing Figl.
[52] US. Cl. 307/230, 328/142, 307/304, 330/35, 330/144, 330/145,
l78/D1G. 16, 178/72 [51] Int. Cl G06; 7/12 [50] Field of Search 178/6 G, 9.2 D, 7.1; 330/3, 24, 85, 144, 145, 163,183, 35;
Primary ExaminerRobert L. Richardson Assistant ExaminerRichard P. Lange Attorneys-Francis L. Masselle, William Grobman and Charles S. McGuire ABSTRACT: In the exposure of film with a CRT, for example, the resulting recorded information density on the film is not proportional to the amplitude of the video signal applied to the CRT. That is, if a linear ramp function is applied to a CRT for the purpose of exposing film, the resulting exposed density on the film will be an exponential function. This response is defined as the gamma of the film and produces an error in recording an image on film. The disclosed embodiment of this invention is a circuit for correcting the error which results during the exposure of a photographic film or in the transmission of light through a layer of phosphor, such as found on the face of a CRT, clue to the gamma characteristic thereof. The circuit is formed of an amplifier having a resistance feedback and a second resistance connecting the video signal to an input of the amplifier. In one embodiment, the input resistance is formed of a F.E.T., and in a second embodiment the feedback resistance is formed of an F.E.T. The operating characteristics of the F.E.T. establish the amount of correction provided to the video signal by the circuit. The operating characteristics of the F.E.T. in both embodiments of the invention can be varied by applying the video signal to a gate electrode of that F.E.T.
mimmm 4312 3.633.044
sum 1 0F 2 DENSITY 0.0 a e E 0.00l 0.0| OJ LO EXPOSURE Fig-2 INVENTOR. STANLEY A. BUCKSTAD GAMMA CORRECTION CIRCUIT This invention relates to a circuit for correcting the record ing error caused by the nonlinear response of a photographic film to the luminous energy impinged thereon by a recording device. The present invention also has application in the enhancement of images recorded on film or displayed on the face of a CRT.
The response or optical density of a film is, within certain limits, equal to the logarithm of the exposure. In sensitometry, the term "exposure" refers to the total amount of luminous energy which acts on the photographic material. The slope of the linear portion of a plot of density versus exposure is referred to as gamma." gamma"Because of this nonlinear response of film, when a light beam which is increasing linearly in luminence is swept across the film, the resulting information-density recorded on the film will not increase linearly, but exponentially across the film. If, for example, a CRT is employed for exposing a film, the response or optical density of the film will not be linearly proportional to the video signal applied to the CRT. As an example, if a linear ramp signal is applied to the CRT axis while the beam is scanning the film, the resulting information-density recorded on the film will increase exponentially with distance across the scanned portion of the film. As a result, the exposed image on the film is not a true replica of the image represented by the video signal.
The same condition exists in the emission of light from a phosphorous layer, such as on the face of a CRT, which is being impinged by an electron beam. The light emission from the phosphorous layer is not linearly proportional to the intensity of the electron beam impinging thereon. As in the case of the resulting image on film, the visible display on the face of the CRT is not a true replica of the image represented by the video signal applied thereto. The combined error when a CRT is employed to record on a film is also a logarithmic function.
The present invention overcomes the above described recording problems by modifying the video signal logarithmically. By proper selection of the amount of correction made to the video signal, portions of the resulting recorded image may also be enhanced. Such enhancement is desirable in photographs to be analyzing, such as may be required in aerial surveillance.
Accordingly, it is an object of the present invention to provide a circuit for correcting the recording error caused by the nonlinear response of a photographic film to the luminous energy impinged thereon by a recording device.
Another object of the present invention is to provide a circuit for correcting the error caused by the nonlinear response of a phosphorous layer to the energy of an electron beam impinging thereon.
Still another object of the present invention is to provide a circuit for modifying a video signal to correct for the nonlinear recording response of a recording material to that signal.
It is still another object of the present invention to provide a circuit which permits enhancement of images recorded on film or displayed on the face of a CRT.
Yet a further object of the present invention is to provide a circuit for modifying a video signal to correct the combined errors which exist in the nonlinear responses of a CRT-filmrecording system.
A feature of the present invention resides in the provision of means for adjusting the amount of correction to the video signal to provide various corrections in accordance with various film characteristics.
These and other objects, features, and advantages of the present invention will be more fully realized and understood from the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a circuit diagram of one preferred embodiment of the present invention;
FIG. 2 is a plot of a typical characteristic curve of photographic film;
FIG. 3 is an approximate plot of the output voltage versus the input voltage of the gamma correction circuit of the present invention and showing curves for various values of gamma; and
FIG. 3 is a circuit diagram of another embodiment of the present invention.
Like reference numerals throughout the various views of the drawings are intended to designate same or similar elements.
With reference to FIG. ll, there is shown a circuit for modifying a video signal to correct for the gamma characteristic of a film. If a ramp signal having a waveform 10 is applied to an input terminal 112, an output will be derived on terminal 14 having a waveform 16. In particular, the input video signal is modified logarithmically to provide an output video signal to the grid of a CRT.
The graph illustrated in FIG. 2 shows the relationship of density versus exposure on a photographic film. The slope of the straight line portion of the curve between points 18 and 20 is designated as gamma. Because of the relationship between density and exposure, the video signal which drives the film exposing CRT must be modified.
The circuit illustrated in FIG. ll performs this modification by employing the operating characteristic of an F.E.T. In particular, the input terminal 12 is connected through a variable resistor 22 to one input 24 of an amplifier 26. In addition, an F.E.T. 28 is connected with the drain electrode thereof to the terminal 12 and the source electrode thereof to the input 24 of the amplifier 26. The video signal on the input terminal 12 is also connected through a variable resistor 30 to one input 32 of an amplifier 34. A source of positive voltage on the terminal 36 is connected through a resistor 38 to the input 32 of the amplifier 34.
The amplifier 34 is provided with a feedback in the form of a resistor 40 connected between an output thereof and the input 32. The second input of the amplifier 34 is connected to the ground potential. The output of the amplifier 34 is connected to the gate electrode of the F.E.T. 28. The amplifier 26 is also provided with a feedback in the form of a variable resistor 42. The second input of the amplifier 26 is connected to ground potential. The output of the amplifier 26 is connected through a resistor 44 to the terminal 114, which is in turn connected through a resistor 46 to a ground potential.
In operation, the gain of the amplifier 26 is determined by the ratio of the resistance value of the variable resistor 42 and the resistance value of the input circuit formed by the combination of the variable resistor 22 and the F.E.T. 28. With a fixed bias, such as provided by the DC voltage on the terminal 36 applied to the gate of the F .E.T. 28, the effective resistance of the F.E.T. 28 varies approximately logarithmically with a signal applied to the drain electrode thereof. The effective resistance of the F ET. is further modified by a video signal applied to the gate electrode thereof via the resistance 30 and amplifier 34.
By adjusting the value of the resistance 30, the effect of video signal to DC voltage on the input 32 of the amplifier 34 can be varied. The effective resistance of the input circuit of the amplifier 26 can also be varied by adjusting the value of the resistance 22. The gain of the amplifier 26 will be affected by changing the effective resistance of the input circuit thereto, but such effect can be controlled and the gain of the amplifier 26 can be varied by adjustment of the variable resistor d2.
FIG. 3 is a plot of the voltage developed at the output terminal 14 versus the voltage applied to the input terminal 12. The straight-line curve 48 represents the relationship between the input voltage and the output voltage when no correction is made to the video signal, such as in the case when the FELT. 28 is inoperative or not connected in the circuit. The curve 50 represents one relationship between the input voltage and the output voltage when the F .E.T. 28 is operative in the circuit illustrated in FIG. ll. By adjusting the values of the resistors 22, 30 and 42, an entire family of curves or operating characteristics will be effected. In the normal application of the circuit illustrated in FIG. l, the maximum value of the input signal on the terminal 12 should coincide with the maximum point on the curve 50. This maximum point can, as explained above, be established by adjustment of the resistors 22 and 30. The portion of the curve 50 between the origin and the maximum point can be varied substantially to any configuration as required by the characteristics of the recorder and recording medium by judicious adjustment of the variable resistors 22 and 30.
If it is desired to enhance a particular gray-shade level in an image, the variable resistors 22 and 30 can be adjusted such that the maximum point on the curve 50 coincides with the value of the input signal corresponding to that gray-shade level. If the resistors 22 and 30 are so adjusted to provide such enhancement, the gray-shade levels which are darker than the particular gray-shade level to be enhanced will be exposed on the film as lighter gray-shade levels. As a result, the desired gray-shade level to be enhanced will be the darkest shade recorded on the film or recording media which is employed.
Other characteristics of the recording system may require correction of the video signal which is opposite to that provided by the circuit illustrated in FIG. 1. Such correction can be effected by the circuit illustrated in FIG. 4, wherein the effective resistance of the input circuit to the amplifier 26 is not variable in accordance with the video signal, but the feedback resistance is variable in accordance with the video signal. As a result, the output will have a waveform 52. The circuit illustrated in FIG. 4 includes a variable resistor 54 connected between the input terminal 12 and the input 24 of the amplifier 26. An F .E.T. 56 is connected in the feedback path of the amplifier 26.
The bias circuit for F.E.T. 56 is similar to the bias circuit for the F.E.T. 28 shown in FIG. 1. In particular, a variable resistor 58 is connected between the terminal 12 and one input 60 of an amplifier 62. A source of positive voltage on a terminal 64 is connected through a resistor 66 to the input 60 of the amplifier 62. A feedback in the form of a resistor 68 is connected from the output to the input of the amplifier 62. The other input of the amplifier 62 is connected to ground potential. The
output of the amplifier 62 is connected to the gate electrode of the F.E.T. 56. The outputvoltage versus the input-voltage of the circuit illustrated in FIG. 4 is represented by a curve 70 in FIG. 3. By adjustment of the variable resistors 54 and 58, the input to output voltage relationship can be altered to provide any desired family of curves in the plot illustrated in FIG. 3.
The invention claimed is:
l. A signal-correction circuit comprising a signal-input terminal and a signal-output terminal, an amplifier having at least one input and an output, a first variable impedance means connected between said input terminal and an input of said amplifier, a second variable impedance means connected from the output of said amplifier to an input of said amplifier, one of said first and second impedance means having a main conduction path and a control member, and means connected between said input terminal and said control member to modify the impedance of said main conduction path in response to variations in the amplitude of signals applied to said input terminal.
2. The signal-correction circuit defined in claim 1 wherein said variable impedance means having the main conduction path and the control member comprises a means whose impedance varies nonlinearly with respect to the control voltage applied to the means connected to the control member.
3. The signal correction circuit defined in claim 2 wherein said variable impedance means having a main conduction path and a control member comprises a transistor.
4. The signal correction circuit defined in claim 3 wherein said means connected between said input terminal and said control member comprises a second amplifier having a second feedback path.
5. The signal-correction circuit defined in claim 1 wherein said first variable impedance comprises said impedance with the main conduction path and the control member.
6. The signal-correction circuit defined in claim 1 wherein said second variable impedance comprises said impedance with the main conduction path and the control member.

Claims (6)

1. A signal-correction circuit comprising a signal-input terminal and a signal-output terminal, an amplifier having at least one input and an output, a first variable impedance means connected between said input terminal and an input of said amplifier, a second variable impedance means connected from the output of said amplifier to an input of said amplifier, one of said first and second impedance means having a main conduction path and a control member, and means connected between said input terminal and said control member to modify the impedance of said main conduction path in response to variations in the amplitude of signals applied to said input terminal.
2. The signal-correction circuit defined in claim 1 wherein said variable impedance means having the main conduction path and the control member comprises a means whose impedance varies nonlinearly with respect to the control voltage applied to the means connected to the control member.
3. The signal correction circuit defined in claim 2 wherein said variable impedance means having a main conduction path and a control member comprises a transistor.
4. The signal correction circuit defined in claim 3 wherein said means connected between said input terminal and said control member comprises a second amplifier having a second feedback path.
5. The signal-correction circuit defined in claim 1 wherein said first variable impedance comprises said impedance with the main conduction path and the control member.
6. The signal-correction circuit defined in claim 1 wherein said second variable impedance comprises said impedance with the main conduction path and the control member.
US889367A 1969-12-31 1969-12-31 Gamma correction circuit Expired - Lifetime US3633044A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88936769A 1969-12-31 1969-12-31

Publications (1)

Publication Number Publication Date
US3633044A true US3633044A (en) 1972-01-04

Family

ID=25394975

Family Applications (1)

Application Number Title Priority Date Filing Date
US889367A Expired - Lifetime US3633044A (en) 1969-12-31 1969-12-31 Gamma correction circuit

Country Status (1)

Country Link
US (1) US3633044A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764921A (en) * 1972-10-27 1973-10-09 Control Data Corp Sample and hold circuit
US3795836A (en) * 1971-03-01 1974-03-05 Bofors Ab Intensity limiting means for cathode ray oscilloscope
US4257270A (en) * 1977-10-21 1981-03-24 Siemens Aktiengesellschaft Ultrasonic imaging apparatus
US4395643A (en) * 1979-12-15 1983-07-26 Robert Bosch Gmbh Broadband circuit with rapidly variable resistor
US4492987A (en) * 1982-03-22 1985-01-08 Polaroid Corporation Processor for enhancing video signals for photographic reproduction
US4506174A (en) * 1982-11-12 1985-03-19 General Signal Corporation Square root circuit with stable linear cut-off
US4520403A (en) * 1982-03-22 1985-05-28 Polaroid Corporation Processor for enhancing video signals for photographic reproduction
US4651210A (en) * 1984-12-24 1987-03-17 Rca Corporation Adjustable gamma controller
US4694356A (en) * 1985-09-16 1987-09-15 Eastman Kodak Company Modification of color component video signals to compensate for decreasing white sensitivity of photographic element
US4797745A (en) * 1985-02-11 1989-01-10 Baird Corporation Video image enhancer
US5168175A (en) * 1990-02-21 1992-12-01 Kabushiki Kaisha Toshiba Semiconductor integrated circuit using junction field effect transistor as current control element
US5216375A (en) * 1990-10-11 1993-06-01 Toko, Inc. Variable time-constant type differentiator
US7414340B2 (en) * 2006-01-24 2008-08-19 Nidec Sankyo Corporation Motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231728A (en) * 1960-07-18 1966-01-25 Systems Inc Comp Reset integrator
US3360734A (en) * 1965-05-04 1967-12-26 Cohu Electronics Inc Dc stabilized amplifier with external control
US3378779A (en) * 1965-04-26 1968-04-16 Honeywell Inc Demodulator circuit with control feedback means
US3458652A (en) * 1966-04-22 1969-07-29 Columbia Broadcasting Syst Inc Gamma correction circuit
US3518563A (en) * 1967-11-16 1970-06-30 Honeywell Inc Electronic synchronization apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231728A (en) * 1960-07-18 1966-01-25 Systems Inc Comp Reset integrator
US3378779A (en) * 1965-04-26 1968-04-16 Honeywell Inc Demodulator circuit with control feedback means
US3360734A (en) * 1965-05-04 1967-12-26 Cohu Electronics Inc Dc stabilized amplifier with external control
US3458652A (en) * 1966-04-22 1969-07-29 Columbia Broadcasting Syst Inc Gamma correction circuit
US3518563A (en) * 1967-11-16 1970-06-30 Honeywell Inc Electronic synchronization apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795836A (en) * 1971-03-01 1974-03-05 Bofors Ab Intensity limiting means for cathode ray oscilloscope
US3764921A (en) * 1972-10-27 1973-10-09 Control Data Corp Sample and hold circuit
US4257270A (en) * 1977-10-21 1981-03-24 Siemens Aktiengesellschaft Ultrasonic imaging apparatus
US4395643A (en) * 1979-12-15 1983-07-26 Robert Bosch Gmbh Broadband circuit with rapidly variable resistor
US4520403A (en) * 1982-03-22 1985-05-28 Polaroid Corporation Processor for enhancing video signals for photographic reproduction
US4492987A (en) * 1982-03-22 1985-01-08 Polaroid Corporation Processor for enhancing video signals for photographic reproduction
US4506174A (en) * 1982-11-12 1985-03-19 General Signal Corporation Square root circuit with stable linear cut-off
US4651210A (en) * 1984-12-24 1987-03-17 Rca Corporation Adjustable gamma controller
US4797745A (en) * 1985-02-11 1989-01-10 Baird Corporation Video image enhancer
US4694356A (en) * 1985-09-16 1987-09-15 Eastman Kodak Company Modification of color component video signals to compensate for decreasing white sensitivity of photographic element
US5168175A (en) * 1990-02-21 1992-12-01 Kabushiki Kaisha Toshiba Semiconductor integrated circuit using junction field effect transistor as current control element
US5216375A (en) * 1990-10-11 1993-06-01 Toko, Inc. Variable time-constant type differentiator
US7414340B2 (en) * 2006-01-24 2008-08-19 Nidec Sankyo Corporation Motor

Similar Documents

Publication Publication Date Title
US3633044A (en) Gamma correction circuit
CA1196088A (en) System and apparatus for conversion of video signals to film images
US4265532A (en) Photo printing by intensity and velocity modulation
US2692333A (en) Wave shaping circuit
US3441663A (en) Non-linear amplifiers and systems
US5461430A (en) Dynamic gamma correction circuit for use in image projectors
US5600381A (en) Scan velocity modulation circuit
US3401299A (en) Video storage tube
US3488434A (en) Control system for photosensitive video recorder
US3637937A (en) A telecine system for producing video signals from film
DE1464420C3 (en) Photographic storage medium
US3068361A (en) Function generator
US2863938A (en) Printing timer
US4663667A (en) Contrast control circuit
US2197863A (en) Distortion correction for television systems
US3740465A (en) Television frame storage apparatus
US4322662A (en) Apparatus for controlling the electron beam in an image pick-up tube
JPS6135754B2 (en)
US2083374A (en) Recording and reproducing system
WO1995006999A1 (en) Dynamic gamma correction circuit for use in image projectors
US2890278A (en) Circuit-arrangement for use in television transmitting devices for scanning films
US3014091A (en) Color and intensity light modulator
US4599715A (en) Method and apparatus for sound track reproduction
US3037565A (en) Television-receiving circuit arrangement
US4013968A (en) Feedback controlled storage tube devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: LINK FLIGHT SIMULATION CORPORATION, KIRKWOOD INDUS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SINGER COMPANY, THE, A NJ CORP.;REEL/FRAME:004998/0190

Effective date: 19880425