US3641536A - Gasoline pump multiplexer system for remote indicators for self-service gasoline pumps - Google Patents

Gasoline pump multiplexer system for remote indicators for self-service gasoline pumps Download PDF

Info

Publication number
US3641536A
US3641536A US28379A US3641536DA US3641536A US 3641536 A US3641536 A US 3641536A US 28379 A US28379 A US 28379A US 3641536D A US3641536D A US 3641536DA US 3641536 A US3641536 A US 3641536A
Authority
US
United States
Prior art keywords
output
pulse
pulses
duration
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US28379A
Inventor
Frank B Prosprich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeder Industries Inc
Original Assignee
Veeder Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeder Industries Inc filed Critical Veeder Industries Inc
Application granted granted Critical
Publication of US3641536A publication Critical patent/US3641536A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred
    • B67D7/22Arrangements of indicators or registers
    • B67D7/224Arrangements of indicators or registers involving price indicators
    • B67D7/227Arrangements of indicators or registers involving price indicators using electrical or electro-mechanical means
    • B67D7/228Arrangements of indicators or registers involving price indicators using electrical or electro-mechanical means using digital counting

Definitions

  • ABSTRACT Mooney Anomey-Prutnnan, Hayes, Kalb & Chilton ABSTRACT
  • the system is partiailarly'adapted to use in a tleinetering system for remote indicators.
  • the system operates in connection with a self-service gasoline pump and transmits via a 60 Hz. powerline gallons and dollars information.
  • a modified form of the system transmits only dollars or only gallons information for a plurality of pumps.
  • the system can be further adapted for inventory control purposes.
  • Variants include signal forcing and totalizing circuits for a plurality of independent information sources providing absolute accuracy.
  • SHEET 1 [IF 7 1" MYHERE r-*-.O2sec GALLONS ONE SHOT l 1 MODULATION ENVELOPE V 1 DOLLARS 1 ONE SHOT J 1 l l 1 PULSE T0 1 I GALLONS COUNTER J 1 PULSE TO Ommmcwmm J L Fe 4 INVENTOR FRANK B. PROSPRICH ATTORNEYS PITKNYEBFEB 8 m2 SHEET 2 [1F 7 EEK WENTEOEEO 8 I972 SHEET '4 BF 7 56 Q s3 .4...
  • the invention generally relates to multiplexer and telemetering systems, and is of special significance to a remote control system for one or more gasoline pumps at a filling station in which signals reflecting the operation of each pump are conducted on the 60 Hz. powerline to a control point inside the station.
  • a simple pulse multiplex data transmission system is particularly useful in a self-service gasoline station wherein data pertaining to each pump, such as dollar amount of sale and total gallons, is supplied to a central pay booth which would require only one attendant.
  • data pertaining to each pump such as dollar amount of sale and total gallons
  • a central pay booth which would require only one attendant.
  • such a system may provide a means of automatic inventory control.
  • FIG. 1 is a pictorial illustration showing gasoline pumps in a remote control service station
  • FIG. 2 is a block and schematic diagram of a sender unit in the multiplexing system according to the invention.
  • FIG. 3 is a block and schematic diagram of a receiver unit for the multiplexing system according to the invention.
  • FIG. 4 is a timing diagram useful in understanding the operation of the circuits shown in FIGS. 3 and 4;
  • FIGS. 5A and 5B are simplified schematic diagrams which illustrate a scheme for obtaining a stable signal at the receiver over a powerline regardless of load variations and noise on the powerline;
  • FIGS. 6A and 6B are block diagrams illustrating modifications of the system according to the invention which are useful in transmitting price only information or in inventory control;
  • FIG. 7 is a logic diagram illustrating the circuitry of the parallel to serial converter and one-bit memories in FIGS. 6A
  • FIG. 8 is a timing diagram useful in understanding the operation of the logic shown in FIG. 7.
  • the present invention provides a simple pulse multiplexing system which generates two difi'erent pulses which represent, for example, gallons and dollars.
  • Pulsers representing fractions of a dollar and fractions of a gallon of gasoline provide inputs to a modulator which includes oneshot multivibrators that act to switch difi'erent timing resistors into the modulator.
  • Each one-shot switches a switch to gate a burst of carrier frequency of a fixed duration such as 20 ms.
  • the dollar pulser provides a pulse for each cent and operates through the modulator to cause the switch to produce a burst of spaced pulses which are ON 1.9 ms.
  • the gallons pulser operates on the OFF cycle to provide a burst of spaced OFF pulses of 1.9 ms. for the 20 ms. interval.
  • the pulses can overlap partially or entirely. This results in a system which is neither frequency nor amplitude sensitive but rather is sensiti cjo thgpulsewidth o f the ON or OFF pulses.
  • the invention is useful in a system which operates to telemeter price or gallons information only.
  • a modification of this system contemplates the telemetering of gallons information from a plurality of pumps to a central station where the information is totalized for purposes of inventory control. Incorporated into this system is a parallel to serial converter having simple one-bit memories to bufi'er the input data from the several pumps.
  • FIG. I generally illustrates a self-service gasoline station which employs the gasoline pump multiplexer system according to the invention.
  • a self-service gasoline station typically comprises a plurality of gasoline pumps 10 on each of the several service islands 11.
  • a customer 13 upon alighting from his vehicle 12, removes the nozzle 15 from its support, turns the handle 14 to reset the computer and proceeds to dispense gasoline into the tank of his vehicle 12.
  • Data such as gallons dispensed and price of sale, are transmitted to a remote station 16, which may be conveniently located at the exit ramp of the service station, and after filling the tank of his vehicle 12, the customer replaces the nozzle 15 of pump 10 on its support and proceeds to the station 16 where the attendant on duty then looks at a display panel, collects the indicated amount in his remote control panel corresponding with the pump used by the customer.
  • the electronics of the multiplexer system is shown as housed in a box 18 supported above the service island 11 by a pole 19.
  • the pole 19 serves as a conduit for wires that connect the multiplexer system to the mechanism of pump 10.
  • Box 18 is shown as connected to the service station 16 by the normal 60 Hz.
  • powerlines 20 which supply power to the pump motors of the pumps 10 and signals between the box 18 and the service station 16 may be by way of carrier modulation superimposed on the 60 Hz. powerline frequency although other forms of transmission may be employed.
  • the basic multiplexer system of the invention employs a form of pulse width modulation and detection in which the canier is switched on and off, effectively producing a resultant wave form analogous to percent square wave modulation.
  • FIG. 2 of the drawings illuscent.
  • These pulse inputs trigger respective one-shots 21 and 22 which produce output pulses having a fixed duration of, for example, ms.
  • the output of one-shot 21 is connected to one input of AND-gate 23 which in combination with NPN 24 forms an electronic switch.
  • the output of one-shot 21 is also connected to one input of AND-gate 25.
  • the output of one-shot 22 is connected to one input of AND-gate 26 which in combination with NPN-transistor 27 forms another electronic switch.
  • the output of one-shot 22 is also connected to the second input of AND-gate 25.
  • the output of AND-gate is connected to the second input of AND-gates 23, 26 and to the base of NPN-transistor 29 to provide a third electronic switch.
  • Each of the three electronic switches just described are used to control the period of a square wave generator 30 which is preferably an astable multivibrator.
  • Generator 30 comprises two programmable unijunction transistors (PUTs) having their cathodes connected in common to ground and their anodes connected by a timing capacitor 33.
  • the gate electrode of PUT 31 is connected to a voltage divider comprising resistor 34 and resistor 35 connected in series across a source of positive voltage and ground.
  • the gate electrode of PUT 32 is connected to a voltage divider comprising resistor 36 and resistors 37 and 38 connected in series across the source of positive voltage and ground.
  • a timing resistor 39 is connected between the anode of PUT 32 and the source of positive voltage.
  • a switchable timing resistance 40 is also connected to the anode of PUT 32.
  • Three switchable timing resistances 41, 42 and 43 are connected to the anode of PUT 31.
  • Timing resistor 41 is connected to the emitter of transistor 24
  • timing resistor 42 is connected to the emitter of transistor 29
  • timing resistors 40 and 43 are connected in common to the emitter of transistor 37.
  • a pulse at the gallons input triggers one-shot 21. As shown at the top of FIG. 4 of the drawings, this pulse enables AND- gate 23 which causes transistor 24 to conduct. Transistor 24 is biased into saturation effectively connecting timing resistor 41 to the source of positive voltage. Under these conditions, the astable multivibrator 30 begins to oscillate, producing a series of pulses at the gate electrode of PUT 32 as represented by the modulation envelope shown in FIG. 4.
  • the value of timing resistor 41 is selected such that the duration of the output pulses is relatively short, say 0.7 ms., compared with the interval between pulses which might be 1.9 ms.
  • timing resistors 40 and 43 are chosen such'that the pulse pattern output at the gate of PUT 32 is just the opposite of that produced by a pulse at the gallons input, that is the pulse would be 0N for 1.9 ms. and OFF for 0.7 ms. This is shown at the right-hand part of the modulation envelope illustrated in FIG 4. It is possible for the pulses produced by one-shot 21 and one-shot 22 to overlap. When this happens, the output of AND-gate 25 causes transistor 29 to conduct and inhibits AND-gates 23 and 26.
  • timing resistor 42 This in turn causes timing resistor 42 to be effectively connected to the source of positive voltage.
  • the value of timing resistor 42 is chosen such that a symmetrical pulse pattern output is produced at the gate electrode of PUT 32.
  • the output of astable multivibrator 30 during this overlap period will be a series of pulses 1.9 ms. in duration separated by intervals of L9 ms.
  • a Colpittis oscillator 44 with good temperature stability is used to generate the carrier.
  • the output of oscillator 44 is connected to the base of PNP-transistor 45 which is connected as an emitter follower.
  • the output of emitter follower transistor 45 is connected to the base of transistor 46 which acts as a gated buffer amplifier.
  • Resistors 37 and 38 form a voltage divider which is connected to the base of NPN-transistor 47 which in combination with PNP-transistor 48 comprises an electronic switch.
  • the collector of transistor 48 is connected to the base of transistor 46, and when transistor 48 conducts, transistor 46 is biased to nonconduction. When transistor 48 is off, transistor 46 passes the output of oscillator 44 to the input of power amplifier 49.
  • the power amplifier 49 provides sufficient line drive to overcome the effects of powerline loading at the carrier frequency, delivering approximately milliwatts to the line through a line coupling network 50.
  • the coupling network 50 comprises a coupling transformer 51 having primary and secondary windings.
  • a capacitor 52 is connected across the primary of coupling transfonner 51 to form therewith a tank circuit resonant at the carrier frequency. Relatively broad tuning is employed in the primary circuit, and care is taken to ensure a clean undistorted carrier signal on the line to avoid harmonic sideband problems.
  • Small coupling capacitors 53 and 54 presenting a high impedance at the powerline frequency are employed for isolation in series with the secondary of the output transformer 51. Interposed between these coupling capacitors and the secondary winding of transistor 51 is a resistance network comprising a shunt resistance 55 and two series resistances S6 and 57.
  • a neon indicator lamp 58 may be connected across the output to the powerline.
  • the series resistances 56 and 57 may be described as current or signal forcing resistances and have as their objective to ensure a stable signal at the receiver over the powerline regardless of load variations and noise on the powerline.
  • FIG. 5A shows in simplified schematic form the relationship of the current forcing resistance 56 to the circuitry of the system.
  • the sender which is shown in FIG. 2 may be considered analogous to a current generator 59.
  • Resistance 56 is placed in series with the current generator 59, and a receiver 60 is connected to a current transformer 61 placed across the powerlines in series with capacitor 62.
  • Resistance 56 has a value chosen sufficiently high so that capacitor 62, which serves as a high frequency short across the powerlines, produces a substantially constant current output for an information signal delivered to the receiver 60 regardless of-variations in the line loading and noise.
  • a filter comprising a choke coil 63 connected in series with the powerline and a capacitor 64 connected in shunt with the powerline.
  • the filter isolates the signal from the remainder of the powerline so that the information is not conducted to the right of the filter. Not only will this prevent possible information from being available to a competitor who might be connected to the same powerline, but it also makes it possible to use the same powerline for carrying other signals at the same carrier frequency from a difi'erent sender when another gasoline pump is connected to the powerline.
  • the filter could be eliminated in the situation where a different canier frequency is used for each gasoline pump and where the power transformer for the station is relied upon to block the pickup of information by a competitor from the powerline.
  • FIG. 5B A variation of the current forcing technique shown in FIG. 5A is illustrated in FIG. 5B.
  • three senders represented by current generators 59a, 59b and 59c are each connected in series with current forcing resistances 56a, 56b and 560, respectively.
  • Each of these current generators and their series connected resistances are connected in shunt with the powerline.
  • the receivers 60a, 60b and 60c for each of the different signal generators are powered by the same powerline.
  • the current transformers 61a, 61b and 61c which pick up the input signal for each of the respective receivers are placed on the same powerline shunt.
  • Coupling network 65 comprises a coupling transformer 66 having primary and secondary windings. Connected in series with the primary winding are a pair of coupling capacitances 67 and 68 each of which is connected in series with a resistance 69 and 70, respectively. A neon indicator lamp 71 may be connected in shunt with the powerline. Connected in parallel with the secondary winding of coupling transformer 66 is a capacitance 72 which together with the secondary winding of the transformer forms a parallel resonant tank circuit. The tank circuit is resonant to the carrier frequency.
  • the tank circuit is connected to the input of a logarithmic preamplifier 73.
  • the property of such an amplifier is to amplify small amplitude signals greater than large amplitude signals. This has the effect 0 squaring up" the input pulse burst.
  • the output of the logarithmic preamp 73 is connected to a tuned amplifier 74 which provides additional gain and selectivity. This output is connected to a threshold detector 75 which detects the pulse modulation envelope.
  • the pulse output of detector 75 causes a switch comprising NPN-transistor 76 and PNP- transistor 77 to be turned on and ofi synchronously with the pulse modulation envelope.
  • the output of the switch is connected to a first pulse with discriminator 78.
  • This discriminator comprises at its input a pair of NPN-transistor 79 and 80 which are connected in cascade. Transistor 79 is turned on by an ON pulse from transistor 77. This in turn causes transistor 80 to be turned off. Connected in series across a source of positive voltage and ground are a timing resistance 81 and a charging capacitance 82. The junction of resistor 81 and capacitor 82 is connected to the collector of transistor 80, and when transistor 80 is biased to nonconduction, capacitor 82 is charged through resistor 811. If the pulse output from detector 75 is of sufiicient duration, approximately 1.9 ms., capacitor 82 will charge sufficiently to tire a four layer threshold device 83 connected thereacross.
  • a load resistor 84 is connected in series with four layer threshold device 83 and the voltage produced across this load resistor is applied to the base of NPN-transistor 85.
  • Transistor 85 in combination with PNP-transistor 86 forms an electronic switch which controls another timing circuit comprising timing resistance 87 and charging capacitance 88 connected in series with the collector of transistor 86 and ground. If the pulse appearing at the base of transistor 85 is too long, capacitor 88 will charge sufficiently to fire four layer threshold device 89 connected thereacross. Otherwise, capacitor 88 is discharged through resistor 87 and resistor 90.
  • the charge accumulated on firing capacitor 94 triggers a retriggerable or integrating one-shot 96. If, on the other hand, the pulse at the base of transistor 85 is too long, then four layer threshold device 89 discharges capacitor 88 providing a pulse at the base of transistor 92 which conducts and prevents capacitor 94 from triggering one-shot 96. So long as the pulses applied to the input of the integrating one-shot 96 are of sufficient duration, the output of the one-shot will remain on. Thus, the one-shot 96 provides an output having a duration of 20 ms. as shown at the bottom of FIG. 4. This output is used to drive the counter driver and counter 97 which in the specific example is the dollars counter.
  • the gallons information is detected in a similar manner with an identical pulse width discriminator 98 and integrating oneshot 99. However, since the gallons information is represented by OFF pulses rather than ON pulses, an inverting transistor 100 is connected between the switch comprising transistor 76 and 77 and the pulse width discriminator 98. The output of integrating one-shot 99 is applied to a counter driver and counter 101 which is the gallons counter.
  • the pulse width discriminators 78 and 98 operate to reject both short duration pulses, such as characteristic of transient noise, and long duration pulses, which might be generated during equipment turn off and turn on, and to identify only the desired pulse.
  • a signal sensing circuit 102 may also be provided. This circuit would be connected to the output of detector 75 or the switch comprising transistors 76 and 77 and would serve to enable the counters 97 and 101 only when a carrier is present. The signal sensing circuit then provides protection against false counting since a discriminator output alone cannot initiate the counter drive unless the sensing circuit 102 is on.
  • FIGS. 6A and 6B of the drawings illustrate a four channel system transmitting only dollars information or only gallons information.
  • a different carrier frequency for each pump is selected. Since only one item of information is to be transmitted, only one one-shot 21, for example, is required.
  • the output of one-shot 21 gates a switch 103 which supplies power to a square wave generator 30.
  • the output of square wave generator 30 gates the output of oscillator 44 through switch 46 to power amplifier 49.
  • the output of power amplifier 49 is connected to the powerlines 104 through a coupling network 50.
  • the powcrlines 104 comprise a three conductor 230 volt line having the center conductor grounded. One hundred and fifteen volt service is thus available across either of the two outside lines and the grounded centerline. If desired, a filter comprising series connected choke 63 and shunt connected capacitance 64 may be interposed between the powerline and the coupling network 50.
  • a coupling network 65 couples the signal on the powerline to a log preamp 73 and tuned amplifier 74.
  • Threshold detector 75 receives the output from tuned amplifier 74 and provides a detected pulse output to pulse width discriminator 78. Since only one item of information is being transmitted by a particular pump, only one pulse width discrirninator is required.
  • the output of discriminator 76 is applied to integrating one-shot 96 which provides a counting pulse to counter 97. A separate counter 97 is provided for each pump at the central station when only dollar information is to be transmitted.
  • the outputs of each of the integrating one-shots 96, representing quantity delivered by each of the pumps, are applied to a parallel to serial converter and one-bit memories 105 which provides an output to a totalizing counter 106.
  • FIG. 7 of the drawings A schematic representation of a logic circuit suitable for providing the parallel to serial converter and one-bit memories 105 is shown in more detail in FIG. 7 of the drawings.
  • Each of the one-shots 96 from the four channels is applied to respective flip-flop memory 107.
  • the output of one-shot 96 is also applied to one input of a three input AND-gate 109.
  • the output offlip-flop 107 is applied to another input of AND-gate 109.
  • the AND-gates 109 are each strobed by a clock 110 applied to their third input.
  • Clock 110 comprises a clock oscillator 111 which produces a symmetrical square wave output as illustrated at the top of FIG. 8. This square wave output is applied to inverter 112 in order to shift the phase of the output 180
  • the phase shifted clock oscillator output is then applied to a counter 113 which in its simplest form may be a four stage ring counter.
  • Counter 113 produces a four phase clock or strobe which applies a pulse to one-shots 108 to produce a pulse of short duration (as compared to the duration of the strobe pulse) which is applied to the AND-gates 109 at uniform intervals as illustrated in FIG. 8 to ensure that pulses are evenly spaced at input of OR- gate 115.
  • the frequency of clock oscillator 11 l is sufi'lcient to strobe each AND-gate 109 twice for each input pulse from its one-shot 96.
  • flip-flop memory 107 In operation, if a pulse is generated by one-shot 96 at a time when there is no strobe input to AND-gate 109 from counter 113, flip-flop memory 107 will be set. The output of flip-flop 107 enables AND-gate 109 until it is reset. When a strobe pulse later appears from counter 113 it is passed by AND-gate 109 to trigger one-shot 114. The output of one-shot 114 resets flip-flop 1M and is also connected to OR-gate 115. OR-gate 115 is a four input OR gate, receiving one input for each channel in the system. The output of ORgate 115 sets a flip-flop 116. Flip-flop 116 is reset by the output of clock oscillator 111.
  • flip-flop 116 is caused to toggle back and forth with a frequency that depends upon the rate at which gallons information is applied to all of the several channels of the system.
  • the outputs of flip-flop 116 are each connected to respective driver circuits 117 and 118. These driver circuits each are operative to energize a respective winding 119 or 120 of a stepper motor 121.
  • the stepping motor 121 has a mechanical output drive which drives the totalizer counter 106.
  • the invention would comprise the transmission of both dollars and gallons information as particularly described with respect to FIGS. 2 and 3.
  • the system would also include a totalin'ng output for either dollars or gallons or both. For example, it is possible to provide the attendant on duty in the station with price information from each pump andat the same time provide total gallons information for purposes of inventory control.
  • Block 122 in this case would be a sender and block 123 would be a receiver similar to those described in detail with respect to FIGS. 2 and 3.
  • the purpose of such a provision would be to allow the attendant to have complete control of the pumps from the station. Specifically, the attendant could use the resets to make power available at the individual pumps only when he wishes to authorize a customer to use the pump.
  • a multiplexer system comprising:
  • a pulse width modulator responsive to one of said triggering pulses for generating a series of pulses having a first duration separated by intervals having a second duration, said pulse width modulator also being responsive to another of said triggering pulses for generating a series of pulses having said second duration separated by intervals having said first duration, and said pulse width modulator further being responsive to the simultaneous occurrence of the two triggering pulses for generating a series of pulses having said first duration separated by intervals having said first duration,
  • a gated carrier frequency oscillator connected to said pulse width modulator and providing a pulse modulated output
  • transmission means receiving said pulse modulated output from said gated carrier frequency oscillator for transmitting the modulated signal to a central point
  • receiver means at said central point for receiving the transmitted signal and providing a detected output
  • pulse sorter means connected to receive the detected output from said receiver for providing a first output in response to a series of pulses having said first duration and a second output in response to a series of pulses separated by intervals having said first duration, and
  • pulse width modulator comprises:
  • switching means responsive to said triggering pulses for selectively changing the time constants of said astable multivibrator.
  • a first electronic switch connected to the output of said first one-shot and operable to connect a first combination of said timing resistances to said astable multivibrator
  • a second electronic switch connected to said second oneshot and operable to connect a second combination of timing resistances to said astable multivibrator
  • an AND gate receiving as its inputs the outputs of both said first and said second one-shots and providing an output only when the outputs from said first and second oneshots are coincident
  • a third electronic switch connected to said AND gate and operable to connect a third combination of timing resistances to said astable multivibrator.
  • first and second pulse width discriminators each operable to detect a pulse having said first duration, one of said pulse width discriminators receiving the detected output from said receiver means and the other of said pulse width discriminators receiving the inversion of the detected output from said receiver means, and
  • first and second integrating one-shots connected to the output of said first and second pulse width discriminators, respectively.
  • a multiplexer system comprising a pulse width modulator responsive to a first-data pulse for generating a series of pulses having a first duration separated by intervals having a second duration, said pulse width modulator also being responsive to a second data pulse for generating a series of pulses having said second duration separated by intervals having said first duration, and said pulse width modulator further being responsive to the simultaneous occurrence of said first and second data pulses for generating a series of pulses having said first duration separated by intervals having said first duration,
  • a gated carrier frequency oscillator connected to said pulse width modulator and providing a pulse modulated output
  • transmission means receiving said pulse modulated output for transmitting the modulated signal to a remote point
  • receiver means at said remote point for receiving the transmitted signal and providing a detected output
  • pulse sorter means connected to receive the detected output from said receiver for providing a first output in response to a series of pulses having said first duration and a second output in response to a series of pulses separated by intervals having said first duration, and
  • indicator means connected to each of said first and second outputs of said pulse sorter means for providing an indication at the remote point whenever either of said first or second data pulses occur.
  • pulse width modulator comprises:
  • switching means responsive to said first and second data pulses for selectively changing the u'me constants of said multivibrator.
  • a first electronic switch connected to said first one-shot and operable to connect a first combination of said timing resistances to said astable multivibrator
  • a second electronic switch connected to said second oneshot and operable to connect a second combination of said timing resistances to said astable multivibrator
  • a third electronic switch connected to the output of said AND gate and operable to connect a third combination of said timing resistances to said astable multivibrator.
  • a logarithmic amplifier connected to said input tank circuit and providing an amplified output which emphasizes smaller signal amplitudes
  • a threshold detector connected to said tuned amplifier providing an output substantially identical to the modulation envelope.
  • first and second pulse width discriminators each operable to detect pulses having said first duration, one of said pulse width discriminators being connected to receive the output of said threshold detector and the other of said pulse width discriminators being connected to receive the inversion of the output of said threshold detector, and
  • first and second integrating one-shots connected to respective ones of the outputs of said pulse width discriminators for providing output pulses having durations equal to the duration of the outputs of said first and second one-shots.
  • a remote indicator system comprising a sender for each pump responsive to the trigger pulses produced thereby and producing a modulated signal characteristic of its particular pump, each of said senders being connected to a common powerline,
  • each sender located at a central station and also coupled to said common powerline, each of said receivers being responsive to the characteristic modulated signal produced by its corresponding sender, and output means connected to each receiver for producing an indication of the amount of gasoline dispensed, said output means comprising:
  • each of said memories being connected to a respective receiver corresponding to one of said plurality of gasoline pumps,
  • strobing means for strobing the outputs of each memory at least twice between two consecutive trigger pulses generated by its related pump
  • accumulating means connected to said strobing means for totalizing the total number of trigger pulses generated by all of said plurality of gasoline pumps.
  • said strobing means comprises:
  • a remote indicator system as recited in claim 12 wherein said accumulating means comprises:
  • a remote indicator system as recited in claim 11 wherein said strobing means comprises:
  • said AND gates each having three inputs, the first of said inputs connected to receive a signal from its associated onebit memory, the second of said inputs connected to receive the input signal to said one-bit memory, and the third of said inputs connected to said strobing means whereby an input signal to said one-bit memory prevents said AND gates from passing a signal.
  • a remote indicator system comprising a sender for each pump responsive to the trigger pulses produced thereby and producing a modulated signal characteristic of its particular pump, each of said senders being connected to a common powerline,
  • At least one current forcing resistor connected in series between said coupling capacitor and said secondary winding.

Abstract

A multiplexer system employing a form of pulse width modulation and detection. The system is particularly adapted to use in a telemetering system for remote indicators. The system operates in connection with a self-service gasoline pump and transmits via a 60 Hz. powerline gallons and dollars information. A modified form of the system transmits only dollars or only gallons information for a plurality of pumps. The system can be further adapted for inventory control purposes. Variants include signal forcing and totalizing circuits for a plurality of independent information sources providing absolute accuracy.

Description

MiG-870,15 5?? m2 sisal S36 United Stal Prosprich 2, Feb. 8, 1972 [54] GASOLINE PUMP MULTIPLEXER 3,376,744 4/1968 Kister et a1 ..235/92 FL SYSTEM FOR REMOTE INDICATORS 3,510,630 5/1970 Ryan et a]... ..222/76 FOR SELILSERVICE GASOLINE PUMPS 3,243,800 3/1966 Probert.... ...340/203 [72] Inventor: hank B. Prosprlch, West Hartford, Conn.
[73] Assignee: Veeder Industries Inc., Hartford, Conn.
[22] Filed: Apr. 14, 1970 [21] Appl. No.: 28,379
[52] US. Cl. ..340/203, 340/206, 340/184, 340/310, 235/92 FL, 222/23 [51] Int. G08c 19/16 [58] field oISearch ..340/203, 206, 310, 182, 184; 222/26, 23, 76; 235/92 FL, 92 AC, 151.34; 73/194 [56] References Cited UNITED STATES PATENTS 3,229,300 1/1966 Thompson et a1. ..340/310 Primary Examiner-John W. Caldwell Assistant Examiner-Robert J. Mooney Anomey-Prutnnan, Hayes, Kalb & Chilton ABSTRACT A multiplexer system employing a form of pulse width modulation and detection. The system is partiailarly'adapted to use in a tleinetering system for remote indicators. The system operates in connection with a self-service gasoline pump and transmits via a 60 Hz. powerline gallons and dollars information. A modified form of the system transmits only dollars or only gallons information for a plurality of pumps. The system can be further adapted for inventory control purposes. Variants include signal forcing and totalizing circuits for a plurality of independent information sources providing absolute accuracy.
15 Claims, 10 Drawing Figures mentions 8 912 3.641.536
SHEET 1 [IF 7 1" MYHERE r-*-.O2sec GALLONS ONE SHOT l 1 MODULATION ENVELOPE V 1 DOLLARS 1 ONE SHOT J 1 l l 1 PULSE T0 1 I GALLONS COUNTER J 1 PULSE TO Ommmcwmm J L Fe 4 INVENTOR FRANK B. PROSPRICH ATTORNEYS PITKNYEBFEB 8 m2 SHEET 2 [1F 7 EEK WENTEOEEO 8 I972 SHEET '4 BF 7 56 Q s3 .4... l W o 59 160 EPNWEER SENDER POWER T0 LINE REOEwER 1 OTHER 64 SENDERS 1600 ,560 3561) 56s I, RECEIVER 6IO NO] I POWER 60b POWER SENDER SENDER SENDER L RECEIVER LINE N0.l No.2 N03 GIb N 2 g g (600 590 59b 59c RECEIVER 6lc No.3
CLOCK OSCILLATOR W FOUR PHASE D m CLOCK FROM COUNTER m m SHEET 8 [IF 7 woJ mac:
mum:
BEE
mucus mama mama
51329 525585 22%; 15:22 5; as In @553; Y 6132c II 025?; mm a 5:35 A. @5255? @2555. 52:22
NEE:
GASOLINE PUMP MULTIPLEXER SYSTEM FOR REMOTE INDICATORS FOR SELF-SERVICE GASOLINE PUMPS SUMMARY OF THE INVENTION The invention generally relates to multiplexer and telemetering systems, and is of special significance to a remote control system for one or more gasoline pumps at a filling station in which signals reflecting the operation of each pump are conducted on the 60 Hz. powerline to a control point inside the station.
Most multiplexer systems in common use generally employ frequency or amplitude modulation techniques or a combination of both. Where the intelligence to be transmitted in the several channels is fairly complex or broadband, these systems are highly suitable. However, in those applications involving the most simple form of information, i.e., on or off, frequency and amplitude modulation techniques as applied to multiplexing become too complicated when compared to the data to be transmitted. Furthermore, in the transmission of elementary on-off data, reliability is of utmost importance. Noise, therefore, becomes an increasingly important factor inasmuch as noise-induced frequency and amplitude variations on transmissions can cause serious error in an accumulated total at the receiver. Pulse modulation techniques are uniquely suited to the transmission of this type of information. Multiplexing of simultaneously occurring pulse data usually requires some form of elaborate bufier memory system in order to avoid losing bits of data. As a result, this type of system becomes prohibitively expensive for many applications.
A simple pulse multiplex data transmission system is particularly useful in a self-service gasoline station wherein data pertaining to each pump, such as dollar amount of sale and total gallons, is supplied to a central pay booth which would require only one attendant. In addition, such a system may provide a means of automatic inventory control.
It is therefore an object of the present invention to provide a simple pulse data multiplexer system.
It is another object of this invention to provide a multiplexer and telemetering system for a dispensing system.
It is a further object of the instant invention to provide a gasoline pump multiplexer system with remote indicators for a self-service gasoline station.
It is yet another object of the invention to provide a multiplexer system for a dispensing system which incorporates an inventory control.
Other objects will be in part obvious and in part pointed out more in detail hereinafter.
A better understanding of the invention will be obtained from the following detailed description and accompanying drawings which set forth certain illustrative embodiments and are indicative of the various ways in which the principles of the invention are employed.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:
FIG. 1 is a pictorial illustration showing gasoline pumps in a remote control service station;
FIG. 2 is a block and schematic diagram of a sender unit in the multiplexing system according to the invention;
FIG. 3 is a block and schematic diagram of a receiver unit for the multiplexing system according to the invention;
FIG. 4 is a timing diagram useful in understanding the operation of the circuits shown in FIGS. 3 and 4;
FIGS. 5A and 5B are simplified schematic diagrams which illustrate a scheme for obtaining a stable signal at the receiver over a powerline regardless of load variations and noise on the powerline;
FIGS. 6A and 6B are block diagrams illustrating modifications of the system according to the invention which are useful in transmitting price only information or in inventory control;
FIG. 7 is a logic diagram illustrating the circuitry of the parallel to serial converter and one-bit memories in FIGS. 6A
and 6B; and
FIG. 8 is a timing diagram useful in understanding the operation of the logic shown in FIG. 7.
DESCRIPTION OF THE PREFERRED EMBODIMENTS .Briefly stated, the present invention provides a simple pulse multiplexing system which generates two difi'erent pulses which represent, for example, gallons and dollars. Pulsers representing fractions of a dollar and fractions of a gallon of gasoline provide inputs to a modulator which includes oneshot multivibrators that act to switch difi'erent timing resistors into the modulator. Each one-shot switches a switch to gate a burst of carrier frequency of a fixed duration such as 20 ms. The dollar pulser provides a pulse for each cent and operates through the modulator to cause the switch to produce a burst of spaced pulses which are ON 1.9 ms. throughout the 20 ms. burst. The gallons pulser operates on the OFF cycle to provide a burst of spaced OFF pulses of 1.9 ms. for the 20 ms. interval. The pulses can overlap partially or entirely. This results in a system which is neither frequency nor amplitude sensitive but rather is sensiti cjo thgpulsewidth o f the ON or OFF pulses. In afiif irfir version, the invention is useful in a system which operates to telemeter price or gallons information only. A modification of this system contemplates the telemetering of gallons information from a plurality of pumps to a central station where the information is totalized for purposes of inventory control. Incorporated into this system is a parallel to serial converter having simple one-bit memories to bufi'er the input data from the several pumps.
Referring now to the drawings, wherein like reference numerals refer to identical or similar structures throughout the several views, FIG. I generally illustrates a self-service gasoline station which employs the gasoline pump multiplexer system according to the invention. Such a station typically comprises a plurality of gasoline pumps 10 on each of the several service islands 11. Typically, a customer 13, upon alighting from his vehicle 12, removes the nozzle 15 from its support, turns the handle 14 to reset the computer and proceeds to dispense gasoline into the tank of his vehicle 12.
Data, such as gallons dispensed and price of sale, are transmitted to a remote station 16, which may be conveniently located at the exit ramp of the service station, and after filling the tank of his vehicle 12, the customer replaces the nozzle 15 of pump 10 on its support and proceeds to the station 16 where the attendant on duty then looks at a display panel, collects the indicated amount in his remote control panel corresponding with the pump used by the customer.
For purposes of illustration only, the electronics of the multiplexer system is shown as housed in a box 18 supported above the service island 11 by a pole 19. The pole 19 serves as a conduit for wires that connect the multiplexer system to the mechanism of pump 10. Box 18 is shown as connected to the service station 16 by the normal 60 Hz. powerlines 20 which supply power to the pump motors of the pumps 10 and signals between the box 18 and the service station 16 may be by way of carrier modulation superimposed on the 60 Hz. powerline frequency although other forms of transmission may be employed.
The basic multiplexer system of the invention employs a form of pulse width modulation and detection in which the canier is switched on and off, effectively producing a resultant wave form analogous to percent square wave modulation. At a given carrier frequency, by varying both ON and OFF times and employing 0N time and OFF time recognition circuitry at the receiving end, it is possible to transmit two distinctive signals simultaneously. FIG. 2 of the drawings illuscent. These pulse inputs trigger respective one- shots 21 and 22 which produce output pulses having a fixed duration of, for example, ms. The output of one-shot 21 is connected to one input of AND-gate 23 which in combination with NPN 24 forms an electronic switch. The output of one-shot 21 is also connected to one input of AND-gate 25. In like manner, the output of one-shot 22 is connected to one input of AND-gate 26 which in combination with NPN-transistor 27 forms another electronic switch. The output of one-shot 22 is also connected to the second input of AND-gate 25. The output of AND-gate is connected to the second input of AND- gates 23, 26 and to the base of NPN-transistor 29 to provide a third electronic switch.
Each of the three electronic switches just described are used to control the period of a square wave generator 30 which is preferably an astable multivibrator. Generator 30 comprises two programmable unijunction transistors (PUTs) having their cathodes connected in common to ground and their anodes connected by a timing capacitor 33. The gate electrode of PUT 31 is connected to a voltage divider comprising resistor 34 and resistor 35 connected in series across a source of positive voltage and ground. Similarly, the gate electrode of PUT 32 is connected to a voltage divider comprising resistor 36 and resistors 37 and 38 connected in series across the source of positive voltage and ground. A timing resistor 39 is connected between the anode of PUT 32 and the source of positive voltage. A switchable timing resistance 40 is also connected to the anode of PUT 32. Three switchable timing resistances 41, 42 and 43 are connected to the anode of PUT 31. Timing resistor 41 is connected to the emitter of transistor 24, timing resistor 42 is connected to the emitter of transistor 29, and timing resistors 40 and 43 are connected in common to the emitter of transistor 37.
A pulse at the gallons input triggers one-shot 21. As shown at the top of FIG. 4 of the drawings, this pulse enables AND- gate 23 which causes transistor 24 to conduct. Transistor 24 is biased into saturation effectively connecting timing resistor 41 to the source of positive voltage. Under these conditions, the astable multivibrator 30 begins to oscillate, producing a series of pulses at the gate electrode of PUT 32 as represented by the modulation envelope shown in FIG. 4. The value of timing resistor 41 is selected such that the duration of the output pulses is relatively short, say 0.7 ms., compared with the interval between pulses which might be 1.9 ms. If, on the other hand, a pulse at the dollars input triggers one-shot 22, AND-gate 26 and transistor 27 will conduct with the result that tinting resistors 40 and 43 are effectively connected to the source of positive voltage. The values of timing resistors 40 and 43 are chosen such'that the pulse pattern output at the gate of PUT 32 is just the opposite of that produced by a pulse at the gallons input, that is the pulse would be 0N for 1.9 ms. and OFF for 0.7 ms. This is shown at the right-hand part of the modulation envelope illustrated in FIG 4. It is possible for the pulses produced by one-shot 21 and one-shot 22 to overlap. When this happens, the output of AND-gate 25 causes transistor 29 to conduct and inhibits AND- gates 23 and 26. This in turn causes timing resistor 42 to be effectively connected to the source of positive voltage. The value of timing resistor 42 is chosen such that a symmetrical pulse pattern output is produced at the gate electrode of PUT 32. In other words, the output of astable multivibrator 30 during this overlap period will be a series of pulses 1.9 ms. in duration separated by intervals of L9 ms.
A Colpittis oscillator 44 with good temperature stability is used to generate the carrier. The output of oscillator 44 is connected to the base of PNP-transistor 45 which is connected as an emitter follower. The output of emitter follower transistor 45 is connected to the base of transistor 46 which acts as a gated buffer amplifier.
Resistors 37 and 38 form a voltage divider which is connected to the base of NPN-transistor 47 which in combination with PNP-transistor 48 comprises an electronic switch. The collector of transistor 48 is connected to the base of transistor 46, and when transistor 48 conducts, transistor 46 is biased to nonconduction. When transistor 48 is off, transistor 46 passes the output of oscillator 44 to the input of power amplifier 49.
The power amplifier 49 provides sufficient line drive to overcome the effects of powerline loading at the carrier frequency, delivering approximately milliwatts to the line through a line coupling network 50. The coupling network 50 comprises a coupling transformer 51 having primary and secondary windings. A capacitor 52 is connected across the primary of coupling transfonner 51 to form therewith a tank circuit resonant at the carrier frequency. Relatively broad tuning is employed in the primary circuit, and care is taken to ensure a clean undistorted carrier signal on the line to avoid harmonic sideband problems. Small coupling capacitors 53 and 54 presenting a high impedance at the powerline frequency are employed for isolation in series with the secondary of the output transformer 51. Interposed between these coupling capacitors and the secondary winding of transistor 51 is a resistance network comprising a shunt resistance 55 and two series resistances S6 and 57. A neon indicator lamp 58 may be connected across the output to the powerline.
The series resistances 56 and 57 may be described as current or signal forcing resistances and have as their objective to ensure a stable signal at the receiver over the powerline regardless of load variations and noise on the powerline. FIG. 5A shows in simplified schematic form the relationship of the current forcing resistance 56 to the circuitry of the system. The sender which is shown in FIG. 2 may be considered analogous to a current generator 59. Resistance 56 is placed in series with the current generator 59, and a receiver 60 is connected to a current transformer 61 placed across the powerlines in series with capacitor 62. Resistance 56 has a value chosen sufficiently high so that capacitor 62, which serves as a high frequency short across the powerlines, produces a substantially constant current output for an information signal delivered to the receiver 60 regardless of-variations in the line loading and noise. Also shown in FIG. 5A is a filter comprising a choke coil 63 connected in series with the powerline and a capacitor 64 connected in shunt with the powerline. The filter isolates the signal from the remainder of the powerline so that the information is not conducted to the right of the filter. Not only will this prevent possible information from being available to a competitor who might be connected to the same powerline, but it also makes it possible to use the same powerline for carrying other signals at the same carrier frequency from a difi'erent sender when another gasoline pump is connected to the powerline. The filter could be eliminated in the situation where a different canier frequency is used for each gasoline pump and where the power transformer for the station is relied upon to block the pickup of information by a competitor from the powerline.
A variation of the current forcing technique shown in FIG. 5A is illustrated in FIG. 5B. In this case, three senders represented by current generators 59a, 59b and 59c are each connected in series with current forcing resistances 56a, 56b and 560, respectively. Each of these current generators and their series connected resistances are connected in shunt with the powerline. The receivers 60a, 60b and 60c for each of the different signal generators are powered by the same powerline. The current transformers 61a, 61b and 61c which pick up the input signal for each of the respective receivers are placed on the same powerline shunt.
It should be noted at this point that while the invention has so far been described as senders located at gasoline pumps and receivers located at a central station, it is also possible to provide a signal generator at the central station and a receiver at the pump islands for resetting the computer and turning the power on and ofi at each pump from the station. The same powerlines could be used for a plurality of pumps, and the same carrier frequency could be used for controlling each pump as is used for transmitting information such as dollars and cents from the pump to the station.
Referring now to FIG. 3 of the drawings, the receiver is connected to the powerline by a coupling network 65 similar to that used at the output of the sender. Coupling network 65 comprises a coupling transformer 66 having primary and secondary windings. Connected in series with the primary winding are a pair of coupling capacitances 67 and 68 each of which is connected in series with a resistance 69 and 70, respectively. A neon indicator lamp 71 may be connected in shunt with the powerline. Connected in parallel with the secondary winding of coupling transformer 66 is a capacitance 72 which together with the secondary winding of the transformer forms a parallel resonant tank circuit. The tank circuit is resonant to the carrier frequency.
When more than one pump is connected in the system, it is desirable to have a high Q tank circuit for selectivity between pumps, i.e., between oscillator frequencies. However, a high Q results in the slow buildups of the signal and ringing or slow decay. This, of course, seriously distorts the pulse envelope. In order to limit the effects of ringing of the tuned coupling circuit and provide good selectivity, the tank circuit is connected to the input of a logarithmic preamplifier 73. As is known in the art, the property of such an amplifier is to amplify small amplitude signals greater than large amplitude signals. This has the effect 0 squaring up" the input pulse burst. The output of the logarithmic preamp 73 is connected to a tuned amplifier 74 which provides additional gain and selectivity. This output is connected to a threshold detector 75 which detects the pulse modulation envelope. The pulse output of detector 75 causes a switch comprising NPN-transistor 76 and PNP- transistor 77 to be turned on and ofi synchronously with the pulse modulation envelope.
The output of the switch is connected to a first pulse with discriminator 78. This discriminator comprises at its input a pair of NPN- transistor 79 and 80 which are connected in cascade. Transistor 79 is turned on by an ON pulse from transistor 77. This in turn causes transistor 80 to be turned off. Connected in series across a source of positive voltage and ground are a timing resistance 81 and a charging capacitance 82. The junction of resistor 81 and capacitor 82 is connected to the collector of transistor 80, and when transistor 80 is biased to nonconduction, capacitor 82 is charged through resistor 811. If the pulse output from detector 75 is of sufiicient duration, approximately 1.9 ms., capacitor 82 will charge sufficiently to tire a four layer threshold device 83 connected thereacross.
A load resistor 84 is connected in series with four layer threshold device 83 and the voltage produced across this load resistor is applied to the base of NPN-transistor 85. Transistor 85 in combination with PNP-transistor 86 forms an electronic switch which controls another timing circuit comprising timing resistance 87 and charging capacitance 88 connected in series with the collector of transistor 86 and ground. If the pulse appearing at the base of transistor 85 is too long, capacitor 88 will charge sufficiently to fire four layer threshold device 89 connected thereacross. Otherwise, capacitor 88 is discharged through resistor 87 and resistor 90.
The four layer threshold device 89 is connected in series with a load resistance 91, and the voltage developed thereacross is applied to the base of an NPN-transistor 92. The emitter of transistor 92 is connected directly to ground and the collector is connected to a source of positive voltage by a resistor 93 and a firing capacitor 94 connected in series. The junction of resistor 93 and capacitor 94 is connected by way of an isolating diode 95 to the collector of transistor 85. When transistor 85 conducts, capacitor 94 is discharged through transistor 85 and resistor 94a. If the pulse at the base of transistor 85 is not too long, transistor 85 will turn off allowing capacitor 94 to be charged through resistor 93. The charge accumulated on firing capacitor 94 triggers a retriggerable or integrating one-shot 96. If, on the other hand, the pulse at the base of transistor 85 is too long, then four layer threshold device 89 discharges capacitor 88 providing a pulse at the base of transistor 92 which conducts and prevents capacitor 94 from triggering one-shot 96. So long as the pulses applied to the input of the integrating one-shot 96 are of sufficient duration, the output of the one-shot will remain on. Thus, the one-shot 96 provides an output having a duration of 20 ms. as shown at the bottom of FIG. 4. This output is used to drive the counter driver and counter 97 which in the specific example is the dollars counter.
The gallons information is detected in a similar manner with an identical pulse width discriminator 98 and integrating oneshot 99. However, since the gallons information is represented by OFF pulses rather than ON pulses, an inverting transistor 100 is connected between the switch comprising transistor 76 and 77 and the pulse width discriminator 98. The output of integrating one-shot 99 is applied to a counter driver and counter 101 which is the gallons counter.
It may be appreciated from the foregoing discussion that the pulse width discriminators 78 and 98 operate to reject both short duration pulses, such as characteristic of transient noise, and long duration pulses, which might be generated during equipment turn off and turn on, and to identify only the desired pulse. A signal sensing circuit 102 may also be provided. This circuit would be connected to the output of detector 75 or the switch comprising transistors 76 and 77 and would serve to enable the counters 97 and 101 only when a carrier is present. The signal sensing circuit then provides protection against false counting since a discriminator output alone cannot initiate the counter drive unless the sensing circuit 102 is on.
In the embodiment described it is assumed that both gallons and dollar information are to be transmitted. There are many applications where only dollar information or only gallon information are needed to be transmitted. These possibilities are shown in FIGS. 6A and 6B of the drawings which illustrate a four channel system transmitting only dollars information or only gallons information. In this situation a different carrier frequency for each pump is selected. Since only one item of information is to be transmitted, only one one-shot 21, for example, is required. The output of one-shot 21 gates a switch 103 which supplies power to a square wave generator 30. The output of square wave generator 30 gates the output of oscillator 44 through switch 46 to power amplifier 49. The output of power amplifier 49 is connected to the powerlines 104 through a coupling network 50. The powcrlines 104 comprise a three conductor 230 volt line having the center conductor grounded. One hundred and fifteen volt service is thus available across either of the two outside lines and the grounded centerline. If desired, a filter comprising series connected choke 63 and shunt connected capacitance 64 may be interposed between the powerline and the coupling network 50.
At the receiver end, a coupling network 65 couples the signal on the powerline to a log preamp 73 and tuned amplifier 74. Threshold detector 75 receives the output from tuned amplifier 74 and provides a detected pulse output to pulse width discriminator 78. Since only one item of information is being transmitted by a particular pump, only one pulse width discrirninator is required. The output of discriminator 76 is applied to integrating one-shot 96 which provides a counting pulse to counter 97. A separate counter 97 is provided for each pump at the central station when only dollar information is to be transmitted.
In applications where the information desired is the total number of gallons sold from a plurality of pumps, the outputs of each of the integrating one-shots 96, representing quantity delivered by each of the pumps, are applied to a parallel to serial converter and one-bit memories 105 which provides an output to a totalizing counter 106.
A schematic representation of a logic circuit suitable for providing the parallel to serial converter and one-bit memories 105 is shown in more detail in FIG. 7 of the drawings. Each of the one-shots 96 from the four channels is applied to respective flip-flop memory 107. The output of one-shot 96 is also applied to one input of a three input AND-gate 109. The output offlip-flop 107 is applied to another input of AND-gate 109. The AND-gates 109 are each strobed by a clock 110 applied to their third input.
Clock 110 comprises a clock oscillator 111 which produces a symmetrical square wave output as illustrated at the top of FIG. 8. This square wave output is applied to inverter 112 in order to shift the phase of the output 180 The phase shifted clock oscillator output is then applied to a counter 113 which in its simplest form may be a four stage ring counter. Counter 113 produces a four phase clock or strobe which applies a pulse to one-shots 108 to produce a pulse of short duration (as compared to the duration of the strobe pulse) which is applied to the AND-gates 109 at uniform intervals as illustrated in FIG. 8 to ensure that pulses are evenly spaced at input of OR- gate 115. The frequency of clock oscillator 11 l is sufi'lcient to strobe each AND-gate 109 twice for each input pulse from its one-shot 96.
In operation, if a pulse is generated by one-shot 96 at a time when there is no strobe input to AND-gate 109 from counter 113, flip-flop memory 107 will be set. The output of flip-flop 107 enables AND-gate 109 until it is reset. When a strobe pulse later appears from counter 113 it is passed by AND-gate 109 to trigger one-shot 114. The output of one-shot 114 resets flip-flop 1M and is also connected to OR-gate 115. OR-gate 115 is a four input OR gate, receiving one input for each channel in the system. The output of ORgate 115 sets a flip-flop 116. Flip-flop 116 is reset by the output of clock oscillator 111. Thus, flip-flop 116 is caused to toggle back and forth with a frequency that depends upon the rate at which gallons information is applied to all of the several channels of the system. The outputs of flip-flop 116 are each connected to respective driver circuits 117 and 118. These driver circuits each are operative to energize a respective winding 119 or 120 of a stepper motor 121. The stepping motor 121 has a mechanical output drive which drives the totalizer counter 106.
Where a pulse is generated by one-shot 96 at the same time as there is a strobe input to an AND-gate 109 from counter 113, AND-gate 109 will not pass a signal to trigger one-shot 114 and the pulse is not then passed to OR-gate 115. Neither is flip-flop 107 reset. However, since the frequency of clock oscillator 111 is sufficient to strobe AND-gate 109 twice for each input pulse from one-shot 96 at the maximum pulse repetition rate of the pulsers in the pumps, counter 113 will cycle twice between the receipt of two consecutive bits of information from the same source. As a result, on the next cycle there will be no output pulse from one-shot 96 and the strobe pulse from counter 113 will be passed to trigger one-shot 114 and reset flip-flop 107. Thus, only one-bit memories are required to prevent the loss of any bit of information thereby ensuring that the total count at counter 106 is accurate.
In its most comprehensive form, the invention would comprise the transmission of both dollars and gallons information as particularly described with respect to FIGS. 2 and 3. In addition the system would also include a totalin'ng output for either dollars or gallons or both. For example, it is possible to provide the attendant on duty in the station with price information from each pump andat the same time provide total gallons information for purposes of inventory control.
As stated previously, it is also possible to provide a sender at the station and a receiver at each pump. This is illustrated in FIGS. 6A and 613 by the blocks 122 and 123 labeled reset." Block 122 in this case would be a sender and block 123 would be a receiver similar to those described in detail with respect to FIGS. 2 and 3. The purpose of such a provision would be to allow the attendant to have complete control of the pumps from the station. Specifically, the attendant could use the resets to make power available at the individual pumps only when he wishes to authorize a customer to use the pump.
As will be apparent to persons skilled in the art, various modifications, adaptations and variations of the foregoing specific disclosure can be made without departing from the teachings of the present invention.
1 claim:
1. In a dispensing system having at least one dispensing apparatus which is capable of generating separate triggering pulses corresponding to fractional parts of at least two different units of measurement related to the dispensed product, a multiplexer system comprising:
a pulse width modulator responsive to one of said triggering pulses for generating a series of pulses having a first duration separated by intervals having a second duration, said pulse width modulator also being responsive to another of said triggering pulses for generating a series of pulses having said second duration separated by intervals having said first duration, and said pulse width modulator further being responsive to the simultaneous occurrence of the two triggering pulses for generating a series of pulses having said first duration separated by intervals having said first duration,
a gated carrier frequency oscillator connected to said pulse width modulator and providing a pulse modulated output,
transmission means receiving said pulse modulated output from said gated carrier frequency oscillator for transmitting the modulated signal to a central point,
receiver means at said central point for receiving the transmitted signal and providing a detected output,
pulse sorter means connected to receive the detected output from said receiver for providing a first output in response to a series of pulses having said first duration and a second output in response to a series of pulses separated by intervals having said first duration, and
indicator means connected to each of said first and second outputs of said pulse sorter means for providing an indication at the central point whenever either of said triggering pulses occur.
2. A multiplexer system as recited in claim 1 wherein said pulse width modulator comprises:
an astable multivibrator, and
switching means responsive to said triggering pulses for selectively changing the time constants of said astable multivibrator.
3. A multiplexer system as recited in claim 2 wherein said astable multivibrator includes a plurality of timing resistors and said switching means further comprises:
a first one-shot triggered by one of said triggering pulses for producing a pulse output having a fixed duration substantially longer than both said first and second durations,
a second oneshot triggered by another of said triggering pulses for producing an output pulse having a duration equal to that of the output of said first one-shot,
a first electronic switch connected to the output of said first one-shot and operable to connect a first combination of said timing resistances to said astable multivibrator,
a second electronic switch connected to said second oneshot and operable to connect a second combination of timing resistances to said astable multivibrator,
an AND gate receiving as its inputs the outputs of both said first and said second one-shots and providing an output only when the outputs from said first and second oneshots are coincident, and
a third electronic switch connected to said AND gate and operable to connect a third combination of timing resistances to said astable multivibrator.
4. A multiplexer system as recited in claim 1 wherein said pulse sorter means comprises:
first and second pulse width discriminators each operable to detect a pulse having said first duration, one of said pulse width discriminators receiving the detected output from said receiver means and the other of said pulse width discriminators receiving the inversion of the detected output from said receiver means, and
first and second integrating one-shots connected to the output of said first and second pulse width discriminators, respectively.
5. A multiplexer system as recited in claim 1 wherein said dispensing apparatus is a gasoline pump and said units of measurement are dollars and gallons, respectively, and said indicator means provides numerical readouts of the number of gallons dispensed and the dollar value thereof.
6. A multiplexer system comprising a pulse width modulator responsive to a first-data pulse for generating a series of pulses having a first duration separated by intervals having a second duration, said pulse width modulator also being responsive to a second data pulse for generating a series of pulses having said second duration separated by intervals having said first duration, and said pulse width modulator further being responsive to the simultaneous occurrence of said first and second data pulses for generating a series of pulses having said first duration separated by intervals having said first duration,
a gated carrier frequency oscillator connected to said pulse width modulator and providing a pulse modulated output,
transmission means receiving said pulse modulated output for transmitting the modulated signal to a remote point,
receiver means at said remote point for receiving the transmitted signal and providing a detected output,
pulse sorter means connected to receive the detected output from said receiver for providing a first output in response to a series of pulses having said first duration and a second output in response to a series of pulses separated by intervals having said first duration, and
indicator means connected to each of said first and second outputs of said pulse sorter means for providing an indication at the remote point whenever either of said first or second data pulses occur.
7. A multiplexer as provided in claim 6 wherein said pulse width modulator comprises:
an astable multivibrator, and
switching means responsive to said first and second data pulses for selectively changing the u'me constants of said multivibrator.
8. A multiplexer system as recited in claim 7 wherein said astable multivibrator includes a plurality of timing resistances and said switching means comprises a first one-shot responsive to said first data pulse for generating an output pulse having a duration substantially longer than either said first or second durations,
a second one-shot responsive to said second data pulse for generating an output pulse equal to that generated by said first one-shot,
a first electronic switch connected to said first one-shot and operable to connect a first combination of said timing resistances to said astable multivibrator,
a second electronic switch connected to said second oneshot and operable to connect a second combination of said timing resistances to said astable multivibrator,
an AND gate connected to both said first and said second one-shots and producing an output when the outputs of said first and said second one-shots are coincident, and
a third electronic switch connected to the output of said AND gate and operable to connect a third combination of said timing resistances to said astable multivibrator.
9. A multiplexer system as recited in claim 8 wherein said receiver means comprises:
an input tank circuit resonant at the carrier frequency,
a logarithmic amplifier connected to said input tank circuit and providing an amplified output which emphasizes smaller signal amplitudes,
a tuned amplifier connected to the output of said logarithmic amplifier, and
a threshold detector connected to said tuned amplifier providing an output substantially identical to the modulation envelope.
10. A multiplexer system as recited in claim 9 wherein said pulse sorter means comprises:
first and second pulse width discriminators each operable to detect pulses having said first duration, one of said pulse width discriminators being connected to receive the output of said threshold detector and the other of said pulse width discriminators being connected to receive the inversion of the output of said threshold detector, and
first and second integrating one-shots connected to respective ones of the outputs of said pulse width discriminators for providing output pulses having durations equal to the duration of the outputs of said first and second one-shots.
11. In a self-service gasoline dispensing system having a plurality of gasoline pumps each of which are capable of generating trigger pulses corresponding to fractional parts of units of measurement related to the dispensed gasoline, a remote indicator system comprising a sender for each pump responsive to the trigger pulses produced thereby and producing a modulated signal characteristic of its particular pump, each of said senders being connected to a common powerline,
a receiver for each sender located at a central station and also coupled to said common powerline, each of said receivers being responsive to the characteristic modulated signal produced by its corresponding sender, and output means connected to each receiver for producing an indication of the amount of gasoline dispensed, said output means comprising:
a plurality of one-bit memories, each of said memories being connected to a respective receiver corresponding to one of said plurality of gasoline pumps,
strobing means for strobing the outputs of each memory at least twice between two consecutive trigger pulses generated by its related pump, and
accumulating means connected to said strobing means for totalizing the total number of trigger pulses generated by all of said plurality of gasoline pumps.
12. A remote indicator system as recited in claim 11,
wherein said strobing means comprises:
a plurality of AND gates each connected to a respective one of said plurality of one-bit memories,
a clock oscillator, and
a counter connected to said clock oscillator and operative to strobe each AND gate in succession.
13. A remote indicator system as recited in claim 12 wherein said accumulating means comprises:
a flip-flop connected to be toggled back and forth by the combined outputs of said AND gates and the output of said clock oscillator,
a stepping motor driven by the outputs of said flip-flop, and
a totalizing counter driven by said stepping motor.
14. A remote indicator system as recited in claim 11 wherein said strobing means comprises:
a plurality of AND gates each associated with a respective one of said plurality of one-bit memories,
said AND gates each having three inputs, the first of said inputs connected to receive a signal from its associated onebit memory, the second of said inputs connected to receive the input signal to said one-bit memory, and the third of said inputs connected to said strobing means whereby an input signal to said one-bit memory prevents said AND gates from passing a signal.
15. In a self-service gasoline dispensing system having a plurality of gasoline pumps each of which are capable of generating trigger pulses corresponding to fractional parts of units of measurement related to the dispensed gasoline, a remote indicator system comprising a sender for each pump responsive to the trigger pulses produced thereby and producing a modulated signal characteristic of its particular pump, each of said senders being connected to a common powerline,
a receiver for each sender located at a central station and also coupled to said common powerline, each of saidsecondary winding of said coupling transformer and the powerline for blocking the powerline frequency, and
at least one current forcing resistor connected in series between said coupling capacitor and said secondary winding.
1 I i i

Claims (14)

1. In a dispensing system having at least one dispensing apparatus which is capable of generating separate triggering pulses corresponding to fractional parts of at least two different units of measurement related to the dispensed product, a multiplexer system comprising: a pulse width modulator responsive to one of said triggering pulses for generating a series of pulses having a first duration separated by intervals having a second duration, said pulse width modulator also being responsive to another of said triggering pulses for generating a series of pulses having said second duration separated by intervals having said first duration, and said pulse width modulator further being responsive to the simultaneOus occurrence of the two triggering pulses for generating a series of pulses having said first duration separated by intervals having said first duration, a gated carrier frequency oscillator connected to said pulse width modulator and providing a pulse modulated output, transmission means receiving said pulse modulated output from said gated carrier frequency oscillator for transmitting the modulated signal to a central point, receiver means at said central point for receiving the transmitted signal and providing a detected output, pulse sorter means connected to receive the detected output from said receiver for providing a first output in response to a series of pulses having said first duration and a second output in response to a series of pulses separated by intervals having said first duration, and indicator means connected to each of said first and second outputs of said pulse sorter means for providing an indication at the central point whenever either of said triggering pulses occur.
2. A multiplexer system as recited in claim 1 wherein said pulse width modulator comprises: an astable multivibrator, and switching means responsive to said triggering pulses for selectively changing the time constants of said astable multivibrator. 3. A multiplexer system as recited in claim 2 wherein said astable multivibrator includes a plurality of timing resistors and said switching means further comprises: a first one-shot triggered by one of said triggering pulses for producing a pulse output having a fixed duration substantially longer than both said first and second durations, a second one-shot triggered by another of said triggering pulses for producing an output pulse having a duration equal to that of the output of said first one-shot, a first electronic switch connected to the output of said first one-shot and operable to connect a first combination of said timing resistances to said astable multivibrator, a second electronic switch connected to said second one-shot and operable to connect a second combination of timing resistances to said astable multivibrator, an AND gate receiving as its inputs the outputs of both said first and said second one-shots and providing an output only when the outputs from said first and second one-shots are coincident, and a third electronic switch connected to said AND gate and operable to connect a third combination of timing resistances to said astable multivibrator.
4. A multiplexer system as recited in claim 1 wherein said pulse sorter means comprises: first and second pulse width discriminators each operable to detect a pulse having said first duration, one of said pulse width discriminators receiving the detected output from said receiver means and the other of said pulse width discriminators receiving the inversion of the detected output from said receiver means, and first and second integrating one-shots connected to the output of said first and second pulse width discriminators, respectively.
5. A multiplexer system as recited in claim 1 wherein said dispensing apparatus is a gasoline pump and said units of measurement are dollars and gallons, respectively, and said indicator means provides numerical readouts of the number of gallons dispensed and the dollar value thereof.
6. A multiplexer system comprising a pulse width modulator responsive to a first data pulse for generating a series of pulses having a first duration separated by intervals having a second duration, said pulse width modulator also being responsive to a second data pulse for generating a series of pulses having said second duration separated by intervals having said first duration, and said pulse width modulator further being responsive to the simultaneous occurrence of said first and second data pulses for generating a series of pulses having said first duration separated by intervals having said first duration, a gated carrier frequency oscillator coNnected to said pulse width modulator and providing a pulse modulated output, transmission means receiving said pulse modulated output for transmitting the modulated signal to a remote point, receiver means at said remote point for receiving the transmitted signal and providing a detected output, pulse sorter means connected to receive the detected output from said receiver for providing a first output in response to a series of pulses having said first duration and a second output in response to a series of pulses separated by intervals having said first duration, and indicator means connected to each of said first and second outputs of said pulse sorter means for providing an indication at the remote point whenever either of said first or second data pulses occur.
7. A multiplexer as provided in claim 6 wherein said pulse width modulator comprises: an astable multivibrator, and switching means responsive to said first and second data pulses for selectively changing the time constants of said multivibrator.
8. A multiplexer system as recited in claim 7 wherein said astable multivibrator includes a plurality of timing resistances and said switching means comprises a first one-shot responsive to said first data pulse for generating an output pulse having a duration substantially longer than either said first or second durations, a second one-shot responsive to said second data pulse for generating an output pulse equal to that generated by said first one-shot, a first electronic switch connected to said first one-shot and operable to connect a first combination of said timing resistances to said astable multivibrator, a second electronic switch connected to said second one-shot and operable to connect a second combination of said timing resistances to said astable multivibrator, an AND gate connected to both said first and said second one-shots and producing an output when the outputs of said first and said second one-shots are coincident, and a third electronic switch connected to the output of said AND gate and operable to connect a third combination of said timing resistances to said astable multivibrator.
9. A multiplexer system as recited in claim 8 wherein said receiver means comprises: an input tank circuit resonant at the carrier frequency, a logarithmic amplifier connected to said input tank circuit and providing an amplified output which emphasizes smaller signal amplitudes, a tuned amplifier connected to the output of said logarithmic amplifier, and a threshold detector connected to said tuned amplifier providing an output substantially identical to the modulation envelope.
10. A multiplexer system as recited in claim 9 wherein said pulse sorter means comprises: first and second pulse width discriminators each operable to detect pulses having said first duration, one of said pulse width discriminators being connected to receive the output of said threshold detector and the other of said pulse width discriminators being connected to receive the inversion of the output of said threshold detector, and first and second integrating one-shots connected to respective ones of the outputs of said pulse width discriminators for providing output pulses having durations equal to the duration of the outputs of said first and second one-shots.
11. In a self-service gasoline dispensing system having a plurality of gasoline pumps each of which are capable of generating trigger pulses corresponding to fractional parts of units of measurement related to the dispensed gasoline, a remote indicator system comprising a sender for each pump responsive to the trigger pulses produced thereby and producing a modulated signal characteristic of its particular pump, each of said senders being connected to a common powerline, a receiver for each sender located at a central station and also coupled to said common powerline, each of said receivers being responsive tO the characteristic modulated signal produced by its corresponding sender, and output means connected to each receiver for producing an indication of the amount of gasoline dispensed, said output means comprising: a plurality of one-bit memories, each of said memories being connected to a respective receiver corresponding to one of said plurality of gasoline pumps, strobing means for strobing the outputs of each memory at least twice between two consecutive trigger pulses generated by its related pump, and accumulating means connected to said strobing means for totalizing the total number of trigger pulses generated by all of said plurality of gasoline pumps.
12. A remote indicator system as recited in claim 11, wherein said strobing means comprises: a plurality of AND gates each connected to a respective one of said plurality of one-bit memories, a clock oscillator, and a counter connected to said clock oscillator and operative to strobe each AND gate in succession.
13. A remote indicator system as recited in claim 12 wherein said accumulating means comprises: a flip-flop connected to be toggled back and forth by the combined outputs of said AND gates and the output of said clock oscillator, a stepping motor driven by the outputs of said flip-flop, and a totalizing counter driven by said stepping motor.
14. A remote indicator system as recited in claim 11 wherein said strobing means comprises: a plurality of AND gates each associated with a respective one of said plurality of one-bit memories, said AND gates each having three inputs, the first of said inputs connected to receive a signal from its associated one-bit memory, the second of said inputs connected to receive the input signal to said one-bit memory, and the third of said inputs connected to said strobing means whereby an input signal to said one-bit memory prevents said AND gates from passing a signal.
15. In a self-service gasoline dispensing system having a plurality of gasoline pumps each of which are capable of generating trigger pulses corresponding to fractional parts of units of measurement related to the dispensed gasoline, a remote indicator system comprising a sender for each pump responsive to the trigger pulses produced thereby and producing a modulated signal characteristic of its particular pump, each of said senders being connected to a common powerline, a receiver for each sender located at a central station and also coupled to said common powerline, each of said receivers being responsive to the characteristic modulated signal produced by its corresponding sender, and output means connected to each receiver for producing an indication of the amount of gasoline dispensed, each sender being connected to the powerline by a coupling network comprising: a coupling transformer having primary and secondary windings, said primary winding receiving the output of said sender, a capacitor connected across said primary winding to form a tank circuit resonant at the signal frequency, at least one coupling capacitor connected in series with the secondary winding of said coupling transformer and the powerline for blocking the powerline frequency, and at least one current forcing resistor connected in series between said coupling capacitor and said secondary winding.
US28379A 1970-04-14 1970-04-14 Gasoline pump multiplexer system for remote indicators for self-service gasoline pumps Expired - Lifetime US3641536A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2837970A 1970-04-14 1970-04-14

Publications (1)

Publication Number Publication Date
US3641536A true US3641536A (en) 1972-02-08

Family

ID=21843125

Family Applications (1)

Application Number Title Priority Date Filing Date
US28379A Expired - Lifetime US3641536A (en) 1970-04-14 1970-04-14 Gasoline pump multiplexer system for remote indicators for self-service gasoline pumps

Country Status (1)

Country Link
US (1) US3641536A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894658A (en) * 1974-06-20 1975-07-15 Gen Atomic Co Dispensing control system for fluids
US3895370A (en) * 1972-07-04 1975-07-15 Sits Soc It Telecom Siemens High-frequency communication system using A-C utility lines
US3897887A (en) * 1973-09-04 1975-08-05 Banyon Research Corp Remotely controlling and metering liquid dispensation
US3940752A (en) * 1974-02-26 1976-02-24 Bair Willard E Transducing system
US3984032A (en) * 1973-05-03 1976-10-05 Dresser Europe, S.A. Liquid fuel dispensing system
US3993989A (en) * 1975-05-19 1976-11-23 Trw Inc. ELF communications system using HVDC transmission line as antenna
US4017845A (en) * 1975-06-16 1977-04-12 Fmc Corporation Circuitry for simultaneous transmission of signals and power
US4207557A (en) * 1977-05-20 1980-06-10 Blose John B User electric energy consumption apparatus
US4233590A (en) * 1978-02-27 1980-11-11 Gilkeson Robert F Supplemental energy register
US4335809A (en) * 1979-02-13 1982-06-22 Barcrest Limited Entertainment machines
US4408204A (en) * 1980-08-06 1983-10-04 Midwest Computer Register Corp. Digital counter/transmitter with remote receiver/display
US4491785A (en) * 1981-02-19 1985-01-01 Pasar, Inc. Tracing electrical conductors by high-frequency loading and improved signal detection
US4642556A (en) * 1981-02-19 1987-02-10 Pasar, Inc. Tracing electrical conductors by high-frequency constant-energy-content pulse loading
US4883199A (en) * 1987-07-28 1989-11-28 Graco Inc. Fluid dispensing device
US5016059A (en) * 1989-02-28 1991-05-14 Wilfred Smeiman Photocopy machine remotely controlled copy counting system
US5018645A (en) * 1990-01-30 1991-05-28 Zinsmeyer Herbert G Automotive fluids dispensing and blending system
US20010054953A1 (en) * 2000-04-14 2001-12-27 Kline Paul A. Digital communications utilizing medium voltage power distribution lines
US20020110311A1 (en) * 2001-02-14 2002-08-15 Kline Paul A. Apparatus and method for providing a power line communication device for safe transmission of high-frequency, high-bandwidth signals over existing power distribution lines
US20020118101A1 (en) * 2001-02-14 2002-08-29 Kline Paul A. Data communication over a power line
US20030169155A1 (en) * 2000-04-14 2003-09-11 Mollenkopf James Douglas Power line communication system and method of using the same
US20030179080A1 (en) * 2001-12-21 2003-09-25 Mollenkopf James Douglas Facilitating communication of data signals on electric power systems
US20030190110A1 (en) * 2001-02-14 2003-10-09 Kline Paul A. Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line
US20030234713A1 (en) * 2002-06-21 2003-12-25 Pridmore Charles Franklin Power line coupling device and method of using the same
US20040003934A1 (en) * 2002-06-24 2004-01-08 Cope Leonard David Power line coupling device and method of using the same
US20040110483A1 (en) * 2002-12-10 2004-06-10 Mollenkopf James Douglas Power line communication sytem and method
US20040113756A1 (en) * 2002-12-10 2004-06-17 Mollenkopf James Douglas Device and method for coupling with electrical distribution network infrastructure to provide communications
US20040113757A1 (en) * 2002-12-10 2004-06-17 White Melvin Joseph Power line communication system and method of operating the same
US20040135676A1 (en) * 2002-12-10 2004-07-15 Berkman William H. Power line communication system and method of operating the same
US20040142599A1 (en) * 2003-01-21 2004-07-22 Cope Leonard D. Power line coupling device and method of using the same
US20040227622A1 (en) * 2003-05-13 2004-11-18 Giannini Paul M. Device and method for communicating data signals through multiple power line conductors
US20040227621A1 (en) * 2000-04-14 2004-11-18 Cope Leonard D. Power line communication apparatus and method of using the same
US6977578B2 (en) 2000-01-20 2005-12-20 Current Technologies, Llc Method of isolating data in a power line communications network
US6980089B1 (en) 2000-08-09 2005-12-27 Current Technologies, Llc Non-intrusive coupling to shielded power cable
US20060145834A1 (en) * 2000-04-14 2006-07-06 Berkman William H Automated meter reading power line communication system and method
US7076378B1 (en) 2002-11-13 2006-07-11 Current Technologies, Llc Device and method for providing power line characteristics and diagnostics
US7113134B1 (en) 2004-03-12 2006-09-26 Current Technologies, Llc Transformer antenna device and method of using the same
US7132819B1 (en) 2002-11-12 2006-11-07 Current Technologies, Llc Floating power supply and method of using the same
US7199699B1 (en) 2002-02-19 2007-04-03 Current Technologies, Llc Facilitating communication with power line communication devices
US7308103B2 (en) 2003-05-08 2007-12-11 Current Technologies, Llc Power line communication device and method of using the same
US20080056338A1 (en) * 2006-08-28 2008-03-06 David Stanley Yaney Power Line Communication Device and Method with Frequency Shifted Modem
US7460467B1 (en) 2003-07-23 2008-12-02 Current Technologies, Llc Voice-over-IP network test device and method
USD864255S1 (en) * 2018-07-27 2019-10-22 Derrick Aych Automatic gas pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229300A (en) * 1961-01-31 1966-01-11 Ralph J Thompson Data gathering and recording system
US3243800A (en) * 1963-03-29 1966-03-29 Smith Corp A O Pulse separating and transmitting circuit
US3376744A (en) * 1966-07-07 1968-04-09 Foxboro Co Flow measurement system
US3510630A (en) * 1966-03-11 1970-05-05 Veeder Industries Inc Accounting system for fuel dispensing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229300A (en) * 1961-01-31 1966-01-11 Ralph J Thompson Data gathering and recording system
US3243800A (en) * 1963-03-29 1966-03-29 Smith Corp A O Pulse separating and transmitting circuit
US3510630A (en) * 1966-03-11 1970-05-05 Veeder Industries Inc Accounting system for fuel dispensing equipment
US3376744A (en) * 1966-07-07 1968-04-09 Foxboro Co Flow measurement system

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895370A (en) * 1972-07-04 1975-07-15 Sits Soc It Telecom Siemens High-frequency communication system using A-C utility lines
US3984032A (en) * 1973-05-03 1976-10-05 Dresser Europe, S.A. Liquid fuel dispensing system
US3897887A (en) * 1973-09-04 1975-08-05 Banyon Research Corp Remotely controlling and metering liquid dispensation
US3940752A (en) * 1974-02-26 1976-02-24 Bair Willard E Transducing system
US3894658A (en) * 1974-06-20 1975-07-15 Gen Atomic Co Dispensing control system for fluids
US3993989A (en) * 1975-05-19 1976-11-23 Trw Inc. ELF communications system using HVDC transmission line as antenna
US4017845A (en) * 1975-06-16 1977-04-12 Fmc Corporation Circuitry for simultaneous transmission of signals and power
US4207557A (en) * 1977-05-20 1980-06-10 Blose John B User electric energy consumption apparatus
US4233590A (en) * 1978-02-27 1980-11-11 Gilkeson Robert F Supplemental energy register
US4335809A (en) * 1979-02-13 1982-06-22 Barcrest Limited Entertainment machines
US4408204A (en) * 1980-08-06 1983-10-04 Midwest Computer Register Corp. Digital counter/transmitter with remote receiver/display
US4491785A (en) * 1981-02-19 1985-01-01 Pasar, Inc. Tracing electrical conductors by high-frequency loading and improved signal detection
US4642556A (en) * 1981-02-19 1987-02-10 Pasar, Inc. Tracing electrical conductors by high-frequency constant-energy-content pulse loading
US4883199A (en) * 1987-07-28 1989-11-28 Graco Inc. Fluid dispensing device
US5016059A (en) * 1989-02-28 1991-05-14 Wilfred Smeiman Photocopy machine remotely controlled copy counting system
US5018645A (en) * 1990-01-30 1991-05-28 Zinsmeyer Herbert G Automotive fluids dispensing and blending system
US6977578B2 (en) 2000-01-20 2005-12-20 Current Technologies, Llc Method of isolating data in a power line communications network
US7525423B2 (en) 2000-04-14 2009-04-28 Current Technologies, Llc Automated meter reading communication system and method
US20010054953A1 (en) * 2000-04-14 2001-12-27 Kline Paul A. Digital communications utilizing medium voltage power distribution lines
US20030169155A1 (en) * 2000-04-14 2003-09-11 Mollenkopf James Douglas Power line communication system and method of using the same
US20050285720A1 (en) * 2000-04-14 2005-12-29 Cope Leonard D Power line communication apparatus and method of using the same
US20060145834A1 (en) * 2000-04-14 2006-07-06 Berkman William H Automated meter reading power line communication system and method
US6998962B2 (en) 2000-04-14 2006-02-14 Current Technologies, Llc Power line communication apparatus and method of using the same
US6958680B2 (en) 2000-04-14 2005-10-25 Current Technologies, Llc Power line communication system and method of using the same
US20050206507A1 (en) * 2000-04-14 2005-09-22 Kline Paul A Power line communication system and method
US20080018491A1 (en) * 2000-04-14 2008-01-24 Berkman William H Automated Meter Reading Communication System And Method
US6965302B2 (en) 2000-04-14 2005-11-15 Current Technologies, Llc Power line communication system and method of using the same
US7307511B2 (en) 2000-04-14 2007-12-11 Current Technologies, Llc Power line communication system and method
US7248158B2 (en) 2000-04-14 2007-07-24 Current Technologies, Llc Automated meter reading power line communication system and method
US7245212B2 (en) 2000-04-14 2007-07-17 Current Technologies, Llc Power line communication apparatus and method of using the same
US20040227621A1 (en) * 2000-04-14 2004-11-18 Cope Leonard D. Power line communication apparatus and method of using the same
US6980089B1 (en) 2000-08-09 2005-12-27 Current Technologies, Llc Non-intrusive coupling to shielded power cable
US6933835B2 (en) 2001-02-14 2005-08-23 Current Technologies, Llc Data communication over a power line
US7103240B2 (en) 2001-02-14 2006-09-05 Current Technologies, Llc Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line
US20020118101A1 (en) * 2001-02-14 2002-08-29 Kline Paul A. Data communication over a power line
US6950567B2 (en) 2001-02-14 2005-09-27 Current Technologies, Llc Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line
US7218219B2 (en) 2001-02-14 2007-05-15 Current Technologies, Llc Data communication over a power line
US20020110311A1 (en) * 2001-02-14 2002-08-15 Kline Paul A. Apparatus and method for providing a power line communication device for safe transmission of high-frequency, high-bandwidth signals over existing power distribution lines
US20070287406A1 (en) * 2001-02-14 2007-12-13 Kline Paul A Data Communication over a Power Line
US7042351B2 (en) 2001-02-14 2006-05-09 Current Technologies, Llc Data communication over a power line
US7414518B2 (en) 2001-02-14 2008-08-19 Current Technologies, Llc Power line communication device and method
US20060171174A1 (en) * 2001-02-14 2006-08-03 Kline Paul A Data communication over a power line
US7453352B2 (en) 2001-02-14 2008-11-18 Current Technologies, Llc Data communication over a power line
US20030190110A1 (en) * 2001-02-14 2003-10-09 Kline Paul A. Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line
US20030179080A1 (en) * 2001-12-21 2003-09-25 Mollenkopf James Douglas Facilitating communication of data signals on electric power systems
US7053756B2 (en) 2001-12-21 2006-05-30 Current Technologies, Llc Facilitating communication of data signals on electric power systems
US7199699B1 (en) 2002-02-19 2007-04-03 Current Technologies, Llc Facilitating communication with power line communication devices
US7102478B2 (en) 2002-06-21 2006-09-05 Current Technologies, Llc Power line coupling device and method of using the same
US20030234713A1 (en) * 2002-06-21 2003-12-25 Pridmore Charles Franklin Power line coupling device and method of using the same
US20060012449A1 (en) * 2002-06-24 2006-01-19 Cope Leonard D Power line coupling device and method of using the same
US6982611B2 (en) 2002-06-24 2006-01-03 Current Technologies, Llc Power line coupling device and method of using the same
US20040003934A1 (en) * 2002-06-24 2004-01-08 Cope Leonard David Power line coupling device and method of using the same
US7224243B2 (en) 2002-06-24 2007-05-29 Current Technologies, Llc Power line coupling device and method of using the same
US7132819B1 (en) 2002-11-12 2006-11-07 Current Technologies, Llc Floating power supply and method of using the same
US7076378B1 (en) 2002-11-13 2006-07-11 Current Technologies, Llc Device and method for providing power line characteristics and diagnostics
US6980090B2 (en) 2002-12-10 2005-12-27 Current Technologies, Llc Device and method for coupling with electrical distribution network infrastructure to provide communications
US7301440B2 (en) 2002-12-10 2007-11-27 Current Technologies, Llc Power line communication system and method
US6965303B2 (en) 2002-12-10 2005-11-15 Current Technologies, Llc Power line communication system and method
US7701325B2 (en) 2002-12-10 2010-04-20 Current Technologies, Llc Power line communication apparatus and method of using the same
US7626489B2 (en) 2002-12-10 2009-12-01 Current Technologies, Llc Power line communications device and method
US20050200459A1 (en) * 2002-12-10 2005-09-15 White Melvin J.Ii Power line communication apparatus and method of using the same
US20050169056A1 (en) * 2002-12-10 2005-08-04 Berkman William H. Power line communications device and method
US6980091B2 (en) 2002-12-10 2005-12-27 Current Technologies, Llc Power line communication system and method of operating the same
US7064654B2 (en) 2002-12-10 2006-06-20 Current Technologies, Llc Power line communication system and method of operating the same
US20040110483A1 (en) * 2002-12-10 2004-06-10 Mollenkopf James Douglas Power line communication sytem and method
US7250848B2 (en) 2002-12-10 2007-07-31 Current Technologies, Llc Power line communication apparatus and method of using the same
US20050273282A1 (en) * 2002-12-10 2005-12-08 Mollenkopf James D Power line communication system and method
US20040135676A1 (en) * 2002-12-10 2004-07-15 Berkman William H. Power line communication system and method of operating the same
US20040113756A1 (en) * 2002-12-10 2004-06-17 Mollenkopf James Douglas Device and method for coupling with electrical distribution network infrastructure to provide communications
US20040113757A1 (en) * 2002-12-10 2004-06-17 White Melvin Joseph Power line communication system and method of operating the same
US20040142599A1 (en) * 2003-01-21 2004-07-22 Cope Leonard D. Power line coupling device and method of using the same
US7046124B2 (en) 2003-01-21 2006-05-16 Current Technologies, Llc Power line coupling device and method of using the same
US7308103B2 (en) 2003-05-08 2007-12-11 Current Technologies, Llc Power line communication device and method of using the same
US20040227622A1 (en) * 2003-05-13 2004-11-18 Giannini Paul M. Device and method for communicating data signals through multiple power line conductors
US7075414B2 (en) 2003-05-13 2006-07-11 Current Technologies, Llc Device and method for communicating data signals through multiple power line conductors
US7460467B1 (en) 2003-07-23 2008-12-02 Current Technologies, Llc Voice-over-IP network test device and method
US7113134B1 (en) 2004-03-12 2006-09-26 Current Technologies, Llc Transformer antenna device and method of using the same
US20080056338A1 (en) * 2006-08-28 2008-03-06 David Stanley Yaney Power Line Communication Device and Method with Frequency Shifted Modem
USD864255S1 (en) * 2018-07-27 2019-10-22 Derrick Aych Automatic gas pump

Similar Documents

Publication Publication Date Title
US3641536A (en) Gasoline pump multiplexer system for remote indicators for self-service gasoline pumps
US3742142A (en) Remote meter reader system
US3747068A (en) Remote meter reading system for kwh watthour meters and demand meters
US2459811A (en) Radio identifying system
US3609533A (en) Fault locating system for determining distance of fault on a transmission line from a predetermined position thereon
US3676939A (en) Student responder teaching device
US2131993A (en) Sonic depth and height indicator
US4264978A (en) Device for locating audio surveillance apparatus
JPS59439B2 (en) liquid fuel distribution device
US2432196A (en) Timing wave device
US3588795A (en) Depth indicator
US3656145A (en) Vending and recording apparatus
US3452272A (en) Method and apparatus for measuring capacitance at repeated intervals including average value indicating means
US3719928A (en) Sweep signal meter reading system
US2431344A (en) Determining distance by electromagnetic waves
US3199074A (en) Automobile traffic flow analyzer
US4215575A (en) Apparatus for measuring temperature of ultrasonic wave propagation medium
US2427670A (en) Radio centercasting system
US3220248A (en) Ultrasonic inspection device
US3086196A (en) Pulsed ultrasonic detector
US3787802A (en) Automatic range switching for digital depth sounders
US4228541A (en) Device for the electro-optical display of the tuning of a television and/or sound radio receiver
US3609248A (en) Print out control circuit for telephone transaction system
US3209251A (en) Period-to-rate converter having means for summing capacitor discharge curves
US4254485A (en) Temperature measuring apparatus with alarm device