US3655353A - Glass fiber size - Google Patents

Glass fiber size Download PDF

Info

Publication number
US3655353A
US3655353A US826715A US3655353DA US3655353A US 3655353 A US3655353 A US 3655353A US 826715 A US826715 A US 826715A US 3655353D A US3655353D A US 3655353DA US 3655353 A US3655353 A US 3655353A
Authority
US
United States
Prior art keywords
weight
percent
size
glass fiber
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US826715A
Inventor
Charles E Nalley
Joseph B Lovelace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Inc
Original Assignee
PPG Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Inc filed Critical PPG Industries Inc
Application granted granted Critical
Publication of US3655353A publication Critical patent/US3655353A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/30Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament

Definitions

  • ABSTRACT An aqueous forming size for treating a glass fiber strand, said size consisting essentially of a polypropylene emulsion, a textile lubricant and a coupling agent.
  • the polypropylene emulsion can contain some emulsified polyethylene.
  • the sized strands can be further coated with an aqueous rubber adhesive composition in preparation for use as reinforcement for rubber.
  • a glass fiber strand is composed of a multitude of fine glass filaments which are formed by being drawn at a high rate of speed from molten cones of glass located at the tips of small orifices in a bushing such as shown in US. Pat. No. 2,133,238.
  • the filaments are coated while moving at a speed on the order of 5,000 to 20,000 feet per minute with a size which contains a binder to give the strand integrity for workability for any standard textile or reinforcement use. If the strand does not have proper integrity, fuuing occurs during these operations and eventually the strand breaks.
  • the size also contains a lubricant for the filaments to prevent destruction of the strand by abrasion of the individual filaments against each other or against fiber handling equipment.
  • glass fiber strands and glass fiber cloth are coated with a coupling agent or finish material which makes the surface of the glass fibers substantive and compatible with the particular resins with which they are to be employed.
  • These coupling agents greatly increase the dry and wet physical strengths of the glass fiber resin laminate.
  • the coupling agent is usually combined with the size and applied with the size to the fibers during their formation.
  • the size employed is usually an aqueous dispersion or emulsion of a film forming, synthetic resinous binder, and a glass fiber textile lubricant.
  • Roving is formed by unwinding a plurality of strands from forming packages mounted on a creel, combining the strands in parallel form and winding the strands on a tubular support in a manner such that the combined strands can be unwound and used to form woven roving or chopped strands.
  • Twisted strand (single end on a bobbin) is made according to conventional textile twisting techniques by removing the strand from the forming package and winding it on a twister bobbin. It is therefore necessary that the strand have good integrity, freedom from ringer formation upon removal from the forming package and resistance to fuzzing during the steps employed to make the twisted strand or roving and fabricate them into forms suitable for use as a resin reinforcement.
  • a treatment be provided for glass fiber strand which will render the strand capable of (1) being economically processed into a form suitable for reinforcing resins and elastomers (rubber) and (2) providing improved physical properties such as increased strength to glass fiber reinforced resinous and elastomeric products. More specifically, it is desired that a strand be provided with a size which permits the strand to be processed without ringer formation and fuzzing and which is compatible with resins or elastomeric adhesives so as to provide improved physical properties to the reinforced product.
  • An object of this invention is to provide glass fiber strand which has been treated with a size with good wet-out" properties. It is desirable in the formation of glass fiber-resin laminates that the resin completely impregnate the strand and wet the surfaces of the fibers as quickly as possible in order to reduce the time required to make the laminates as well as to provide a laminate with maximum possible strength. It is desirable in the formation of elastomer-reinforcing glass fiber cord that the rubber adhesive completely impregnate the cord and wet the surfaces of the individual fibers in order to provide good adhesion between the cord and elastomer to be reinforced and to provide good flexural and compressive strength properties to the reinforced elastomer product. This is especially important in the manufacture of tire cord.
  • aqueous size consisting essentially of about 2 to 15 percent by weight of an aqueous polyolefin emulsion selected from the group consisting of polypropylene and polypropylene-polyethylene emulsions, 0. l to 2.0 percent by weight of a coupling agent and 0.2 to 4 percent by weight of a textile lubricant.
  • the aqueous size has a viscosity which has been conventionally found to be suitable for glass fiber strand forming sizes to permit adequate pick-up of size by the strand to obtain strand integrity and prevent destruction of the strand by abrasion of the individual fibers against each other.
  • the solids content of the polyolefin emulsion is composed of about 25 to percent by weight of polypropylene and 0 to 75 percent by weight of polyethylene.
  • the polyethylene is employed to help stabilize the emulsion of the polypropylene. As greater percentages of polyethylene are employed in the emulsion, it is preferred that the softening point of the polyethylene be higher in order to obtain good adhesion in glass fiber reinforced elastomers.
  • the polypropylene employed in the size has an average molecular weight in the range of about 5,300 to 7,300, and a Ring and Ball softening point of to 175 C., a density of 0.85 to 1 gram per cubic centimeter and a penetration hardness (100 grams/5 seconds/72 F.) in tenths of a millimeter of 0.01 maximum.
  • the polyethylene employed in the size has an average molecular weight in the range of about 2,000 to 10,000, a Ring and Ball softening point of about 100 to 175 C., a density of 0.85 to 1 gram per cubic centimeter and a penetration hardness (100 grams/5 seconds/25 C.) in tenths of a millimeter of 0.2 to 2.5.
  • polypropylene and polyethylene which are suitable for use in the invention are as follows:
  • the emulsion is prepared by melting polypropylene (and polyethylene when used), adding suitable emulsifying agents with stirring and then adding water until the water in oil emulsion inverts to an oil in water emulsion.
  • the emulsion contains about 20 to 40 percent by weight of solids (non-aqueous ingredients) based upon the weight of the emulsion.
  • Suita emulsifying agents include Triton X100, Igepal C0630 and Tergitol.
  • Polyolefin emulsions which are useful in the practice of the invention are commercially available and can be used merely by mixing the polypropylene emulsion, water, lubricant and coupling agent together in a mixing tank.
  • Coupling agents which may be used in the aqueous size compositions in the practice of this invention include silane and siloxane materials.
  • silane and siloxane materials For example, hydrolyzable vinyl, allyl,
  • silanes are disclosed in U.S. Pat. Nos.
  • Another class of coupling agents which has been found to be useful are the basic (hydroxy containing) metal salts of a strong mineral acid, such as, for example, a basic chromium chloride, basic chromium sulfate, etc.
  • a strong mineral acid such as, for example, a basic chromium chloride, basic chromium sulfate, etc.
  • These compounds are ones having a trivalent metal ion selected from the group consisting of chromium, cobalt, nickel, copper and lead, at least one hydroxyl group attached to the metal, and at least one anion of a strong mineral acid attached to the metal (as well as coordinate complexes of these compounds and mixtures thereof).
  • Another type of coupling agent which may be used in the practice of this invention is a complex compound of the Werner type in which a trivalent nuclear atom, such as chromium, is coordinated with an organic acid such as methacrylic acid, i.e., a methacrylic acid complex of chromic chloride.
  • a trivalent nuclear atom such as chromium
  • an organic acid such as methacrylic acid, i.e., a methacrylic acid complex of chromic chloride.
  • methacrylic acid i.e., a methacrylic acid complex of chromic chloride.
  • Other Werner type coupling agents having vinyl alkyl amino, epoxy, mercapto, thio-alkyl, thioalkaryl, and phenyl groups are suitable for incorporation in the size of the invention.
  • the size may contain a textile lubricant.
  • the lubricant is preferably cationic or non-ionic.
  • Various conventional glass fiber textile lubricants can be used.
  • the lubricant can be a commercially available acid solubilized, fatty acid amide. This includes both saturated and unsaturated fatty acid amides wherein the acid group contains four to 24 carbon atoms. Also included are anhydrous, acid solubilized polymers of the lower molecular weight, unsaturated fatty acid amides.
  • a suitable material is the pelargonic acid amide of tetraethylene pentamine.
  • Another glass fiber lubricant which can be used in the size is an alkyl imidazoline derivative which includes compounds of the class u-alkyl N-amidoalkyl imidazolines which may be formed by causing fatty acids to react with polyalkylene polyamines under conditions which produce ring closure.
  • the reaction of tetraethylene pentamine with stearic acid is exemplary of such reaction.
  • These imidazolines are described more fully in US. Pat. No. 2,200,815.
  • Other suitable imidazolines are described in US. Pat. Nos. 2,267,965, 2,268,273 and 2,355,837.
  • quaternary pyridinium compound which may be represented by the general formula:
  • I I X wherein X is an anion; R is an organic group containing from one to 30 carbon atoms selected from the group consisting of alkyl, arylakyl, aryl, alkenyl and acyl; and R R R R and R are each members selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, heterocyclic, halogen, alkenyl, carboxylic, alkoxy, ketonic, amido, and substituted amido.
  • the anionic group X may be, for example, chloro, fluoro, iodo, bromo, hydroxyl, nitrate, sulfate, phosphate, etc.
  • the group R may be, for example, methyl, ethyl, butyl, hexyl, lauryl, oleyl, benzyl, phenyl, acetyl, propionyl, benzoyl, etc.
  • the groups R,, R R R and K may be, for example, methyl, ethyl, propyl, cyclohexyl, furyl, pyrryl, benzyl, phenyl, chloro,
  • the size may contain a wetting agent.
  • the wetting agent is preferably cationic or non-ionic and it may also serve as an additional lubricant. Any material which is conventionally known to be useful as such and will reduce the surface tension of the size so that it is about 25 to 35 dynes per square centimeter can be used. Such materials include cetyl or stearyl monoamine hydrochloride or acetate, dodecyl amine, hexadecyl amine and secondary and tertiary derivatives of the same, for example, dodecyl methyl amine and salts thereof.
  • Suitable wetting agents are polyoxyethylene derivatives of a sorbitol fatty acid ester such as polyoxyethylene sorbitan monostearate or polyoxyethylene sorbitan trioleate.
  • the amount of such wetting agent employed generally ranges from about 0.01 to 1 percent by weight of the aqueous size.
  • the total solids (non-aqueous) content of the size is about 2 to 20 percent by weight of the size, preferably about 3 to 10 percent by weight of the size. In all events the amounts of the various ingredients should not exceed that amount which will cause the viscosity of the solution to be greater than about centipoises at 20 C. Solutions having a viscosity of greater than 100 centipoises at 20 C. are very difficult to apply to glass fiber strands during their formation without breaking the strand. It is preferred that the viscosity of the size be between 1 and 20 centipoises at 20 C. for best results.
  • the pH of the solution may generally vary from about 3 to 8.
  • EXAMPLE IV A size as described in Example 11 utilizing 18 percent polypropylene (molecular weight 6,300) and 7 percent polyethylene (molecular weight 2,500) in the emulsion instead of the amounts of the polypropylene and polyethylene listed in the example.
  • the procedure for preparing the size of this invention is exemplified by the following procedure for making the size set forth in Example 11.
  • the polyolefin emulsion is poured in a size mixing tank.
  • the SCC-137 is dissolved in hot water (140 to 150F.) and added to the mixing tank.
  • the Alamine 7D is dissolved in hot water with acetic acid and added to the mixing tank.
  • the Versamid 140 is dissolved in hot water with acetic acid and added to the mixing tank.
  • the A-l 100 and SAG-470 and water are added consecutively with stirring to the mixing tank and the size is then ready for use.
  • the sizes are applied to the individual glass fibers during their formation in the conventional manner.
  • the sizes are applied to the individual fibers just after their emergence from orifices in an electrically heated, platinum alloy bushing containing molten glass.
  • the sizes are applied to the filaments prior to the time they are grouped together to form a strand by means of a roller applicator which is partially submerged in the size contained in a reservoir.
  • a roller applicator is shown in more detail in U.S. Pat. No. 2,728,972.
  • the fibers are grouped into a strand by a graphite guide and wound around a forming tube rotating at approximately 7,500 rpm. to produce a strand travel of approximately 12,000 to 15,000 feet per minute.
  • the size to the strand of glass fibers may be employed and the strand may be formed by means other than winding on the forming tube, such as by means of a pair of rotating wheel pullers which direct the strand into a suitable collecting device.
  • the glass fiber strands wound on the forming tube are then dried. This may be done by heating them at a temperature and for a length of time sufficient to reduce the moisture level to that appropriate for further processing, for example, at about room temperature for 48 hours for twisting or 8 to 12 hours at 270 F. for producing roving. This drying causes the coupling agents to fix themselves to the glass surface and to produce the degree of strand integrity and moisture level required for processing the strand into roving, yarn, cord, woven cloth or woven roving.
  • the solids content of size on the strands averages about 0.2 to 2.0 percent by weight, preferably about 0.50 percent by weight.
  • Glass strands sized with a size such as described in Example I are particularly useful for reinforcement of thermoplastic and thermosetting resinous products. Such reinforced products have good tensile and flexural strength. Increased physical strength, although an important and significant factor, represents only one benefit to be derived through the use of the subject sizes. Other equally beneficial and desirable aspects are the versatility and economic advantages obtained through the use of these sizes.
  • Example I One substantial benefit obtained through the use of the size formulations disclosed in Example I is that one need not subject fiber glass cloth woven from yarn treated with this size to the costly heat cleaning and coupling agent treatments. One need only take the cloth woven from fiber glass yarns treated with this size, saturate it with the desired resin and shape or form said saturated cloth to whatever configuration is desired by conventional molding or laminating techniques.
  • fabricators manufacturing resinous articles reinforced with fiber glass cloth can, through the use of cloth woven from fiber glass yarn treated with the subject sizes, produce such reinforced articles with either polyester or epoxy resins without suffering the expense of heat cleaning or coupling agent treatments.
  • the sized strands herein exemplified by Example 11 are particularly useful as a reinforcement for elastomers.
  • a plurality of ends of strand or yarn are combined and coated with a rubber adhesive.
  • the coated ends are twisted and then plied with other coated ends to form a coated cord.
  • five or seven ends of ECG-75S with a one-half turn twist may be combined and coated and impregnated with a rubber latex adhesive.
  • the coated ends are heated to dry the adhesive and fix it on the combined ends of yarn.
  • the coated ends are then twisted to impart a 2.52 twist.
  • the twisted ends are then plied with other twisted ends to give a balanced 2.5S plied cord.
  • Typical cords are five-fourths for belt reinforcement and five-thirds for tire reinforcement.
  • the cords are used as such or in a loosely woven fabric form.
  • the fabric is used in the belt portion of bias-belt and radial ply tires.
  • a satisfactory adhesive for glass fibers and rubber is a mixture of resorcinol, formaldehyde and a terpolymer of butadiene, styrene and vinyl pyridine such as shown in U.S. Pat. No. 2,817,616.
  • Other suitable formulations are described in U.S. Pat Nos. 2,691,614 and 2,822,311.
  • the formulation of a suitable rubber adhesive and the coating of glass fiber strand and yarn therewith are described in the following example:
  • a rubber adhesive is prepared from the following in- These ingredients are mixed in the following manner.
  • Gen-Tac terpolyrner latex is mixed with 1,940 parts by weight of water.
  • Water (7,632 parts by weight) is added to a separate container.
  • NaOH is then added and dissolved in the water in the separate container.
  • Resorcinol is next added to the aqueous solution of NaOH and dissolved therein.
  • Formaldehyde is added after the resorcinol and the mixture is stirred for minutes and allowed to age at room temperature for two to six hours. The aging permits a small amount of condensation of resorcinol and formaldehyde and provides superior adhesion of the subsequently coated yarn to the rubber stock.
  • Glass fiber strands sized as described in Example 11 are coated and impregnated with the adhesive produced as above described. Seven strands (ECG-J58) with one-half turn per inch of twist are combined in parallel relation and passed under slight tension through grooves in rotating rollers which are partially suspended in the adhesive. The pickup of adhesive is sufficient to provide a coating on the strands of about 17 to l9 percent by weight of adhesive based upon the weight of strands. 18 percent (18%) by weight of adhesive has been found to be suitable for most purposes.
  • the coated strands are passed vertically through a dielectric or microwave drying oven to remove the water and N11 from the adhesive. During this removal the strands appear to vibrate vigorously and further impregnation of the adhesive into the strands and onto and around the individual fibers is achieved.
  • the coated strands next pass upwardly through a gas oven maintained at a temperature of about 350 to 500 F. to effect curing of the resorcinol formaldehyde. Further flowing and impregnating of the adhesive is accomplished during this second heating step.
  • the curing or condensing of the resorcinol formaldehyde is free to proceed with the removal of the NH;,.
  • the condensation is time-temperature dependent. For example, heating the coated strands for 30 seconds at 370 F. or 20 seconds at 420 F. is satisfactory. Apparatus suitable for performing the two-step heat treatment is shown in US. Pat No. 2,865,790.
  • the two-step drying and curing process provides improved uniformity and impregnation of the coating on the strands. This is evidenced by a uniformity of amount and coloring of the coating on the strands and the absence of flags" or lumps of adhesive along the length of the coated strand as is the case with conventional coating techniques. This, in turn, provides markedly improved flex life of the rubber product which is reinforced with the coated strands.
  • the two-step coating process also permits coating of the adhesive at a much faster rate than conventional coating processes which do not utilize the dielectric or microwave drying step.
  • the following rubber compounds were reinforced with glass fiber cord of ECG-75 7/0 2.55 construction and tested.
  • the individual fibers were formed and sized as described in Example I1 and the strands were coated as described in Example V.
  • the chemical identification of the ingredients in the rubber compound can be found in Materials and Compounding Ingredientsfor Rubber and Plastics published by Rubber World.
  • EXAMPLE Vll An adhesive dip composition especially useful for cords which are to reinforce natural rubber and SBR stocks is as follows:
  • Butadiene-Styrene Latex (70% butadiene, 30% styrene by weight) 7800 Resorcinol 350 Formaldehyde 5 l 8 NaOH 9.6 Water 9572
  • This adhesive dip is prepared in the same manner as the adhesive in Example V with the exception that NH OH is omitted.
  • the latex appears to act as a sufficient inhibitor to condensation of the resorcinol and formaldehyde to permit absence of NH.,OH.
  • EXAMPLE Vlll An adhesive dip composition especially useful for cords which are to reinforce Neoprene rubber stock is as follows:
  • Neoprene latex (Dupont latex 460) 46% 6300 MgO 33% 315 Tergitol anionic (surfactant-Stabilizer) 63 Neozone-D (Antioxidant which prevents breakdown of Neoprene at high temperature B-phenylnaphthyl (amine) 50% 126 ZnO 50% 315 Resorcinol 99 Formaldehyde 37% 145.8 NaOH 36 H,O 2145.6
  • This adhesive is prepared in the same manner as in Example V and is aged for 24 hours at room temperature before use.
  • An adhesive dip composition especially rubber stock is as follows:
  • the adhesive dip composition is prepared in the same manner as described in Example V.
  • elastomer as used herein and in the claims is intended to include elastic substances such as natural latex from the Hevea tree and synthetic rubber and rubber-like materials. It also includes natural and synthetic rubber and rubber-like materials which have been chemically modified such as by chlorination to improve their physical properties. Synthetic rubber includes rubber-like materials such as chloroprene, butadiene, isoprene and copolymers thereof with acrylonitn'le, stryene and isobutylene.
  • the term elastomer includes natural and synthetic rubber in the uncured or unvulcanized state as well as in the cured or vulcanized state.
  • a glass fiber strand which can be used as a reinforcement for resins and elastomers which comprises drawing glass streams through orifices in a bushing to form individual glass fibers, moving the fibers away from the bushing at a high rate of speed and forming them into a strand, applying to the fibers while they are moving at this speed an aqueous sizing solution, drying the sized glass fibers and preparing them for use as a reinforcement, the improvement whereby the sized glass fibers exhibit improved wetting by resins, which comprises sizing the glass with an aqueous size consisting essentially of 2 to 15 percent by weight of a polyolefin emulsion selected from the group consisting of polypropylene and polyethylene-polypropylene mixtures, wherein the polypropylene is present from about 25 to about l00 percent by weight of the polyolefin and the polyethylene is present from about 0 to about 75 percent by weight of the polyolefin, a coupling agent and a
  • a glass fiber strand which can be used as a reinforcement for resins and elastomers which comprises drawing glass streams through orifices in a bushing to form individual glass fibers, moving the fibers away from the bushing at a high rate of speed and forming them into a strand, applying to the fibers while they are moving at this speed an aqueous sizing solution, drying the sized glass fibers and preparing them for use as a reinforcement, the improvement, whereby the sized glass fibers exhibit improved wetting by resins, which comprises sizing the glass with an aqueous size consisting essentially of 2 to 15 percent by weight of a polyolefin emulsion selected from the group consisting of polypropylene and polyethylene-polypropylene mixtures, wherein the polypropylene is present from about 25 to about percent by weight of the polyolefin and the polyethylene is present from about 0 to about 75 percent by weight of the polyolefin, a coupling agent and a textile
  • Glass fiber strand according to claim 7 wherein the size, when applied, contains 0.2 to 4 percent by weight of a glass fiber textile lubricant.

Abstract

An aqueous forming size for treating a glass fiber strand, said size consisting essentially of a polypropylene emulsion, a textile lubricant and a coupling agent. The polypropylene emulsion can contain some emulsified polyethylene. The sized strands can be further coated with an aqueous rubber adhesive composition in preparation for use as reinforcement for rubber.

Description

United States Patent Nalley et al.
1 1 GLASS FIBER SIZE [72] Inventors: Charles E. Nalley, Shelby; Joseph B.
[21] Appl. No.: 826,715
[52] U.S.Cl. ..65/3, 117/76 T, 1 17/126 GB, 117/126 GS [51] Int. Cl ..C03c 25/02, B44d H16 [58] Field ofSearch ..117/126 GB, 126 GS, 161 UP, 1 17/76 T; 65/3; 260/2960 L [56] References Cited UNlTED STATES PATENTS 3,013,915 12/1961 Morgan ..117/126GB 2,723,215 11/1955 Biefeld et al. ..ll7/l26X [151 3,655,353 [451 Apr. 11,1972
Primary Examiner-William D. Martin Assistant Examiner-D. Cohen Attorney-Chisholm and Spencer [5 7] ABSTRACT An aqueous forming size for treating a glass fiber strand, said size consisting essentially of a polypropylene emulsion, a textile lubricant and a coupling agent. The polypropylene emulsion can contain some emulsified polyethylene. The sized strands can be further coated with an aqueous rubber adhesive composition in preparation for use as reinforcement for rubber.
9 Claims, No Drawings GLASS FIBER SIZE Field of the Invention DESCRIPTION OF THE PRIOR ART A glass fiber strand is composed of a multitude of fine glass filaments which are formed by being drawn at a high rate of speed from molten cones of glass located at the tips of small orifices in a bushing such as shown in US. Pat. No. 2,133,238. During formation, the filaments are coated while moving at a speed on the order of 5,000 to 20,000 feet per minute with a size which contains a binder to give the strand integrity for workability for any standard textile or reinforcement use. If the strand does not have proper integrity, fuuing occurs during these operations and eventually the strand breaks. The size also contains a lubricant for the filaments to prevent destruction of the strand by abrasion of the individual filaments against each other or against fiber handling equipment.
It is common practice to use glass fiber strands and glass fiber cloth as a reinforcement for resins. For such use, the glass fibers are coated with a coupling agent or finish material which makes the surface of the glass fibers substantive and compatible with the particular resins with which they are to be employed. These coupling agents greatly increase the dry and wet physical strengths of the glass fiber resin laminate.
When the glass fibers are used in the form of strand, i.e., roving or chopped strand or twisted strand, for resin reinforcement, the coupling agent is usually combined with the size and applied with the size to the fibers during their formation. The size employed is usually an aqueous dispersion or emulsion of a film forming, synthetic resinous binder, and a glass fiber textile lubricant.
Roving is formed by unwinding a plurality of strands from forming packages mounted on a creel, combining the strands in parallel form and winding the strands on a tubular support in a manner such that the combined strands can be unwound and used to form woven roving or chopped strands. Twisted strand (single end on a bobbin) is made according to conventional textile twisting techniques by removing the strand from the forming package and winding it on a twister bobbin. It is therefore necessary that the strand have good integrity, freedom from ringer formation upon removal from the forming package and resistance to fuzzing during the steps employed to make the twisted strand or roving and fabricate them into forms suitable for use as a resin reinforcement.
It is desired that a treatment be provided for glass fiber strand which will render the strand capable of (1) being economically processed into a form suitable for reinforcing resins and elastomers (rubber) and (2) providing improved physical properties such as increased strength to glass fiber reinforced resinous and elastomeric products. More specifically, it is desired that a strand be provided with a size which permits the strand to be processed without ringer formation and fuzzing and which is compatible with resins or elastomeric adhesives so as to provide improved physical properties to the reinforced product.
An object of this invention is to provide glass fiber strand which has been treated with a size with good wet-out" properties. It is desirable in the formation of glass fiber-resin laminates that the resin completely impregnate the strand and wet the surfaces of the fibers as quickly as possible in order to reduce the time required to make the laminates as well as to provide a laminate with maximum possible strength. It is desirable in the formation of elastomer-reinforcing glass fiber cord that the rubber adhesive completely impregnate the cord and wet the surfaces of the individual fibers in order to provide good adhesion between the cord and elastomer to be reinforced and to provide good flexural and compressive strength properties to the reinforced elastomer product. This is especially important in the manufacture of tire cord.
It is another object of this invention to provide a glass fiber strand which is treated with a size and which can be twisted, plied and woven into fabrics for use as a resin or elastomer reinforcement without requiring heat cleaning and finishing of the cloth prior to such use as required when the glass fibers have been formed with a starch containing size.
SUMMARY OF THE INVENTION These, and other objects are accomplished by the practice of this invention which, briefly, comprises treating glass fiber strands during their formation with an aqueous size consisting essentially of about 2 to 15 percent by weight of an aqueous polyolefin emulsion selected from the group consisting of polypropylene and polypropylene-polyethylene emulsions, 0. l to 2.0 percent by weight of a coupling agent and 0.2 to 4 percent by weight of a textile lubricant. The aqueous size has a viscosity which has been conventionally found to be suitable for glass fiber strand forming sizes to permit adequate pick-up of size by the strand to obtain strand integrity and prevent destruction of the strand by abrasion of the individual fibers against each other.
The solids content of the polyolefin emulsion is composed of about 25 to percent by weight of polypropylene and 0 to 75 percent by weight of polyethylene. The polyethylene is employed to help stabilize the emulsion of the polypropylene. As greater percentages of polyethylene are employed in the emulsion, it is preferred that the softening point of the polyethylene be higher in order to obtain good adhesion in glass fiber reinforced elastomers.
The polypropylene employed in the size has an average molecular weight in the range of about 5,300 to 7,300, and a Ring and Ball softening point of to 175 C., a density of 0.85 to 1 gram per cubic centimeter and a penetration hardness (100 grams/5 seconds/72 F.) in tenths of a millimeter of 0.01 maximum. The polyethylene employed in the size has an average molecular weight in the range of about 2,000 to 10,000, a Ring and Ball softening point of about 100 to 175 C., a density of 0.85 to 1 gram per cubic centimeter and a penetration hardness (100 grams/5 seconds/25 C.) in tenths of a millimeter of 0.2 to 2.5.
Some examples of polypropylene and polyethylene which are suitable for use in the invention are as follows:
1. Polypropylene Molecular weight 6,300 Ring and Ball Softening Point C. Density (grams per cubic centimeter) 0.9 Penetration Hardness 100 grams/5 seconds/72 F.)
tenths of a millimeter 0.0
maximum 2. Polyethylene Molecular weight 2,500 Ring and Ball Softening Point 106 C. Density (grams per cubic centimeter) 0.9 Penetration Hardness (100 grams/ 5 seconds/25 C.)
tenths of millimeter 2.2 3. Polyethylene Molecular weight 6500-8 .500 Ri send Se n nslfei t Q Density (grams per cubic centimeter) 0.99 Per et ation Hardness (tenths of a millimeter) i 0 0.5
The emulsion is prepared by melting polypropylene (and polyethylene when used), adding suitable emulsifying agents with stirring and then adding water until the water in oil emulsion inverts to an oil in water emulsion. The emulsion contains about 20 to 40 percent by weight of solids (non-aqueous ingredients) based upon the weight of the emulsion. Suita emulsifying agents include Triton X100, Igepal C0630 and Tergitol. Polyolefin emulsions which are useful in the practice of the invention are commercially available and can be used merely by mixing the polypropylene emulsion, water, lubricant and coupling agent together in a mixing tank.
Coupling agents which may be used in the aqueous size compositions in the practice of this invention include silane and siloxane materials. For example, hydrolyzable vinyl, allyl,
beta chloropropyl, phenyl, thio-alkyI, thio-alkaryl, amino-alkyl, methacrylato, epoxy and mercapto silanes, their hydrolysis products and polymers of the hydrolysis products and mixtures of any of these are suitable for such use. Some of the silanes are disclosed in U.S. Pat. Nos. 2,563,288; 2,688,006; 2,688,007; 2,723,211; 2,742,378; 2,754,237; 2,776,910; 2,799,598; 2,832,754; 2,930,809; 2,946,701; 2,952,576; 2,974,062; 3,044,982; 3,045,036; 3,169,884; 3,207,623 and 3,211,684, the disclosures of which are incorporated herein by reference.
Another class of coupling agents which has been found to be useful are the basic (hydroxy containing) metal salts of a strong mineral acid, such as, for example, a basic chromium chloride, basic chromium sulfate, etc. These compounds are ones having a trivalent metal ion selected from the group consisting of chromium, cobalt, nickel, copper and lead, at least one hydroxyl group attached to the metal, and at least one anion of a strong mineral acid attached to the metal (as well as coordinate complexes of these compounds and mixtures thereof).
Another type of coupling agent which may be used in the practice of this invention is a complex compound of the Werner type in which a trivalent nuclear atom, such as chromium, is coordinated with an organic acid such as methacrylic acid, i.e., a methacrylic acid complex of chromic chloride. Such agents are described in US. Pat. No. 2,611,718. Other Werner type coupling agents having vinyl alkyl amino, epoxy, mercapto, thio-alkyl, thioalkaryl, and phenyl groups are suitable for incorporation in the size of the invention.
Mixtures of two or more of any of these coupling agents may be used.
The size may contain a textile lubricant. The lubricant is preferably cationic or non-ionic. Various conventional glass fiber textile lubricants can be used. The lubricant can be a commercially available acid solubilized, fatty acid amide. This includes both saturated and unsaturated fatty acid amides wherein the acid group contains four to 24 carbon atoms. Also included are anhydrous, acid solubilized polymers of the lower molecular weight, unsaturated fatty acid amides. A suitable material is the pelargonic acid amide of tetraethylene pentamine.
Another glass fiber lubricant which can be used in the size is an alkyl imidazoline derivative which includes compounds of the class u-alkyl N-amidoalkyl imidazolines which may be formed by causing fatty acids to react with polyalkylene polyamines under conditions which produce ring closure. The reaction of tetraethylene pentamine with stearic acid is exemplary of such reaction. These imidazolines are described more fully in US. Pat. No. 2,200,815. Other suitable imidazolines are described in US. Pat. Nos. 2,267,965, 2,268,273 and 2,355,837.
The above cationic lubricants may be used in combination with or replaced by a quaternary pyridinium compound which may be represented by the general formula:
I I X wherein X is an anion; R is an organic group containing from one to 30 carbon atoms selected from the group consisting of alkyl, arylakyl, aryl, alkenyl and acyl; and R R R R and R are each members selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, heterocyclic, halogen, alkenyl, carboxylic, alkoxy, ketonic, amido, and substituted amido. Thus, the anionic group X may be, for example, chloro, fluoro, iodo, bromo, hydroxyl, nitrate, sulfate, phosphate, etc. The group R may be, for example, methyl, ethyl, butyl, hexyl, lauryl, oleyl, benzyl, phenyl, acetyl, propionyl, benzoyl, etc. The groups R,, R R R and K, may be, for example, methyl, ethyl, propyl, cyclohexyl, furyl, pyrryl, benzyl, phenyl, chloro,
bromo, iodo, fluoro, oleyl, methoxy, acetoxy, benzoxy, acetonyl, acetamido, etc. These compounds are prepared in accordance with methods common in the art by the quaternization of the corresponding pyridine bases such as, pyridine, niacin, nicotin-amide, nicotine, nicotyrine, nikethamide, 2- benzylpyridine, 3,5-dibromopyridine, 4-chloropyridine, 3- ethylpyridine, 4-methoxypyridine, 3 -phenylpyridine, 2- picoline, 3-picoline, 4-picoline, 2-picoline-4,6,dicarboxylic acid, 2,4-lutidine, 2,6-lutidine, 3,4-lutidine, 2,4-pyridine dicarboxylic acid, 4-ethyl-3-methylpyridine, 3-ethyl-4-methylpyridine, 2,4,6-trimethylpyridine, etc; with for example, an alkyl halide. In a preferred embodiment, the R group in the above formula is an aliphatic hydrocarbon radical containing from four to 18 carbon atoms.
The size may contain a wetting agent. The wetting agent is preferably cationic or non-ionic and it may also serve as an additional lubricant. Any material which is conventionally known to be useful as such and will reduce the surface tension of the size so that it is about 25 to 35 dynes per square centimeter can be used. Such materials include cetyl or stearyl monoamine hydrochloride or acetate, dodecyl amine, hexadecyl amine and secondary and tertiary derivatives of the same, for example, dodecyl methyl amine and salts thereof. Other examples of suitable wetting agents are polyoxyethylene derivatives of a sorbitol fatty acid ester such as polyoxyethylene sorbitan monostearate or polyoxyethylene sorbitan trioleate. The amount of such wetting agent employed generally ranges from about 0.01 to 1 percent by weight of the aqueous size.
The total solids (non-aqueous) content of the size is about 2 to 20 percent by weight of the size, preferably about 3 to 10 percent by weight of the size. In all events the amounts of the various ingredients should not exceed that amount which will cause the viscosity of the solution to be greater than about centipoises at 20 C. Solutions having a viscosity of greater than 100 centipoises at 20 C. are very difficult to apply to glass fiber strands during their formation without breaking the strand. It is preferred that the viscosity of the size be between 1 and 20 centipoises at 20 C. for best results. The pH of the solution may generally vary from about 3 to 8.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Typical examples of the best mode of carrying out the invention are shown in the following examples of sizes:
For Resin Reinforcement EXAMPLE I Parts by Weight Ingredients (Grams) l. Polypropylene emulsion containing 25% by weight of polypropylene (molecular weight 6,300) and 6% Ingredients (Grams) Polypropylene-polyethylene emulsion containing 12% by weight of polypropylene (molecular weight 6,300). 12% by weight ofpolyethylene (molecular weight 2,500) and 6% by weight of emulsifying agents (Abraze Ade sold by Proctor Chemical EXAMPLE III A size as described in Example 11 utilizing 12 percent polyethylene having an average molecular weight of 6,5008,500 in place of the polyethylene listed in the example.
EXAMPLE IV A size as described in Example 11 utilizing 18 percent polypropylene (molecular weight 6,300) and 7 percent polyethylene (molecular weight 2,500) in the emulsion instead of the amounts of the polypropylene and polyethylene listed in the example.
The procedure for preparing the size of this invention is exemplified by the following procedure for making the size set forth in Example 11. The polyolefin emulsion is poured in a size mixing tank. The SCC-137 is dissolved in hot water (140 to 150F.) and added to the mixing tank. The Alamine 7D is dissolved in hot water with acetic acid and added to the mixing tank. The Versamid 140 is dissolved in hot water with acetic acid and added to the mixing tank. The A-l 100 and SAG-470 and water are added consecutively with stirring to the mixing tank and the size is then ready for use.
The sizes are applied to the individual glass fibers during their formation in the conventional manner. The sizes are applied to the individual fibers just after their emergence from orifices in an electrically heated, platinum alloy bushing containing molten glass. The sizes are applied to the filaments prior to the time they are grouped together to form a strand by means of a roller applicator which is partially submerged in the size contained in a reservoir. Such an applicator is shown in more detail in U.S. Pat. No. 2,728,972. The fibers are grouped into a strand by a graphite guide and wound around a forming tube rotating at approximately 7,500 rpm. to produce a strand travel of approximately 12,000 to 15,000 feet per minute. Other methods of applying the size to the strand of glass fibers, such as pad applicator, may be employed and the strand may be formed by means other than winding on the forming tube, such as by means of a pair of rotating wheel pullers which direct the strand into a suitable collecting device.
The glass fiber strands wound on the forming tube are then dried. This may be done by heating them at a temperature and for a length of time sufficient to reduce the moisture level to that appropriate for further processing, for example, at about room temperature for 48 hours for twisting or 8 to 12 hours at 270 F. for producing roving. This drying causes the coupling agents to fix themselves to the glass surface and to produce the degree of strand integrity and moisture level required for processing the strand into roving, yarn, cord, woven cloth or woven roving. The solids content of size on the strands averages about 0.2 to 2.0 percent by weight, preferably about 0.50 percent by weight.
Glass strands sized with a size such as described in Example I are particularly useful for reinforcement of thermoplastic and thermosetting resinous products. Such reinforced products have good tensile and flexural strength. Increased physical strength, although an important and significant factor, represents only one benefit to be derived through the use of the subject sizes. Other equally beneficial and desirable aspects are the versatility and economic advantages obtained through the use of these sizes. Prior to introducing cloth woven from fiber glass strands having starch based sizes thereon into resins for reinforcement purposes, it is necessary to remove the size by literally burning it off in a heat cleaning process and subsequently apply a coupling agent to the filaments to serve as a coupler between the reinforcing fibers and the resin. These additional treatments involve a substantial investment in equipment and additional expense in maintenance and operation of such equipment. One substantial benefit obtained through the use of the size formulations disclosed in Example I is that one need not subject fiber glass cloth woven from yarn treated with this size to the costly heat cleaning and coupling agent treatments. One need only take the cloth woven from fiber glass yarns treated with this size, saturate it with the desired resin and shape or form said saturated cloth to whatever configuration is desired by conventional molding or laminating techniques. Thus, fabricators manufacturing resinous articles reinforced with fiber glass cloth can, through the use of cloth woven from fiber glass yarn treated with the subject sizes, produce such reinforced articles with either polyester or epoxy resins without suffering the expense of heat cleaning or coupling agent treatments.
The sized strands herein exemplified by Example 11 are particularly useful as a reinforcement for elastomers. In such use, a plurality of ends of strand or yarn are combined and coated with a rubber adhesive. The coated ends are twisted and then plied with other coated ends to form a coated cord. For example, five or seven ends of ECG-75S with a one-half turn twist may be combined and coated and impregnated with a rubber latex adhesive. The coated ends are heated to dry the adhesive and fix it on the combined ends of yarn. The coated ends are then twisted to impart a 2.52 twist. The twisted ends are then plied with other twisted ends to give a balanced 2.5S plied cord. Typical cords are five-fourths for belt reinforcement and five-thirds for tire reinforcement. The cords are used as such or in a loosely woven fabric form. The fabric is used in the belt portion of bias-belt and radial ply tires.
It has been found that different adhesives must be used with different synthetic fibers to get maximum properties in different rubber stocks. A satisfactory adhesive for glass fibers and rubber is a mixture of resorcinol, formaldehyde and a terpolymer of butadiene, styrene and vinyl pyridine such as shown in U.S. Pat. No. 2,817,616. Other suitable formulations are described in U.S. Pat Nos. 2,691,614 and 2,822,311. The formulation of a suitable rubber adhesive and the coating of glass fiber strand and yarn therewith are described in the following example:
EXAMPLE V A rubber adhesive is prepared from the following in- These ingredients are mixed in the following manner. The Gen-Tac terpolyrner latex is mixed with 1,940 parts by weight of water. Water (7,632 parts by weight) is added to a separate container. NaOH is then added and dissolved in the water in the separate container. Resorcinol is next added to the aqueous solution of NaOH and dissolved therein. Formaldehyde is added after the resorcinol and the mixture is stirred for minutes and allowed to age at room temperature for two to six hours. The aging permits a small amount of condensation of resorcinol and formaldehyde and provides superior adhesion of the subsequently coated yarn to the rubber stock. After aging, this mixture is added to the Gen-Tao latex and the resultant mixture is stirred slowly for 15 minutes. Ammonium hydroxide is then added and the mixture is stirred slowly for 10 minutes. The ammonium hydroxide inhibits further condensation of the resorcinol formaldehyde.
Glass fiber strands sized as described in Example 11 are coated and impregnated with the adhesive produced as above described. Seven strands (ECG-J58) with one-half turn per inch of twist are combined in parallel relation and passed under slight tension through grooves in rotating rollers which are partially suspended in the adhesive. The pickup of adhesive is sufficient to provide a coating on the strands of about 17 to l9 percent by weight of adhesive based upon the weight of strands. 18 percent (18%) by weight of adhesive has been found to be suitable for most purposes.
Thereafter, the coated strands are passed vertically through a dielectric or microwave drying oven to remove the water and N11 from the adhesive. During this removal the strands appear to vibrate vigorously and further impregnation of the adhesive into the strands and onto and around the individual fibers is achieved. The coated strands next pass upwardly through a gas oven maintained at a temperature of about 350 to 500 F. to effect curing of the resorcinol formaldehyde. Further flowing and impregnating of the adhesive is accomplished during this second heating step. The curing or condensing of the resorcinol formaldehyde is free to proceed with the removal of the NH;,. The condensation is time-temperature dependent. For example, heating the coated strands for 30 seconds at 370 F. or 20 seconds at 420 F. is satisfactory. Apparatus suitable for performing the two-step heat treatment is shown in US. Pat No. 2,865,790.
The two-step drying and curing process provides improved uniformity and impregnation of the coating on the strands. This is evidenced by a uniformity of amount and coloring of the coating on the strands and the absence of flags" or lumps of adhesive along the length of the coated strand as is the case with conventional coating techniques. This, in turn, provides markedly improved flex life of the rubber product which is reinforced with the coated strands. The two-step coating process also permits coating of the adhesive at a much faster rate than conventional coating processes which do not utilize the dielectric or microwave drying step.
Experimentation is usually necessary to determine the optimum cord construction and adhesive for the particular rubber product. in this experimentation, various screening tests are utilized to determine the properties of the reinforced rubber. The Pl-Adhesion test is one of the standard rubber industry tests.
The following rubber compounds were reinforced with glass fiber cord of ECG-75 7/0 2.55 construction and tested. The individual fibers were formed and sized as described in Example I1 and the strands were coated as described in Example V. The chemical identification of the ingredients in the rubber compound can be found in Materials and Compounding Ingredientsfor Rubber and Plastics published by Rubber World.
Age-Rite resin (antioxidant) l Sundex 790 (plasticizer) l0 Santocure (accelerative) 1 DOTG 0.2 Sulfur 2.0 H-Pull Adhesion 15.5-16.5 pounds Strip Adhesion at room temperature 98404 pounds at 230 F. for 30 minutes 45-50 pounds Retention (70) 43-47% Flex Fatigue about 610,000 cycles Breaking strength -85 pounds ln-rubber tensile 97-103 pounds Additional adhesive compositions which have been utilized in the practice of the invention are as follows:
EXAMPLE Vll An adhesive dip composition especially useful for cords which are to reinforce natural rubber and SBR stocks is as follows:
Ingredients Parts By Weight Butadiene-Styrene Latex (70% butadiene, 30% styrene by weight) 7800 Resorcinol 350 Formaldehyde 5 l 8 NaOH 9.6 Water 9572 This adhesive dip is prepared in the same manner as the adhesive in Example V with the exception that NH OH is omitted. The latex appears to act as a sufficient inhibitor to condensation of the resorcinol and formaldehyde to permit absence of NH.,OH.
EXAMPLE Vlll An adhesive dip composition especially useful for cords which are to reinforce Neoprene rubber stock is as follows:
Ingredient Solids Parts by Weight Neoprene latex (Dupont latex 460) 46% 6300 MgO 33% 315 Tergitol anionic (surfactant-Stabilizer) 63 Neozone-D (Antioxidant which prevents breakdown of Neoprene at high temperature B-phenylnaphthyl (amine) 50% 126 ZnO 50% 315 Resorcinol 99 Formaldehyde 37% 145.8 NaOH 36 H,O 2145.6
This adhesive is prepared in the same manner as in Example V and is aged for 24 hours at room temperature before use.
EXAMPLE IX An adhesive dip composition especially rubber stock is as follows:
useful for Neoprene The adhesive dip composition is prepared in the same manner as described in Example V.
The term elastomer as used herein and in the claims is intended to include elastic substances such as natural latex from the Hevea tree and synthetic rubber and rubber-like materials. It also includes natural and synthetic rubber and rubber-like materials which have been chemically modified such as by chlorination to improve their physical properties. Synthetic rubber includes rubber-like materials such as chloroprene, butadiene, isoprene and copolymers thereof with acrylonitn'le, stryene and isobutylene. The term elastomer includes natural and synthetic rubber in the uncured or unvulcanized state as well as in the cured or vulcanized state.
Although the present invention has been described with respect to specific details of certain embodiments thereof, it is not intended that such details act as limitations upon the scope of the invention except insofar as set forth in the accompanying claims.
We claim:
1. In the method of forming a glass fiber strand which can be used as a reinforcement for resins and elastomers which comprises drawing glass streams through orifices in a bushing to form individual glass fibers, moving the fibers away from the bushing at a high rate of speed and forming them into a strand, applying to the fibers while they are moving at this speed an aqueous sizing solution, drying the sized glass fibers and preparing them for use as a reinforcement, the improvement whereby the sized glass fibers exhibit improved wetting by resins, which comprises sizing the glass with an aqueous size consisting essentially of 2 to 15 percent by weight of a polyolefin emulsion selected from the group consisting of polypropylene and polyethylene-polypropylene mixtures, wherein the polypropylene is present from about 25 to about l00 percent by weight of the polyolefin and the polyethylene is present from about 0 to about 75 percent by weight of the polyolefin, a coupling agent and a textile lubricant, the viscosity of the size being less than 100 centipoises at 20 C.
2. The method of claim 1 wherein the size contains 0.1 to 2 percent by weight of a coupling agent.
3. The method of claim 1 wherein the size contains 0.2 to 4 percent by weight of a glass fiber textile lubricant.
4. In the method of forming a glass fiber strand which can be used as a reinforcement for resins and elastomers which comprises drawing glass streams through orifices in a bushing to form individual glass fibers, moving the fibers away from the bushing at a high rate of speed and forming them into a strand, applying to the fibers while they are moving at this speed an aqueous sizing solution, drying the sized glass fibers and preparing them for use as a reinforcement, the improvement, whereby the sized glass fibers exhibit improved wetting by resins, which comprises sizing the glass with an aqueous size consisting essentially of 2 to 15 percent by weight of a polyolefin emulsion selected from the group consisting of polypropylene and polyethylene-polypropylene mixtures, wherein the polypropylene is present from about 25 to about percent by weight of the polyolefin and the polyethylene is present from about 0 to about 75 percent by weight of the polyolefin, a coupling agent and a textile lubricant, the viscosity of the size being less than 100 centipoises at 20 C. and thereafter coating it with an aqueous elastomeric adhesive composition containing an elastomer latex and a heat curable resin, then drying the adhesive coated strand to remove the water and thereafter curing the resin by the application of additional heat.
5. The method of claim 4 wherein the size contains 0.1 to 2 percent by weight of a coupling agent.
6. The method of claim 4 wherein the size contains 0.2 to 4 percent by weight of a glass fiber textile lubricant.
7. Glass fiber strand having disposed upon the glass fibers in an amount from about 0.2 to about 2.0 percent by weight of the glass a dried residue of an aqueous size comprising, when applied, 2 to 15 percent by weight of a polyolefin emulsion selected from the group consisting of polypropylene and polyethylene-polypropylene mixtures, wherein the polypropylene is present from about 25 to about 100 percent by wei t of the pol olefin and the polyethylene is present from a ut 0 to abou 75 percent by weight of the polyolefin,
a coupling agent and a textile lubricant and having disposed about said dried residue upon the glass fibers an elastomeric adhesive composition.
8. Glass fiber strand according to claim 7 wherein the size, when applied, contains 0.1 to 2 percent by weight of a coupling agent.
9. Glass fiber strand according to claim 7 wherein the size, when applied, contains 0.2 to 4 percent by weight of a glass fiber textile lubricant.

Claims (8)

  1. 2. The method of claim 1 wherein the size contains 0.1 to 2 percent by weight of a coupling agent.
  2. 3. The method of claim 1 wherein the size contains 0.2 to 4 percent by weight of a glass fiber textile lubricant.
  3. 4. In the method of forming a glass fiber strand which can be used as a reinforcement for resins and elastomers which comprises drawing glass streams through orifices in a bushing to form individual glass fibers, moving the fibers away from the bushing at a high rate of speed and forming them into a strand, applying to the fibers while they are moving at this speed an aqueous sizing solution, drying the sized glass fibers and preparing them for use as a reinforcement, the improvement, whereby the sized glass fibers exhibit improved wetting by resins, which comprises sizing the glass with an aqueous size consisting essentially of 2 to 15 percent by weight of a polyolefin emulsion selected from the group consisting of polypropylene and polyethylene-polypropylene mixtures, wherein the polypropylene is present from about 25 to about 100 percent by weight of the polyolefin and the polyethylene is present from about 0 to about 75 percent by weight of the polyolefin, a coupling agent and a textile lubricant, the viscosity of the size being less than 100 centipoises at 20* C. and thereafter coating it with an aqueous elastomeric adhesive composition containing an elastomer latex and a heat curable resin, then drying the adhesive coated strand to remove the water and thereafter curing the resin by the application of additional heat.
  4. 5. The method of claim 4 wherein the size contains 0.1 to 2 percent by weight of a coupling agent.
  5. 6. The method of claim 4 wherein the size contains 0.2 to 4 percent by weight of a glass fiber textile lubricant.
  6. 7. Glass fiber strand having disposed upon the glass fibers in an amount from about 0.2 to about 2.0 percent by weight of the glass a dried residue of an aqueous size comprising, when applied, 2 to 15 percent by weight of a polyolefin emulsion selected from the group consisting of polypropylene and polyethylene-polypropylene mixtures, wherein the polypropylene is present from about 25 to about 100 percent by weight of the polyolefin and the polyethylene is present from about 0 to about 75 percent by weight of the polyolefin, a coupling agent and a textile lubricant and having disposed about said dried residue upon the glass fibers an elastomeric adhesive composition.
  7. 8. Glass fiber strand according to claim 7 wherein the size, when applied, contains 0.1 to 2 percent by weight of a coupling agent.
  8. 9. Glass fiber strand according to claim 7 wherein the size, when applied, contains 0.2 to 4 percent by weight of a glass fiber textile lubricant.
US826715A 1969-05-21 1969-05-21 Glass fiber size Expired - Lifetime US3655353A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82671569A 1969-05-21 1969-05-21

Publications (1)

Publication Number Publication Date
US3655353A true US3655353A (en) 1972-04-11

Family

ID=25247332

Family Applications (1)

Application Number Title Priority Date Filing Date
US826715A Expired - Lifetime US3655353A (en) 1969-05-21 1969-05-21 Glass fiber size

Country Status (8)

Country Link
US (1) US3655353A (en)
JP (1) JPS5212320B1 (en)
BE (1) BE750649A (en)
DE (1) DE2024477C3 (en)
FR (1) FR2044805B1 (en)
GB (1) GB1286725A (en)
NL (1) NL141480B (en)
SE (1) SE359808B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850681A (en) * 1970-12-16 1974-11-26 Owens Corning Fiberglass Corp Glass fiber reinforced elastomers
US3873352A (en) * 1971-12-17 1975-03-25 Owens Illinois Inc Abrasion resistant one step glass coating with excellent labelability
US3933711A (en) * 1972-10-31 1976-01-20 Ppg Industries, Inc. Forming size of aqueous polyvinylacetate
USB415590I5 (en) * 1973-11-14 1976-03-23
US3998985A (en) * 1975-03-03 1976-12-21 Owens-Illinois, Inc. Method of improving adhesion of vinyl polymers to glass
US4047429A (en) * 1974-06-03 1977-09-13 Ppg Industries, Inc. Method of testing glass fiber coating compositions
US4073849A (en) * 1974-06-03 1978-02-14 Ppg Industries, Inc. Process for forming elastomer films
US4126729A (en) * 1975-12-31 1978-11-21 Owens-Corning Fiberglas Corporation Glass fibers sized with vinyl acetate copolymers
US4143006A (en) * 1977-01-10 1979-03-06 Owens-Corning Fiberglas Corporation Size composition for treating glass fibers for reinforcement of paper comprising starch, a polyolefin emulsion and lubricant
DE2853735A1 (en) * 1978-08-21 1980-02-28 Ppg Industries Inc SMOOTHED GLASS SPIDER THREAD AND ITS USE FOR REINFORCING OLEFIN POLYMERS
US4240944A (en) * 1979-02-12 1980-12-23 Ppg Industries, Inc. Emulsion composition and method for use in treating glass fibers
US4263082A (en) * 1978-12-20 1981-04-21 Ppg Industries, Inc. Storage stable polyolefin compatible non-crosslinking size for fiber glass strands
US4283322A (en) * 1979-02-12 1981-08-11 Ppg Industries, Inc. Emulsion composition and method for use in treating glass fibers
US4374177A (en) * 1981-12-24 1983-02-15 Ppg Industries, Inc. Aqueous sizing composition for glass fibers and sized glass fibers for thermoplastic reinforcement
US4394475A (en) * 1981-12-24 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition for producing sized glass fiber strands with improved slip flow properties
US4394418A (en) * 1981-12-24 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition and glass fibers made therewith for reinforcing thermosetting polymers
US5242969A (en) * 1989-04-19 1993-09-07 Vetrotex-Saint Gobain Aqueous polyolefin emulsions and method of forming same
US5389440A (en) * 1989-04-19 1995-02-14 Vetrotex Saint-Gobain Finish composition for coating and protecting a reinforcing substrate
US5773146A (en) * 1995-06-05 1998-06-30 Ppg Industries, Inc. Forming size compositions, glass fibers coated with the same and fabrics woven from such coated fibers
US5900454A (en) * 1995-06-28 1999-05-04 Bayer Aktiengesellschaft Aqueous dispersions, process for the production thereof and use thereof
US5904797A (en) * 1996-02-12 1999-05-18 E. I. Du Pont De Nemours And Company Adhesion improvement with methylacrylate-chromium complexes and poly(vinyl alcohol)
US6166118A (en) * 1997-06-13 2000-12-26 Eastman Chemical Company Emulsification process for functionalized polyolefins and emulsions made therefrom
US20020198301A1 (en) * 2001-05-01 2002-12-26 Campbell Les E. Sized reinforcements, and materials reinforced with such reinforcements
US20050163998A1 (en) * 2001-05-01 2005-07-28 Sanjay Kashikar Fiber size, sized reinforcements, and articles reinforced with such reinforcements
US20060069187A1 (en) * 2004-09-29 2006-03-30 Klosiewicz Daniel W Functionalized polyolefin emulsions
US20060083922A1 (en) * 2001-05-01 2006-04-20 Sanjay Kashikar Fiber size, sized reinforcements, and articles reinforced with sized reinforcements
EP1770072A1 (en) * 2005-09-29 2007-04-04 Johns Manville Method of making nonwoven fibrous mats and preforms and methods of use
US20080254290A1 (en) * 2005-05-04 2008-10-16 Saint-Gobain Vetrotex France S.A. Sizing Composition for Glass Fibre Granules with a High Glass Content
CN106117782A (en) * 2016-06-24 2016-11-16 河南工程学院 A kind of method improving PP Yu the PA composite compatibility
CN106186730A (en) * 2016-07-15 2016-12-07 巨石集团有限公司 The wetting agent of FFU synthesis wooden sleeper alkali-free glass fibre yarn
CN106242317A (en) * 2016-07-15 2016-12-21 巨石集团有限公司 Strengthen the wetting agent of the polyurethane direct yarn of pultrusion alkali-free glass fibre
CN106242318A (en) * 2016-07-26 2016-12-21 巨石集团有限公司 A kind of wetting agent and its production and use

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2837199C2 (en) * 1978-08-25 1983-05-05 Siemens AG, 1000 Berlin und 8000 München Method for insulating a superconducting magnet winding to be glowed
CA2037938A1 (en) * 1990-03-30 1991-10-01 Leonard J. Adzima Coating composition for fibers
FR2707976B1 (en) * 1993-07-22 1995-09-22 Vetrotex France Sa Glass fibers intended for the reinforcement of organic matrices.
FR3093324A1 (en) 2019-02-12 2020-09-04 Stéphane Costanza SMOKE DRONE FOR FIRE DETECTOR CONTROL
CN114853365B (en) * 2022-04-20 2023-09-01 巨石集团有限公司 Glass fiber impregnating compound, preparation method thereof, glass fiber product and application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2723215A (en) * 1950-05-31 1955-11-08 Owens Corning Fiberglass Corp Glass fiber product and method of making same
US2838418A (en) * 1954-07-22 1958-06-10 Du Pont Adhesion of resins to glass
US3013915A (en) * 1958-04-23 1961-12-19 Owens Corning Fiberglass Corp Reinforced polyolefins and process for making same
US3073790A (en) * 1956-10-09 1963-01-15 Montccatini Societa Generale P Dispersion consisting of polypropylene containing isotactic macromolecules and water
US3116192A (en) * 1959-07-07 1963-12-31 Pittsburgh Plate Glass Co Glass fiber treatiment
US3262899A (en) * 1963-03-25 1966-07-26 Nat Starch Chem Corp Sizing polyolefin yarns with aqueous atactic polypropylene emulsion
US3301932A (en) * 1961-05-31 1967-01-31 Dow Chemical Co Method for producing coated articles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2723215A (en) * 1950-05-31 1955-11-08 Owens Corning Fiberglass Corp Glass fiber product and method of making same
US2838418A (en) * 1954-07-22 1958-06-10 Du Pont Adhesion of resins to glass
US3073790A (en) * 1956-10-09 1963-01-15 Montccatini Societa Generale P Dispersion consisting of polypropylene containing isotactic macromolecules and water
US3013915A (en) * 1958-04-23 1961-12-19 Owens Corning Fiberglass Corp Reinforced polyolefins and process for making same
US3116192A (en) * 1959-07-07 1963-12-31 Pittsburgh Plate Glass Co Glass fiber treatiment
US3301932A (en) * 1961-05-31 1967-01-31 Dow Chemical Co Method for producing coated articles
US3262899A (en) * 1963-03-25 1966-07-26 Nat Starch Chem Corp Sizing polyolefin yarns with aqueous atactic polypropylene emulsion

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850681A (en) * 1970-12-16 1974-11-26 Owens Corning Fiberglass Corp Glass fiber reinforced elastomers
US3873352A (en) * 1971-12-17 1975-03-25 Owens Illinois Inc Abrasion resistant one step glass coating with excellent labelability
US3933711A (en) * 1972-10-31 1976-01-20 Ppg Industries, Inc. Forming size of aqueous polyvinylacetate
US4027071A (en) * 1972-10-31 1977-05-31 Ppg Industries, Inc. Forming size for glass fibers
USB415590I5 (en) * 1973-11-14 1976-03-23
US4009317A (en) * 1973-11-14 1977-02-22 Owens-Corning Fiberglas Corporation Glass fiber coated with a size comprising emulsified clad particles of poly(methyl methacrylate)
US4073849A (en) * 1974-06-03 1978-02-14 Ppg Industries, Inc. Process for forming elastomer films
US4047429A (en) * 1974-06-03 1977-09-13 Ppg Industries, Inc. Method of testing glass fiber coating compositions
US3998985A (en) * 1975-03-03 1976-12-21 Owens-Illinois, Inc. Method of improving adhesion of vinyl polymers to glass
US4126729A (en) * 1975-12-31 1978-11-21 Owens-Corning Fiberglas Corporation Glass fibers sized with vinyl acetate copolymers
US4143006A (en) * 1977-01-10 1979-03-06 Owens-Corning Fiberglas Corporation Size composition for treating glass fibers for reinforcement of paper comprising starch, a polyolefin emulsion and lubricant
DE2853735A1 (en) * 1978-08-21 1980-02-28 Ppg Industries Inc SMOOTHED GLASS SPIDER THREAD AND ITS USE FOR REINFORCING OLEFIN POLYMERS
US4248935A (en) * 1978-08-21 1981-02-03 Ppg Industries, Inc. Storage stable polyolefin compatible non-crosslinking size for fiber glass strands
US4263082A (en) * 1978-12-20 1981-04-21 Ppg Industries, Inc. Storage stable polyolefin compatible non-crosslinking size for fiber glass strands
US4240944A (en) * 1979-02-12 1980-12-23 Ppg Industries, Inc. Emulsion composition and method for use in treating glass fibers
US4283322A (en) * 1979-02-12 1981-08-11 Ppg Industries, Inc. Emulsion composition and method for use in treating glass fibers
US4374177A (en) * 1981-12-24 1983-02-15 Ppg Industries, Inc. Aqueous sizing composition for glass fibers and sized glass fibers for thermoplastic reinforcement
US4394475A (en) * 1981-12-24 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition for producing sized glass fiber strands with improved slip flow properties
US4394418A (en) * 1981-12-24 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition and glass fibers made therewith for reinforcing thermosetting polymers
US5389440A (en) * 1989-04-19 1995-02-14 Vetrotex Saint-Gobain Finish composition for coating and protecting a reinforcing substrate
US5242969A (en) * 1989-04-19 1993-09-07 Vetrotex-Saint Gobain Aqueous polyolefin emulsions and method of forming same
US5773146A (en) * 1995-06-05 1998-06-30 Ppg Industries, Inc. Forming size compositions, glass fibers coated with the same and fabrics woven from such coated fibers
US5900454A (en) * 1995-06-28 1999-05-04 Bayer Aktiengesellschaft Aqueous dispersions, process for the production thereof and use thereof
US5904797A (en) * 1996-02-12 1999-05-18 E. I. Du Pont De Nemours And Company Adhesion improvement with methylacrylate-chromium complexes and poly(vinyl alcohol)
US6166118A (en) * 1997-06-13 2000-12-26 Eastman Chemical Company Emulsification process for functionalized polyolefins and emulsions made therefrom
US20060083922A1 (en) * 2001-05-01 2006-04-20 Sanjay Kashikar Fiber size, sized reinforcements, and articles reinforced with sized reinforcements
US7585563B2 (en) 2001-05-01 2009-09-08 Ocv Intellectual Capital, Llc Fiber size, sized reinforcements, and articles reinforced with such reinforcements
US20050163998A1 (en) * 2001-05-01 2005-07-28 Sanjay Kashikar Fiber size, sized reinforcements, and articles reinforced with such reinforcements
US20020198301A1 (en) * 2001-05-01 2002-12-26 Campbell Les E. Sized reinforcements, and materials reinforced with such reinforcements
US7732047B2 (en) 2001-05-01 2010-06-08 Ocv Intellectual Capital, Llc Fiber size, sized reinforcements, and articles reinforced with sized reinforcements
US6846855B2 (en) 2001-05-01 2005-01-25 Owens Corning Fiberglas Technology, Inc. Sized reinforcements, and materials reinforced with such reinforcements
US20060069187A1 (en) * 2004-09-29 2006-03-30 Klosiewicz Daniel W Functionalized polyolefin emulsions
US20060069188A1 (en) * 2004-09-29 2006-03-30 Klosiewicz Daniel W Processes for producing functionalized polyolefin emulsions
US20080254290A1 (en) * 2005-05-04 2008-10-16 Saint-Gobain Vetrotex France S.A. Sizing Composition for Glass Fibre Granules with a High Glass Content
EP1770072A1 (en) * 2005-09-29 2007-04-04 Johns Manville Method of making nonwoven fibrous mats and preforms and methods of use
CN106117782A (en) * 2016-06-24 2016-11-16 河南工程学院 A kind of method improving PP Yu the PA composite compatibility
CN106186730A (en) * 2016-07-15 2016-12-07 巨石集团有限公司 The wetting agent of FFU synthesis wooden sleeper alkali-free glass fibre yarn
CN106242317A (en) * 2016-07-15 2016-12-21 巨石集团有限公司 Strengthen the wetting agent of the polyurethane direct yarn of pultrusion alkali-free glass fibre
CN106242317B (en) * 2016-07-15 2019-04-19 巨石集团有限公司 Enhance the size of the direct yarn of polyurethane pultrusion alkali-free glass fibre
CN106242318A (en) * 2016-07-26 2016-12-21 巨石集团有限公司 A kind of wetting agent and its production and use
CN106242318B (en) * 2016-07-26 2019-04-19 巨石集团有限公司 A kind of size and its preparation method and application

Also Published As

Publication number Publication date
FR2044805A1 (en) 1971-02-26
SE359808B (en) 1973-09-10
DE2024477B2 (en) 1978-10-26
BE750649A (en) 1970-11-20
DE2024477C3 (en) 1979-06-13
DE2024477A1 (en) 1970-12-23
FR2044805B1 (en) 1976-02-06
NL7006976A (en) 1970-11-24
GB1286725A (en) 1972-08-23
JPS5212320B1 (en) 1977-04-06
NL141480B (en) 1974-03-15

Similar Documents

Publication Publication Date Title
US3655353A (en) Glass fiber size
US3816235A (en) Glass fiber size composition
US3437517A (en) Forming glass fiber with combination resin coating
US3814715A (en) Glass fiber size containing polyolefin emulsion
US3459585A (en) Novel reaction product and use thereof as a glass fiber size
US3849148A (en) Method of treating glass fibers to improve adhesion to polyolefins
US4455343A (en) Aqueous treating composition for glass fiber strands used to produce mats for thermoplastics
US3424608A (en) Glass fiber reinforced elastomers
US3869308A (en) Forming size for glass fibers and resulting product
US3168389A (en) Silane forming size and glass fiber strands threated therewith for resin reinforcement
US3837898A (en) Glass fiber size composition
AU759430B2 (en) Sizing for glass fibers having low nonionic and cationic lubricant content
US3484223A (en) Method for sizing glass fibers
US3619252A (en) Manufacture of elastomer coated glass fibers
US3567671A (en) Tack-free impregnated glass fiber reinforcement for elastomeric materials
US3718449A (en) Sizing, coating and combined sizing and coating composition for glass fibers
US4248935A (en) Storage stable polyolefin compatible non-crosslinking size for fiber glass strands
US3705073A (en) Glass fiber bundle comprising an elastomer compatible impregnant and a thickening agent
US2754223A (en) Coated glass fiber and method of making
US3773546A (en) Coated glass fibers and glass fiber reinforced elastomers
US3116192A (en) Glass fiber treatiment
US4369264A (en) Aqueous treating composition for glass fiber strands used to produce mats for thermoplastic polymers
US3925286A (en) Sizing, coating and combined sizing and coating composition for glass fibers
US2994619A (en) Method of treating glass fibers with a size comprising an alkenyl triacyloxy silane and a synthetic latex, and glass fibers so treated
US3339357A (en) Process and apparatus for producing impregnated fiber material