US3661205A - Well tool anchoring system - Google Patents

Well tool anchoring system Download PDF

Info

Publication number
US3661205A
US3661205A US134775A US3661205DA US3661205A US 3661205 A US3661205 A US 3661205A US 134775 A US134775 A US 134775A US 3661205D A US3661205D A US 3661205DA US 3661205 A US3661205 A US 3661205A
Authority
US
United States
Prior art keywords
piston
anchoring
hydraulic
motion
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US134775A
Inventor
Roger Belorgey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Application granted granted Critical
Publication of US3661205A publication Critical patent/US3661205A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/0411Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells operated by fluid means, e.g. actuated by explosion specially adapted for anchoring tools or the like to the borehole wall or to well tube
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/042Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells operated by fluid means, e.g. actuated by explosion using a single piston or multiple mechanically interconnected pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
    • G01V11/005Devices for positioning logging sondes with respect to the borehole wall

Definitions

  • An illustrative embodiment of the invention includes upper and lower anchoring members for temporarily securing a well tool in a well bore.
  • the upper and lower anchoring members are pivotally supported from the central body member of the tool and respectively coupled to upper and lower movable slide blocks or driven pistons.
  • the slide blocks are, in turn, moved by a two phase hydraulic transmission system whose pressure is controlled by a movable driving piston having two different cross sectional piston areas.
  • the driving pistons motion is provided by a reversible electric motor via a gear box and threaded driving screw, This arrangement provides for low pressure fast moving initial deployment of the anchoring means followed by subsequent high pressure ment anchoring force.
  • anchoring systems in particular, extendible slip-type anchoring systems used in anchoring well plugs or packers in position in a cased borehole are particularly numerous.
  • the energy required for setting such an anchoring device may be applied by the weight of the drill string in the case of tubing or, in the case of a wireline operated device, this energy may be stored in the apparatus itself in some form.
  • Such stored setting energy may come from a compressed spring or a set of weights carried above the main body of the well tool or from expanding gases produced by an explosive charge.
  • the apparatus may usually only be anchored at one point in the well bore per trip because once the apparatus is anchored and disengaged it must be brought to the surface to recondition the energy storage system.
  • One type of apparatus used in making measurements in a well bore which requires the frequent and relatively rapid movement from one location to another in the borehole is a so-called freepoint or stuckpoint indicator device.
  • Such devices are used to locate the point in the borehole which a tubing string or casing string is stuck, usually due to a pressure differential between the borehole fluid and the surrounding formations.
  • the stuekpoint indicator is placed at different depths in the well bore and anchored to the interior surface of the tubing or casing in question.
  • the casing or tubing is then twisted or stretched by powerful engines at the surface and the elastic deformation of the pipe at the depth at which the stuekpoint indicator is placed is measured. If the indicator is above the stuekpoint or freepoint of the pipe, elastic deformation will be noted.
  • the stuekpoint indicator is located below the point at which the pipe or tubing is stuck in the well bore no elastic deformation will be noted. Accordingly, it is necessary to move the stuekpoint indicator tool to various locations in the well bore and to anchor it at each such location. The tubing or casing deformations are then made and the measurements of such thereby obtained.
  • Such measurements are usually made by the means of a strain gauge sensing element which detects relative motion between the upper end of the measuring instrument and the lower end of the measuring instrument which is caused by the elastic deformation of the tubing string when placed under either longitudinal tension force or rotational torsion forces from the surface. Therefore a convenient and rapidly engageable and disengageable anchoring system is very desirable for use with a stuekpoint indicator tool. Moreover, this anchoring system must be of a small enough diameter to pass through drill pipe or tubing strings and the disengagement and movement of the stuckpoint indicator anchoring apparatus must be convenient and rapid.
  • Another object of the present invention is to provide a well too] anchoring system which may be used to anchor a measuring tool at longitudinally spaced apart locations in such a manner that the elastic deformation of the pipe between the anchoring locations may be measured.
  • a still further object of the present invention is to provide an electrically operable well tool anchoring system.
  • a system for anchoring a stuekpoint indicator or other well probe operated by a wireline in a well bore is provided.
  • Wall engaging anchoring means are cooperatively arranged on a tool body and adapted for lateral movement from the body member of the probe.
  • a reversible electric motor drive mechanism which may be remotely controlled from the surface is coupled by a hydraulic system to the anchoring means and cooperatively arranged to transform the first phase of the driving motion into a relatively rapid extension of the anchoring means.
  • the continuing motion of the drive mechanism is employed to impose a greatly increased anchoring force on the anchoring means.
  • the single drawing represents a partial schematic view in longitudihal section of an anchoring system associated with a stuekpoint indicator tool.
  • a stuekpoint indicator equipped with upper and lower anchoring devices is suspended by a cable 35 inside a tubing string 36 extending within a borehole 37.
  • the anchoring system of the stuekpoint indicator comprises a housing 1 or hollow body member which is filled with hydraulic fluid 13.
  • an electric motor 2 which is supplied with surface originated electrical power from conductors coming down a cable member 35.
  • the motor 2 is capable of reversal depending, for example, upon the polarity of the voltage applied thereto.
  • the electric motor 2 drives a planetary reduction gear 3 whose rotary motion is coupled via an Oldham coupling 4 to a square thread screw member 6.
  • a thrust bearing 5 supports the axial forces acting on this assembly and serves to relieve undue stresses on gear upon planetary gear box 3 or electric motor 2.
  • the square thread screw member 6 is capable of driving a pressure-developing piston 7 longitudinally in either direction depending upon the direction of drive of the electric motor 2.
  • the piston 7 is provided on one side of its circumference with a slotted portion 9 which serves in cooperation with a lug 8 af fixed to the wall of body member 1 to prevent rotational motion of the piston 7.
  • Piston 7 is further provided with an upper portion comprising a low pressure piston of large section ll which is fitted with an O-ring Ila.
  • the lower portion of the piston 7 comprises a high pressure piston of small section 12. This high pressure piston portion is fitted with an O-ring 120.
  • These two pistons of different section may travel within a cooperatively sized bore 5 within the body member 1 and act via the hydraulic fluid l3 and port 34 on a longitudinallymovable slide block 14 slidably mounted on the tool.
  • a second longitudinally-movable block 14 located near the lower end of the tool is also acted on by the hydraulic fluid 13 as its pressure increases.
  • the two slide blocks 14 and 14 are also equipped with O-ring seals in the manner shown in the drawing for defining pressure-responsive surfaces on which the hydraulic fluid can act.
  • upper slide block 14 (as the lower slide member 14' is analogous) three sets of upper arms 15 situated, for example, 120 apart, about the circumference of the tool are provided. Arms 15 are cooperatively supported as for example by hinges or pivots from the slide block 14 at one end and are hinged on friction anchoring shoes 16 at their opposite end. Three corresponding lower arms 17 are similarly hinged to the shoes 16 on their one end and on their other end are pivoted or hinged at fixed points of the body member 1.
  • the lower slide block 14' is associated in a similar manner to shoes 16' which are equipped with corresponding hinged arms 15 and 17.
  • the wall engaging pad members or shoes 16 and 16' may additionally be provided with external teeth or wickers (not shown) for engaging and anchoring the tool in a frictional manner to the interior surface of the tubing in which it is suspended. It will be appreciated, therefore, that the arrangement of the several linkages provides a toggling action upon downward movement of the slide blocks 14 and 14.
  • the body member 1 and the slide blocks 14 and 114' have the same overall diameter so that in the folded position of the shoes 16 and 16', this diameter determines the overall diameter and hence the passage possibilities of the apparatus in the tubular space where it is to be admitted.
  • a connecting tube 38 (shown partially deleted) belonging to the stuckpoint indicator measurement portion of the tool.
  • This tube could, for example, carry embedded strain gauges such as 21 which make it possible to detect elastic deformation of the tubing due to traction or stretching and twisting forces applied to it.
  • the length of stroke of the driving piston 7 may be defined by stroke limitators such as microswitches (not shown) which cut off the electrical power to the motor 2 or simply by mechanical stops as represented by the ends of the groove 9.
  • a free piston 31 equipped with an O-ring seal is loaded by a compression spring 32.
  • This variable volume upper chamber permits the free expansion of the hydraulic fluid in the interior of the body member due to temperature changes.
  • this arrangement serves to balance the pressures on the inside and outside of the tool housing 1 permitting pressure balanced operation within the tool.
  • the larger diameter portion of the cooperatively shaped inner surface of the housing 1 in which the large sectional area 11 of the piston 7 moves is equipped with an internal circumferential annular groove 40 at the one end of the travel of the piston 7.
  • a lower annular groove 41 is similarly provided at the lower end of the travel of the piston. The role of these grooves will be more clearly seen subsequently.
  • the smaller diameter portion 12 of the piston has an internal passage 18 connecting the hydraulic fluid filling the body member proper, with the lateral face of this piston.
  • a hollow internal chamber in the piston 7 located above the seal lla connects the passage 18 with the chamber via a preset pressure-relief valve 19.
  • the apparatus functions as follows.
  • the tool is lowered or moved through the tubing string with the shoes 16 and 16' in the retracted position.
  • the electric motor 2 is started in the desired direction to provide motive force for extending the shoes 16 and 16 by a control panel at the surface (not shown).
  • the seal 1 1a of the large upper portion 1 l of the driving piston 7 is at the level of the upper recess 40 of the body member. This effectively bypasses the piston 11 and permits equalizing of the internal pressure and the external borehole pressure and further provides for any temperature expansion of the hydraulic fluid.
  • the electric motor Upon activation of the electric motor, its energy is coupled via planetary gear box 3 and Oldham coupler 4 to the screw shaft 6.
  • the large piston 11 acts on the hydraulic fluid 13 once the seal 11a moves below the recess 40.
  • the low pressure which this initially creates is sufficient to overcome the friction of the slide blocks 14 and 14 and the arms coupling the blocks to the anchoring shoes 16 and 16'.
  • the pressure-relief valve 19 limits the maximum value of the hydraulic pressure which may be developed.
  • This portion of the motion of the piston 7 in which the large diameter portion 11 is acting on the hydraulic fluid may be termed the approach phase.
  • the seal 11a of the large diameter portion 11 of the piston 7 is located in the lower recess 41 of the body member thereby again effectively bypassing the piston permitting the equalizing of internal and external pressure.
  • typical dimensions might comprise a driving screw of 8-mm diameter with a pitch of 1.4 mm in a body member having an overall outer diameter of 36 mm and an inner diameter of 30 mm.
  • a driving screw of 8-mm diameter with a pitch of 1.4 mm in a body member having an overall outer diameter of 36 mm and an inner diameter of 30 mm.
  • Such a device is capable of being used in drill pipe or tubing of 44.4 mm inner diameter.
  • the calibrated valve 19 is set to release, for example, at 10 kgf/cm? Under these conditions, one obtains during the approach phase a force of 50 kgf on the slide blocks and an anchoring force during the second phase of 500 kgf is produced on the same slide blocks.
  • a force of 50 kgf on the slide blocks and an anchoring force during the second phase of 500 kgf is produced on the same slide blocks.
  • anchoring the apparatus in a pipe 152.4 mm (6 inches) in diameter in the case where the rotation speed of the driving screw 6 is 40 rpm at typical time required for the anchoring will be 1.5 minutes.
  • a well tool anchoring system comprising:
  • a body member sized for passage through a tubing string
  • At least two longitudinally spaced apart anchoring means cooperatively coupled to said body member in a manner to allow expansion thereof radially outward from a closed position into an anchoring position
  • said means including remotely controllable reversible drive means, means for coupling said drive means to a longitudinally movable hydraulic piston, said piston having a first hydraulic cross section active during said approach phase and a second hydraulic cross section active during said anchoring phase and means for convening longitudinal motion of said piston into radial motion of said anchoring means.
  • said means for converting longitudinal motion of said piston into radial motion of said anchoring means includes at least two cooperatively sized bores in said body member for interaction with said first and second hydraulic cross section of said piston to form a first hydraulic pressure chamber during said approach phase having a relatively larger diameter and operating at a relatively lower pressure and a second hydraulic pressure chamber during said anchoring phase having a relatively smaller diameter and operating at a relatively higher pressure and at least one longitudinally movable driven hydraulic piston responsive to the pressure in said first and second hydraulic pressure chambers and coupled to said anchoring means in such a manner that longitudinal motion of said driven piston causes radial motion of said anchoring means.
  • said means for coupling said drive means to said hydraulic piston includes gear box means for reducing the relative speed of said drive means and for amplifying the relative power of said drive means and twoway screw means engageable with a cooperatively threaded nut means integral with said hydraulic piston so that the motion of said piston is reversible in accordance with the reversal of said reversible drive means.
  • said reversible drive means comprises a reversible electric motor.
  • first piston means slidably mounted on said body, at least a pair of arms respectively having one end pivotally coupled to said first piston means and another end adapted for movement laterally in relation to a well bore wall upon longitudinal movement of said first piston means in relation to said body;
  • anchor-actuating means including selectively operable motor means mounted on said body and having a rotatable shaft adapted for rotation upon operation of said motor means, hydraulic means including second piston means including a piston member movably disposed on said body and having a first enlarged portion and a second reduced portion respectively adapted for successive movement into first and second piston chambers upon movement of said second piston means on said body, conduit means fluidly coupling said piston chambers to said first piston means, and means coupling said piston member and said motor shaft and cooperatively arranged for moving said piston member upon rotation of said motor shaft.
  • wall-anchoring means on said body including a first piston member slidably mounted on said body and defining therebetween a first piston chamber adapted to receive a pressured fluid for selectively moving said first piston member along said body, a plurality of first and second rigid links pivotally coupled to one another between said body and said first piston member; and
  • actuating means including a selectively operable electric motor having a rotatable shaft, a second piston chamber on said body and having an enlarged portion and a reduced portion, a second piston member slidably mounted on said body having an enlarged portion and a reduced portion respectively adapted for movement into said enlarged and reduced chamber portions upon movement of said second piston member, conduit means intercoupling said piston chambers, and motion-translating means intercoupling said motor shaft and said second piston member and adapted for selectively moving said second piston member upon rotation of said motor shaft.
  • the well tool of claim 8 further including: wall-engaging means operatively mounted on said rigid links and adapted for anchoring engagement with a well bore wall upon outward movement of said rigid links.

Abstract

An illustrative embodiment of the invention includes upper and lower anchoring members for temporarily securing a well tool in a well bore. The upper and lower anchoring members are pivotally supported from the central body member of the tool and respectively coupled to upper and lower movable slide blocks or driven pistons. The slide blocks are, in turn, moved by a two phase hydraulic transmission system whose pressure is controlled by a movable driving piston having two different cross sectional piston areas. The driving piston''s motion is provided by a reversible electric motor via a gear box and threaded driving screw. This arrangement provides for low pressure fast moving initial deployment of the anchoring means followed by subsequent high pressure, low displacement anchoring force.

Description

[ 51 May 9, 1972 ABSTRACT low displace- 10 Claims, 1 Drawing Figure Primary Examiner-James A. Leppink Attorney-Ernest R. Archambeau, Jr., John P. Sinnott, Stewart F. Moore, Edward M. Roney, William R. Sherman and William J. Beard An illustrative embodiment of the invention includes upper and lower anchoring members for temporarily securing a well tool in a well bore. The upper and lower anchoring members are pivotally supported from the central body member of the tool and respectively coupled to upper and lower movable slide blocks or driven pistons. The slide blocks are, in turn, moved by a two phase hydraulic transmission system whose pressure is controlled by a movable driving piston having two different cross sectional piston areas. The driving pistons motion is provided by a reversible electric motor via a gear box and threaded driving screw, This arrangement provides for low pressure fast moving initial deployment of the anchoring means followed by subsequent high pressure ment anchoring force.
166/65 R, 166/104, 166/212 ...E21b 43/00, E21b 23/00 166/65, 104, 120,212
a mm m 68.8M WWmr 360C LPRD WELL TOOL ANCHORING SYSTEM Inventor: Roger Belorgey, Taverny, France Assignee: Schlumberger Technology Corporation,
New York, N.Y.
Filed: Apr. 16, 1971 Appl. No.: 134,775
Int.Cl..1,... Field oiSearch References Cited UNlTED STATES PATENTS United States Patent Belorgey PATENTED AY 1912 Roge r Belorgy INVENTOR A TTORNEY WELL TOOL AN CHORING SYSTEM BACKGROUND OF THE INVENTION This invention relates to well tools and more particularly to anchoring systems permitting a wireline measuring probe to be temporarily secured at a desired depth in a well bore.
In modern oil exploration it has become common practice to make measurements in a well bore by means of various measuring instruments or probes which may be suspended by a wireline into the well. Certain types of these measurements require the probe to be firmly anchored in the well at a depth which may be predetermined. In addition, such measurements may require the tool to be re-positioned to other points in the well bore where it again may be anchored in a rigid manner with respect to the well while the measurement is being made. For example, well fluid sampling apparatus, fluid flow meters or fluid analyzers used in production logging may require this type of anchoring and/or movement through the well bore. Moreover, in the case of offshore wells drilled from floating barges or ships the movement of the waves is sometimes transmitted through the cable to the underground probe. Accordingly, this cable movement requires that the underground apparatus be anchored against the wall of the well bore while a measurement is being made rather than simply attempting to stop the movement of the cable at the surface.
There are a large number of prior art well too] anchoring systems, in particular, extendible slip-type anchoring systems used in anchoring well plugs or packers in position in a cased borehole are particularly numerous. The energy required for setting such an anchoring device may be applied by the weight of the drill string in the case of tubing or, in the case of a wireline operated device, this energy may be stored in the apparatus itself in some form. Such stored setting energy may come from a compressed spring or a set of weights carried above the main body of the well tool or from expanding gases produced by an explosive charge. In the latter case, the apparatus may usually only be anchored at one point in the well bore per trip because once the apparatus is anchored and disengaged it must be brought to the surface to recondition the energy storage system.
One type of apparatus used in making measurements in a well bore which requires the frequent and relatively rapid movement from one location to another in the borehole is a so-called freepoint or stuckpoint indicator device. Such devices are used to locate the point in the borehole which a tubing string or casing string is stuck, usually due to a pressure differential between the borehole fluid and the surrounding formations. For this operation, the stuekpoint indicator is placed at different depths in the well bore and anchored to the interior surface of the tubing or casing in question. The casing or tubing is then twisted or stretched by powerful engines at the surface and the elastic deformation of the pipe at the depth at which the stuekpoint indicator is placed is measured. If the indicator is above the stuekpoint or freepoint of the pipe, elastic deformation will be noted. If, on the other hand, the stuekpoint indicator is located below the point at which the pipe or tubing is stuck in the well bore no elastic deformation will be noted. Accordingly, it is necessary to move the stuekpoint indicator tool to various locations in the well bore and to anchor it at each such location. The tubing or casing deformations are then made and the measurements of such thereby obtained.
Such measurements are usually made by the means of a strain gauge sensing element which detects relative motion between the upper end of the measuring instrument and the lower end of the measuring instrument which is caused by the elastic deformation of the tubing string when placed under either longitudinal tension force or rotational torsion forces from the surface. Therefore a convenient and rapidly engageable and disengageable anchoring system is very desirable for use with a stuekpoint indicator tool. Moreover, this anchoring system must be of a small enough diameter to pass through drill pipe or tubing strings and the disengagement and movement of the stuckpoint indicator anchoring apparatus must be convenient and rapid.
Accordingly, it is an object of the present invention to provide an easily engageable and disengageable stuekpoint indicator anchoring system.
Another object of the present invention is to provide a well too] anchoring system which may be used to anchor a measuring tool at longitudinally spaced apart locations in such a manner that the elastic deformation of the pipe between the anchoring locations may be measured.
A still further object of the present invention is to provide an electrically operable well tool anchoring system.
Briefly, in accordance with the objects of the present invention, a system for anchoring a stuekpoint indicator or other well probe operated by a wireline in a well bore is provided. Wall engaging anchoring means are cooperatively arranged on a tool body and adapted for lateral movement from the body member of the probe. A reversible electric motor drive mechanism which may be remotely controlled from the surface is coupled by a hydraulic system to the anchoring means and cooperatively arranged to transform the first phase of the driving motion into a relatively rapid extension of the anchoring means. During a second phase of the driving displacement, the continuing motion of the drive mechanism is employed to impose a greatly increased anchoring force on the anchoring means.
I The invention may be better understood upon consideration of the following description of a particular embodiment of the anchoring system in connection with the appended drawings in which:
BRIEF DESCRIPTION OF THE DRAWINGS The single drawing represents a partial schematic view in longitudihal section of an anchoring system associated with a stuekpoint indicator tool.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawing, a stuekpoint indicator equipped with upper and lower anchoring devices is suspended by a cable 35 inside a tubing string 36 extending within a borehole 37. The anchoring system of the stuekpoint indicator comprises a housing 1 or hollow body member which is filled with hydraulic fluid 13. At the interior portion of the upper end of the body member is an electric motor 2 which is supplied with surface originated electrical power from conductors coming down a cable member 35. The motor 2 is capable of reversal depending, for example, upon the polarity of the voltage applied thereto. The electric motor 2 drives a planetary reduction gear 3 whose rotary motion is coupled via an Oldham coupling 4 to a square thread screw member 6. A thrust bearing 5 supports the axial forces acting on this assembly and serves to relieve undue stresses on gear upon planetary gear box 3 or electric motor 2.
The square thread screw member 6 is capable of driving a pressure-developing piston 7 longitudinally in either direction depending upon the direction of drive of the electric motor 2. The piston 7 is provided on one side of its circumference with a slotted portion 9 which serves in cooperation with a lug 8 af fixed to the wall of body member 1 to prevent rotational motion of the piston 7. Piston 7 is further provided with an upper portion comprising a low pressure piston of large section ll which is fitted with an O-ring Ila. The lower portion of the piston 7 comprises a high pressure piston of small section 12. This high pressure piston portion is fitted with an O-ring 120. These two pistons of different section may travel within a cooperatively sized bore 5 within the body member 1 and act via the hydraulic fluid l3 and port 34 on a longitudinallymovable slide block 14 slidably mounted on the tool. A second longitudinally-movable block 14 located near the lower end of the tool is also acted on by the hydraulic fluid 13 as its pressure increases. The two slide blocks 14 and 14 are also equipped with O-ring seals in the manner shown in the drawing for defining pressure-responsive surfaces on which the hydraulic fluid can act.
Considering only the upper slide block 14 (as the lower slide member 14' is analogous) three sets of upper arms 15 situated, for example, 120 apart, about the circumference of the tool are provided. Arms 15 are cooperatively supported as for example by hinges or pivots from the slide block 14 at one end and are hinged on friction anchoring shoes 16 at their opposite end. Three corresponding lower arms 17 are similarly hinged to the shoes 16 on their one end and on their other end are pivoted or hinged at fixed points of the body member 1. The lower slide block 14' is associated in a similar manner to shoes 16' which are equipped with corresponding hinged arms 15 and 17. The wall engaging pad members or shoes 16 and 16' may additionally be provided with external teeth or wickers (not shown) for engaging and anchoring the tool in a frictional manner to the interior surface of the tubing in which it is suspended. It will be appreciated, therefore, that the arrangement of the several linkages provides a toggling action upon downward movement of the slide blocks 14 and 14.
The body member 1 and the slide blocks 14 and 114' have the same overall diameter so that in the folded position of the shoes 16 and 16', this diameter determines the overall diameter and hence the passage possibilities of the apparatus in the tubular space where it is to be admitted. Between the two sets of anchoring devices there is a connecting tube 38 (shown partially deleted) belonging to the stuckpoint indicator measurement portion of the tool. This tube could, for example, carry embedded strain gauges such as 21 which make it possible to detect elastic deformation of the tubing due to traction or stretching and twisting forces applied to it. The length of stroke of the driving piston 7 may be defined by stroke limitators such as microswitches (not shown) which cut off the electrical power to the motor 2 or simply by mechanical stops as represented by the ends of the groove 9.
At the upper end of the body member or housing 1 a free piston 31 equipped with an O-ring seal is loaded by a compression spring 32. This defines an upper chamber of variable volume 33 which communicates with the surrounding borehole fluid medium via a port 39. This variable volume upper chamber permits the free expansion of the hydraulic fluid in the interior of the body member due to temperature changes. Moreover, this arrangement serves to balance the pressures on the inside and outside of the tool housing 1 permitting pressure balanced operation within the tool.
The larger diameter portion of the cooperatively shaped inner surface of the housing 1 in which the large sectional area 11 of the piston 7 moves is equipped with an internal circumferential annular groove 40 at the one end of the travel of the piston 7. A lower annular groove 41 is similarly provided at the lower end of the travel of the piston. The role of these grooves will be more clearly seen subsequently. The smaller diameter portion 12 of the piston has an internal passage 18 connecting the hydraulic fluid filling the body member proper, with the lateral face of this piston. A hollow internal chamber in the piston 7 located above the seal lla connects the passage 18 with the chamber via a preset pressure-relief valve 19.
In operation, the apparatus functions as follows. The tool is lowered or moved through the tubing string with the shoes 16 and 16' in the retracted position. When the desired operating level is reached, the electric motor 2 is started in the desired direction to provide motive force for extending the shoes 16 and 16 by a control panel at the surface (not shown). With the anchoring shoes 16 and 16 in the retracted position, the seal 1 1a of the large upper portion 1 l of the driving piston 7 is at the level of the upper recess 40 of the body member. This effectively bypasses the piston 11 and permits equalizing of the internal pressure and the external borehole pressure and further provides for any temperature expansion of the hydraulic fluid. Upon activation of the electric motor, its energy is coupled via planetary gear box 3 and Oldham coupler 4 to the screw shaft 6. At first only the large piston 11 acts on the hydraulic fluid 13 once the seal 11a moves below the recess 40. The low pressure which this initially creates is sufficient to overcome the friction of the slide blocks 14 and 14 and the arms coupling the blocks to the anchoring shoes 16 and 16'. Moreover, during this phase of the downward motion of the driving piston the pressure-relief valve 19 limits the maximum value of the hydraulic pressure which may be developed. This portion of the motion of the piston 7 in which the large diameter portion 11 is acting on the hydraulic fluid may be termed the approach phase. At the end of this phase, the seal 11a of the large diameter portion 11 of the piston 7 is located in the lower recess 41 of the body member thereby again effectively bypassing the piston permitting the equalizing of internal and external pressure. Continued downward motion of the piston due to further rotation of the threaded screw 6 causes engagement of the smaller diameter high pressure portion 12 of the piston 7 with its cooperatively chambered bore in the body member 1. When this phase is reached, a high pressure is created in the hydraulic fluid below the piston and a high thrust force for anchoring firmly the shoes 16 and 16 into frictional engagement with the internal wall of the tubing is provided.
By way of an example, typical dimensions might comprise a driving screw of 8-mm diameter with a pitch of 1.4 mm in a body member having an overall outer diameter of 36 mm and an inner diameter of 30 mm. Such a device is capable of being used in drill pipe or tubing of 44.4 mm inner diameter. By choosing the following hydraulic cross sectional areas:
for the large piston S, 4 cm for the small piston S 0.8 cm for the slide blocks 8;, 5 cm*.
The calibrated valve 19 is set to release, for example, at 10 kgf/cm? Under these conditions, one obtains during the approach phase a force of 50 kgf on the slide blocks and an anchoring force during the second phase of 500 kgf is produced on the same slide blocks. In anchoring the apparatus in a pipe 152.4 mm (6 inches) in diameter in the case where the rotation speed of the driving screw 6 is 40 rpm, at typical time required for the anchoring will be 1.5 minutes.
When it is desired to move the tool, the direction of travel of the electric motor 2 is simply reversed as, for example, by reversing the polarity of the voltage supplied thereto and the drive screw 6 withdraws the hydraulic driving piston 7 in the reverse sequence. This causes lowered internal hydraulic pressure. Thus, external borehole pressures acting on the slide blocks cause the hinged pad members to retract to their original position. Moreover, internal and external pressures are equalized at the same points in the piston travel as previously noted. This anchoring system makes it possible to achieve high anchoring forces with sufficient rapidity and with relatively large applications of anchoring force.
It will be appreciated by those skilled in the art that other embodiments may be suggested which difi'er only in detail from that disclosed in the above description. It is the aim therefore in the appended claims to cover all such changes and modifications coming within the true spirit and scope of the invention as may be made apparent to those skilled in the art.
I claim 1. A well tool anchoring system comprising:
a body member sized for passage through a tubing string;
at least two longitudinally spaced apart anchoring means cooperatively coupled to said body member in a manner to allow expansion thereof radially outward from a closed position into an anchoring position; and
means for expanding said anchoring means radially outwardly from said body member in two phases, an approach phase and an anchoring phase, said means including remotely controllable reversible drive means, means for coupling said drive means to a longitudinally movable hydraulic piston, said piston having a first hydraulic cross section active during said approach phase and a second hydraulic cross section active during said anchoring phase and means for convening longitudinal motion of said piston into radial motion of said anchoring means.
2. The apparatus of claim 1 and further including means for pressure balancing the interior portion of said body member with the borehole fluid when said anchoring means are in said closed position and during at least one portion of the radial outward movement of said anchoring means.
3. The apparatus of claim 1 wherein said means for converting longitudinal motion of said piston into radial motion of said anchoring means includes at least two cooperatively sized bores in said body member for interaction with said first and second hydraulic cross section of said piston to form a first hydraulic pressure chamber during said approach phase having a relatively larger diameter and operating at a relatively lower pressure and a second hydraulic pressure chamber during said anchoring phase having a relatively smaller diameter and operating at a relatively higher pressure and at least one longitudinally movable driven hydraulic piston responsive to the pressure in said first and second hydraulic pressure chambers and coupled to said anchoring means in such a manner that longitudinal motion of said driven piston causes radial motion of said anchoring means.
4. The apparatus of claim 1 wherein said means for coupling said drive means to said hydraulic piston includes gear box means for reducing the relative speed of said drive means and for amplifying the relative power of said drive means and twoway screw means engageable with a cooperatively threaded nut means integral with said hydraulic piston so that the motion of said piston is reversible in accordance with the reversal of said reversible drive means.
5. The apparatus of claim 4 wherein said reversible drive means comprises a reversible electric motor.
6. The apparatus of claim 1 and further including pressure relief valve means calibrated to allow a maximum hydraulic pressure to be reached during said approach phase before opening.
7. A well tool adapted for suspension in a well bore from a suspension cable and comprising:
a body;
wall-anchoring means on said body and including first piston means slidably mounted on said body, at least a pair of arms respectively having one end pivotally coupled to said first piston means and another end adapted for movement laterally in relation to a well bore wall upon longitudinal movement of said first piston means in relation to said body; and
anchor-actuating means including selectively operable motor means mounted on said body and having a rotatable shaft adapted for rotation upon operation of said motor means, hydraulic means including second piston means including a piston member movably disposed on said body and having a first enlarged portion and a second reduced portion respectively adapted for successive movement into first and second piston chambers upon movement of said second piston means on said body, conduit means fluidly coupling said piston chambers to said first piston means, and means coupling said piston member and said motor shaft and cooperatively arranged for moving said piston member upon rotation of said motor shaft.
8. A well tool adapted for suspension in a well bore from an electric cable and comprising:
a body;
wall-anchoring means on said body and including a first piston member slidably mounted on said body and defining therebetween a first piston chamber adapted to receive a pressured fluid for selectively moving said first piston member along said body, a plurality of first and second rigid links pivotally coupled to one another between said body and said first piston member; and
actuating means including a selectively operable electric motor having a rotatable shaft, a second piston chamber on said body and having an enlarged portion and a reduced portion, a second piston member slidably mounted on said body having an enlarged portion and a reduced portion respectively adapted for movement into said enlarged and reduced chamber portions upon movement of said second piston member, conduit means intercoupling said piston chambers, and motion-translating means intercoupling said motor shaft and said second piston member and adapted for selectively moving said second piston member upon rotation of said motor shaft.
9. The well tool of claim 8 further including: wall-engaging means operatively mounted on said rigid links and adapted for anchoring engagement with a well bore wall upon outward movement of said rigid links.
10. The well too] of claim 8 wherein said motor shaft is threaded and said motion-translating means include a nut coupled to said second piston member and cooperatively arranged on said threaded shaft for moving said second piston member into said second piston chamber upon operation of said electric motor.

Claims (10)

1. A well tool anchoring system comprising: a body member sized for passage through a tubing string; at least two longitudinally spaced apart anchoring means cooperatively coupled to said body member in a manner to allow expansion thereof radially outward from a closed position into an anchoring position; and means for expanding said anchoring means radially outwardly from said body member in two phases, an approach phase and an anchoring phase, said means including remotely controllable reversible drive means, means for coupling said drive means to a longitudinally movable hydraulic piston, said piston having a first hydraulic cross section active during said approach phase and a second hydraulic cross section active during said anchoring phase and means for converting longitudinal motion of said piston into radial motion of said anchoring means.
2. The apparatus of claim 1 and further including means for pressure balancing the interior portion of said body member with the borehole fluid when said anchoring means are in said closed position and during at least one portion of the radial outward movement of said anchoring means.
3. The apparatus of claim 1 wherein said means for converting longitudinal motion of said piston into radial motion of said anchoring means includes at least two cooperatively sized bores in said body member for interaction with said first and second hydraulic cross section of said piston to form a first hydraulic pressure chamber during said approach phase having a relatively larger diameter and operating at a relatively lower pressure and a second hydraulic pressure chamber during said anchoring phase having a relatively smaller diameter and operating at a relatively higher pressure and at least one longitudinally movable driven hydraulic piston responsive to the pressure in said first and second hydraulic pressure chambers and coupled to said anchoring means in such a manner that longitudinal motion of said driven piston causes radial motion of said anchoring means.
4. The apparatus of claim 1 wherein said means for coupling said drive means to said hydraulic piston includes gear box means for reducing the relative speed of said drive means and for amplifying the relative power of said drive means and two-way screw means engageable with a cooperatively threaded nut means integral with said hydraulic piston so that the motion of said piston is reversible in accordance with the reversal of said reversible drive means.
5. The apparatus of claim 4 wherein said reversible drive means comprises a reversible electric motor.
6. The apparatus of claim 1 and further including pressure relief valve means calibrated to allow a maximum hydraulic pressure to be reached during said approach phase before opening.
7. A well tool adapted for suspension in a well bore from a suspension cable and comprising: a body; wall-anchoring means on said body and including first piston means slidably mounted on said body, at least a pair of arms respectively having one end pivotally coupled to said first piston means and another end adapted for movement laterally in relation to a well bore wall upon longitudinal movement of said first piston means in relation to said body; and anchor-actuating means including selectively operable motor means mounted on said body and having a rotatable shaft adapted for rotation upon operation of said motor means, hydraulic means including second piston means including a piston member movably disposed on said body and having a first enlarged portion and a second reduced portion respectively adapted for successive movement into first and second piston chambers upon movement of said second piston means on said body, conduit means fluidly coupling said piston chambers to said first piston means, and means coupling said piston member and said motor shaft and cooperatively arranged for moving said piston member upon rotation of said motor shaft.
8. A well tool adapted for suspension in a well bore from an electric cable and comprising: a body; wall-anchoring means on said body and including a first piston member slidably mounted on said body and defining therebetween a first piston chamber adapted to receive a pressured fluid for selectively moving said first piston member along said body, a plurality of first and second rigid links pivotally coupled to one another between said body and said first piston member; and actuating means including a selectively operable electric motor having a rotatable shaft, a second piston chamber on said body and having an enlarged portion and a reduced portion, a second piston member slidably mounted on said body having an enlarged portion and a reduced portion respectively adapted for movement into said enlarged and reduced chamber portions upon movement of said second piston member, conduit means intercoupling said piston chambers, and motion-translating means intercoupling said motor shaft and said second piston member and adapted for selectively moving said second piston member upon rotation of said motor shaft.
9. The well tool of claim 8 further including: wall-engaging means operatively mounted on said rigid links and adapted for anchoring engagement with a well bore wall upon outward movement of said rigid links.
10. The well tool of claim 8 wherein said motor shaft is threaded and said motion-translating means include a nut coupled to said second piston member and cooperatively arranged on said threaded shaft for moving said second piston member into said second piston chamber upon operation of said electric motor.
US134775A 1970-04-24 1971-04-16 Well tool anchoring system Expired - Lifetime US3661205A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7015078A FR2085481A1 (en) 1970-04-24 1970-04-24 Anchoring device - for use in locating a detector for a jammed drilling string
US13477571A 1971-04-16 1971-04-16

Publications (1)

Publication Number Publication Date
US3661205A true US3661205A (en) 1972-05-09

Family

ID=38724369

Family Applications (1)

Application Number Title Priority Date Filing Date
US134775A Expired - Lifetime US3661205A (en) 1970-04-24 1971-04-16 Well tool anchoring system

Country Status (2)

Country Link
US (1) US3661205A (en)
FR (1) FR2085481A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120353A (en) * 1977-04-19 1978-10-17 Dresser Industries, Inc. Device to move density logging tool against well wall
US4129184A (en) * 1977-06-27 1978-12-12 Del Norte Technology, Inc. Downhole valve which may be installed or removed by a wireline running tool
DE3208469A1 (en) * 1981-03-09 1982-09-16 Institut Français du Pétrole, 92502 Rueil-Malmaison, Hauts-de-Seine DEVICE FOR ANCHORING AN INSTRUMENT IN A CAVITY, EQUIPPED WITH FOLDABLE ARMS
US4367794A (en) * 1980-12-24 1983-01-11 Exxon Production Research Co. Acoustically actuated downhole blowout preventer
US4373582A (en) * 1980-12-22 1983-02-15 Exxon Production Research Co. Acoustically controlled electro-mechanical circulation sub
FR2561708A1 (en) * 1984-02-02 1985-09-27 Geosource Inc DEVICE FOR LOCKING A TOOL IN A WELL
FR2579663A1 (en) * 1984-05-31 1986-10-03 Mayfield Walter RECOVERABLE DOWNHOLE BIT
EP0218358A1 (en) * 1985-08-29 1987-04-15 Petrophysical Services Inc. Borehole seismic receiver
FR2597544A1 (en) * 1986-04-22 1987-10-23 Elf Aquitaine Device for anchoring a measuring and recording instrument on the walls of a well
US5191936A (en) * 1991-04-10 1993-03-09 Schlumberger Technology Corporation Method and apparatus for controlling a well tool suspended by a cable in a wellbore by selective axial movements of the cable
EP0559565A1 (en) * 1992-03-05 1993-09-08 Schlumberger Limited Electrically controlled latch for well applications
US5279363A (en) * 1991-07-15 1994-01-18 Halliburton Company Shut-in tools
US5287920A (en) * 1992-06-16 1994-02-22 Terrell Donna K Large head downhole chemical cutting tool
US5492173A (en) * 1993-03-10 1996-02-20 Halliburton Company Plug or lock for use in oil field tubular members and an operating system therefor
US5979550A (en) * 1998-02-24 1999-11-09 Alberta Ltd. PC pump stabilizer
WO1999063197A1 (en) * 1998-05-29 1999-12-09 Schlumberger Limited Borehole logging tool with anchoring mechanism
US6047784A (en) * 1996-02-07 2000-04-11 Schlumberger Technology Corporation Apparatus and method for directional drilling using coiled tubing
WO2002036930A1 (en) * 2000-11-03 2002-05-10 Omega Completion Technology Limited Hydraulic setting tool with pressure multiplier
US6464003B2 (en) * 2000-05-18 2002-10-15 Western Well Tool, Inc. Gripper assembly for downhole tractors
WO2003014526A1 (en) * 2001-08-03 2003-02-20 Weatherford / Lamb, Inc. Dual sensor freepoint tool
WO2004016902A1 (en) * 2002-08-19 2004-02-26 Baker Hughes Incorporated High expansion anchor system
US6715559B2 (en) * 2001-12-03 2004-04-06 Western Well Tool, Inc. Gripper assembly for downhole tractors
US6758279B2 (en) 1995-08-22 2004-07-06 Western Well Tool, Inc. Puller-thruster downhole tool
US20050139358A1 (en) * 2002-07-17 2005-06-30 Zupanick Joseph A. Cavity positioning tool and method
US20050247488A1 (en) * 2004-03-17 2005-11-10 Mock Philip W Roller link toggle gripper and downhole tractor
US20050263280A1 (en) * 2004-05-25 2005-12-01 Sellers Freddie L Method and apparatus for anchoring tool in borehole conduit
US20060196696A1 (en) * 1998-12-18 2006-09-07 Duane Bloom Electrically sequenced tractor
WO2007006137A1 (en) * 2005-07-14 2007-01-18 Star Oil Tools, Inc. Downhole force generator
US20070277980A1 (en) * 2006-06-01 2007-12-06 Scott Alistair Gordon Downhole perforator assembly and method for use of same
US20080053663A1 (en) * 2006-08-24 2008-03-06 Western Well Tool, Inc. Downhole tool with turbine-powered motor
US7383876B2 (en) 2001-08-03 2008-06-10 Weatherford/Lamb, Inc. Cutting tool for use in a wellbore tubular
US20080217024A1 (en) * 2006-08-24 2008-09-11 Western Well Tool, Inc. Downhole tool with closed loop power systems
US20080308318A1 (en) * 2007-06-14 2008-12-18 Western Well Tool, Inc. Electrically powered tractor
US7624808B2 (en) 2006-03-13 2009-12-01 Western Well Tool, Inc. Expandable ramp gripper
US20100006279A1 (en) * 2006-04-28 2010-01-14 Ruben Martinez Intervention Tool with Operational Parameter Sensors
US7748476B2 (en) 2006-11-14 2010-07-06 Wwt International, Inc. Variable linkage assisted gripper
EP0951611B2 (en) 1996-07-03 2010-11-03 Expro Americas, Inc Wellbore tractor
US20100307832A1 (en) * 2000-12-01 2010-12-09 Western Well Tool, Inc. Tractor with improved valve system
US20110073300A1 (en) * 2009-09-29 2011-03-31 Mock Philip W Methods and apparatuses for inhibiting rotational misalignment of assemblies in expandable well tools
US20120318509A1 (en) * 2011-06-16 2012-12-20 Baker Hughes Incorporated Modular anchoring sub for use with a cutting tool
US20150226024A1 (en) * 2012-09-06 2015-08-13 Strata Energy Services Inc. Latching assembly
US9297217B2 (en) 2013-05-30 2016-03-29 Björn N. P. Paulsson Sensor pod housing assembly and apparatus
US9359846B2 (en) 2009-12-23 2016-06-07 Schlumberger Technology Company Hydraulic deployment of a well isolation mechanism
US9447648B2 (en) 2011-10-28 2016-09-20 Wwt North America Holdings, Inc High expansion or dual link gripper
US9488020B2 (en) 2014-01-27 2016-11-08 Wwt North America Holdings, Inc. Eccentric linkage gripper
US9828817B2 (en) 2012-09-06 2017-11-28 Reform Energy Services Corp. Latching assembly
WO2018217096A1 (en) * 2017-05-23 2018-11-29 Qinterra Technologies As Method and apparatus for performing a survey of tubing which is stuck in a borehole, e.g. for determining a free point
CN109185674A (en) * 2018-09-27 2019-01-11 吕敦玉 The lock device of borehole seismic instrument
WO2019194680A1 (en) * 2018-04-03 2019-10-10 C6 Technologies As Anchor device
CN113338917A (en) * 2021-06-01 2021-09-03 中海油田服务股份有限公司 Wing type positioner
US11391131B2 (en) * 2017-07-12 2022-07-19 Oklas Technologies Limited Liability Company Downhole pump drive including reverse reduction gear with switching mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2705167A (en) * 1950-07-12 1955-03-29 Mark B Layne Well fishing and handling tool
US3138207A (en) * 1960-06-20 1964-06-23 Halliburton Co Pressure balanced actuating device
US3177938A (en) * 1958-10-23 1965-04-13 Schlumberger Well Surv Corp Methods and apparatus for operating borehole equipment
US3273645A (en) * 1962-07-23 1966-09-20 Schlumberger Well Surv Corp Well completion apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE317663C (en) *
FR1189903A (en) * 1956-01-23 1959-10-08 Schlumberger Well Surv Corp Apparatus for the examination of geological layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2705167A (en) * 1950-07-12 1955-03-29 Mark B Layne Well fishing and handling tool
US3177938A (en) * 1958-10-23 1965-04-13 Schlumberger Well Surv Corp Methods and apparatus for operating borehole equipment
US3138207A (en) * 1960-06-20 1964-06-23 Halliburton Co Pressure balanced actuating device
US3273645A (en) * 1962-07-23 1966-09-20 Schlumberger Well Surv Corp Well completion apparatus

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120353A (en) * 1977-04-19 1978-10-17 Dresser Industries, Inc. Device to move density logging tool against well wall
US4129184A (en) * 1977-06-27 1978-12-12 Del Norte Technology, Inc. Downhole valve which may be installed or removed by a wireline running tool
US4373582A (en) * 1980-12-22 1983-02-15 Exxon Production Research Co. Acoustically controlled electro-mechanical circulation sub
US4367794A (en) * 1980-12-24 1983-01-11 Exxon Production Research Co. Acoustically actuated downhole blowout preventer
DE3208469A1 (en) * 1981-03-09 1982-09-16 Institut Français du Pétrole, 92502 Rueil-Malmaison, Hauts-de-Seine DEVICE FOR ANCHORING AN INSTRUMENT IN A CAVITY, EQUIPPED WITH FOLDABLE ARMS
FR2561708A1 (en) * 1984-02-02 1985-09-27 Geosource Inc DEVICE FOR LOCKING A TOOL IN A WELL
US4557326A (en) * 1984-02-02 1985-12-10 Geosource Inc. Well tool locking apparatus
US4651837A (en) * 1984-05-31 1987-03-24 Mayfield Walter G Downhole retrievable drill bit
FR2579663A1 (en) * 1984-05-31 1986-10-03 Mayfield Walter RECOVERABLE DOWNHOLE BIT
EP0218358A1 (en) * 1985-08-29 1987-04-15 Petrophysical Services Inc. Borehole seismic receiver
US4715469A (en) * 1985-08-29 1987-12-29 Petrophysical Services, Inc. Borehole seismic receiver
FR2597544A1 (en) * 1986-04-22 1987-10-23 Elf Aquitaine Device for anchoring a measuring and recording instrument on the walls of a well
US5191936A (en) * 1991-04-10 1993-03-09 Schlumberger Technology Corporation Method and apparatus for controlling a well tool suspended by a cable in a wellbore by selective axial movements of the cable
US5279363A (en) * 1991-07-15 1994-01-18 Halliburton Company Shut-in tools
EP0559565A1 (en) * 1992-03-05 1993-09-08 Schlumberger Limited Electrically controlled latch for well applications
FR2688263A1 (en) * 1992-03-05 1993-09-10 Schlumberger Services Petrol METHOD AND DEVICE FOR HANGING AND UNCHANGING A REMOVABLE ASSEMBLY SUSPENDED FROM A CABLE, ON A DOWNHOLE ASSEMBLY PLACED IN AN OIL WELLBORE.
US5353877A (en) * 1992-03-05 1994-10-11 Schlumberger Technology Corporation Electrically controlled latch for well applications
US5287920A (en) * 1992-06-16 1994-02-22 Terrell Donna K Large head downhole chemical cutting tool
US5492173A (en) * 1993-03-10 1996-02-20 Halliburton Company Plug or lock for use in oil field tubular members and an operating system therefor
US7059417B2 (en) 1995-08-22 2006-06-13 Western Well Tool, Inc. Puller-thruster downhole tool
US6758279B2 (en) 1995-08-22 2004-07-06 Western Well Tool, Inc. Puller-thruster downhole tool
US7273109B2 (en) 1995-08-22 2007-09-25 Western Well Tool Puller-thruster downhole tool
US7156181B2 (en) * 1995-08-22 2007-01-02 Western Well Tool, Inc. Puller-thruster downhole tool
US20070000697A1 (en) * 1995-08-22 2007-01-04 Moore Norman B Puller-thruster downhole tool
US20040182580A1 (en) * 1995-08-22 2004-09-23 Moore Norman Bruce Puller-thruster downhole tool
US20060108151A1 (en) * 1995-08-22 2006-05-25 Moore Norman B Puller-thruster downhole tool
US6047784A (en) * 1996-02-07 2000-04-11 Schlumberger Technology Corporation Apparatus and method for directional drilling using coiled tubing
EP0951611B2 (en) 1996-07-03 2010-11-03 Expro Americas, Inc Wellbore tractor
US5979550A (en) * 1998-02-24 1999-11-09 Alberta Ltd. PC pump stabilizer
GB2345508A (en) * 1998-05-29 2000-07-12 Schlumberger Ltd Borehole logging tool with anchoring mechanism
GB2345508B (en) * 1998-05-29 2002-05-29 Schlumberger Ltd Borehole logging tool with anchoring mechanism
WO1999063197A1 (en) * 1998-05-29 1999-12-09 Schlumberger Limited Borehole logging tool with anchoring mechanism
US20060196696A1 (en) * 1998-12-18 2006-09-07 Duane Bloom Electrically sequenced tractor
US7185716B2 (en) 1998-12-18 2007-03-06 Western Well Tool, Inc. Electrically sequenced tractor
US7174974B2 (en) 1998-12-18 2007-02-13 Western Well Tool, Inc. Electrically sequenced tractor
US20060196694A1 (en) * 1998-12-18 2006-09-07 Duane Bloom Electrically sequenced tractor
US7191829B2 (en) * 2000-02-16 2007-03-20 Western Well Tool, Inc. Gripper assembly for downhole tools
US7275593B2 (en) 2000-02-16 2007-10-02 Western Well Tool, Inc. Gripper assembly for downhole tools
US20060201716A1 (en) * 2000-02-16 2006-09-14 Duane Bloom Gripper assembly for downhole tools
US6640894B2 (en) * 2000-02-16 2003-11-04 Western Well Tool, Inc. Gripper assembly for downhole tools
US20070017670A1 (en) * 2000-02-16 2007-01-25 Duane Bloom Gripper assembly for downhole tools
US20050082055A1 (en) * 2000-02-16 2005-04-21 Duane Bloom Gripper assembly for downhole tools
US7048047B2 (en) 2000-02-16 2006-05-23 Western Well Tool, Inc. Gripper assembly for downhole tools
US9228403B1 (en) 2000-05-18 2016-01-05 Wwt North America Holdings, Inc. Gripper assembly for downhole tools
US7604060B2 (en) 2000-05-18 2009-10-20 Western Well Tool, Inc. Gripper assembly for downhole tools
US9988868B2 (en) 2000-05-18 2018-06-05 Wwt North America Holdings, Inc. Gripper assembly for downhole tools
US8069917B2 (en) 2000-05-18 2011-12-06 Wwt International, Inc. Gripper assembly for downhole tools
US8555963B2 (en) 2000-05-18 2013-10-15 Wwt International, Inc. Gripper assembly for downhole tools
US20080078559A1 (en) * 2000-05-18 2008-04-03 Western Well Tool, Inc. Griper assembly for downhole tools
US8944161B2 (en) 2000-05-18 2015-02-03 Wwt North America Holdings, Inc. Gripper assembly for downhole tools
US6464003B2 (en) * 2000-05-18 2002-10-15 Western Well Tool, Inc. Gripper assembly for downhole tractors
US20040045724A1 (en) * 2000-11-03 2004-03-11 Mark Buyers Hydraulic setting tool with pressure multiplier
US7000705B2 (en) 2000-11-03 2006-02-21 Omega Completion Technology Limited Hydraulic setting tool with pressure multiplier
GB2386917B (en) * 2000-11-03 2004-04-28 Omega Completion Technology Setting tool for use in a wellbore
GB2386917A (en) * 2000-11-03 2003-10-01 Omega Completion Technology Hydraulic setting tool with pressure multiplier
WO2002036930A1 (en) * 2000-11-03 2002-05-10 Omega Completion Technology Limited Hydraulic setting tool with pressure multiplier
US20100307832A1 (en) * 2000-12-01 2010-12-09 Western Well Tool, Inc. Tractor with improved valve system
US8245796B2 (en) 2000-12-01 2012-08-21 Wwt International, Inc. Tractor with improved valve system
US6851476B2 (en) 2001-08-03 2005-02-08 Weather/Lamb, Inc. Dual sensor freepoint tool
US7383876B2 (en) 2001-08-03 2008-06-10 Weatherford/Lamb, Inc. Cutting tool for use in a wellbore tubular
WO2003014526A1 (en) * 2001-08-03 2003-02-20 Weatherford / Lamb, Inc. Dual sensor freepoint tool
US6715559B2 (en) * 2001-12-03 2004-04-06 Western Well Tool, Inc. Gripper assembly for downhole tractors
US20050139358A1 (en) * 2002-07-17 2005-06-30 Zupanick Joseph A. Cavity positioning tool and method
US7007758B2 (en) * 2002-07-17 2006-03-07 Cdx Gas, Llc Cavity positioning tool and method
CN100436752C (en) * 2002-08-19 2008-11-26 贝克休斯公司 High expansion anchor system
GB2408061B (en) * 2002-08-19 2007-03-07 Baker Hughes Inc High expansion anchor system
WO2004016902A1 (en) * 2002-08-19 2004-02-26 Baker Hughes Incorporated High expansion anchor system
GB2408061A (en) * 2002-08-19 2005-05-18 Baker Hughes Inc High expansion anchor system
US6796380B2 (en) 2002-08-19 2004-09-28 Baker Hughes Incorporated High expansion anchor system
US7392859B2 (en) 2004-03-17 2008-07-01 Western Well Tool, Inc. Roller link toggle gripper and downhole tractor
US20050247488A1 (en) * 2004-03-17 2005-11-10 Mock Philip W Roller link toggle gripper and downhole tractor
US20100163251A1 (en) * 2004-03-17 2010-07-01 Mock Philip W Roller link toggle gripper and downhole tractor
US7954563B2 (en) 2004-03-17 2011-06-07 Wwt International, Inc. Roller link toggle gripper and downhole tractor
US20090008152A1 (en) * 2004-03-17 2009-01-08 Mock Philip W Roller link toggle gripper and downhole tractor
US7607497B2 (en) 2004-03-17 2009-10-27 Western Well Tool, Inc. Roller link toggle gripper and downhole tractor
US7252143B2 (en) * 2004-05-25 2007-08-07 Computalog Usa Inc. Method and apparatus for anchoring tool in borehole conduit
US20050263280A1 (en) * 2004-05-25 2005-12-01 Sellers Freddie L Method and apparatus for anchoring tool in borehole conduit
US7828052B2 (en) 2005-07-14 2010-11-09 Star Oil Tools, Inc. Downhole force generator
US7559361B2 (en) 2005-07-14 2009-07-14 Star Oil Tools, Inc. Downhole force generator
US20090095466A1 (en) * 2005-07-14 2009-04-16 Star Oil Tools, Inc. Downhole Force Generator
WO2007006137A1 (en) * 2005-07-14 2007-01-18 Star Oil Tools, Inc. Downhole force generator
US20070012435A1 (en) * 2005-07-14 2007-01-18 Star Oil Tools Inc. Downhole force generator
US7624808B2 (en) 2006-03-13 2009-12-01 Western Well Tool, Inc. Expandable ramp gripper
US20100018720A1 (en) * 2006-03-13 2010-01-28 Western Well Tool, Inc. Expandable ramp gripper
US8302679B2 (en) 2006-03-13 2012-11-06 Wwt International, Inc. Expandable ramp gripper
US7954562B2 (en) 2006-03-13 2011-06-07 Wwt International, Inc. Expandable ramp gripper
US8220541B2 (en) * 2006-04-28 2012-07-17 Schlumberger Technology Corporation Intervention tool with operational parameter sensors
US20100006279A1 (en) * 2006-04-28 2010-01-14 Ruben Martinez Intervention Tool with Operational Parameter Sensors
US7467661B2 (en) 2006-06-01 2008-12-23 Halliburton Energy Services, Inc. Downhole perforator assembly and method for use of same
US20070277980A1 (en) * 2006-06-01 2007-12-06 Scott Alistair Gordon Downhole perforator assembly and method for use of same
US20080217024A1 (en) * 2006-08-24 2008-09-11 Western Well Tool, Inc. Downhole tool with closed loop power systems
US20080053663A1 (en) * 2006-08-24 2008-03-06 Western Well Tool, Inc. Downhole tool with turbine-powered motor
US8061447B2 (en) 2006-11-14 2011-11-22 Wwt International, Inc. Variable linkage assisted gripper
US20100314131A1 (en) * 2006-11-14 2010-12-16 Wwt International, Inc. Variable linkage assisted gripper
US7748476B2 (en) 2006-11-14 2010-07-06 Wwt International, Inc. Variable linkage assisted gripper
US7770667B2 (en) 2007-06-14 2010-08-10 Wwt International, Inc. Electrically powered tractor
US20080308318A1 (en) * 2007-06-14 2008-12-18 Western Well Tool, Inc. Electrically powered tractor
US8028766B2 (en) 2007-06-14 2011-10-04 Wwt International, Inc. Electrically powered tractor
US20110073300A1 (en) * 2009-09-29 2011-03-31 Mock Philip W Methods and apparatuses for inhibiting rotational misalignment of assemblies in expandable well tools
US8485278B2 (en) 2009-09-29 2013-07-16 Wwt International, Inc. Methods and apparatuses for inhibiting rotational misalignment of assemblies in expandable well tools
US9359846B2 (en) 2009-12-23 2016-06-07 Schlumberger Technology Company Hydraulic deployment of a well isolation mechanism
US20120318509A1 (en) * 2011-06-16 2012-12-20 Baker Hughes Incorporated Modular anchoring sub for use with a cutting tool
US8973651B2 (en) * 2011-06-16 2015-03-10 Baker Hughes Incorporated Modular anchoring sub for use with a cutting tool
US9447648B2 (en) 2011-10-28 2016-09-20 Wwt North America Holdings, Inc High expansion or dual link gripper
US9828817B2 (en) 2012-09-06 2017-11-28 Reform Energy Services Corp. Latching assembly
US9494002B2 (en) * 2012-09-06 2016-11-15 Reform Energy Services Corp. Latching assembly
US20150226024A1 (en) * 2012-09-06 2015-08-13 Strata Energy Services Inc. Latching assembly
US9297217B2 (en) 2013-05-30 2016-03-29 Björn N. P. Paulsson Sensor pod housing assembly and apparatus
US10934793B2 (en) 2014-01-27 2021-03-02 Wwt North America Holdings, Inc. Eccentric linkage gripper
US10156107B2 (en) 2014-01-27 2018-12-18 Wwt North America Holdings, Inc. Eccentric linkage gripper
US11608699B2 (en) 2014-01-27 2023-03-21 Wwt North America Holdings, Inc. Eccentric linkage gripper
US9488020B2 (en) 2014-01-27 2016-11-08 Wwt North America Holdings, Inc. Eccentric linkage gripper
WO2018217096A1 (en) * 2017-05-23 2018-11-29 Qinterra Technologies As Method and apparatus for performing a survey of tubing which is stuck in a borehole, e.g. for determining a free point
GB2577440A (en) * 2017-05-23 2020-03-25 Altus Intervention Tech As Method and apparatus for performing a survey of tubing which is stuck in a borehole, e.g. for determining a free point
US11391131B2 (en) * 2017-07-12 2022-07-19 Oklas Technologies Limited Liability Company Downhole pump drive including reverse reduction gear with switching mechanism
US11203908B2 (en) 2018-04-03 2021-12-21 C6 Technologies As Anchor device
WO2019194680A1 (en) * 2018-04-03 2019-10-10 C6 Technologies As Anchor device
CN109185674B (en) * 2018-09-27 2020-02-18 吕敦玉 Well locking device of underground seismic instrument
CN109185674A (en) * 2018-09-27 2019-01-11 吕敦玉 The lock device of borehole seismic instrument
CN113338917A (en) * 2021-06-01 2021-09-03 中海油田服务股份有限公司 Wing type positioner
CN113338917B (en) * 2021-06-01 2022-08-02 中海油田服务股份有限公司 Wing type positioner

Also Published As

Publication number Publication date
FR2085481A1 (en) 1971-12-24

Similar Documents

Publication Publication Date Title
US3661205A (en) Well tool anchoring system
US3664416A (en) Wireline well tool anchoring system
US4491022A (en) Cone-shaped coring for determining the in situ state of stress in rock masses
US4125013A (en) Anchoring apparatus for tools used in determining the stuck point of a conduit in a borehole
NL193911C (en) Collapsible hold-open device for a downhole probe.
AU777211C (en) Closed-loop drawdown apparatus and method for in-situ analysis of formation fluids
US8640790B2 (en) Apparatus, system and method for motion compensation using wired drill pipe
US5092423A (en) Downhole seismic array system
US5056595A (en) Wireline formation test tool with jet perforator for positively establishing fluidic communication with subsurface formation to be tested
US8499836B2 (en) Electrically activating a jarring tool
US3855857A (en) Force-measuring apparatus for use in a well bore pipe string
US3066739A (en) Borehole apparatus
US4616703A (en) Device for anchoring a probe in a well, by opening mobile arms
US9309748B2 (en) Power generation via drillstring pipe reciprocation
US3294170A (en) Formation sampler
US4105070A (en) Methods for determining the stuck point of a conduit in a borehole
US3798966A (en) Well logging sonde having articulated centering and measuring shoes
US11248427B2 (en) Systems and methods for manipulating wellbore completion products
US3177938A (en) Methods and apparatus for operating borehole equipment
US4105071A (en) Methods and apparatus for determining the stuck point of a conduit in a borehole
US3845837A (en) Gravity force operated apparatuses for generation of longitudinal pulse data from the bottom of a well
US3381751A (en) Bottom-hole shut-in tool
US8393874B2 (en) Hybrid pumping system for a downhole tool
US9097106B2 (en) Apparatus, method and system for measuring formation pressure and mobility
CN220726263U (en) Four-arm caliper with each arm capable of independently pushing and leaning